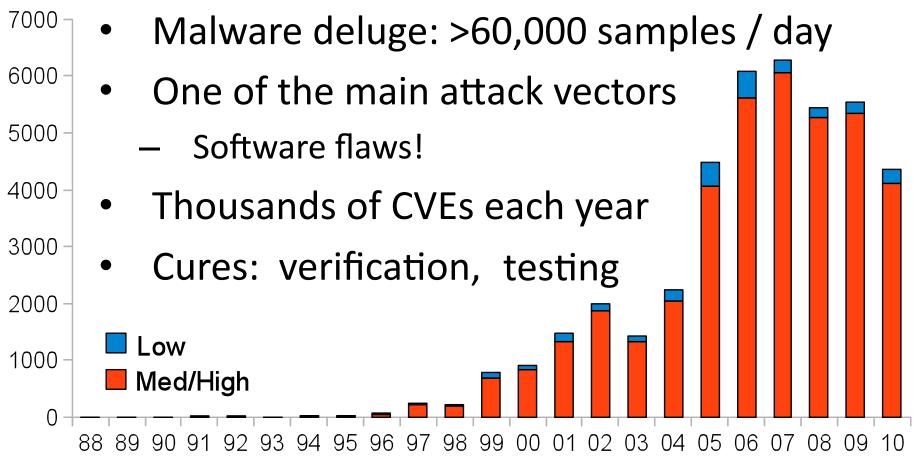
MACE:

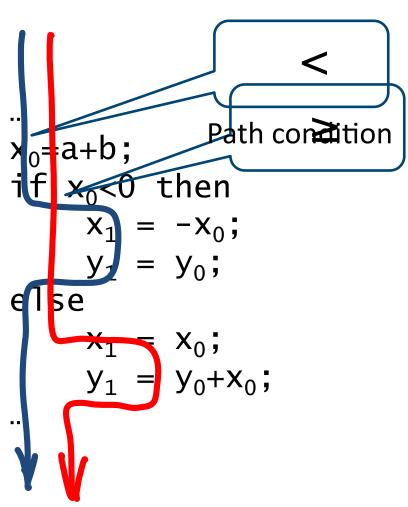

Model-inference-Assisted Concolic Exploration

Domagoj Babic

http://www.domagoj.info/ joint work with Chia Yuan Cho, Pongsin Poosankam, Kevin Zhijie Chen, Edward XueJun Wu, Dawn Song UC Berkeley

Software Security

Common Vulnerability Disclosures (CVEs) per year

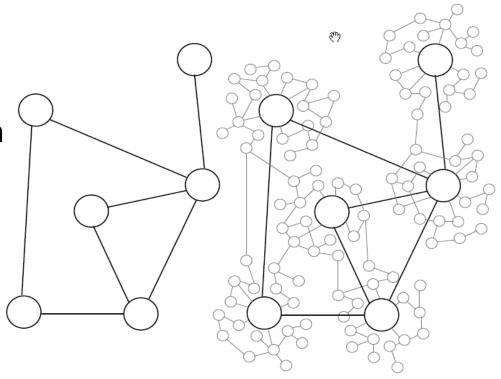

Outline

- Dynamic Symbolic Execution

 (a.k.a. DART, concolic execution)
 - High-level intro
 - Aspects that could be improved
- Model-inference-Assisted Concolic Exploration
 - How it works
 - How it improves over dynamic symbolic execution
- Experimental results

Dynamic Symbolic Execution

- Independently invented by several groups in 2004/2005
- Main components:
 - Concrete execution
 - Symbolic execution
 - Solver(decision procedure)
- Very effective in practice



Learning

- Dynamic symbolic execution
 - Repeats iterations (concrete + symbolic) until terminated
 - Knowledge gained from iterations discarded
- Research questions:
 - What can be learned from iterations?
 - How can one represent the gained knowledge?
 - How could that knowledge prune the search space?

MACE – The Main Ideas

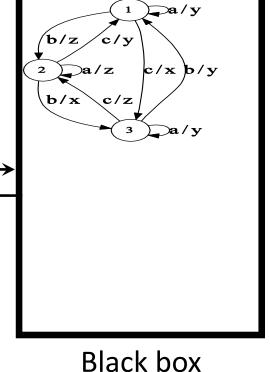
- Learning + dynamic symbolic execution
- Learns a state-machine abstracting the program
 - Guides further search
 - Initialize the program to certain state
 - Explore the neighborhood
 - Specifies sequences of inputs required to get to a certain state

The L* Algorithm

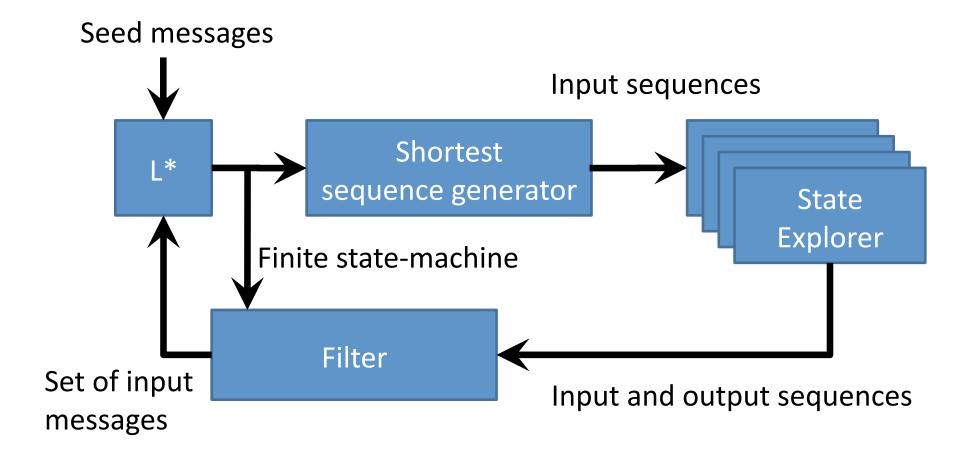
Table

MACE uses an improved L* [CCS'2010]

 Polynomial in the number of states and size of the input message set M_i

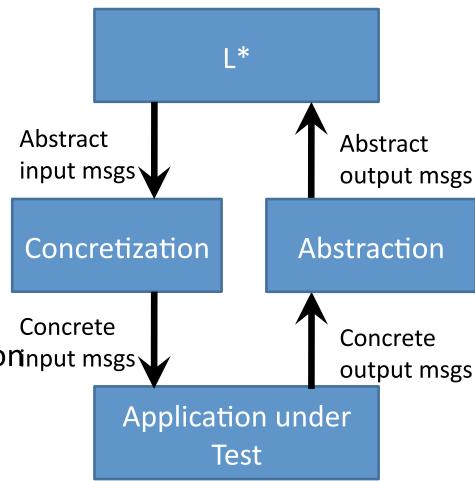

Constructs an observation table

 Reads off states and transitions from Observation the table


Sequences of input messages from M_{i} L* Sequences of output messages

from M_o

S. M,


The MACE Approach

Key Difficulty: Abstraction of Messages

- Inferring the state-machine over all messages
 - Computationally infeasible
 - Useless for guidance
- L* operates over an abstract set of messages
- In prior work [CCS'10] manually written abstractions

MACE: automatic abstractionnput msgs of input messages

Filtering Function

- The main idea: keep only the messages that refine the state-machine
- Exact check too expensive, use an approximation
 - If the current state-machine can produce the given output sequence, no refinement
 - Otherwise, add all the input messages from the corresponding input sequence

Implementation

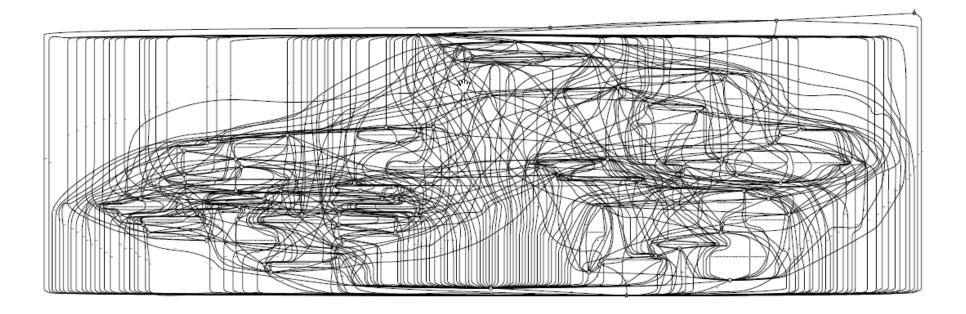
- Dynamic symbolic execution engine
 - BitBlaze infrastructure
- L*
 - Our implementation with improvements from the CCS'2010 botnet analysis paper
- Scripts
 - For gluing the components together

Applications of MACE

- Guiding dynamic symbolic execution
 - Different abstractions suitable for different types of applications
 - E.g., inference of context-free grammars for automated testing of applications with parsers
- Protocol reverse engineering
 - Comparative analysis (e.g., for extracting signatures)
 - Protocol state-machine model checking

Experimental Setup

- DETER Security testbed (3GHz Intel Xeon processors)
- State-space exploration done in parallel
 - One job per state in the inferred state-machine
 - 2.5 hr timeout per state
 - Each newly discovered state explored only once
- For coverage measurement experiments
 - Baseline got extra time, compensates for the time spent in learning


Benchmarks

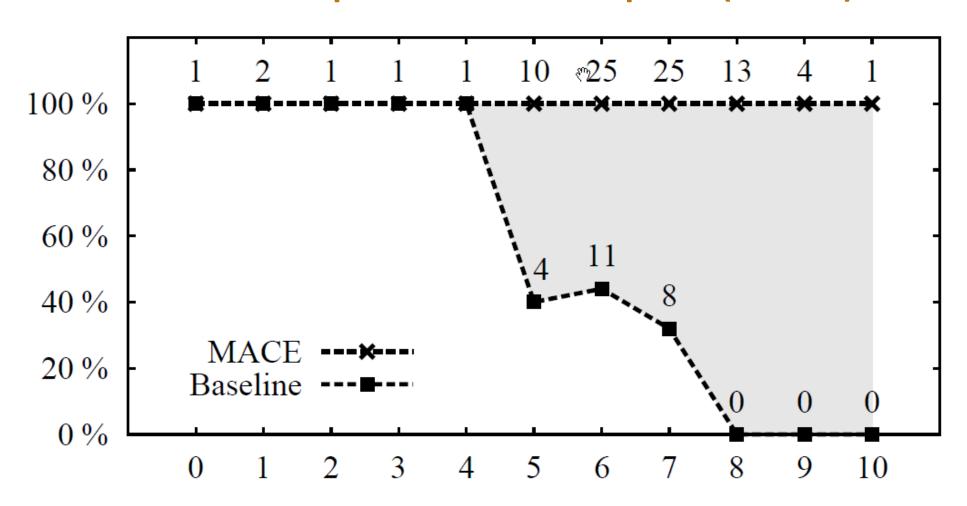
- Inference done on
 - Remote Frame Buffer (RFB) protocol: Vino 2.26.1
 - Server Message Block (SMB) protocol: Samba 3.3.4
- State-space exploration also done on
 - RealVNC
 - Win XP SMB
- Seed message set
 - Vino: 45 sec session of a remote desktop session
 - Samba: used gentest suite

Results: Iterations and Runtime

Program	Iteration	States	Input alphabet size	Output alphabet size	Learning time (min)
Vino	1	7	8	7	142
	2	7	12	8	8
Samba	1	40	40	14	2028
	2	84	54	24	1840
	3	84	55	25	307

Results: Inferred Protocol Models

Inferred 84-state SMB protocol implementation abstraction


Results: Discovered Vulnerabilities

Program	Vulnerability	New	MACE (hrs)	Baseline (hrs)
Vino	CVE-2011-0906		1	N/A
	CVE-2011-0905		4	>105
	CVE-2011-0904		15	>105
Samba	CVE-2010-2063		12	602
	CVE-2010-1642		14	>1260
	Fixed without CVE		124	>1260
RealVNC	CVE-2011-0907		2	>105
Win XP SMB	None		>210	>1260

Results: Coverage Improvement

Program	Instruction Coverage Baseline	Instruction Coverage MACE	Coverage Improvement (%)
Vino	129762	138232	6.53
Samba	66693	105946	58.86
RealVNC	39300	47557	21.01
Win XP	90431	112820	24.76

Results: Exploration Depth (SMB)

Why MACE Works so Well?

- Uses a relatively cheap technique (L*) to infer an abstraction of the search space and reduce the search space
- The abstraction is used to guide the search
 - Especially useful for constructing sequences of messages to get to certain state
- More control over the search
 - E.g., decreases the probability of getting stuck in loops

Summary

- Model-inference-Assisted Concolic Execution
 - How it works
 - How it improves dynamic symbolic execution
- Experimental results
 - 7X more vulnerabilities found
 - Up to 58% better coverage
 - Deeper states explored