MACE:

Model-inference-Assisted Concolic
Exploration

Domagoj Babic

http://www.domagoj.info/

joint work with Chia Yuan Cho, Pongsin Poosankam,
Kevin Zhijie Chen, Edward XueJun Wu, Dawn Song
UC Berkeley

Software Security

7000 4

Malware deluge: >60,000 samples / day

97 o One of the main attack vectors

5000

— Software flaws!

4000

 Thousands of CVEs each year
3000 .o . .

* Cures: verification, testing
2000
1000 B Low

B Med/High I I

0 — — — ——— — — == [|

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10
Common Vulnerability Disclosures (CVEs) per year

Domagoj Babic, USENIX 2011 2

Outline

* Dynamic Symbolic Execution
(a.k.a. DART, concolic execution)

— High-level intro

— Aspects that could be improved
 Model-inference-Assisted Concolic Exploration

— How it works

— How it improves over dynamic symbolic execution

* Experimental results

Dynamic Symbolic Execution

Independently
invented by several
groups in 2004/2005

Main components:
— Concrete execution
— Symbolic execution
— Solver

(decision procedure)

Very effective in

practice

< |

(Py,
b DAth corBitionJ
0 ’

\f] <0 then

Y7 = Yo»
ke
Xo}
Y1 = YotXp;

Domagoj Babic, USENIX 2011 4

Learning

* Dynamic symbolic execution

— Repeats iterations (concrete + symbolic) until
terminated

— Knowledge gained from iterations discarded

* Research questions:
— What can be learned from iterations?
— How can one represent the gained knowledge?
— How could that knowledge prune the search space?

MACE — The Main lIdeas

Learning + dynamic
symbolic execution

Learns a state-machine
abstracting the program

— Q@Quides further search

. Initialize the program to
certain state

. Explore the
neighborhood

— Specifies sequences of
inputs required to get to
a certain state

Domagoj Babic, USENIX 2011 6

The L* Algorithm

Sequences
MACE uses an of input
improved L* MESSaBEs
[CCS'2010]) oM
Polynomial in the number L™
of states and size of the ° 2??)::25?
input message set M, O messages
Constructs an O from M,
observation table Black box

Reads off states and
transitions from
the table

Observation
Table

The MACE Approach

Seed messages

Input sequences

Shortest
sequence generator State

Explorer
Finite state-machine P

Set of input
messages

Input and output sequences

Domagoj Babic, USENIX 2011 8

Key Difficulty: Abstraction of Messages

* Inferring the state-machine
over all messages
— Computationally infeasible
— Useless for guidance Abstract

e L* operates over an Input msgs
abstract set of messages

* In prior work [CCS’10] — Concretization Abstraction
manually written
abstractions Concrete

* MACE: automatic abstractionnput msgs
of input messages

Abstract
output msgs

Concrete
output msgs

Application under

Test

Domagoj Babic, USENIX 2011 9

Filtering Function

The main idea: keep only the messages that refine
the state-machine

Exact check too expensive, use an approximation

* If the current state-machine can produce the
given output sequence, no refinement

 Otherwise, add all the input messages from the
corresponding input sequence

AxM xM —

{ e A

10

Implementation

Dynamic symbolic execution engine
— BitBlaze infrastructure

L*
— Our implementation with improvements from
the CCS’2010 botnet analysis paper

Scripts
— For gluing the components together

Domagoj Babic, USENIX 2011

11

Applications of MACE

Guiding dynamic symbolic execution

— Different abstractions suitable for different types
of applications

— E.g., inference of context-free grammars for
automated testing of applications with parsers

Protocol reverse engineering

— Comparative analysis (e.g., for extracting
signatures)

— Protocol state-machine model checking

Domagoj Babic, USENIX 2011 12

Experimental Setup

DETER Security testbed
(3GHz Intel Xeon processors)

State-space exploration done in parallel
— One job per state in the inferred state-machine
— 2.5 hr timeout per state
— Each newly discovered state explored only once

For coverage measurement experiments

— Baseline got extra time, compensates for the
time spent in learning

Domagoj Babic, USENIX 2011

13

Benchmarks

Inference done on
— Remote Frame Buffer (RFB) protocol: Vino 2.26.1
— Server Message Block (SMB) protocol: Samba 3.3.4
State-space exploration also done on

— RealVNC
— Win XP SMB

Seed message set
— Vino: 45 sec session of a remote desktop session
— Samba: used gentest suite

Domagoj Babic, USENIX 2011 14

Results: Iterations and Runtime

Program

Vino

Samba

w N PN

Learning

alphabet |alphabet |time
(min)

142

40
34
34

Domagoj Babic, USENIX 2011

12
40
54
55

14
24
25

2028
1840
307

15

Results: Inferred Protocol Models

LAY
AN\
|

AN
LAY

NN
NNV

Vg = -
: = ™
: g N
~ A o - o _. - - .
(m .P | . == T | / = WA 1]
~ v' [/ '
LLL)| _/ _ -

Inferred 84-state SMB protocol implementation abstraction

Domagoj Babic, USENIX 2011 16

Results: Discovered Vulnerabilities

Program Vulnerability MACE Baseline
(hrs) (hrs)

Vino CVE-2011-0906
CVE-2011-0905 ‘/ 4 >105
CVE-2011-0904 @/ 15 >105
Samba CVE-2010-2063 12 602
CVE-2010-1642 14 >1260
Fixed without CVE 124 >1260
RealVNC CVE-2011-0907 v 2 >105

Win XP SMB None >210 >1260

Results: Coverage Improvement

Program Instruction Instruction Coverage
Coverage Coverage Improvement
Baseline MACE (%)

Vino 129762 138232 6.53

Samba 66693 105946 58.86

RealVNC 39300 47557 21.01

Win XP 90431 112820 24.76

Domagoj Babic, USENIX 2011 18

Results: Exploration Depth (SMB)

1 2 1 1 1 lO @QS 25 13 4 1

100 % [W=l e e = e === K
80 % |
o/ |} 3
60 % “‘4 -
40 % -8
20 (y _ MACE o ‘\‘
° Baseline =-=-m=- \\O 0 0
0 % ' : : ' ' : : N U ——
0 | 2 3 4 5 6 7 8 9 10

Domagoj Babic, USENIX 2011 19

Why MACE Works so Well?

* Uses a relatively cheap technique (L*) to infer
an abstraction of the search space and reduce

the search space
 The abstraction is used to guide the search

— Especially useful for constructing sequences of
messages to get to certain state

* More control over the search
— E.g., decreases the probability of getting stuck in

loops

Domagoj Babic, USENIX 2011 20

Summary

Model-inference-Assisted Concolic Execution
— How it works

— How it improves dynamic symbolic execution

Experimental results
— 7X more vulnerabilities found
— Up to 58% better coverage

— Deeper states explored

Domagoj Babic, http://www.domagoj.info/

21

