
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Which Security Policy for
Multiapplication Smart Cards?

Pierre Girard
Cryptography and Security R&D, GEMPLUS

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Which Security Policy for Multiapplication Smart Cards?

Pierre Girard

Cryptography and Security R&D

GEMPLUS

Parc d'activit�e de G�emenos { B.P. 100

13881 G�emenos CEDEX { France

Pierre.Girard@gemplus.com

Abstract

In this paper, we aim to clarify some issues re-
garding the deployment context of multiapplicative
smart cards. We especially deal with the trust re-
lationships between the involved parties and the re-
sulting constraints from a security point of view.

We highlight a new security threat in a multiapplica-
tive context and propose a new multilevel security
model which allows to control precisely the informa-
tion 
ows inside the card, and to detect illegal data
sharing.

Finally we illustrate all the proposed concepts on
an multiapplicative example involving three appli-
cations.

1 Introduction

Multiapplication smart cards are getting more and
more attractive for numerous good reasons. Users
are willing to reduce the number of cards in their
wallets, issuers want to decrease the time-to-market,
the development, infrastructure and deployment
costs or to update/add applications after card is-
suance. In addition multiapplication smart cards
allow commercial synergies between partners and
can lead to new business opportunities. A credit
card with an electronic purse and a frequent 
yer
application is a classical example of a multiapplica-
tion smart card.

A few operating systems have been proposed to
manage multiapplicative smart cards, namely Java

Card1, Multos2 and more recently Smart Card for
Windows3. In this paper we will focus on Java Card
and exhibit examples for this platform, but all the
results can apply to any multiapplicative platform.

Security is always a big concern for smart cards, but
the issue is getting more intense with multiapplica-
tive platforms and post issuance code downloading.
Of course, Java Card security or protection against
aggressive applets have been discussed extensively,
but we still lack a global security policy for mul-
tiapplicative smart cards. We will show that this
kind of policy must be more than the simple con-
catenation of the security policy of all applications.
Until now, this topic hasn't been appropriately in-
vestigated, probably because numerous issues con-
cerning how those cards will be used remain unclear:
which parties will cooperate? how? which of them
will drive the scheme? etc.

In this paper we �rst aim at clarifying those issues.
Next, we show that there is a need for a card-wide
security policy, mainly because of the existance of
information sharing mechanisms between applets.
Then, we propose a new security policy to deal with
this need and show an example of how it could be
used. We �nish with limitations, potential exten-
sions and related work.

2 The multiapplication platform

On a multiapplication platform, we usually �nd an
operating system managing the card resources (like
I/O, memory, random number generator, crypto en-

1
See http://java.sun.com/products/javacard.

2
See http://www.multos.com.

3See http://www.microsoft.com/smartcard.



gine. . . ) and some applications (possibly loaded af-
ter the card issuance) from various sources using the
OS services. In addition, the OS ensures application
segregation and provides mechanisms to allow con-
trolled data sharing between applications.

2.1 Which participants?

Unlike single-application smart cards, multiappli-
cation smart cards involve many participants. Of
course, there are still an issuer and an end user, but
additional third parties which can interact directly
or not with the card are also involved.

To separate precisely the actions of the participants
we have de�ned two roles in addition to the usual
issuer which is played by a unique authority: the
application provider and the card operator.

The application provider designs an application for
the targeted card operating system and negotiates
with the issuer for downloading its application in-
side the card (before or after the card issuance). It's
the owner of the applet and applet's data. Of course,
the issuer itself will place some applications inside
its card, and will play the application provider's
role.

The card operator is an entity which can interact
with the card either to use an application or to per-
form administrative tasks. An administrative task
can be anything from auditing the card or updating
a key to downloading a new application. The in-
teraction between the operator and the card can be
direct (e.g. if the card is inserted in an ATM) or re-
mote (e.g. through the Internet or a cellular phone
network). It is likely that the application providers
and the issuer will play the operator's role as well.
Conversely, an operator will probably be an appli-
cation provider, even if it could be delegated to in-
teract with an application of another provider. An
applet can be designed to work with one operator
(likely its owner) or more. In this case its behaviour
could di�er according to the operator.

Coming back to the example of a credit card with a
frequent 
yer application, we can assume that the
issuer will be a bank, which will also be the appli-
cation provider and the operator of the credit ap-
plet. An air travel company will be the provider
and the operator of the loyalty applet. Some other
companies can join the loyalty program and become

operators for the loyalty applet.

2.2 How is it operated?

The �rst and the simplest way to operate such a
multiapplication platform is to keep it entirely un-
der the control of the issuer. It will be the only
authority responsible for the card and its integrity.
All application providers must negotiate and agree
with the issuer conditions and guidelines for down-
loading their applications on the card. The issuer
is granted all possible rights in the card and will
enforce its policy during all the card life, as well
as inspect applications carefully before download-
ing them. In the rest of the paper we suppose this
mode of operation as it seems to be the most likely
in the forthcoming years. However, other ones like
the two following could exist.

One can imagine a second model where the end user
buys a blank card from a manufacturer of its choice
and plays the issuer's role. Afterwards, it will ac-
cept or buy from providers some applications for its
card. The whole card will be (or should be) under
its control. We do not consider this scenario as it
is unclear if providers will accept to download their
applications into cards for which they have no or few
behaviour guarantees. Probably, this type of scheme
will coexist with the �rst one, but for non security
critical applications or for applications totally oper-
ated by the end user. For example, a manufacturer
of smart locks using smart cards, instead of keys,
could propose to download its application on users
cards. The users could decide to buy an ad hoc card
or use an existing one to put the application driving
the smart lock.

A third type of scheme adds another role: certi�ca-
tion authorities. Those authorities will audit issuers
and their cards and will provide a certi�cation which
will guarantee that an issuer respects a given pol-
icy. Based on this policy a provider as well as an
end user will be able to decide if the issuer's pol-
icy complies with their requirements. An example
of certi�cation could be a \privacy awareness" label
for issuers which respect the privacy rights of the
users and do not leak private data outside the card.
This is a re�nement of our �rst scheme and we won't
focus on it in the following.



2.3 Which security policy?

At �rst glance, it is easy to see that there are, at
least, two separate security problems: the platform
level security and the application level security.

The �rst one (platform level security) concerns ap-
plications segregation (this can be viewed as the
classic OS security) as well as the quality of security
services o�ered by the platform (e.g. correctness of
the Java virtual machine including the veri�er, tam-
per resistance, cryptographic algorithms and post-
issuance loading mechanism). This part is under
the issuer's responsibility.

The second one (application security), is under the
provider's responsibility, but relies necessarily on
the platform security. Moreover, the application
should assume that the OS won't be aggressive and
will act as it is supposed to. Conversely, the OS
doesn't make any assumption about the application
and should still work and protect the other appli-
cations even if an aggressive or unsecure piece of
code is loaded. However, one should note that even
if this is technically perfectly acceptable, and if an
unsecure application can't threaten the platform or
other application, the end users or potential cus-
tomers could get confused by a break-in of an appli-
cation and mixed up the platform security and the
application security. To avoid this potential damage
to its brand image, an issuer could enforce a min-
imum security level for the applications loaded on
its card by reviewing them or operating a scheme
including some certi�cation authorities.

Apart from these two obvious security aspects, a
third one must be addressed. All the diÆculties
arise from data sharing inside a card. Actually, most
of multiapplication smart cards, in order to build
cooperative schemes and optimize memory usage,
allow data and service sharing (i.e. objects sharing)
between applications. And beyond this point there
is a need for a card-wide security policy concerning
all the applications. A small example should make
this point clearer. When an application provider
A decides to share (or more probably to sell) some
data with an application provider B, he will ask for
guarantees that B won't be able to resell those data
or make them available world-wide.

To address these problems two kinds of security poli-
cies can be introduced: a discretionary one and a
mandatory one. The applications will be in charge

of de�ning their own discretionary security policy
which could be enforced by the OS. For an example,
in a Java card, an applet can decide to share some
of its objects with a selective list of other applets.
On this access control list basis, the OS will allow or
deny access to the shared object by other applets. If
we just consider a discretionary policy, nothing pre-
vents an application B which could legally access
an object of A (B has been granted from A to read
the data) from copying the information into another
object shared with C. In this case the information
is transfered from A to C even if C is not granted
access the information from A.

A mandatory security policy is necessary to solve
the problem of re-sharing shared objects as pointed
above. Actually none of the existing OS enforce
such a policy.

In this paper, we will discuss this last point and
propose a security model, compliant with the re-
quirements of safe data sharing and able to control
the information 
ows inside the card.

2.4 Which threat model?

In the following we consider the threat of an insecure
or malicious applet gaining legally some access to
sensitive data (by a sharing mechanism of the OS)
but resharing them illegally with a third party.

The threat could be a commercial concern (as in
the previous example) or privacy concern. This
later case is especially important when dealing with
health-care cards containing medical records or with
loyalty cards containing marketing pro�les.

3 A new security model

The security policy enforced by the OS should
model the information 
ows between the applica-
tions which, themselves, re
ect the trust relation-
ships between the participants of the applicative
scheme. In this section we will start by studying
the trust relationships, then the security model, and
�nally consider some implementation issues.



3.1 Trust relationships

In the basic situation the only trust relationships are
from everyone to the issuer, as there is no way for
a participant to distrust the issuer. The platform
OS is completely under the issuer's control and is
potentially able to read, write, create or modify ev-
erything on it including the applications and their
keys.

In addition, some participants can trust other ones:
sometimes because it is in fact the same entity which
plays more than one role and sometimes because
there is an agreement or a contract between the two.

It should be noticed that the trust relationship is
neither symmetric nor transitive: an entity wouldn't
like to trust someone only because one of its partners
trusts it. This situation is not likely to change as co-
operation in industry becomes something more com-
plex and subject to daily change (one could speak
about coopetition between companies as well as be-
tween divisions inside a company).

Figure 1 shows an example of trust relationships
with four applications providers and three opera-
tors. The issuer trusts no-one except OP1 and AP1
which are two roles played by the issuer itself. We
can see that AP1 trusts AP2 and AP2 trusts AP3
which doesn't mean that AP1 trusts AP3.

We can also note that AP4 doesn't operate its applet
itself but relies on, and thus trusts, OP3 to do so.

Now, it should be clear that a mandadory secu-
rity policy must be enforced in a multiapplicative
scheme which will allow or deny data 
ows between
applications given the trust relationships. If an en-
tity A trusts an entity B, this means that some in-
formation could 
ows from A to B. We have chosen
a classic multilevel security policy using a set of se-
curity level modelling the trust relationships.

3.2 The multilevel policy

The multilevel security policy, �rst modelled in [2],
uses a set of security levels with a complete lattice
structure. A security level is associated to each sub-
ject (an entity manipulating information) and each
object (a piece of information but not an object in
object-oriented programming sense) of the system.

The lattice structure implies an order relation on
the set, and hence that the relation is transitive.

The security rule states that a read (resp. write) ac-
cess by a subject to an object is granted if and only
if the level of the subject is greater (resp. lower) or
equal to the object's level. The classical example of
a multilevel security policy is the document classi-
�cation inside a military organisation. In this case
the set of security level is: fUnclassi�ed, Con�den-
tial, Secret, Top secretg with a usual order between
the security levels.

We will now consider how to map each entity and in-
formation in a multiapplicative scheme to a security
level. First of all we will create one level associated
to the issuer and one associated to each application
provider. If an operator and an application provider
trust each other they will be represented by only one
level.

To establish a multilevel policy for a card with-
out data sharing, one can choose a (non 
at) lat-
tice of security levels with one level for each ap-
plication provider and an additional public level to
complete the lattice. Figure 2 indicates the secu-
rity level lattice corresponding to the example of
�gure 1, part (a), where an arrow represents an or-
der relation between two levels. In this case, the
only legal information 
ow is from a public level to
the issuer through any role, but communication be-
tween providers or operators is strictly prohibited
except from AP4 to AP3 because AP4 trusts OP3
and because OP3 and AP3 have been merged.

To allow data sharing between entities, one cannot
simply allow a new order relation between two roles
as we cannot accept the transitivity e�ect of the
order relation. As an example, if AP1 from our last
example wants to share some data with AP2 and
AP2 wants to share data with AP3, the security
lattice of �gure 2, part (b) is clearly inadequate.
We recall that the trust relationship is not transitive
and so AP1 does not want to share data with AP3
which is possible with this solution through AP2.

To solve this problem we propose that AP1 and
AP2 agree on a data subset they want to share.
Those data will be classi�ed with a new level called
AP1+AP2 placed in the security level lattice shown
on �gure 3. The same agreement will take place
between AP2 and AP3 resulting in another level
AP2+AP3.



X Y

Issuer

AP1

AP2

AP3

AP4

OP1

OP2

OP3

X trusts Y

Figure 1: Example of a trust relationship

(a) (b)

Public

Issuer

AP1 AP2 AP4AP3

Public

Issuer

AP1 AP2 AP4AP3

Figure 2: Example of security level lattice without sharing (a) and with an unacceptable sharing (b).

This technique can be re�ned if there is a need for
sharing a subset of AP1+AP2 with AP3. We will
create a new level called AP1+AP2+AP3 greater
than the public level but lower than AP1+AP2 and
AP2+AP3.

3.3 Implementations issues

To enforce the latter policy within a card (we con-
sider here a Java Card), a lot of implementation
issues should be considered. First of all, we should
decide which data will be classi�ed, and with which
granularity. We should also consider the implemen-
tation of security mechanisms which will enforce the
policy.

The classi�cation of objects in object oriented lan-
guage is a complex problem (see [5] for a recent dis-
cussion on this subject), however, we can chose a
simple strategy by assigning a security level to each
object instance. In a given applet, the objects will
be labelled with their provider's level except if an
object is shared, in which case, we will choose the
level related to shared data. The authorized infor-
mation 
ows in an applet will be from lower labelled
objects to higher ones.

Enforcing the security policy could be done dynam-
ically by a reference monitor (part of the card OS)
which will be called each time an object reference is
used by the virtual machine or statically by check-
ing the correctness of the information 
ows in an
applet. The �rst solution would be too costly in



AP2AP1

AP1+AP2

AP3 AP4

Issuer

AP2+AP3

Public

Figure 3: Example of security level lattice with acceptable sharing

memory and execution time which are both critical
in a smart card as we shoud tag each object with
its level and check the validity of each read/write
operation.

The second solution has been studied for a long time
(Denning pioneered this domain [6] and was followed
by [8, 1, 11, 4]) and could be integrated to existing
static veri�er of Java bytecode. Using security level
set with a lattice structure is a key point to guar-
antee that the static analysis will terminate.

Practically, this means that an applet provider will
deliver its code to the issuer along with the security
level of all the objects contained in it. The issuer
will verify that the code and the declared levels of
the objects comply with the other applets and their
objects security levels.

4 A real world example

We present in this section the example of a multi-
applicative healthcare card. This card is issued by
a health insurance with an applet. This applet con-
tains some administrative data including the social
security number of the card holder.

In addition, the user has joined the loyalty program
of a drugstores chain and downloaded the corre-
sponding applet. The drugstore applet can use the
social security number and contains some admin-
istrative data and, possibly, a few medical records
(e.g. medication allergy). It also contains a loyalty
part which maintains a loyalty points counter.

The third applet on the user's card is a loyalty ap-
plet of a sport centers chain which has an agree-
ment with the drugstores chain and shares the loy-
alty point counter with the drugstore applet.

Figure 4 summarizes the information 
ow between
the applets.

The drugstore applet can read the social security
number, but is not allowed to give it to other ap-
plets. The security threat is the following: the
drugstore applet can copy the social security num-
ber from the healthcare applet to the loyalty point
counter and broadcast it to applets allowed to read
the counter.

To face this threat, we propose a mandatory security
policy using the security level lattice of �gure 5. All
the objects of the healthcare applet will be labelled
with HC except the social security number labelled
with SSN . The objects of the drugstore applet are
labelled with the DS level except the loyalty point
counter which is labelled with PTS. Finally, all the
objects of the sport centers chain applet are labelled
with SC.

This way, if the drugstore applet copies the so-
cial security number in one of its objects (labelled
DS) and later in the loyalty point counter (labelled
PTS), an illegal information 
ow will be detected
as PTS is lower than DS and information can only

ow from a lower level to a greater one.

To be more complete, we should deal with the exter-
nal world: the drugstore applet can exchange some
data with an operator. The external software used
by the operator should also be checked to verify that
it doesn't content a covert channel transfering infor-



Sport center appletDrugstore appletHealthcare applet

SSN Points

Figure 4: Example of three applets sharing data

Issuer

DSHC

SSN

Public

PTS

SC

Figure 5: Lattice of security levels for �gure 4 applications

mation from the DS level to the PTS level.

As this software can be modi�ed, the issuer can also
ask the drugstore applet provider to encrypt the so-
cial security number before sending it outside the
card.

5 Limitations and related work

The limitations of our work clearly come from the
communications with the external world. We are
currently improving this point of the security model.
We are also in the process of implementing static
veri�ers of applets as well as including declassi�ca-
tion processes (e.g. when the data 
ow through a
ciphering �lter) in the security model.

Some authors have already dealt with non-
transitivity constraints in di�erent contexts [10, 3],
but we are not aware of a multilevel security policy
applied to a smart card and its environment. A lot
of papers dealing with classic Java Card security are
available. We refer the reader to recent publications
like [9] or [7] for a complete bibliography.

6 Conclusion

In this paper, we clarify some issues around the op-
erating scheme of multiapplicative smart cards and
highlight some new security threats.

The proposed multilevel security model allows us
to control precisely the information 
ows inside the
card, and detect illegal data sharings.

In a next step, analysing tools should be developed
and provided to issuers which will be able to audit
applets proposed by third parties for their cards.

References

[1] Jean-Pierre Banâtre, Ciar�an Bryce, and Daniel
Le Mtayer. Compile-time detection of infor-
mation 
ow in sequential programs. In Dieter
Gollmann, editor, Proceedings of ESORICS,
number 875 in LNCS, pages 55{73. Springer,
November 1994.

[2] D. Bell and L. Lapadula. Secure computer sys-
tems : Uni�ed exposition and MULTICS in-



terpretation. Technical report ESD-TR-75-306,
MITRE Corporation, 1975.

[3] Pierre Bieber. Formal techniques for an
ITSEC-E4 secure gateway. In Proceedings of

the Twelfth Annual Computer Security Appli-

cations Conference, December 1996.

[4] J. Cazin, P. Girard, C. O'Halloran, and C. Sen-
nett. Formal validation of software for se-
cure systems. In Formal Methods, Modelling

and Simulation for System Engineering, Saint-
Quentin-en-Yvelines, February 1995.

[5] Frdric Cuppens and Alban Gabillon. Rules for
designing multilevel object-oriented databases.
In Jean-Jacques Quisquater and al., editors,
Proceedings of ESORICS, number 1485 in
LNCS, pages 159{174. Springer, September
1998.

[6] Dorothy E. Denning and Peter J. Denning.
Certi�cation of programs for secure infor-
mation 
ow. Communication of the ACM,
20(7):504{512, July 1977.

[7] Jean-Louis Lanet and Antoine Requet. For-
mal proof of smart card applets correctness.
In Jean-Jacques Quisquater and al., editors,
PreProceedings of CARDIS, Louvain-la-Neuve,
September 1998.

[8] Maasaki Mizuno and David Schmidt. A secu-
rity 
ow control algorithm and its denotational
semantics correctness proof. Formal Aspects of
Computing, 4:727{754, 1992.

[9] Joachim Posegga and Harald Vogt. Byte code
veri�cation for java smart cards based on model
checking. In Jean-Jacques Quisquater and al.,
editors, Proceedings of ESORICS, number 1485
in LNCS, pages 175{190. Springer, September
1998.

[10] John Rushby. Noninterference, transitivity,
and channel-control security policies. Techni-
cal Report CSL-92-02, SRI, December 1992.

[11] Dennis Volpano and Cynthia Irvine. Se-
cure 
ow typing. Computers and Security,
16(2):137{144, 1997.


