
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Remotely Keyed Encryption
Using Non-Encrypting Smart Cards

Stefan Lucks and Rüdiger Weis
University of Mannheim

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Remotely Keyed Encryption Using

Non-Encrypting Smart Cards

Stefan Lucks R�udiger Weis

Theoretische Informatik Praktische Informatik IV

University of Mannhein

68131 Mannheim, Germany

lucks@th.informatik.uni-mannheim.de

rweis@pi4.informatik.uni-mannheim.de

Abstract

Remotely keyed encryption supports fast encryption
on a slow smart card. For the scheme described here,
even a smart card without a builtin encryption func-
tion, would do the job, e.g., a signature card.

1 Introduction

Many security relevant applications store secret keys
on a tamper-resistant device, a smart card. Pro-
tecting the valuable keys is the card's main purpose.
Typically, smart cards are slow. Using them for key-
dependent operations such as en- and decrypting in-
herently must be slow as well, right? Wrong, para-
doxically there is still a way of doing fast encryption
using a slow card.

Often, smart cards are designed to support authen-
tication or digital signatures instead of encryption.
In this paper, we concentrate on the RaMaRK pro-
tocol, theoretically based on (pseudo)random map-
pings. Paradoxically enough: The RaMaRK proto-
col does not require the smart card itself to support
encryption { support for hash functions, as built into
many signature cards, is su�cient. In a world with
lots of restrictions on the import, export or usage of
encryption tools and much less restrictions regard-
ing authentication or signature tools, this can be an
important property.

2 Remotely Keyed Encryption

A remotely keyed encryption scheme (RKES) dis-
tributes the computational burden for a block cipher
with large blocks between two parties, a host and
a card. Figure 1 gives a general description of an
RKES.

plaintext

ciphertext

cardhost

Figure 1: A generic RKES

We think of the host being a computer under the
risk of being taken over by an adversary, while the

card can be a smart card, protecting the secret key.
We do not consider attacks to break the tamper-
resistance of the smart cards itself. The host knows
plaintext and ciphertext, but only the card is trusted
with the key.
An RKES consists of two protocols: the encryption

protocol and the decryption protocol. Given a B-bit
input, either to encrypt or to decrypt, such a protocol
runs like this: The host sends a challenge value to the
card, depending on the input, and the card replies a
response value, depending on both the challenge value
and the key.
The notion of remotely keyed encryption is due to

Blaze [2]. Lucks [8] pointed out some weaknesses of
Blaze's scheme and gave formal requirements for the
security of RKESs:

(i) Forgery security: If the adversary has controlled
the host for q�1 interactions, she cannot produce
q plaintext/ciphertext pairs.

(ii) Inversion security: An adversary with (legiti-
mate) access to encryption must not be able do
decrypt and vice versa.

(iii) Pseudorandomness: The encryption function
should behave pseudorandomly for someone nei-
ther having access to the card, nor knowing the
secret key.

While Requirements (i) and (ii) restrict the abilities
of an adversary with access to the smart card, Re-
quirement (iii) is only valid for outsider adversaries,
having no access to the card. If an adversary could
compute forgeries or run inversion attacks, she could
easily distinguish the encryption function from a ran-
dom one.
It is theoretically desirable, that a cryptographic

primitive always appears to behave randomly for ev-
eryone without access to the key. So why not re-
quire pseudorandomness with respect to insider ad-
versaries? In any RKES, the amount of communica-
tion between host and card should be smaller than
the input length, otherwise the card could just do
the complete encryption on its own. Since (at least)
a part of the input is not handled by the smart card,
and, for the same reasons, (at least) a part of the

output is generated by the host, an insider adversary
can easily decide that the output generated by herself
is not random.
In 1998, Blaze, Feigenbaum, and Naor [3] found an-

other way to de�ne the pseudorandomness of RKESs.
Their formal de�nition is quite complicated. Is is
based on the adversary A gaining direct access to the
card for a certain amount of time, making a �xed
number of interactions with the card. When A has
lost direct access to the card, the encryption function
should appear to behave randomly, even for A. Re-
cently, Lucks [9] described an \accelerated" RKES,
which satis�es the security requirements of Blaze,
Feigenbaum and Naor, but is signi�cantly more ef-
�cient. Note that both schemes acutally require the
card to execute encryption function, while this pa-
per deals with remotely keyed encryption using non-
encrypting smart cards.
Theoretically, one could de�ne an encryption func-

tion based on random mappings and hence adapt the
schemes of [3, 9] for the use of non-encrypting smart-
cards. Such a construction could be based on using
Luby-Racko� ciphers [6], or on one of the many re-
�nements of them, such as the one in [7]. In practice,
the resulting RKE-scheme would be quite ine�cient,
though.

3 RaMaRK Encryption scheme

In this section, we describe the Random Mapping
based Remotely Keyed (RaMaRK) Encryption
scheme, which uses several independent instances of
a �xed size random mapping f : f0; 1gb �! f0; 1gb.
In practice, one uses pseudorandom functions1 in-
stead of truly random ones. The scheme is provably
secure if its building blocks are, i.e., it satis�es
requirements (i){(iii) above, see [8]. Note that b

must be large enough|performing close to 2b=2

encryptions has to be infeasible. We recommend
to choose b � 160. By \�" we denote the bit-wise
XOR, though mathematically any group operation
would do the job as well.

1If f is \pseudorandom", it is infeasible to distinguish be-
tween f and a truly random function - except if one knows the
secret key.

2

We use three building blocks:

1. Key-dependent (pseudo-)random mappings fi :
f0; 1gb �! f0; 1gb.

2. A hash function H : f0; 1g� �! f0; 1gb:

H has to be collision resistant, i.e. it has to be
infeasible to �nd any t; u 2 f0; 1g� with u 6= t

but H(u) = H(t).

3. A pseudorandom bit generator (i.e. a \stream
cipher") S : f0; 1gb �! f0; 1g�: We restrict our-
selves to S : f0; 1gb �! f0; 1gB�2b:

If the seed s 2 f0; 1gb is randomly chosen, the
bits produced by S(s) have to be indistinguish-
able from randomly generated bits.

In addition to pseudorandomness, the following
property is needed: If s is secret and attackers
choose t1, t2, . . . 2 f0; 1g

b with ti 6= tj for i 6= j

and receive outputs S(s � t1), S(s � t2), . . . , it
has to be infeasible for the attackers to distin-
guish these outputs from independently gener-
ated random bit strings of the same size. Hence,
such a construction behaves like a random map-
ping f0; 1gb �! f0; 1gB�2b, thought it actually
is a pseudorandom one, depending on the secret
s.

Based on these building blocks, we realize a remotely
keyed encryption scheme to encrypt blocks of any size
B � 3b, see �gure 2.

f
1

f
2

f
3

U

f
1

f
2

f
3

U

S SH

I

P

Q

T

V

A

B

f
5

f
64

f

X Z

Y

CR

Figure 2: The RaMaRK encryption protocol

3.1 RaMaRK Encryption Protocol

We represent the plaintext by (P;Q;R) and the ci-
phertext by (A;B;C), where (P;Q;R); (A;B;C) 2
f0; 1gb � f0; 1gb � f0; 1gB�2b: For the protocol
description we also consider intermediate values
T; U; V;X; Y; Z 2 f0; 1gb, and I 2 f0; 1gB�2b.
The encryption protocol works as follows:

1. Given the plaintext (P;Q;R), the host sends P
and Q to the card.

2. The card computes

U = f1(P)�Q and T = f2(U)� P;

and sends

X = f3(T)� U

to the host.

3. The host computes

I = S(X)�R and Y = H(I);

sends

Z = X � Y

to the card, and computes

C = S(Z)� I:

4. The card computes

V = f4(T)� Z;

and sends the two values

A = f5(V)� T and B = f6(A)� V

to the host.

3.2 RaMaRK Decryption Protocol

In order to decrypt the ciphertext (A;B;C), we need
the following protocol:

1. Given the plaintext (A;B;C), the host sends A
and B to the card.

3

2. The card computes

V = f6(A)�B and T = f5(V)�A;

and sends

Z = f4(T)� V

to the host.

3. The host computes

I = S(Z)� C and Y = H(I);

sends

X = Z � Y

to the card, and computes

R = S(X)� I:

4. The card computes

U = f3(T)�X

and sends the two values

P = f2(U)� T and Q = f1(P)� U

to the host.

One can easily verify that by �rst encrypting any
plaintext using any key, then by decrypting the result
using the same key, one gets the same plaintext again.

3.3 Remark

Neither the amount of communication between host
and card, nor the amount of work on the size of the
card depend on the block size B of the full cipher.
Thus, if B is not too small compared to the parameter
b, which de�nes the size of the blocks sent to the
card, the RaMaRK scheme is e�cient. The card itself
operates on 2b bit data blocks, and both 3b bit of
information enter and leave the card. In practice,
b � 160 gives a high level of security, while B can be
huge.

4 Extended Security Require-

ments

Regarding the RaMaRK scheme, the authors of [3]
pointed out that an adversary A who had access to
card and lost the access again, can later chose spe-
cial plaintexts where A can predict a part of the ci-
phertext. This makes it easy for A to distinguish
between RaMaRK encryption and encrypting ran-
domly.2 Thus, according to the de�nition of [3], the
RaMaRK scheme is not pseudorandom.

We believe that it is possible to extend the Ra-
MaRK scheme to make it pseudorandom even in the
sense of [3], i.e., with respect to insider adversaries.
So far, this is an open problem. Note that all schemes
in [3] are pseudorandom as de�ned there, but depend
on pseudorandom permutations (i.e., block ciphers)
{ and thus are designed for smart cards with builtin
encryption.

5 Implementation of Building

Blocks on the Host

On the side of the host, we need standard crypto-
graphic primitive operations, which can easily be im-
plemented or found in a cryptographic function.

5.1 Hash Functions.

To combine the big block of data with the small
blocks in the card we need a collision-free hash func-
tion. The calculation is performed on the host, so
we can simply chose a well-tested hash fuction like
SHA-1[5] or RIPE-MD160[4]. Both produce a 160-bit
output, which seems to provide su�cient security.

2The intermediate value X only depends on the (P;Q)-part
of the plaintext, and the encryption of the R-part only depends
on X. If A chooses a plaintext (P;Q;R), having participated
before in the encryption of (P;Q;R0), with R 6= R0, the adver-
sary A can predict the C-part of the ciphertext corresponding
to (P;Q;R) on her own.

4

5.2 Pseudo Random Bitgenerators.

In [8] the use of a stream cipher was suggested. We
can also use a well-tested block cipher in the OFB or
CFB mode (E.g. CAST-5 performs very �ne even on
small packets [10]).

6 Keydependent Pseudoran-

dom Mappings on the Card

In this section we want to discuss how to realise
Pseudo Random Mappings (PRM) with an Non-
Encrypting smartcard. For the purposes of this pa-
per, we suggest to use hash-based Message Authenti-
cation Codes (MACs) as tools. We speci�cally recom-
mend the HMAC-construction from Bellare, Canetti,
and Krawczyk [1], which is provably secure.
Note that a cryptographic hash function is de�ned

to take a bit-sting of an arbitrary length as input, to
produce a �xed-size bit-string as output. (In addi-
tion to this, it also has to satisfy some cryptographic
security criteria.)

6.1 Using a Hash-Based MAC to re-

alize PRMs

Trusting in a well-studied dedicated hash function,
such as SHA-1 or RIPEMD-160, to realize a key-
dependent Message Authentication Code provides a
couple of advantages for our scheme:

� Cryptographic hash functions have been well
studied.

� Cryptographic hash functions are usualy faster
than encryption algorithms.

� MACs based on SHA-1 or RIPE-MD160 mostly
provide 160-bit output. So even birthday attacks
which need 280 operations are infeasible.

� Some hash-based MACs are provably secure if
the underlying hash is secure.

� The proof of security for some MAC construc-
tions can rely on quite weak assumptions on the

hash function's security, compared to the stan-
dard assumptions for hash functions. Thus, even
if the hash function we use is broken and inse-
cure for signatures or other applications, it may
still be infeasible to break the HMAC instanti-
ated with this hash function.

� In many countries, it is more easy to export or
import an authentication tool, such as a signa-
ture smart card, than to export or import an
encrypting device, such as a smart card with a
builtin encryption function.

6.2 HMAC: A Construction for Hash-

Based MACs

HMAC [1] has the advantage that we can use any
cryptographic hash functionH as blackbox. The only
restriction on H is the following: H is assumed to
be an iterative hash function. That means, it inter-
nally uses a compression function, iteratively taking
a �xed-size value as input (say, 512 bit), to produce
a smaller-sized output (e.g., 160 bit). Most crypto-
graphic hash functions known today are iterative. If
needed, one can easily de�ne a secure iterative hash
functions based on a secure non-iterative one.
The HMAC function is de�ned like this:

HMACK(x) := H(�K � opadjjH(�K � ipadjjx))

with ipad := Ox36 repeated 64 times and ipad :=

Ox5C repeated 64 times3, �K is generated by append-
ing zeros to the end of K to create a 64 byte string4.
(Note that the speci�c values of ipad and opad are
relevant for actually implementing HMACs without
creating incompatible versions, but with respect to
the security of HMACs, one mainly has to keep in
mind ipad 6= opad.)
In [1] a proof is given, that the HMAC construction

is secure against collision attacks and forgery attacks.

3The number of repetitions may actually change, depending
on the input size of the underlying compression function. Most
present-day hash functions, including the well-studied SHA-1
and RIPEMD-160, use a compression function with an input
size of 512-bit (i.e., 64 byte).

4This size of 64 byte also changes with the input size of the
compression function

5

As usual in present-day cryptography, the proof of
security is based on some unproven but reasonable
assumptions. The weaker such assumptions are, the
stronger is the proof. It is thus remarkable, that the
proof in [1] only makes very weak assumptions on
the security of the underlying hash function (and no
assumptions otherwise).
Consider selecting a hash function H for the

HMAC construction, i.e., instantiating the HMAC
construction with H. Of course, this has to be done
with great care. But it is the state-of-the-art in to-
day's cryptography, that no one can rule out com-
pletely that this hash function H is later found to be
insecure, e.g., collisions for H are found. A collision
consists of two bit-strings x 6= y with the same values,
i.e., H(x) = H(y). Such collisions do exist of course,
but if it is feasible to actually �nd such collisions, this
would be deathly for using H in the context of signa-
tures. On the ohter hand, due to the weak assump-
tions on H the HMAC-construction requires, even a
collision-prone hash function H could still satisfy the
security requirements for HMACs, and HMACs in-
stantiated with H could be secure, nevertheless.

References

[1] M. Bellare, R. Canetti and H. Krawczyk,
\Keying hash functions for message authen-
tication" (1996), in: Crypto 96, Springer
LNCS.

[2] Blaze, M., \High-Bandwidth Encryption with
Low-Bandwidth Smartcards", in: Fast Soft-
ware Encryption (ed. D. Gollmann) (1996),
Springer LNCS 1039, 33{40.

[3] Blaze, M., Feigenbaum, J., and Naor, M.,
\A Formal Treatment of Remotely Keyed En-
cryption", in: Eurocrypt '98, Springer LNCS
1403, 251-265.

[4] Dobbertin, H., Bosselaers, A., Preneel, B.,
"RIPEMD-160, a strengthened version of
RIPEMD", Proc. of Fast Software Encryp-
tion (ed. D. Gollmann), LNCS 1039, Springer,
1996, pp. 71-82.

[5] NIST, "Secure Hash Standard", Washington
D.C., April 1995.

[6] Luby, M., Racko�, C., \How to construct
pseudorandom permutations from pseudoran-
dom functions", SIAM J. Comp., Vol 17, No.
2, 1988, pp. 239-255.

[7] Lucks, S., \Faster Luby-Racko� ciphers", in:
Fast Software Encryption (ed. D. Gollmann)
(1996), Springer LNCS 1039.

[8] Lucks, S., \On the Security of Remotely
Keyed Encryption", in: Fast Software En-
cryption (ed. E. Biham) (1997), Springer
LNCS 1267.

[9] Lucks, S., \Accelerated Remotely Keyed En-
cryption", to appear in: Fast Software En-
cryption (1999), (ed. L. Knudsen) Springer
LNCS, 1999.

[10] Weis, R., Lucks, S., \The Performance of
Modern Block Ciphers in JAVA", to appear
in: CARDIS'98, Springer LNCS.

6

