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Abstract
Recent years have seen extensive diversification of the

“underground economy” associated with malware and the
subversion of Internet-connected systems. This trend to-
wards specialization has compelling forces driving it: mis-
creants readily apprehend that tackling the entire value-chain
from malware creation to monetization in the presence of
ever-evolving countermeasures poses a daunting task requir-
ing highly developed skills and resources. As a result,
entrepreneurial-minded miscreants have formed pay-per-install
(PPI) services—specialized organizations that focus on the in-
fection of victims’ systems.

In this work we perform a measurement study of the PPI
market by infiltrating four PPI services. We develop infrastruc-
ture that enables us to interact with PPI services and gather and
classify the resulting malware executables distributed by the
services. Using our infrastructure, we harvested over a million
client executables using vantage points spread across 15 coun-
tries. We find that of the world’s top 20 most prevalent fami-
lies of malware, 12 employ PPI services to buy infections. In
addition we analyze the targeting of specific countries by PPI
clients, the repacking of executables to evade detection, and the
duration of malware distribution.

1 Introduction

Recent years have seen extensive diversification of the
“underground economy” associated with malware and
the subversion of Internet-connected systems. This trend
towards specialization has compelling forces driving it:
miscreants readily apprehend that tackling the entire
value-chain from malware creation to monetization in
the presence of ever-evolving countermeasures poses a
daunting task requiring highly developed skills and re-
sources. As a result, market forces foster a service cul-
ture that has brought about a wide range of specialized
providers for all stages in the malware-monetization life-

cycle, such as malware toolkits [3, 15], packing tools to
evade antivirus (AV) software [21], “bullet-proof” host-
ing [4], and forums for buying and selling ill-gotten
gains [10].

At the heart of this ecosystem lies the infection of vic-
tim computers. Virtually every enterprise in this market
ultimately hinges on access to compromised systems. To
meet the demands for wholesale infection of Internet sys-
tems, a service called pay-per-install (PPI) has risen to
predominance. Such PPI services play a key role in the
modern malware marketplace by providing a means for
miscreants to outsource the global dissemination of their
malware. Miscreants simply determine the raw number
of victim systems (including specific geographical distri-
bution, if desired) that fits within their budget, supply a
PPI service with payment and malware executables of the
miscreants’ choice, and in short order their malware is in-
stalled on thousands of new systems. In today’s market,
the entire process costs pennies per target host—cheap
enough for botmasters to simply rebuild their ranks from
scratch in the face of defenders launching extensive, en-
ergetic, take-down efforts [6].

In this work we perform a measurement study of the
PPI market by infiltrating four PPI services. We develop
infrastructure that enables us to (1) interact with PPI ser-
vices by mimicking the protocol interactions they ex-
pect to receive from affiliates with whom they have con-
tracted, and (2) gather and classify the resulting malware
executables as distributed by the PPI services. We report
results of infiltrations we conducted in the six months
between August 2010 and February 2011.

To our knowledge, our work reflects the first system-
atic study of the PPI ecosystem as seen from the perspec-
tive of the downloads pushed out by PPI services down
to their victims. Security analysts have previously exam-



ined PPI services in a top-down manner, by becoming
affiliates of particular services [7, 29]. Our study is in-
stead based on infiltrating PPI services in a bottom-up
manner, by creating custom programs that can continu-
ously download malware specimens that the PPI services
distribute, enabling us to track the infiltrated PPI services
over time.

We harvested over a million client executables us-
ing vantage points spread across 15 countries. The
month of August 2010 yielded 57 malware families, in-
cluding many of the most prevalent infections at the
time. They include spam bots (Rustock, Grum), fake
antivirus (Securitysuite, Securityessential), information-
stealing trojans (Zbot, Spyeye), rootkits (Tdss), DDoS
bots (Russkill, Canahom), clickers (Gleishug), and ad-
ware (SmartAdsSolutions).

Using our geo-diverse vantage points, we measure dif-
ferences in the geographical preferences of the different
malware families. We identify families that exclusively
target the US, the UK, and a variety of European coun-
tries. We also analyze the rate at which malware authors
repack their wares to evade hash-based signatures. On
average, they repack specimens every 11 days, and some
malware families repack up to twice daily. We track the
dynamics of campaigns during which a service dissem-
inates a given malware family in an ongoing push, ob-
serving a wide temporal range, from specimens that are
continually distributed over weeks, to pointwise efforts
lasting only a few hours. We also analyze the particulars
of how different PPI services interact with their affili-
ates, including surprising evidence suggesting that some
affiliates who sell installs to a particular PPI service not
only buy installs from rival PPI services, but also from
the very service to which they sell installs—apparently
to exploit arbitrage.

2 An Overview of Pay-Per-Install

The PPI market, as depicted in Figure 1, consists of three
main actors: clients, PPI providers (or services), and
affiliates. We begin with an overview of these actors,
followed by discussion of the transactions they perform
(Section 2.1) and the means and importance of evading
detection (Section 2.2).

Clients are entities that want to install programs onto a
number of target hosts. They wish to buy installs of their
programs. The PPI provider receives money from clients
for the service of installing their programs onto the target
hosts, where installation comprises distributing the pro-

Figure 1: The typical transactions in the PPI market. PPI
clients provide software they want to have installed, and
pay a PPI service to distribute the software (Ê). The PPI
service conducts downloader infections itself or employs
affiliates that install the PPI’s downloader on victim ma-
chines(Ë). The PPI service pushes out the client’s exe-
cutables (Ì). Affiliates receive commission for any suc-
cessful installations they facilitated (Í).

grams to the target hosts, executing the client programs,
and tracking successful executions for accounting.

The PPI provider develops a program, called a down-
loader, that retrieves and runs client’s executables upon
installation. The PPI provider may conduct the instal-
lation of the downloader itself or may outsource distri-
bution to third parties called affiliates. When a provider
has affiliates, the provider acts as a middle man that sells
installs to the clients while buying installs from affili-
ates that specialize in some specific distribution method
(e.g., bundling malware with a benign program and dis-
tributing the bundle via file-sharing networks; drive-by-
download exploits; or social engineering). PPI providers
pay affiliates for each target host on which they execute
the provider’s downloader program. Once the down-
loader runs, it connects to the PPI provider to download
the client programs. If the PPI provider does the distri-
bution itself, we call the service a direct PPI service. If
the PPI provider runs an affiliate program, we call it an
affiliate PPI service.

In general, both reputable and not-so-reputable enti-
ties use PPI services. In this paper we focus on the use
of PPI services as a distribution mechanism for malware,
e.g., bots, trojans, fake AV software, and spyware. To



avoid determining what constitutes malware, we limit the
scope of the paper to PPI services that perform (or al-
low their affiliates to perform) silent installs on the target
hosts, i.e., installations that lack the informed consent of
the owner of the system. Hereafter we use the term PPI
providers to refer exclusively to those providers that per-
form or facilitate silent installs.

2.1 The PPI Ecosystem

We describe the PPI ecosystem in terms of the transac-
tions that take place between clients and PPI providers,
and between PPI providers and their affiliates.

Clients. Clients profit from the malicious activities en-
abled by malware they want to deploy on target hosts,
such as click fraud, stealing user information (e.g., credit
card numbers, credentials), or selling software to the user
under false pretense (e.g., fake AV).

PPI providers allow clients to choose the geographic
distribution of target hosts. This distinction creates price
differentiation in the market due to varying demand for
machines in certain regions and varying target host sup-
ply. Clients pay only per unique install, i.e., for one in-
stallation of their program on a given target host.

PPI providers. PPI providers profit from installation
fees paid by the clients. PPI install rates vary from
$100–$180 for a thousand unique installs in the most
demanded regions (often the US and the UK, and more
recently other European nations), down to $7–$8 in the
least popular ones (predominantly Asia) [12, 13, 19]. In
this study, we observe PPI providers installing multiple
client programs on the same target host, and have not ob-
served attempts to secure exclusive use of a target host
on behalf of a client. Exclusivity of a host is difficult to
guarantee because a PPI provider cannot generally know
whether a target host already runs other malware (e.g.,
a rival PPI downloader that installs competitors of the
client program). In addition, it is very difficult for clients
to validate that the PPI service only installed their mal-
ware on a host.

Affiliate PPI services give their affiliates a PPI down-
loader program personalized with their unique affiliate
identifier. The service credits affiliates for executing their
specific PPI downloader on a target host. Affiliates only
receive credit for confirmed installs of their PPI down-
loader. The confirmation takes the form of the PPI down-
loader sending the personalized affiliate identifier to the
PPI provider after downloading and executing the client

programs. Thus, affiliates receive credit only after deliv-
ering the installs.

Affiliates. Affiliates profit from the installs performed on
behalf of the PPI provider, with the distribution method
remaining transparent to the clients. Affiliates might in
fact be botmasters that compromise hosts, install their
own malware, and then task their malware with down-
loading and installing the PPI downloaders as one means
for monetizing their botnet. When doing so, the bot-
master relinquishes exclusive control of the hosts in ex-
change for the install payments from the PPI service. The
same botmasters might work with multiple PPI providers
simultaneously to maximize the income from each bot,
installing multiple affiliate binaries on each of their hosts.

Indeed, the market has a somewhat fundamental
conflict-of-interest, in that the more installs a botmas-
ter/affiliate provides, the more payment they receive; but
each install degrades the quality of previous installs, be-
cause the likelihood of the owner of the system discern-
ing they have become infected, and remedying the situ-
ation, rises with the volume of malicious installs on the
system.

2.2 Evading Detection

AV software may detect and block any program in the
installation chain, making it difficult to sustain installs.
Therefore, providing stealthy executables is a key objec-
tive for both PPI providers and clients. In the PPI ecosys-
tem, clients are often in charge of making their programs
stealthy before giving them to the PPI provider, while af-
filiates rely upon the PPI provider to provide them with
a stealthy downloader.

To render programs stealthy, both PPI providers and
clients employ packer programs sold by third parties [21,
23]. Packers change the program content so that its sig-
nature (e.g., MD5 hash) differs even though the pro-
gram’s functionality has not changed. Sophisticated
packers may also change the program size and add de-
tection techniques for debuggers and virtual machines,
which are commonly used by analysts. PPI providers
have responsibility for packing the PPI downloaders for
each affiliate and testing that the resulting executable
remains undetected by AV software. In addition, PPI
providers instruct affiliates and clients not to test their
programs on free malware scanners [30, 32], because
these services often redistribute samples to AV ven-
dors. The vendors may then add new signatures to their
databases, thus uncloaking the programs. We analyze



2006 2007 2008 2009 20102005 2011

iframedollars.biz
iframedollars.com

iFrameDollars

iframecash.biz
iframemoney.biz

buytraff.biz
iframedollars.biz

iFrameCash

iframedollars.com
iFrameDollars

installscash.org
InstallsCash

earning4u.com
Earning4U

gangstabucks.com
GangstaBucks

Figure 2: Brands used by the LoaderAdv PPI service
over time. The domains under each brand correspond
to known front-ends for affiliates.

how frequently clients repack their programs in Sec-
tion 4.2.

3 Infiltrating PPI Infrastructure

In this section, we first describe how we identified the
four PPI services we infiltrate, and evaluate our coverage
of the PPI ecosystem. We then explain the processing
pipeline we have developed for milking executables from
PPI services and classifying them.

3.1 Identifying PPI services

A good starting point for identifying PPI services to in-
filtrate is PPI forums [27, 28], which mainly serve as a
means for advertising affiliate PPI services to attract new
affiliates. General underground forums sometimes offer
the same advertisements. One challenge when study-
ing PPI services concerns how to identify the different
brands used by the same PPI service over time. We ap-
proached this task by analyzing public information, in-
cluding copies of any old front-ends [14], forums used
to advertise affiliate PPI services [27, 28], and previous
analysis by security analysts [7, 29].

We selected four affiliate PPI programs for infiltration:
LoaderAdv, GoldInstall, Virut, and Zlob. We use these
names to refer to the respective PPI services, regardless
of their branded program names over time. Figure 2 il-
lustrates such branding, employed by the LoaderAdv ser-
vice.

Our coverage. Several other PPI services exist that we
did not infiltrate. To get an idea of our coverage of the
malware ecosystem, we compare our malware harvest
with contemporary reports by the security industry. In
July 2010, FireEye posted the list of the top 20 malware
families they observed using their network during April–
June 2010 [22]. Table 1 correlates these 20 families with
the contents of our “milked” malware corpus for Au-
gust 2010. The column labeled kit designates families

NAME % MONETIZATION KIT SEEN

1 Palevo 7.50 DoS,Info stealer 3 3

2 Hiloti 4.69 Downloader/PPI 3

3 Zbot 3.62 Info stealer 3 3

4 FakeRean 3.47 Rogue AV(s) 3

5 Onlinegames 2.94 Info stealer ?
6 Rustock 2.66 Spam 3

7 Ldpinch 2.64 Info stealer 3 ?
8 Renos 2.58 Rogue AV(s) ?
9 Zlob 2.54 Rogue software 3

10 Autoit 2.53 Downloader/PPI
11 Conficker 2.48 Worm
12 Opachki 1.95 Click Fraud 3

13 Buzus 1.91 Info stealer
14 Koobface 1.17 Downloader
15 Alureon 1.16 Downloader 3 3

16 Bredolab 1.15 Downloader/PPI 3 3

17 Piptea 1.13 Downloader/PPI 3

18 Ertfor 0.91 Rogue AV(s) 3

19 Virut 0.91 Downloader/PPI 3

20 Storm 2.0 0.80 Spam

Table 1: FireEye’s top 20 malware families observed in
their MAX Cloud network on the April–June 2010 time
period [22] and whether we observe them in our milk for
August 2010.

that are crimeware kits, software that one can purchase
and customize in order to build botnet variants. Each kit
sold may represent an individual botnet with a separate
owner. For popular kits such as zbot, many distinct bot-
nets instances exist [33]. The column labeled seen indi-
cates whether we see samples of the family in our milk-
ing data. We milk 12 of the top 20 families, remain un-
sure about the phylogeny of 3, and miss 5 (AutoIt, Buzus,
Conficker, Koobface, Storm 2.0). We contacted FireEye
to inquire about the 3 unknown families, and based on
their response we believe they reflect generic tags used
by AV vendors, rather than specific families of malware.

3.2 “Milking” PPI Providers

This section starts the description of our milking opera-
tions. Figure 3 illustrates its architecture from milking
the executables until their classification.

PPI “milker” requirements. Each PPI service uses at
least one downloader program. A PPI downloader has
three main tasks to perform: download the client pro-
grams, execute them, and communicate successful in-
stallation to the PPI service for accounting. For each
downloader used by a PPI service that we infiltrated, we
built our own program that mimics the network com-



Figure 3: Architecture of our PPI milking system. The milkers contact the PPI services through Tor and store the
executables for processing (Ê). We then use Bro to distill network traffic summaries from packet traces recorded for
each sample’s contained execution (Ë). A behavioral classifier then processes these summaries and stores clustering
and tagging results to a database (Ì).

munication used by the downloader to obtain the client
programs, but does not implement the rest of the down-
loader’s functionality, namely executing the client pro-
grams and accounting. In particular, we do our best to
identify and avoid any accounting communication to pre-
vent the PPI service from crediting an affiliate. We call
such programs milkers because we use them to milk the
client programs that the PPI provider distributes.

Although each PPI downloader program uses a differ-
ent method to download the client programs from the
PPI service, we observe two large classes. Basic PPI
downloaders use plain HTTP and have a set of hard-
coded URLs supplying client programs. The downloads
remain unencrypted and could be spotted easily by any
network monitoring device. The LoaderAdv and one of
the GoldInstall downloaders (GoldInstall-dl) belong to
this class. Advanced PPI downloaders have a propri-
etary, often encrypted, C&C protocol. These download-
ers first contact the C&C infrastructure to receive the list
of URLs supplying client programs. The Zlob, Virut, and
an alternative GoldInstall downloader (GoldInstall-list)
fall into this category. These downloaders still use HTTP
for the downloads, at times encrypting the executables or
disguising them as a benign file (e.g., by prefixing them
with a fake GIF header).

Building the milkers. Building a milker is most chal-
lenging for downloaders using undocumented C&C pro-
tocols and encryption routines. Our approach lever-
ages previously proposed techniques for automatic bi-
nary code reuse [5,16], which, given an executable, iden-
tify and extract parts of the executable related to a given
function or specific functionality defined by the analyst.
Our milker building process is semi-automatic because
we also manually decompile parts of the extracted binary
code. The final milker uses a mixture of C source code

and assembly instructions. For this project, building and
testing a basic milker required on average one day of full
work, while the advanced milkers required from two to
five days of work. It is worth noting that while build-
ing and testing the milker it is important to minimize the
amount of traffic exchanged with the real C&C servers,
which the PPI administrators may monitor. We learned
this the hard way when the Zlob PPI service banned one
of our computers during the testing phase. Moving to a
different IP address fixed the issue.

Updating the milkers. All PPI services frequently
change their download URLs to bypass blacklists. When
a PPI service changes its download URLs, our advanced
milkers simply download the updated list from the PPI
C&C infrastructure and keep milking. However, our ba-
sic milkers, which have the old download URLs hard-
coded, stop working until we update the URLs. To up-
date the download URLs for the basic milkers, we first
develop network signatures for the basic PPI download-
ers. Then, we use two different approaches. First, we use
the network signatures to look for new PPI downloaders
within the executables we milk. If we find a match, our
processing automatically extracts new URLs and adds
them to our basic milkers. In addition, we also periodi-
cally query search engines and repositories that perform
malware analysis [30] for any new traffic that matches
the network signatures. Due to the prevalence of the PPI
services in this study, we often find the new URLs in
public repositories immediately after URLs change.

Anonymity and geographical diversity. To provide
anonymity and geographical diversity for the milkers,
we route them, when possible, through Tor [31]. A
milker achieves geographical diversity by using 15 Tor
circuits in parallel, each circuit terminating in an exit
node in a different country. We chose these countries



in accordance with different price points advertised by
PPI providers. We verify with the MaxMind GeoIP
database [20] that the exit node’s IP address indeed re-
sides in the desired country. For GoldInstall, Loader-
Adv, and Virut, we conduct all network communication
through Tor. We cannot access Zlob through Tor. We
suspect the Zlob operators blacklist the Tor exit nodes,
which are publicly known. To achieve geographical di-
versity for this provider, we run its milkers on Ama-
zon’s EC2 cloud [9] from hosts in two different coun-
tries, without using Tor. We discuss the targets and re-
sults of geographically diverse milking in Section 4.4.

3.3 Running the Executables

We run each new milked executable under containment
in the GQ malware farm [18], a platform for hosting all
manner of malware-driven research in safe, controlled
fashion. GQ confines each piece of malware in its ex-
ecution by a custom, manually created containment pol-
icy that allows us to decide per-flow whether to allow
traffic to interact with the outside, drop it, rewrite it, or
reflect it to other machines inside the environment. In our
scenario, the malware family and behavior is completely
unknown when we run a newly milked sample. Thus, we
create a containment policy that allows us to run all of
our samples safely, and to classify them based on their
network traffic.

We use this containment policy, called SinkAll, to au-
tomatically run thousands of executables, fully unsuper-
vised. This policy blocks network connections and redi-
rects them to internal sink servers within the farm. The
only traffic from the malware allowed on the Internet is
DNS. The reason for allowing DNS is to try to get the
malware sample to attempt C&C communication, since
part of our classification process (Section 3.4) examines
the traffic content. While our DNS sink server could
simply reply to all DNS requests with a valid response
that includes a fixed IP address, some malware sam-
ples resolve benign domains (e.g., microsoft.com,
google.com) and check the returned IP addresses
against a hard-coded list in the malware. Thus, our DNS
sink server proxies DNS requests and responses. If the
DNS response is a failure, the sink server spoofs a suc-
cessful DNS response with a fixed IP address to try to get
the malware to attempt C&C communication.

SinkAll forwards all non-DNS TCP traffic from the
malware to internal sink servers. For some well-known
protocols, e.g., HTTP and SMTP, these servers mimic
a valid session. This is important because some mal-

ware samples will test connectivity first using these pro-
tocols, and a valid session may entice them to attempt
C&C communication. All other TCP traffic goes to a
generic sink server that accepts arbitrary connections but
does not provide a response; it simply completes the TCP
handshake and accepts any data sent by the malware.

Finally, to detect anti-virtualization capabilities, sam-
ples that do not send any traffic are rerun on a bare (non-
virtualized) host, also within the farm. (This did not of-
ten make a difference in practice.)

3.4 Classifying the Executables

We classify executables based on the network traffic they
produce. First, we manually cluster them based on traf-
fic similarity and create a cluster signature. Then, when
possible, we tag clusters with names used by the com-
munity such as Rustock or Palevo.

Each run of a malware sample in the farm produces a
trace of its network communication. We process the net-
work trace with the Bro intrusion detection system [24],
using a number of custom analysis scripts we developed.
The scripts first check whether the sample generated any
network traffic at all. If it did not, then we queue the
executable for running on a bare host to check for anti-
virtualization techniques. If the sample did generate traf-
fic, we extract a number of features to characterize the
network traffic that we later use during clustering.

The first feature is the list of protocols used by the
sample. To extract this feature, we leverage Bro’s dy-
namic protocol detection capabilities, which detects traf-
fic for well-known protocols (e.g., DNS, HTTP, SMTP,
and IRC), regardless of the port with which the commu-
nication happens [8]. Another feature is the list of end-
points that communicate with the sample. For this, we
extract from the DNS traffic the domains requested by
the sample. If the sample starts a connection without a
previous DNS request, we also add the IP address it con-
tacts to the list of end-points. Another feature is the list
of TCP/UDP destination ports for connections started by
the sample. Finally, we extract a content feature from the
payload of any connection. For any HTTP request orig-
inated by the malware, the content feature is the method
and the list of parameters from the URL. We ignore the
path in the URL and the parameter values because they
tend to change often between samples. For other proto-
cols, the content feature is simply the first 16 bytes sent
by the malware.

We use the extracted features for clustering executa-
bles with similar network behaviors. In contrast to ex-



MILKER DOWNLOADS DISTINCT START DATE

LoaderAdv 696,714 4,334 Aug 1, 2010
GoldInstall 361,325 4,488 Aug 1, 2010
Virut 4,841 72 Aug 1, 2010
Zlob 504 259 Jan 3, 2011
Total 1,060,895 9,153

Table 2: Number of downloads and distinct MD5s col-
lected from each PPI service, starting August 1, 2010
and ending February 1, 2010.

isting clustering systems for domain names [26], HTTP
requests [25], and similar communication patterns [11],
our system must accommodate any type of C&C, includ-
ing custom binary protocols. In this work we therefore
use our own, simple, clustering method, based primar-
ily on manual inspection, but forsee integrating other ap-
proaches as the need arises.

Our clustering first groups all executables with identi-
cal features into a single cluster, with the list of features
acting as the initial cluster signature. We then manually
merge similar clusters, assigning the new cluster a signa-
ture of simply the disjunction of the signatures of each
merged cluster. Using this process on the August 2010
milk, we identify 57 clusters. The cluster signatures vary
from a domain list—of limited value due to continual up-
dates to C&C domains—to binary and HTTP signatures
that prove more useful long-term.

For tagging, we prioritize clusters by the total number
of times we milked them. For each cluster we manually
check if we can find labeled traffic that matches the clus-
ter signature in public repositories and malware analysis
reports. If so, we change the cluster tag to match the pub-
licly available name. This process is painful due to the
disparity of names used for the same families (and bina-
ries) in the community. We were able to tag 35 of the
57 clusters. In Section 4.1 we describe the results from
our classification.

4 Insights into the PPI Business

We now present results from our infiltration by analyz-
ing the executables we collected. We began our milking
operations on August 1, 2010. As of February, 2011,
we downloaded 1,060,895 client executables, yielding
9,153 distinct binaries during approximately 6 months
of infiltration. The modest proportion (0.8%) of unique
executables arises due to our frequent milking, and the
fact that our geo-diverse milking frequently retrieves the
same executable from multiple locations. We began

FAMILY MILKED DIST. DAYS CLASS PPI
Rustock 61,017 15 31 spam L
LoaderAdv-ack 60,770 62 31 ppi L
CLUSTER: A 11,758 8 31 clickfraud G
Hiloti 10,045 43 31 ppi L
CLUSTER: B 8,194 9 31 ? G
Gleishug 7,620 15 31 clickfraud L
Nuseek 5,802 2 30 clickfraud G
Palevo2 16,101 21 29 botnet G,L
Securitysuite 15,403 100 29 fakeav L
Zbot 3,684 49 29 infosteal G,L
CLUSTER: D 5,723 1 28 ? G
SmartAdsSol. 18,317 6 26 adware L
Spyeye 4,522 16 25 infosteal G,L
Securitysuite-avm 4,732 45 20 fakeav L
Grum 2,974 54 20 spam G,L
Tdss 4,893 12 19 ppi G,L
Otlard 677 7 16 botnet G,L
Blackenergy1 1,135 15 15 ddos L
Palevo 2,594 2 14 botnet G
Harebot 1,617 13 14 botnet G,L,V

Table 3: Top 20 malware families we milked during Au-
gust 2010. The columns indicate the total number of
executables milked, distinct executables per family, the
number of days seen, the families’ general class, and
PPI services that distribute the family: LoaderAdv (L),
GoldInstall (G), Virut (V).

our infiltration with LoaderAdv, GoldInstall, and Virut,
adding Zlob in Jan. 2011. Table 2 shows the breakdown
of our harvest by PPI service. The download rate varies
across PPI providers since each PPI has a different num-
ber of endpoints to download malware and our milkers
access each through geo-diverse locations.

4.1 Family Classification

We developed a set of classification signatures and vetted
them based on extensive manual analysis of the 313,791
executables we milked during August 2010. These signa-
tures classify 92% of the total August downloads. If we
then apply these same signatures to milk from September
2010, the proportion matched only diminishes to 86%,
and for October 2010, 77%. Thus, in terms of classi-
fying the most prevalent downloads, the power of such
milk-derived signatures decays fairly slowly with time.
(Certainly we do expect their power to diminish, how-
ever, as PPI providers acquire new clients, and existing
clients release variants of their malware that no longer
manifest the behavior targeted by our signatures.)



For the 8% of August downloads unmatched by our
signatures, we have assigned a general label reflecting
absence of any generated traffic. We manually evaluated
the behavior of 243 executables in this group and con-
firmed that the executables appear corrupted and do not
execute. We also ran most on bare hardware and con-
firmed that their failure to execute does not reflect anti-
virtualization checks.

While our signatures work quite effectively for classi-
fying the bulk of downloads, the picture changes if we in-
stead consider distinct binaries (only 0.6% of the overall
volume). For these, we classify only 36%. However, it
is unclear that this latter figure holds much significance:
a single malware specimen whose behavior we have not
specifically classified can account for a large number of
failures to classify distinct binaries if the specimen hap-
pens to be repacked frequently.

To examine the malware families distributed by each
PPI provider, we limit our discussion to the August 2010
milk. Since the distributed malware changes over time,
focusing on a single month facilitates a clear presentation
of our results, while still spanning a significant breadth
of activity. Table 3 lists the top 20 malware families we
milked during August 2010, the number of times milked,
the number of distinct executables, the number of days
we saw the family being dropped, the overall class for
the family’s predominant activity (“botnet” represents
generic malware platforms), and the different PPI ser-
vices that distributed the family.

Some of the malware families are crimeware kits
(Palevo2, Spyeye, Zbot, Bredolab), which means they
may be distributed by otherwise independent clients.
When computing statistics for individual clients, we thus
remove these kits to avoid potential aliasing. We observe
that out of the 20 malware families, 7 are distributed by
more than one PPI service. If we assume each (non-kit)
malware family belongs to one actor, the results show
that clients do not feel tied to a single PPI provider.

Distribution over time. Figure 4 shows distribution
timelines for each family we could label by activity class,
for August 2010. We visualize availability continuously
whenever a family was available at least once in three
hours. We make several observations. Programs push
clickbots at virtually all times, but DDoS platforms much
more sporadically. The latter perhaps reflects some sort
of Just-In-Time DDoS-for-hire service. With the ex-
ception of the GoldInstall-list downloader, we see PPI
downloaders pushed for weeks at a time. Spambots show
no uniform availability pattern: relatively short-lived
push-outs for Pushdo and Grum, but continual push-outs

DAYS TO REPACK

FAMILY # DISTINCT MEAN MIN MAX

Rustock 15 2.12 0.00 8.51
LoaderAdv-ack 62 2.21 0.00 7.14
CLUSTER: A 8 7.46 2.63 12.34
Hiloti 43 0.76 0.00 2.58
CLUSTER: B 9 4.42 0.34 23.62
Gleishug 15 3.57 0.00 8.60
Nuseek 2 14.08 5.04 23.13
Palevo2 21 1.77 0.00 10.15
Securitysuite 100 0.37 0.00 1.17
CLUSTER: D 1 28.22 28.22 28.22

Table 4: Repacking rates for the 10 most-milked fam-
ilies (Aug. 2010), excluding crimeware kits. The
columns show the number of distinct binaries and the
mean/minimum/maximum time to repack, in days. A
minimum time of zero means that one of the distinct ex-
ecutables appeared in only a single milking instance.

for Rustock. In the PPI setting, botmasters can afford
to push out their bots as convenient, which will keep
the installs relatively “silent”; by contrast, propagation
campaigns driven by social engineering (e.g., as used
by Storm [17]) require more careful design and timing.

4.2 Repacking Rate

The rate at which malware distributors repack their prod-
ucts reflects their concern about content-driven AV sig-
natures. In this section we analyze the repacking rate
for the client programs that we milk, which are typically
repacked by the client themselves. In addition, we de-
scribe how the Zlob service repacks their affiliate down-
loader binaries on-the-fly.

In the milk from August 2010, a malware family is
repacked on average at least once every 11 days. Ta-
ble 4 summarizes the individual repacking rate for the
top 10 families (excluding crimeware kits) milked in Au-
gust 2010. The data for the top 10 families shows that
they are repacked on average every 6.5 days. This indi-
cate that the top malware families are repacked more of-
ten than the average malware family. Among these fami-
lies, the most often repacked are Securitysuite (more than
twice a day) and Hiloti (at least once per day). CLUS-
TER:D has the slowest repacking rate, only 1 executable
was seen during the month, followed by Nuseek (2 exe-
cutables).

In Figure 5, we contrast the repacking of the Rustock
and Securitysuite families (with two variants of the lat-
ter) over the course of August. We plot distinct vari-
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Figure 4: Malware family availability via infiltrated PPI services in August 2010. We only show families with a known
activity class.
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Figure 5: Repacking activity according to binary changes over time for the Securitysuite and Rustock families. Some
Securitysuite binaries detected virtualized execution; we separate these by color.



ants on the y-axis, with entries ordered by first appear-
ance. Rustock changes executables less frequently, and
with little version overlap. Furthermore, the program
dropped Rustock during the whole month, while Secu-
ritysuite has more complex availability: Securitysuite-
avm, a Securitysuite subfamily with anti-VM capabil-
ities (for VMware, specifically), filled the availability
gaps when Securitysuite was not pushed out.1 In aggre-
gate, Securitysuite was thus likewise available through-
out, though with differing anti-VM capabilities. One
possible explanation is that the Securitysuite gang uses
two off-the-shelf packers, but only one provides anti-VM
capabilities.

Zlob affiliate downloader repacking. Unlike for the
malware that their clients provide, PPI providers typi-
cally repack affiliate downloader binaries on a periodic
basis and notify their affiliates to switch to the fresh
downloader [29]. We found that the Zlob service has in-
corporated a twist on this approach. They provide a web
service for affiliates to request a fresh binary, which, in-
terestingly, apparently repacks the affiliate binaries on-
the-fly. We requested the downloader for a single affili-
ate 27 consecutive times, resulting in 27 distinct, work-
ing Zlob binaries with identical sizes but differing MD5
hashes. Attackers could likewise apply such on-the-fly
packing to other areas, such as drive-by-downloads, to
create unique malware for each compromised host.

4.3 PPI Behavior

In this section we look at the behavior and distinct struc-
ture manifested by each PPI provider for managing their
downloads.

LoaderAdv. The LoaderAdv downloader has hard-
coded two domains and a set of file paths that it com-
bines with the two domains to create the URLs to locate
the malware executables. If we ignore the domain part
of the URL (the second domain is only used for redun-
dancy) we observe two classes of URLs: single-client
and multi-client. Single-client URLs always return the
same family of malware, while multi-client URLs cycle
through a set of clients that changed over the course of
our infiltration. These latter also yielded different down-
loads based on the geo-location of the milker’s IP ad-
dress, an aspect we examine further in Section 4.4.

Figure 6 shows the behavior of a single multi-client
URL as seen by our milkers. We show the different fami-

1Detecting the presence of Securitysuite-avm versus Securitysuite
was the only significant identification we obtained by using our “bare
metal” setup in addition to our VM-based execution environment.

lies in separate boxes, and the y-axis represents the coun-
tries involved. (The gaps on August 5 and 11 arise due
to failures of the milkers to connect through Tor.) As
we milk binaries from this URL, we typically see Se-
curitysuite or SmartAdsSolutions binaries. We also ob-
tain Zbot for a brief 11-hour period and GoldInstall-list
for about three days. During August 2010 our Loader-
Adv milker downloads malware from a total of 19 unique
URLs (ignoring the domains). Three of these are single-
client URLs only serving Rustock, while the remaining
16 drop malware matching 31 of our signatures.

GoldInstall. GoldInstall has two downloaders. The
GoldInstall-list downloader contacts the PPI C&C server
to obtain a list of URLs hosting the client executables.
The received list varies based on the geographic loca-
tion. Goldinstall-dl has a hard-coded list of URLs in the
binary that serve executables independent of geographic
location. Both the GoldInstall-list and GoldInstall-dl
downloaders fetch the executables using HTTP, with
each distinct URL representing a single family of mal-
ware. Often, the service hosts the same client executable
in multiple locations, with the path components of the
URL (such as 1.exe) remaining constant. When the
path is the same, typically so is the family of malware,
though we also observed common URL paths used for
multiple families (e.g., bot.exe). The download lo-
cations show no evidence of checking the geo-location
of the downloader before serving malware. Thus, the
GoldInstall-dl downloader does not download executa-
bles based on geographic location. Throughout the
month, the program periodically distributed new URLs
to the PPI executable, 41 total. These on average con-
tinued to return valid executables for 36 days after first
provided by the C&C (maximum 162 days, minimum 14
hours).

Virut. The Virut downloader uses a custom IRC-based
C&C protocol to receive a list of URLs hosting the client
executables. We observe a total of six distinct URLs
throughout August 2010, distributing 15 distinct executa-
bles matching signatures for three families. Four of the
URLs use a domain with the same whois entries as the
Virut C&C, and each URL can return a different exe-
cutable for each request.

Zlob. The Zlob downloader uses a custom encrypted
C&C protocol to request a list of URLs to locate client
programs. The received list varies based on the geo-
graphic location. The service replicates the list of URLs
so that every two received URLs correspond to one exe-
cutable, at two locations apparently for redundancy.
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Figure 6: Availability of malware families over time, from a single LoaderAdv URL. The empty family shows when
the URL provided a non-executable response.

4.4 Geographic Breakdown

To investigate the geographical preferences of the dif-
ferent malware families, we analyze the milk from the
LoaderAdv, GoldInstall, and Virut services, since as ex-
plained in Section 3.2 for these three services the milker
used 15 Tor circuits in parallel, each terminating in a
different country. We selected 15 countries using price
points advertised by PPI providers: AT, BR, DE, ES, FR,
GB, GR, IT, JP, KR, NL, PL, PT, RU, and US.

For most malware families we observe clear geograph-
ical preferences. Figure 7 shows the frequencies with
which we obtained a sample of the Ertfor, Gleishug,
Rustock, Securitysuite, and SmartAdsSolutions families,
each of which our milkers downloaded at least 100 times
during August. We selected these groups to highlight
characteristics we observe in geographical distribution;
other families exhibit similar patterns.

Three trends in geographical distribution emerge.
First, we commonly see families of malware preferen-
tially targeting Europe and the US (e.g., Ertfor, Secu-

ritysuite, and SmartAdsSolutions). Second, some fami-
lies exclusively target the US or another single country
(e.g., Gleishug). Finally, we observe families with no
geographical preferences (e.g., Rustock).

Several factors can influence a PPI client’s choice of
country. First, the class of activity in which the client’s
executable engages. A spam bot such as Rustock requires
little more than a unique IP address to send spam, while
fake AV such as Securitysuite often targets speakers of a
specific language, and may need to support user payment
methods specific to some areas. In addition, the install
rate a client pays also varies depending on the targets’
countries. We find the US and Great Britain generally at
the high end ($100–180 per thousand), other European
countries in the middle ($20–160), and the rest of the
world at the bottom (< $10) [12, 13, 19].

4.5 Affiliate–PPI Interactions

Surprisingly, among the binaries that we milk we find a
number of affiliate PPI downloaders. That is, download-
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Figure 7: Prevalence of six malware families seen by our milkers from different country vantage points.

ers not infrequently download other downloaders. This
indicates that some PPI affiliates have also signed up as
clients of PPI services. To understand these affiliate–PPI
interactions, we extracted the unique affiliate identifier
embedded in each of the PPI downloaders found in our
milk, which we can observe from its transmission (pre-
sumably for accounting purposes) during the C&C ex-
change.

Using these identifiers, we observe that affiliates from
one PPI service themselves sometimes act as clients
of other PPI services. This behavior manifests by our
milker, impersonating affiliate X for PPI service A, fetch-
ing an executable for installation that corresponds to a
downloader for affiliate Y of PPI service B.

We speculate that some of these multi-PPI-service af-
filiates represent arbitrageurs who try to take advantage
of pricing differentials between the (higher) install rates
paid to the affiliates of one service for some geographical
regions versus the (lower) install rates charged to clients
of another PPI service. For example, we observe that
LoaderAdv’s affiliate 701 signed as a client of GoldIn-
stall, using the latter to distribute 701’s personalized
LoaderAdv downloader for four days. Here, the price
differential includes the US, Canada, and Europe, from
which our GoldInstall milkers collected this executable.

Perhaps even more surprising, we find affiliates from
one PPI service who are also clients of the same PPI ser-
vice. For example, LoaderAdv’s affiliate 515 distributed
their personalized LoaderAdv downloader over Europe
and Brazil using the LoaderAdv service for a total of
20 hours. We see a similar behavior from affiliates 0625
and gol of the GoldInstall service, both clients and af-
filiates of GoldInstall. We conjecture that this happens
when affiliates try to take advantage of the price differ-
ential between the (higher) install rates paid to the af-
filiates for some geographical regions over the (lower)
install rates paid by the clients for installing on the same
regions. Note that such price differential is possible be-
cause the PPI service oversells installs: multiple clients

can pay the service for installs that cost the service only
a single affiliate payout. We suspect the PPI service can
detect this behavior would not credit both affiliates for
the install.

In a yet more convoluted case, we observed a GoldIn-
stall affiliate, e4u, signing up as a client for both GoldIn-
stall and LoaderAdv. We speculate that e4u most likely
stands for “earning4u”, the brand for the LoaderAdv PPI
service at that time. (Presumably this affiliate simply
took advantage of price differentials within the GoldIn-
stall service and with the LoaderAdv service, but possi-
bly e4u in fact represents the LoaderAdv gang itself.)

4.6 The Download Tree

One important observation of our work regards how
the nesting of downloaders-downloading-additional-
downloaders can quickly grow strikingly complex. To
capture such nesting we use a download tree. Nodes in
the tree represent programs identified by hashes of their
binary. At each branch in the tree, children represent
programs installed by the parent. Figure 8 shows an ex-
ample download tree. We term any node with children
a downloader. Nodes with a single child may be spe-
cialized downloaders for the child family, while nodes
with multiple children may reflect PPI downloaders that
charge the children for the installs. Leaf programs may
implement any of a number of recognizable malware be-
haviors, including sending spam, performing click-fraud,
and stealing personal information.

Generating the download tree requires carefully iden-
tifying the dependencies between installed programs,
e.g., which program downloads and executes other pro-
grams. To build the tree in Figure 8, the client mal-
ware programs need the freedom to download other exe-
cutables from the Internet. For this experiment we used
a different containment policy that sinks everything but
HTTP and C&C. In addition, we rate-limited the outgo-
ing HTTP and C&C traffic, and a human operator mon-
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Figure 8: A download tree starting with a single Loaderadv downloader. Stripes indicate PPI service-related binaries.

itored the execution in real-time to stop the process if
anything unexpected happened.

The download tree in Figure 8 comes from the live
execution of (originally) a single LoaderAdv PPI down-
loader that we ran in our controlled environment. Strik-
ingly, the entire execution required under 10 minutes—
with several additional leaf nodes omitted for clarity!
Thus, the example illustrates how quickly an exploited
system can transform from unmolested operation to host-
ing a veritable ecosystem of malware.

5 Discussion

Our findings have a number of implications, as follows.

Malware classification. Our work shows that we should
conceptually separate the exploitation mechanism com-
promising a system from the malware that the system
subsequently hosts. For example, it may not make sense
to characterize malware by its infection method beyond
malware that self-propagates and malware that does not.
Botmasters might simply purchase installation of their
malware from PPI services which can use a variety of
distribution methods.

The installation of malware from multiple clients
on a single target host has important implications for
behavior-based malware classification. For example,
when writing a malware analysis report it is easy to con-
fuse a downloader with malware that it happens to install
during one particular execution. Such confusion can then
result in misleading statistics characterizing the preva-
lence of malware families. Furthermore, malware anal-
ysis platforms that execute malware with Internet con-
nectivity [1, 2, 30] should carefully track program down-
loads and their execution, to allow separation of each
program’s runtime behavior. Without a download tree,
behavioral reports may reflect the aggregate behavior of

multiple types of malware. These aggregate reports may
result in incorrect classifications, and in the worst case
the produced signature may fail to detect individually ex-
ecuting malware.

Regarding classification techniques, we note that our
work does not aim to pursue advances in the field of be-
havioral malware signature generation, and instead em-
ploys straightforward techniques. We could fruitfully in-
corporate much of the published research in this space
into our classification approach.

Defenses. As defenders, we need to understand and ap-
preciate the threat posed by the “silent installs” industry.
PPI services have direct implications for takedown ef-
forts: even if defenders can completely clean up a botnet
(as opposed to merely severing its C&C master servers),
the botmaster could return to business-as-usual through
modest payments to one or more PPI services. Given that
multiple malware authors share use of the same PPI ser-
vices, and that the number of PPI services seems to be
significantly smaller than the number of malware fam-
ilies, PPI services are good targets for future takedown
efforts. However, the commoditization of the malware
industry could make it easy to recreate PPI services else-
where after takedown, so the focus should be on identify-
ing and apprehending the people that run such services.

Regarding detection techniques, we observe that the
content-based features of our signatures perform better
than the endpoint-based features. The former wins over
the latter in our handling of the periodic replacement
of stale URLs PPI services employ for hosting the mal-
ware executables, likely to bypass URL blacklists. We
also observe that many downloaders employ a simple
download-and-execute strategy, which in turn suggests
that defenders might realize significant protections by
employing taint-based approaches that identify the ex-
ecution of downloaded data.



Evasion. Infiltrating the PPI C&C protocols required
significant reverse-engineering effort on our part. As
miscreants become aware of this possibility and more
parties launch infiltration attempts, adversarial evolu-
tion will surely complicate this process. In particular,
we expect PPI services to harden their C&C protocols
with more robust use of cryptographic techniques and
incorporation of anti-virtualization and triggering mech-
anisms to increasingly hamper dynamic analysis. On the
other hand, the fact that a relatively modest infiltration
effort sufficed to gain insight into many of today’s top
malware families is encouraging. Analysts should re-
main on the lookout for opportunities to infiltrate core
components of the modern malware ecosystem, which
may offer broad insights into the malware landscape.

6 Conclusion
We have presented the results of the first systematic study
of the pay-per-install (PPI) ecosystem, conducted by in-
filtrating the malware distribution mechanism of PPI ser-
vices. The ability to “milk” malware binaries directly
from the source provides an unprecedented intelligence
capability to defenders. We leveraged this approach
to measure technical aspects of the market surrounding
malware installation.

Starting with a network-behavioral classification of a
one-month corpus of 313,791 binaries, we identified 12
of the 20 most prevalent families of malware. We illus-
trated how infection with several clickfraud and fake-AV
families specifically target the United States and Europe,
while other malware classes, such as spam bots, are dis-
tributed worldwide. Our examination of repacking rates
of PPI-distributed malware showed that on average bina-
ries are repacked every 11 days, with one family of mal-
ware repacking up to twice a day. Finally, we illuminated
the relationships among actors in the PPI ecosystem, in-
cluding the identification of LoaderAdv and GoldInstall
affiliates that apparently engage in pricing arbitrage by
becoming clients to other PPI providers.
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A Examples of Signatures

This appendix provides a concrete view of several of the
malware signatures that appear in Table 3. We include
four popular-but-untagged clusters, and two versions of
Palevo for reference.

Each signature consists of three parts: URL,
DOMAIN, and PAYLOAD statements followed by
associated contents. The URL can contain regular
expressions; we only use it for HTTP-based protocols.
DOMAINS can list IP addresses or domains (with or
without subdomains). PAYLOAD statements specify the
parameters for where, type, contents, and len.
where specifies the location to match, with “begin”
meaning at the beginning of the payload. We use type
to inform the engine whether to interpret the contents as
a string or as an array of bytes. Finally, len restricts the
length of the checked packet: a signature that specifies a
len will only match if the packet has exactly the given
length in bytes.

CLUSTER: A

URLS
/svc.php\?ver=

DOMAINS
sy.perfectexe.com
sy2.perfectexe.com
sy3.perfectexe.com

CLUSTER: B

URLS
/get.cgi\?.+
/data.cgi

DOMAINS
f19dd4abb8b8bdf2.cn
2bff2694930d2e21.cn
697fe322c995da1a.net
89e3aaecc2ba1734.net
ade34ea82c4f7f2f.net

CLUSTER: C

DOMAINS
ds.perfectexe.com

URLS
/active.asp\?[0-9]{2}

CLUSTER: D (URLs truncated for space)

DOMAINS
x.liruna.com

URLS
/x.ashx\?
ashx\?a=get&v=
ashx\?a=[ˆ&]+v=[ˆ&]+&fid=[ˆ&]+&id=...

Palevo

DOMAINS
193.104.186.88
76.76.99.186
f5v9w.com
e7j0h7.cn
mp1r3n.ru

URLS
/hygtrve.exe
/htrgef.exe
/htgref.exe
/hybtvr.exe

PAYLOAD
where : begin,
type : bytes,
contents : [[0x61]],
len : 7

Palevo2

DOMAINS
ff.fjpark.com
fifa2012terra.com
converter50.com

URLS
/rip.exe, /usa.exe, /575.exe,
/adv.exe, /adv2.exe, /rip2.exe,
/prr.exe, /4757exe.exe

PAYLOAD
where: begin,
type : bytes,
contents : [[0x18]],
len : 21,


