
Securing Script-Based Extensibility in Web Browsers

Vladan Djeric, Ashvin Goel
University of Toronto

Abstract

Web browsers are increasingly designed to be ex-
tensible to keep up with the Web’s rapid pace of
change. This extensibility is typically implemented
using script-based extensions. Script extensions
have access to sensitive browser APIs and content
from untrusted web pages. Unfortunately, this pow-
erful combination creates the threat of privilege es-
calation attacks that grant web page scripts the full
privileges of extensions and control over the entire
browser process.

This paper makes two contributions. First, it
describes the pitfalls of script-based extensibility
based on our study of the Firefox web browser. We
find that script-based extensions can lead to arbi-
trary code injection and execution control, the same
types of vulnerabilities found in unsafe code. Sec-
ond, we propose a taint-based system to track the
spread of untrusted data in the browser and to de-
tect the characteristic signatures of privilege escala-
tion attacks. We evaluate this approach by using ex-
ploits from the Firefox bug database and show that
our system detects the vast majority of attacks with
almost no false alarms.

1 Introduction
Most web browsers today provide powerful exten-
sibility features, including native and script-based
extensions. Native extensions (or plugins) are typi-
cally used when performance is critical (e.g., virtual
machines for Java, Flash, media players, etc.), while
script extensions ensure memory safety and have the
advantage of being inherently cross-platform and
amenable to rapid development. Examples of pop-
ular script extensions include the Firefox Adblock
extension [1] that filters content from blacklisted ad-
vertising URLs, and Greasemonkey [4] that allows
users to install arbitrary scripts in web pages for cus-
tomization or to create client-side mashup pages.

Script extensions must have access to both sensi-
tive browser APIs and content from untrusted web
pages. For example, Adblock must be able to ac-

cess the local disk to store its URL blacklist and
access web pages to filter their content. This com-
bination is needed for writing powerful extensions,
but it creates challenges for securely executing web
page scripts. Specifically, when extensions interact
with web pages, there is a risk of a privilege escala-
tion attack that grants web page scripts the full privi-
leges of script extensions and control over the entire
browser process. Privilege escalation vulnerabilities
are perhaps even more critical than memory safety
vulnerabilities because script-based attacks can of-
ten be executed reliably.

Our goals in this paper are two-fold: 1) under-
standing the nature of script-based privilege escala-
tion vulnerabilities, 2) proposing methods to secure
the Firefox browser against them. Privilege esca-
lation vulnerabilities are common in Firefox, and
comprise roughly a third of the critical vulnerabil-
ity advisories. They arise from unsafe extension be-
haviors or bugs in the Firefox security mechanisms
that regulate interactions between trusted native or
extension scripts and untrusted web page scripts.
These vulnerabilities have appeared regularly in ev-
ery version of the browser and exist even in the lat-
est versions. This is despite continuing effort from a
dedicated team of security developers that have pro-
gressively improved the browser security model.

The Firefox security model consists of a com-
bination of stack inspection and one-way names-
pace isolation. The stack inspection mechanism,
implemented at the boundary of the script and na-
tive code, regulates accesses to sensitive native in-
terfaces based on the principals of the caller. For
example, a local file access is denied if the current
stack contains a frame associated with an untrusted
principal.1 Namespace isolation is used to enforce
the same-origin policy for web page scripts. This
policy limits interactions between scripts and doc-
uments loaded from different origins. The names-
pace isolation is one way in that script extensions

1A principal represents the code’s origin and, for web page
scripts, it consists of a scheme, host, port combination.

are privileged and allowed to access content names-
paces, but web page scripts should not be able to
obtain a reference to the privileged namespace. This
policy is designed to enforce the same-origin policy
and defend against privilege escalation attacks.

These security mechanisms are well understood,
but they have two flaws: 1) relying entirely on prin-
cipals as a measure of trustworthiness for stack in-
spection, and 2) depending on one-way namespace
isolation to work correctly. In practice, an exploit
can leverage browser bugs or vulnerable extensions
to confuse the browser into assigning wrong princi-
pals to code or executing data or code with wrong
principals, thus defeating stack inspection. Second,
reference leaks can occur because of interactions
between privileged and unprivileged scripts, com-
promising namespace isolation and allowing un-
privileged scripts to affect the execution of privi-
leged scripts. As a result, we find that arbitrary code
injection and execution control vulnerabilities that
commonly exist in unsafe code can also occur with
script-based extensibility.

Based on the flaws described above, our solution
for securing the Firefox browser consists of com-
bining tainting with the existing stack-based secu-
rity model. Our approach guarantees that tainted
data will not be executed as privileged code. Taint-
ing all data from untrusted origins and propagating
the tainted data throughout the browser provides a
much stronger basis for making security decisions.
In essence, our attack detectors “second guess” the
security decisions of the browser by taking into ac-
count one additional piece of information, i.e. the
taint status. This solution is conceptually simple
and well-suited for the browser’s security model be-
cause namespace isolation already provides a se-
curity barrier between the taint sources in content
namespaces and privileged code residing in exten-
sion namespaces. As a result, we show that it is un-
likely that attacks will be detected erroneously, even
if we fully taint all data and scripts from web pages.

The contributions of this paper are two-fold: 1)
we analyze and classify script-based privilege esca-
lation vulnerabilities in the commonly used Firefox
browser, 2) we use taint-based stack inspection to
design effective signatures for script-based exploits
and evaluate this approach. We use Firefox version
1.0 for the evaluation because it has several priv-

ilege escalation vulnerabilities and easily-available
exploits. Our results show that we can detect the
vast majority of attacks with almost no false alarms
and modest overhead.

Below, Section 2 provides background on the
Firefox security model. Section 3 presents our
classification of privilege escalation vulnerabilities
and sample exploits. Section 4 describes our taint-
based approach for securing script-based extensi-
bility. Section 5 provides an evaluation of our ap-
proach. Section 6 describes related work in the
area and Section 7 presents our conclusions and de-
scribes future work.

2 The Firefox Browser
In this section, we provide an overview of the Fire-
fox architecture and its security model.

2.1 Architecture
Figure 1 shows a simplified version of the Fire-
fox architecture relevant to this work. The basic
browser functionality is provided by native C++
components written using Mozilla’s cross-platform
component model (XPCOM). XPCOM components
implement functionality such as file and socket ac-
cess, the document object model (DOM) for rep-
resenting HTML documents, and higher-level ab-
stractions, such as bookmarks, and expose this func-
tionality via the XPIDL interface layer. The Script
Security Manager (SSM) is an XPCOM component
responsible for implementing the browser’s security
mechanisms.

The JavaScript interpreter accesses XPCOM
functionality via the XPConnect translation layer.
This layer allows the interpreter and the XPCOM
classes to work with each others data types transpar-
ently. XPConnect also serves as the primary secu-
rity barrier for enforcing the browser’s same origin
policy and restricting access to sensitive XPCOM
interfaces.

Firefox’s script extensions and privileged UI
scripts, shown in Figure 1, are loaded from lo-
cal files through URIs with the “chrome” protocol.
They are privileged and have access to a greater
number of XPCOM interface methods than web
page scripts and are not subject to the browser’s
same origin policy. Similar to other browsers, Fire-
fox also supports native plugins for Java, Flash, etc.

XPCOM classes

XPIDL Interfaces

XPConnect

JS Interpreter

Bookmarks objectsBookmarks objects

DOM objectsDOM objects

Extension
JS

Web page
JS

Browser

UI
JS

SSMSSM

Figure 1: The Firefox architecture.

Although potential security vulnerabilities can ex-
ist within plugin implementations, we do not ad-
dress them. However, with appropriate sandboxing
of plugins [14, 23], we would be able to monitor any
script interactions with the plugins.

2.2 Security Model
Firefox primarily uses two security schemes,
namespace isolation and a subject-verb-object
model based on stack inspection. Namespace iso-
lation is used to enforce the same origin policy for
web page scripts, and stack inspection regulates ac-
cess to sensitive XPCOM components. We de-
scribe each in more detail below.

2.2.1 Namespace Isolation

The browser runs scripts within an object names-
pace that defines the objects available to the script.
A window object lies at the root of the namespace
for each web page. For example, web page scripts
manipulate HTML by invoking the DOM methods
of the document object that is a property of this win-
dow object.

The browser enforces the same origin policy by
running web page scripts from different web pages
in different namespaces. These scripts are only al-
lowed to access other namespaces from the same
origin (described below). Extension scripts are al-
lowed to access all content namespaces. Extension
namespaces are hidden from the web page scripts,
and extensions are not expected to invoke web page
scripts directly.

2.2.2 Subject-Verb-Object Model

Firefox uses a “Subject-Verb-Object” access control
model. The subject is the principal of the currently
executing code, the verb is one of a limited number

of operations (e.g., call a function F, get a property
A, set a property B), and the object is the principal
of the object that is the target of the operation. This
security mechanism is implemented in the Script
Security Manager, and invoked by XPConnect to
regulate access to sensitive XPCOM interfaces and
by the interpreter to limit access to sensitive func-
tions and object properties.

The principal of a web page script is defined by
the origin of the document containing the script (its
protocol, hostname, and port). The Script Security
Manager determines the subject principal by walk-
ing down the JavaScript stack until it finds a stack
frame with a script principal. The object principal is
determined by walking up the object’s parent chain
(scope chain) in its namespace until an ancestor ob-
ject with a principal is found. For web pages, the ob-
ject’s parent chain leads to a top-level HTML docu-
ment associated with the window object.

3 Script-Based Privilege Escalation

Privilege escalation vulnerabilities are created by
unsafe extension behaviors or bugs in the Firefox
security mechanisms that regulate interactions be-
tween privileged and unprivileged code. In this
section, we first discuss different classes of script-
based privilege escalation vulnerabilities and then
describe examples of real vulnerabilities.

3.1 Vulnerability Classification

Our analysis of the Firefox bug database revealed
four main classes of privilege escalation vulnera-
bilities: code compilation, luring, reference leaks
and insufficient argument sanitization. Most of the
known Firefox vulnerabilities can be attributed to
one or more of these classes.

3.1.1 Code Compilation Vulnerabilities

Similar to cross-site scripting (XSS) vulnerabil-
ities that occur in web sites, code compilation
vulnerabilities allow arbitrary strings from content
namespaces to be compiled into JavaScript byte-
code with privileged principals. Unlike a stati-
cally typed language such as Java, JavaScript al-
lows arbitrary strings to be converted into byte code
at runtime through eval and eval-like functions
such as setTimeout. The eval function com-
piles a string into byte code and executes it with

the principal of the calling script, even if the string
was obtained from a different namespace. Code
compilation vulnerabilities occur if attackers can
trick privileged code into compiling strings sup-
plied by the attacker, or if they can find bugs in
the rules for assigning principals to newly com-
piled byte code. For example, it can be danger-
ous for privileged code to load URIs from untrusted
namespaces as the URIs are capable of carrying
script code inline. For example, the “javascript”
protocol (e.g., javascript:alert(’Hello
World’);) allows executing text after the proto-
col name as a script in the current namespace.

This problem may seem simple, but it has been
the cause of several security bugs in Firefox. For
example, even after vulnerable code was patched to
sanitize URIs before loading them, exploits were
possible because they did not account for nested
URIs such as view-source:javascript:.

3.1.2 Luring Vulnerabilities

Luring vulnerabilities allow malicious scripts to
trick privileged code into calling a privileged func-
tion of the attacker’s choosing instead of the in-
tended callee. Stack inspection prevents unprivi-
leged scripts from calling the privileged functions
directly, so malicious scripts must lure privileged
code into making these calls.Luring is possible be-
cause script extensions routinely access DOM ob-
jects in content namespaces. These DOM ob-
jects are simply JavaScript wrappers for native XP-
COM objects with well-defined, native interfaces.
However, JavaScript’s flexibility allows web page
scripts to modify these wrapper objects. In ver-
sions of Firefox after 1.0.3, privileged code is pro-
tected by automatically created “safety wrappers”
that hide any wrapper changes made by untrusted
code. However, if the safety wrapper code contains
bugs (as has often been the case), privileged code
again becomes vulnerable to luring attacks.

In order to execute privileged code, an attacker
can choose one of three possible kinds of callees: 1)
an eval-like native function, 2) a privileged function
accidentally leaked into the content sandbox (see
next section), or 3) a privileged native method that
legitimately exists in content namespaces. The third
category consists of XPCOM methods that are vis-
ible to ordinary web page scripts because they are

meant to be invoked by digitally signed web page
scripts. For example, the preference() method
of the navigator object allows privileged scripts
to read or write the browser’s configuration, such as
the browser’s homepage and security settings. Or-
dinary web page scripts cannot invoke the sensitive
preference() method directly, but since every
function is also an object in JavaScript, web page
scripts can obtain an object reference to this method
and potentially trick buggy privileged code into in-
voking the reference.

3.1.3 Reference Leak Vulnerabilities

Reference leak vulnerabilities occur when web page
scripts gain access to references in the extension
namespace [11]. These leaks are compromises in
the isolation between privileged and unprivileged
namespaces. They allow an attacker to modify data
or code defined in a privileged namespace and call
arbitrary functions within the privileged namespace,
potentially leading to arbitrary execution control.
Reference leaks are dangerous because privileged
code that depends on namespace isolation may be-
come accessible to web page scripts or it may be-
come vulnerable to code compilation or luring at-
tacks. Reference leaks can occur due to bugs in na-
tive code that deals with namespaces. Also, careless
extensions may place references to privileged ob-
jects in an untrusted namespace. Finally, reference
leaks can lead to cross-principal confidentiality vio-
lations, but we do not address confidentiality in this
paper.

3.1.4 Insufficient Argument Sanitization

Vulnerabilities can also occur if a browser extension
uses unsanitized data from untrusted namespaces as
arguments to privileged XPCOM APIs. For exam-
ple, if an extension used to download Flash videos
from web pages uses the name of the movie file on
a web page as part of the local filename to which
the file is saved, it may be open to directory traver-
sal attacks (e.g., using “../” to access normally inac-
cessible directories) that would not be detected by
the browser’s stack inspection mechanism. If the
overwritten file were an extension JavaScript file, it
would lead to a privilege escalation attack. This spe-
cific class of vulnerability has not been documented
in the Firefox bug database, but we consider it a

onLinkIconAvailable: function(Href)
{

if (favIcon && ...) {
favIcon.setAttribute("src",

Href);
}

}

Figure 2: Target code invoked when a LINK tag is
found in the current web page.

likely vulnerability for extensions.

3.2 Examples
We describe some examples of privilege escala-
tion vulnerabilities from the Firefox bug database
to show that these vulnerabilities can be subtle and
easy to overlook.

3.2.1 URI Code Injection

Figure 2 shows an example of browser JavaScript
containing a code compilation vulnerability that can
lead to URI code injection (Bug 290036). This GUI
code displays a favicon (16x16 pixel icon) image
next to the browser’s URL bar. Normally the icon’s
URI, which is specified by the current web page,
would be the HTTP address of the favicon image,
but a malicious web page can specify a “javascript”
protocol URI. When the privileged UI code attempts
to load the image by setting the src property of
the icon container to the Href URI, it will inadver-
tently execute script code. This code will be com-
piled with the unprivileged principals of the URI,
but it will have access to the privileged UI names-
pace, allowing reference leaks, which can then be
used for other attacks (e.g., see Section 3.2.4). This
vulnerability occurs because the native code im-
plementing the icon container and the compilation
function are unaware of the origin of the Href ar-
gument.

3.2.2 Compilation with Wrong Principals

Figure 3 shows code that exploits a code
compilation and a reference leak vulnerabil-
ity to create a dynamically-defined function
(clonedFunction) with elevated privileges.
The eval function compiles and executes the
evalCode string with the unprivileged principal of
the web page. However, the attacker has also sup-
plied a second argument that specifies the names-

evalCode = "clonedFunction = \
function deliverPayload(){...}; \
clonedFunction()";

myElem = document.getElementById
("myMarquee");

xbl object = myElem.init.call;
eval(evalCode, xbl object);

Figure 3: Exploit code that allows untrusted func-
tions to be associated with privileged principals.

pace for name resolution during the string evalu-
ation. Normally, this argument does not cause a
problem because it belongs to the same namespace
as the caller’s namespace. However, xbl object
is a benign reference leak from a privileged names-
pace.

Exposing xbl object is a reference leak, but it
is not sufficient for an attack because the interpreter
invokes eval with the correct caller’s principals.
However within eval, once run, the evalCode
byte code gets access to a privileged namespace.
This access by itself is still not a problem because
evalCode runs with the web page principals, and
thus will not be able to get past the stack inspection
checks. Similarly, invoking deliverPayload
directly within evalCode would not be problem-
atic.

The exploit occurs when evalCode creates
a function referenced by clonedFunction.
The interpreter creates a new function object
in the privileged namespace that is a clone of
deliverPayload. When a function is created
by cloning, its principal is set to its object princi-
pal, as described in Section 2.2.2. When the cloned
function is invoked, it executes its payload with el-
evated privileges. In effect, this exploit attaches a
user-supplied function to a privileged namespace,
making it appear privileged to the security manager.
This vulnerability occurs because the implementa-
tion of eval did not check that it was compiling
code from one principal and executing it within the
namespace of a more privileged principal.

The patch for this vulnerability added a check to
eval to ensure that the principal of the caller sub-
sumes the object principal of the second argument.
However, it was discovered that this patch could
be bypassed by invoking eval indirectly using the
timer method setTimeout. When the natively-

var code = "... payload ...";
document.body. defineGetter

("localName", Script(code));

Figure 4: Simplified exploit code for Bug 289074.

implemented timer fires, there are no JavaScript
frames left on the stack, so the caller’s principal
is the fully privileged principal of the native timer
code. The next patch prevented eval from being
called directly by native code. Further patches were
needed to fix other attacks on eval.

3.2.3 Luring Privileged Code

Figure 4 shows the exploit code for a lur-
ing attack. This exploit would trigger if the
document.body.localName property is read
by the UI code. This code tricks the privileged code
into working with a different property than the one
it expects by associating a getter function with a na-
tive DOM object property (localName). Further-
more, the Script object behaves like an eval-like
function that allows strings to be precompiled and
executed with the privileges of the caller’s princi-
pal.2 The consequences are equivalent to privileged
JavaScript executing a string of the attacker’s choos-
ing, although no code is compiled in the privileged
namespace. This vulnerability occurs because the
caller accesses an overridden property.

This problem was so widespread in Firefox
1.0 that it motivated developers to implement the
“safety wrapper” mechanism that allows privileged
scripts to work with native DOM objects without
being exposed to any modifications made by web
page scripts. However, even the latest releases of
Firefox continue to suffer from bugs in assigning
wrappers, thus allowing privileged scripts to interact
with tampered DOM methods and properties [6].

3.2.4 Privileged Reference Leaks

Figure 5(a) shows code that exploits a reference leak
vulnerability in the QueryInterface XPCOM object.
A flaw in the XPConnect code for setting up safety
wrappers for native objects inadvertently sets a priv-
ileged object as the prototype of the safety wrapper
for QueryInterface in untrusted namespaces. Ma-
licious code can use this leak to reach the global

2This Firefox-specific object has been deprecated since
Firefox 3.0, presumably due to security risk.

var leaked =
QueryInterface. proto . parent ;

var cid = {equals: Script(payload)};
leaked.foo.getClassObject(cid);

(a) Simplified exploit code.

var foo = {
getClassObject: function(aCID) {

if (aCID.equals(value))
return this. objects[key];

}
};

(b) Simplified target code.

Figure 5: Exploit and target code for Bug 294795.

object of a privileged namespace. The exploit calls
the script method foo.getClassObject in the
privileged namespace with a specially-crafted argu-
ment to carry out a luring attack.

The getClassObject method shown in Fig-
ure 5(b) relies on namespace isolation and thus ex-
pects to be called from other privileged functions
with safe arguments. However, when it calls the
equals method of its aCID parameter, it inadver-
tently invokes the Script object defined by the at-
tacker, executing it with full privileges.

3.2.5 Loading Privileged URIs

There are also attacks that use a combination of a
bug that allows unprivileged pages to load higher
privilege documents (e.g., “chrome” protocol URIs)
and a cross-site scripting (XSS) bug to inject their
own scripts into these pages. Bug 306261 allowed
untrusted pages to bypass restrictions on loading
privileged URIs of the “about” protocol (which al-
lows setting browser configuration values) by using
a malformed URI. We do not address XSS bugs or
violations of URI loading policies, but our system
is able to detect this category of attacks because it
leads to code injection.

3.3 Comparison With Memory Safety

JavaScript extensions have many clear benefits, but
they suffer from risks posed by these four classes
of vulnerabilities. As a result, Firefox users have
been victims of real-world privilege escalation at-
tacks and the Firefox bug database shows that the
incidence rate for these types of vulnerabilities is

comparable to memory-safety vulnerabilities (more
on this in Section 5.1).

At first, this may seem counter-intuitive: com-
ponents written in a memory-safe, interpreted lan-
guage should be more secure than their native equiv-
alents. This intuition may be true in single-principal
applications, but Firefox must execute JavaScript
from multiple principals concurrently and must ar-
bitrate over many possible interactions, which raises
the specter of bugs leading to privilege escalation at-
tacks.

In fact, the classes of vulnerabilities we found
for the multi-principal Firefox script environment
are similar to memory-safety vulnerabilities found
in single-principal native code. The code compila-
tion vulnerabilities are not unlike buffer overflows:
data is executed as code, allowing for arbitrary code
execution. The luring vulnerabilities allow attackers
to call existing functions of their choosing, similar
to return-to-libc attacks [5].

4 Approach
Script-based extensibility in the Firefox web
browser is a powerful feature and is highly valued
by its users. However, it leads to privilege escalation
vulnerabilities precisely because of the dynamic and
flexible nature of the script language used to imple-
ment the extensions. The language features allow
leveraging browser bugs or vulnerable extensions to
confuse the browser into assigning wrong principals
to code, thus bypassing stack inspection.

Privilege escalation vulnerabilities also arise be-
cause Firefox’s implementation of one-way names-
pace isolation is inherently error prone. The
browser fully trusts script extensions, but these
scripts can interact with data from unprivileged
sources in unsafe ways, compromising namespace
isolation. One-way namespace isolation will not
disappear from extensible browser architectures, as
extensions will always need to read and modify un-
trusted web pages. One method of improving the
security of one-way namespace isolation is to pro-
vide stronger isolation guarantees. For example,
Google Chrome [10] divides an extension into sep-
arate processes, one for for accessing privileged in-
terfaces, and another for interacting with untrusted
web pages, while only allowing IPC between the
two processes. This architecture requires increased

implementation effort from the extension developer
and is completely incompatible with the Firefox ex-
tension model.

Instead, our solution is to use tainting to aug-
ment the browser’s security mechanisms. We use
tainting because it helps detect when untrusted con-
tent can affect privileged code. Furthermore, it is
fully compatible with the current Firefox extension
model. Unfortunately, many tainting-based systems
suffer from endemic false alarms and thus are un-
usable in practice [18]. In this section, we show
that our tainting-based solution, while being con-
ceptually simple, is well-suited for the browser’s se-
curity model because namespace isolation already
provides a security barrier between the taint sources
in content namespaces and privileged code in exten-
sion namespaces.

4.1 Threat Model
We define a privilege escalation attack as tainted
data executing as privileged code. Tainted data is
executed as privileged code if it is compiled into
script byte code tagged with the wrong principals,
or if tainted data is used as a reference to execute
privileged code. Both scenarios lead to a failure of
the browser’s security mechanism for guarding ac-
cess to sensitive interfaces, allowing untrusted web
pages to gain the ability to modify the host system.

We add security checks and augment stack in-
spection to look for the characteristic signature of
privilege escalation attacks. To do so, we rely on
the memory safety of the browser as well as the
browser’s ability to correctly assign a principal to
a web page when it is first loaded, before any web
page scripts begin executing. Assigning this prin-
cipal is straightforward as it only depends on the
web page’s URI. We do not depend on the correct-
ness of the rest of the code that assigns principals, or
code that interprets principals. Instead, we “second
guess” browser security code by auditing its secu-
rity decisions with the additional taint status infor-
mation.

4.2 Tainting
We consider all documents fetched from remote
sources or local documents opened with the “file”
protocol as untrusted and taint them because the
browser does not assign them a privileged princi-

pal. When documents are loaded into the browser,
they are parsed into a tree of native DOM objects,
representing individual markup elements and their
attributes. All nodes of the tree are individually
marked tainted, including the text of any scripts de-
fined inside the document, such as in event handlers
or in SCRIPT tags, and taints are tracked separately
for each attribute of a DOM element.

Our tainting system uses different policies based
on the privilege level of the executing script. Un-
privileged code is completely untrusted and may
be malicious, so we must unconditionally taint all
script variables created or modified by executing
scripts originating from untrusted (tainted) docu-
ments. For privileged scripts, we use standard taint
propagation rules that mark the output of JavaScript
instructions as tainted when the instruction inputs
are tainted. Tainting allows us to mark and track the
influence of untrusted code throughout the browser.

Tainting systems can suffer from excessive
false alarms when using control-dependent taint-
ing. Control-dependent tainting taints the output of
any code whose execution depends on tainted data.
For example, all outputs of an if-branch would be
tainted if the condition variable were tainted. Con-
trol dependence is necessary when the code process-
ing the tainted data may itself be malicious. For ex-
ample, detecting cross-domain information leaks re-
quires accounting for implicit flows, since malicious
web page scripts could leak information [19]. We do
not use control-dependent tainting on the privileged
side because we assume that the privileged scripts
are trusted. We consider it highly unlikely that priv-
ileged script code would accidentally launder taints
through control flow and then execute the laundered
data as privileged code.

It is necessary to track taint both in the native
code and inside the script interpreter. For exam-
ple, when a new HTML document is loaded into a
tab, privileged UI script code reads the tainted doc-
ument’s title property and sets it as the caption of
the tab element. This requires taints from native
DOM objects associated with the HTML document
to propagate to script variables in the UI code and
then back to DOM objects associated with the UI
document. On the native side, we track the taint sta-
tus of string properties of XPCOM objects. Taint-
ing code in XPConnect taints any JavaScript ref-

erences to unprivileged DOM elements and prop-
agates taints between the XPCOM and JavaScript
environments.

4.3 Attack Detection

We define a privilege escalation attack as tainted
data executing as privileged code. We implement
two classes of attack detectors to detect this con-
dition: compilation detectors and invocation detec-
tors. Compilation detectors ensure that tainted data
is never compiled into byte code tagged with priv-
ileged principals, while invocation detectors moni-
tor the stack for tainted references to function ob-
jects creating privileged frames. Compilation de-
tectors map closely to code compilation vulnerabil-
ities, while invocation detectors are best suited for
preventing luring attacks.

4.3.1 Compilation Detectors

We use compilation detectors as a proactive mea-
sure to prevent tainted data from being compiled
to privileged byte code, even if it is never exe-
cuted. These detectors are well suited for secur-
ing eval-like functions that compile strings into byte
code, because the string’s taint status informs these
functions of the string’s origin. These detectors al-
low defending against compilation bugs such as the
wrong principal attack (see Section 3.2.2). If na-
tive XPCOM code compiles the strings, as in the
URI code injection attack (see Section 3.2.1), or the
XSS attacks (see Section 3.2.5), the detectors will
use the taint status of XPCOM string objects to de-
tect and prevent exploits. Our compilation detectors
are placed before all calls to compilation functions,
such as those defined by the JavaScript API.

4.3.2 Invocation Detectors

Invocation detectors monitor script execution for
situations where tainted references to script or na-
tive functions are invoked inside the interpreter and
result in the creation of privileged stack frames.
This policy catches luring attacks in which privi-
leged scripts are tricked into invoking functions of
the attacker’s choice. It also detects when an unpriv-
ileged script uses a reference leak to directly call a
privileged JavaScript function from an extension.

The invocation detectors vary depending on
whether the invoked functions are scripted or native.

Namespace isolation limits script functions to call-
ing other script functions within the same names-
pace. Therefore, our detectors watch for namespace
pollution, namely callers invoking tainted function
references that result in a privileged callee stack
frame, as in the luring attack (see Section 3.2.3).
This detector is able to intercede before any func-
tion code is executed with elevated privileges.

For native functions, it is not as straightforward
to come up with a policy for detecting attacks. It
can be perfectly safe for privileged scripts to in-
voke natively defined methods of tainted object ref-
erences. For example, an extension script could
call the native toLowerCase string method on a
web page’s title string. The reference to the title
string will be tainted, and the function reference to
the toLowerCase method will also be tainted be-
cause it is accessed as a method of a tainted string,
but this operation should not raise a privilege es-
calation alert because, in and of itself, it does not
represent a privilege escalation threat even if it is
called from a privileged context. However, if the
native function called through the tainted reference
is a native XPCOM method that is only accessible
to privileged callers, then a security violation needs
to be raised as it indicates a luring attack.

Thus, it is important to know whether the native
callee is sensitive and whether the caller will be in-
terpreted as privileged. We get this information by
letting the call proceed, and if it reaches XPCon-
nect, the security manager establishes the sensitivity
of the target XPCOM method or property and per-
forms a stack inspection to determine the effective
subject principal of the caller. We augment the se-
curity manager to signal an attack whenever it com-
putes a privileged subject principal, but a tainted
function reference is found on any stack frame dur-
ing the stack walk.

4.3.3 Reference Leaks

As demonstrated in Section 5, we can detect and
stop the vast majority of proof-of-concept exploits
in the Firefox bug database based on reference
leaks. We achieve these results by detecting at-
tempts to directly invoke or lure privileged code
with our invocation detectors, as in the reference
leak attack (see Section 3.2.4), and by detecting ma-
licious attempts to compile tainted strings with our

compilation detectors. However, we are unable to
detect and prevent reference leaks. For example,
in Figure 5(a), we cannot rely on the object refer-
ence’s taint status to detect the privileged reference
leak, because our tainting rules require that proper-
ties of tainted objects, such as QueryInterface, also
be marked tainted.

Although we do not prevent reference leaks, at-
tacks employing reference leaks will not be able to
escape our tainting. Any data modified by untrusted
scripts is still marked tainted, and invoking or com-
piling tainted data will trip the detectors. Therefore,
attackers will not be able to mount a privilege esca-
lation attack, in which untrusted data is executed as
privileged code. At most, if the reference leak al-
lows access to arbitrary global variables in the priv-
ileged namespace, attackers may be able to devise
control dependent attacks and compromise the in-
tegrity of extension logic.

Barth et al. [11] propose a system for detecting
reference leaks between different security origins.
Although their work aims to prevent cross-origin
attacks made possible by reference leaks, it could
also be integrated with our system to detect refer-
ence leaks from privileged namespaces. We should
note that reference leaks are not a requirement for
mounting luring attacks. As previously described in
section 3.1.2, the target of any luring attack can also
be a call to an eval-like function (such as the Script
object) or a reference to a sensitive method of an
XPCOM object legitimately present in the content
namespace.

4.3.4 Unsafe XPCOM Arguments

We are currently conducting a study to determine
the extent of this class of vulnerability. We plan
to create a list of sensitive parameters of security-
sensitive XPCOM interfaces known to the security
manager to mitigate the threat of tainted XPCOM
arguments. We would need to provide untainting
functionality to allow privileged scripts to indicate
that a tainted argument has been sanitized. Other
systems, such as Saner [9], allow validating saniti-
zation routines.

4.4 Implementation

In this section, we describe the implementation of
our tainting system in the JavaScript interpreter and

the XPCOM classes and our attack detectors. In our
system, we are most concerned about the taint sta-
tus of strings and function references because priv-
ilege escalation attacks require either luring privi-
leged code or compiling attacker strings. We chose
not to use an existing system-level tainting solution
because control dependent tainting is not required
in our system and low-level tainting systems tend to
produce a large number of false positives.

4.4.1 JavaScript Interpreter

JavaScript tainting requires associating a notion of
taint with each script variable. JavaScript vari-
ables can hold the values of primitive data types
such as booleans and integers, or they can hold
references to heap allocated data, such as objects,
strings, and doubles (hereafter collectively referred
to as “objects”). All accesses to object variables
are done by reference. We transparently convert all
tainted primitive variables to doubles (a reference
type) so that our tainting code exclusively deals with
reference types. For reasons which we will dis-
cuss shortly, we do not taint the actual heap object
pointed to by the reference (e.g. the floating point
value of a double variable), but instead we only ever
taint the individual references (pointers). For exam-
ple, it is possible to have both a tainted and an un-
tainted reference (pointer) to the same string. There-
fore, variables of all data types are tainted in the
same way, i.e. by tainting individual references.

When we implemented our tainting system, we
had a choice between associating taint status with
objects or with references to objects. We believe
that it is a mistake to associate taint with objects
because objects can be safely shared across privi-
leged and unprivileged namespaces. For example,
if a string variable were to be defined in a privi-
leged namespace and then assigned to a variable in
an unprivileged namespace, and unprivileged code
were then to copy it into another variable, the origi-
nal reference and the copy should not have the same
taint status although they reference the same heap
object. The value of the copied variable was clearly
influenced by untrusted code, whereas the original
variable was not. Note that strings and doubles are
immutable, so there is no risk of modification by
untrusted code. In other words, whenever a string
or a double is modified, a new object is created

with the new value and the original remains un-
changed. For mutable JavaScript objects, our pol-
icy is to taint individual property references when
they are modified by untrusted code. If we were to
taint by object instead of by reference, we would
run the risk of excessive, unnecessary taint propa-
gation. For example, if an extension stores a tainted
value in a property of a commonly used object, the
object itself would become tainted. Therefore, any
existing fields or methods of the object would also
become tainted without receiving any tainted data.
Such tainting could lead to false positives. The most
egregious example of such unnecessary taint prolif-
eration occurs when an extension copies a tainted
variable into its global namespace, which is itself an
object. Tainting the global object instead of merely
tainting the property reference would unnecessarily
taint all existing variables in the trusted extension
namespace.

Therefore, we implemented variable tainting by
storing a taint bit inside each variable. Internally,
JavaScript variables are a machine word with a few
of the least significant bits reserved for a type tag
used for dynamic typing. We set aside an extra bit
in the type tag for the taint status. The upper bits
of primitive variables contain the variable’s value,
while the upper bits of references contain a pointer
to a memory-aligned heap object. A downside of
our reference tainting approach is increased mem-
ory use because heap objects now have to align at
bigger boundaries. Specifically, we can store half
as many JavaScript objects within a single memory
page. This may seem like a large overhead for our
approach, but the heap-allocated data structures are
very small because the data structures use unaligned
pointers to point to their actual contents. For ex-
ample, the aligned, heap-allocated string data struc-
ture consists of two member variables: the string
length and a pointer to an unaligned character array
stored elsewhere on the heap. In practice, we find
the overhead is not significant because JavaScript
heap memory accounts for only a small portion of
the Firefox memory footprint. Empirical measure-
ments confirm that the increase in Firefox’s data res-
ident set size is less than 10% in everyday browsing,
even on JavaScript-heavy sites such as GMail.

We added code to propagate taint between the
inputs and outputs of each of the 154 opcodes in

the JavaScript interpreter as well as code to un-
conditionally taint all outputs produced by unpriv-
ileged scripts. In addition to the aforementioned
data types, scripts can also make use of a num-
ber of built-in objects and top-level properties and
functions defined by the JavaScript language. Some
built-in objects provide more advanced data types
such as the “Date” and “Array” objects, while
other built-ins provide utility functionality such as
the “Math” object and the “encodeURI” function.
Instead of painstakingly modifying each of these
methods and functions individually to propagate
taints, we conservatively taint the return values from
any built-in function or method if any supplied ar-
guments are tainted. For example, the returned
values from Math.sqrt(X) or encodeURI(X)
will be tainted if X is tainted. Finally, we had to
make a few manual changes in the interpreter code
to prevent loss of taint. For example, object refer-
ences were sometimes converted into raw pointers
and then the same raw pointers were converted back
into object references without restoring the taint bit
in the type tag.

4.4.2 XPCOM

We track the taint status of string objects in the XP-
COM code because it is possible for native and in-
terpreter code to compile strings into attack code.
We also pay special attention to tracking taint in
DOM string properties as these properties are the
initial taint source and a very common taint sink.

We have borrowed the XPCOM string-tainting
implementation from Vogt et al. [19]. This imple-
mentation adds taint flags to XPCOM string classes
and modifies string class methods to preserve taint.
We extended it to more string classes and made a
small number of manual changes to account for the
taint laundering that occurs in the code base when
raw string pointers are extracted from string objects
and used to create new string objects.

The XPCOM implementations of markup ele-
ments, representing the contents of the browser UI
and web pages, do not store all their string prop-
erties within XPCOM string classes. The string
properties of these DOM elements are a significant
source and propagation vector for tainted data, so
we needed to associate each string property of a
DOM element with a taint status. To this end, we

modified a small number of base classes from which
DOM elements of all types are derived. DOM
classes redirect calls to get or set individual prop-
erties to a handful of methods in these base classes,
allowing us to add taint-propagation behavior and
to automatically taint string properties of elements
in unprivileged documents.

Adding taint tracking for every type of XPCOM
property is difficult because there is no elegant way
to associate taint status with primitive data types in
the native XPCOM code. However, it is straight-
forward to taint all script references to unprivi-
leged DOM objects. We added a taint bit to the
“wrappers” used to reflect XPCOM objects into
the JavaScript environment as well as the wrap-
pers used to reflect JavaScript objects into XPCOM
code. The first time XPConnect is asked to reflect a
given object between the two environments, it cre-
ates a new wrapper object in the destination envi-
ronment. For wrappers around XPCOM objects, we
alter the wrapper creation process to check whether
the wrapped object is a DOM node and if so, if it
belongs to an unprivileged document. When the
wrapper is placed in a JavaScript namespace, we
make sure its object reference is tainted. The taint-
ing rules in the interpreter automatically taint the
values obtained from reading tainted objects’ prop-
erties, effectively tainting all string and non-string
properties of unprivileged DOM elements. Simi-
larly, when a JavaScript object or function reference
is wrapped for the XPCOM environment (e.g., a
JavaScript callback function), we make sure its taint
status is preserved and therefore propagated during
a property read or a function call.

4.4.3 Attack Detectors

Once we determined the detection policies de-
scribed in sections 4.3.1 and 4.3.2, implementa-
tion of the attack detectors became straightforward.
The compilation detector code was added to the na-
tive functions that turn strings into bytecode (such
as “eval”), while the invocation detector code was
added to the code that implements JavaScript func-
tion calls. The only challenge was in finding the
appropriate sites to install the detectors so that
all JavaScript compilation and function invocations
could be audited. The detectors had to be close
enough to the low-level compilation and invocation

code to intercept all the relevant call paths, but at the
same time sufficiently high-level to easily retrieve
principals and taint status.

5 Evaluation
We have implemented the approach described above
in the Firefox browser. In this section, we eval-
uate our system by demonstrating its effectiveness
against privilege escalation attacks. We start by
showing how well it prevents attacks on known Fire-
fox vulnerabilities. These vulnerabilities are docu-
mented in Firefox’s Bugzilla bug database, which
provides detailed security reports, proof-of-concept
exploits and any available bug fixes. Next, we show
that our system has minimal impact on normal us-
age by evaluating any false alarms that are raised
and the performance overhead.

We evaluated against proof-of-concept attacks
from Mozilla’s bug database because the vulnerabil-
ities are well cataloged and the proof of concept at-
tacks are readily available. Most extension authors
do not invest as much effort as Mozilla into docu-
menting security issues in their code, thus making
it difficult to evaluate our system against attacks on
specific extensions. However, the same vulnerabili-
ties could be leveraged against extensions.

We have implemented our system on Firefox ver-
sion 1.0.0, which we use for all the experiments. We
chose this version because it has the largest number
of known privilege escalation bugs, allowing more
extensive testing of our system. Also, the Firefox
security team has a policy of embargoing reports
for recent vulnerabilities, except for exploits already
available in the wild. As a result, recent versions of
Firefox have far fewer available privilege escalation
exploits. For example, as of the end of 2009, the
current version of Firefox (v3.5) has several privi-
leged escalation vulnerabilities as shown below but
no publicly available exploits for them. We plan to
port our system and evaluate our results for newer
versions of Firefox as exploits become available in
the bug database.

5.1 Vulnerability Coverage
Table 1 shows the continuing threat posed by priv-
ilege escalation (PE) vulnerabilities in the Firefox
browser. This table shows the total number of crit-
ical vulnerabilities and the number of critical PE

Firefox Critical Critical PE %
Version 1.0 27 18 67
Version 1.5 44 13 30
Version 2.0 43 16 37
Version 3.0 30 8 27

Table 1: Vulnerability Statistics.

vulnerabilities in the various major versions of the
browser. The last column shows the percentage
of PE vulnerabilities. Most PE vulnerabilities are
generally classified as critical, and thus we do not
show the statistics for non-critical vulnerabilities.
Table 1 shows that PE vulnerabilities comprise 2/3
of all critical Firefox 1.0 vulnerabilities. All other
versions continually have about 1/3 PE vulnerabili-
ties. The main reason is that Firefox 1.5 implements
safety wrappers that limit the opportunities for un-
safe interactions between privileged code and web
content, as described in Section 3.2.4.

Table 2 shows all the 19 privilege escalation advi-
sories affecting Firefox 1.0.0, with some advisories
containing multiple bug reports. Note that there are
26 such advisories in Firefox 1.0 (of which 18 are
critical as shown in Table 1), but the other seven do
not run on Firefox 1.0.0 and so we are unable to re-
produce them. We were unable to test our system
against 5 out of the 19 advisories because exploits
were not available for them. The last column shows
the types of vulnerabilities exploited in each advi-
sory. For reference leaks, we also show whether
the leak is leveraged to compile code (C) with the
wrong principals or execute a luring attack (L).

Our system guards against 13 out of the 14 vul-
nerabilities described in the advisories. We do not
detect an attack on the vulnerability in advisory #6.
In this attack, an untrusted HTML string is parsed
by the HTML parser to generate new HTML ele-
ments in a privileged document. Currently, we lose
taint because we have not implemented taint propa-
gation within the HTML parser.

5.2 False Positive Evaluation
We also tested our system by installing the top
10 most popular extensions that were available for
Firefox 1.0.0, and then we manually browsed the
Web. These extensions are Adblock Plus, Foxy-
Tunes, NoScript, Forecastfox, Add N Edit Cookies,
PDF Download, StumbleUpon, 1-Click Weather,

Advisory Advisory Name Type of Vulnerability Detection
1 2006-25 Privilege escalation through Print Preview Compilation Yes

2 2006-16 Accessing XBL compilation scope via valueOf.call() Leak (C) Yes

3 2006-15 Privilege escalation using a JavaScript function’s cloned parent Leak (C) Yes

4 2006-14 Privilege escalation via XBL.method.eval Leak (C) Yes

5 2005-56 Code execution through shared function objects Leak (C), Leak (L) Yes

6 2005-49 Script injection from Firefox sidebar panel using data:// Compilation No

7 2005-44 Privilege escalation via non-DOM property overrides Luring Yes

8 2005-43 “Wrapped” javascript: URLs bypass security checks Compilation Yes

9 2005-41 Privilege escalation via DOM property overrides Luring Yes

10 2005-39 Arbitrary code execution from Firefox sidebar panel II Compilation Yes

11 2005-37 Code execution through javascript: favicons Compilation Yes

12 2005-35 Showing blocked javascript: pop-up uses wrong privilege context Compilation Yes

13 2005-31 Arbitrary code execution from Firefox sidebar panel Compilation Yes

14 2005-12 javascript: Livefeed bookmarks can steal private data Compilation Yes

Embargoed, or exploit not available

15 2006-24 Privilege escalation using crypto.generateCRMFRequest N/A N/A

16 2006-05 Localstore.rdf XML injection through XULDocument.persist() N/A N/A

17 2005-58 Firefox 1.0.7 / Mozilla Suite 1.7.12 Vulnerability Fixes N/A N/A

18 2005-45 Content-generated event vulnerabilities N/A N/A

19 2005-27 Plugins can be used to load privileged content N/A N/A

Table 2: Vulnerability Coverage.

MR Tech Toolkit and FLST. A user, who is not as-
sociated with the project, browsed the Web for 5
hours, specifically visiting the top 100 most heav-
ily visited web sites, as ranked by Alexa [2]. The
user interacted extensively both with the web sites
as well as with the extensions (e.g., directly invok-
ing extension functionality by setting preferences).

The user’s testing caused one alarm. This
alarm was caused by Forecastfox, which dis-
plays the current weather forecast for a city of
the user’s choice. When a user searches for
his city while setting his preferences, Forecastfox
queries accuweather.com for cities matching
the search string. When the user selects his city
from the search results, Forecastfox concatenates
several strings together including the full city name
fetched from the web site and eval’s this expres-
sion to set the city option. Since the city name
string originates from an untrusted web page, and
the expression is evaluated in a privileged context,
the alarm is raised. This code is unsafe because if
the web site were compromised, the browsers of all
Forecastfox users could be exploited. After seeing
this alarm, we researched and found that Forecast-

fox for Firefox 3.0 has removed the eval state-
ment.

We also performed automated testing by writing
a Web crawler extension for Firefox. The crawler
extension takes as input a list of web sites to visit
and directs Firefox to load any HTML or JavaScript
links found in the web site in depth-first order and
interacts with each loaded page in Firefox to mimic
the behavior of a human user. On each page, the
crawler chooses multiple events to send to the page
(e.g. mouse clicks, key strokes) and fills out and
submits any HTML forms. The crawler exercises
the JavaScript in the browser UI by performing one
of several scripted GUI actions such as viewing the
web page’s HTML source code. We also installed
AdBlock and Flashblock extensions and had the
crawler randomly add and remove AdBlock filters
on each page visited. The full crawler test visited
100 pages from each website in the Alexa Top 200.

The automated testing resulted in the discov-
ery of one false positive, triggered by selecting
“Page Source” from Firefox’s “View” menu. The
offending UI JavaScript retrieves a (tainted) refer-
ence to a window object from the content names-

pace. The window object implements multiple in-
terfaces and some of these are sensitive interfaces
inaccessible to web page scripts. The UI script casts
the reference to the window object to a sensitive
interface, further propagating the taint. When the
privileged code calls a sensitive method of this in-
terface through the tainted reference, our detectors
flag it as a luring attack. This is not likely an ex-
ploitable vulnerability, but it would be safer if priv-
ileged JavaScript obtained references to sensitive
interfaces without going through a content names-
pace.

While our testing is limited to heavily visited web
sites, we believe that our system will not gener-
ate many false positives with other web sites. We
find that privileged scripts are careful when operat-
ing on untrusted data and they are selective about
the strings they compile in their privileged context
(i.e., compilation false positives). Second, names-
pace isolation works well enough in non-malicious
environments, and thus it is difficult for privileged
function references to become tainted (i.e., luring
false positives). Similarly, web pages don’t expect
to have access to privileged references and thus are
unlikely to access them legitimately (i.e., reference
leak false positives).

5.3 Performance

During regular browsing, we did not notice any
degradation in page load times or responsiveness.
We also conducted experiments to quantify the per-
formance overhead of our system. We ran the Dro-
maeo JavaScript Tests and the DOM Core Tests
from Mozilla’s performance test suite [3]. These
tests are micro-benchmarks that measure 1) the per-
formance of basic operations of the script inter-
preter, and 2) the performance of common DOM op-
erations. Our experiments were run on Ubuntu 8.04
Linux on an Intel Core 2 Duo 2.4 GHz processor,
with 2 GB of memory. Our browser had 28% over-
head for the JavaScript tests and 32% overhead for
the DOM tests. Although the overhead witnessed in
these micro-benchmarks does not visibly influence
the browsing experience, the overhead may become
an impediment to the adoption of our system at a
time when JavaScript performance is becoming a
competitive feature for modern browsers. One pos-
sible research direction would be to investigate how

to efficiently integrate our tainting system with the
just-in-time compilation systems present in modern
JavaScript engines.

5.4 Security Analysis

Our system effectively detects nearly all available
proof-of-concept attacks with few false positives.
Admittedly, these proof-of-concept attacks were not
designed with our detection system in mind. In or-
der to defeat our defenses, an attacker would need
to find a means of removing taint from untrusted
objects. It would be difficult to remove taint in
the JavaScript interpreter as the tainting rules are
straightforward. The most likely target for launder-
ing taint would be the native XPCOM methods.

One possible way for the browser to lose taint
is to store tainted objects outside the browser. For
example, if a user saves a malicious URL string
from a web page as a bookmark, the bookmark is
stored in a bookmarks file and the URI’s taint is
no longer present when the browser is restarted. A
second, more involved method may be to launder
taint through XPCOM method arguments. The at-
tack begins by tricking an extension into passing a
tainted, privileged object (a luring target) to an XP-
COM function. If this function then natively calls
a privileged native method of the tainted argument,
our system would not detect this as a luring attack.
This is because the extension JavaScript did not di-
rectly invoke a privileged method through a tainted
reference. Similarly, if an XPCOM function were to
accept a tainted object as an argument but then re-
turn a different, but related untainted object, it may
be accurate to say the taint was laundered. Note that
in these examples, the arguments and return values
could not be strings as taint is always propagated
during XPCOM string operations.

Although laundering taint is theoretically possi-
ble within our system, our system greatly raises
the bar for potential attackers. The attackers now
not only need to find a privilege escalation vul-
nerability in the browser, they also require exten-
sion JavaScript that interacts with specific XPCOM
methods in such a way as to launder taint from cru-
cial attack variables.

6 Related Work

This work focuses on securely executing untrusted
scripts by using taint-based stack inspection. Stack
inspection is widely used by modern component-
based systems, such as Java and Microsoft .NET
Common Language Runtime, to ensure that remote
code is sufficiently authorized to perform a security-
sensitive operation. Wallach et al. [20] provide in-
structive background on stack inspection.

Taint analysis helps determine whether untrusted
data may influence data that is trusted by the sys-
tem. Newsome and Song [16] use dynamic taint
analysis to taint data originating or derived from
untrusted network sources. An attack is detected
when tainted data is used in a dangerous way, such
as overwriting a return address. We use a similar
approach to ensure that dirty data is not executed in
a trusted context. Vogt et al. [19] use script tainting
in a browser to track sensitive browser data, such as
browser cookies or the URLs of visited pages.

The same origin policy is the basic sandboxing
method used by web browsers. An effective method
for implementing the same origin policy is script
accenting [12], which uses simple XOR encryption
to ensure that code is loaded and run, and data is
created and accessed, by the same principal. Sev-
eral recent projects [22, 17] attempt to enforce the
same origin policy by separating different origins
into different processes. In order to adopt this archi-
tecture, the extension model needs to be redesigned
to accommodate extensions’ interactions with pages
from different principals [10]. The same origin pol-
icy is too strict for mashup web applications. For
such applications, Mashup OS provides abstractions
to allow limited communication while protecting
the different principals associated with mashup con-
tent [21]. Interestingly, Mashup OS introduces the
same set of problems as privileged extensions inter-
acting with untrusted content and thus would benefit
from our solution.

In concurrent work, Barth et al [10] propose a
new browser extension model for Google Chrome.
Extensions and web page scripts are isolated us-
ing processes and “isolated worlds” so that they
never exchange JavaScript pointers. This architec-
ture raises the bar for perpetrating a successful priv-
ilege escalation attack as multiple components now

need to be compromised. Their design has obvious
advantages, but the threat of privilege escalation at-
tacks has not been completely eliminated. For ex-
ample, Google recently fixed a vulnerability that in-
correctly allowed JavaScript to be executed in the
context of a Chrome extension [7].

Since browser extensions typically run with unre-
stricted privileges, a malicious extension can serve
as a powerful attack vector. Louw et al. [15] pro-
pose access control for limiting extension privi-
leges. For example, certain extensions may not be
allowed access to the password manager. Dhawan
and Ganapathy [13] propose adding an information-
flow tracking system to Firefox to assist in deter-
mining whether a JavaScript extension maliciously
compromises browser confidentiality or integrity.
Although we are also interested in misuses of low-
integrity data, their system is not an online attack
detector and it requires human analysis.

Recent versions of Firefox use security wrap-
pers (e.g., XPCNativeWrappers, XPCChromeOb-
jectWrappers, etc.) to regulate interactions be-
tween JavaScript and XPCOM objects from differ-
ent namespaces [8]. Unfortunately, implementa-
tion bugs in creating and manipulating wrappers are
fairly common. Our system adds another layer of
security on top of wrapper techniques by effectively
second guessing wrapper security decisions.

7 Conclusion
Script-based privilege escalation attacks are a se-
rious and recurring threat for extensible browsers
such as Firefox. In this paper, we describe the
pitfalls of script-based extensibility in Firefox and
show that the privilege escalation vulnerabilities are
similar to arbitrary code injection and execution
control vulnerabilities found in unsafe code. Then,
we propose a tainting-based system that specifically
targets each class of vulnerability. We implemented
such a system for the Firefox 1.0 browser and our
evaluation shows that it detects the vast majority of
attacks in the Firefox bug database with almost no
false alarms and moderate overhead.

Our vulnerability classification and our proposed
defense system are inevitably linked to the Fire-
fox browser. However, one-way namespace isola-
tion must exist in browser extension architectures
because extensions need access to restricted APIs

and they also need to read and modify untrusted
web pages. As such, we expect our analysis and
results to be applicable to other script-extensible
browsers.We plan to test the generality of our vul-
nerability classification and defenses against other
browsers, especially Google Chrome as it also pro-
vides powerful script extension functionality.

Acknowledgments
We would like to thank our shepherd, Helen Wang,
and the anonymous reviews for their insightful com-
ments on the paper.

References
[1] Adblock. http://en.wikipedia.org/

wiki/Adblock.
[2] Alexa the web information company. http://

www.alexa.com.
[3] Dromaeo JavaScript performance test suite.

https://wiki.mozilla.org/Dromaeo.
[4] Greasemonkey. http://en.wikipedia.

org/wiki/Greasemonkey.
[5] Return-to-libc attack. http:

//en.wikipedia.org/wiki/
Return-to-libc_attack.

[6] setTimeout loses XPCNativeWrappers, July 2009.
http://www.mozilla.org/security/
announce/2009/mfsa2009-39.html.

[7] Incorrect execution of JavaScript in
the extension context, May 2010.
http://googlechromereleases.
blogspot.com/2010/05/
stable-channel-update.html.

[8] XPConnect wrappers, May 2010. https:
//developer.mozilla.org/en/
XPConnect_wrappers.

[9] D. Balzarotti, M. Cova, V. Felmetsger, N. Jo-
vanovic, E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In Proceedings
of the IEEE Symposium on Security and Privacy,
pages 387–401, 2008.

[10] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities.
In Proceedings of the Network and Distributed Sys-
tem Security Symposium, 2010.

[11] A. Barth, J. Weinberger, and D. Song. Cross-origin
JavaScript capability leaks: Detection, exploita-
tion, and defense. In Proceedings of the USENIX
Security Symposium, Aug. 2009.

[12] S. Chen, D. Ross, and Y.-M. Wang. An analysis of
browser domain-isolation bugs and a light-weight
transparent defense mechanism. In Proceedings of

the ACM Conference on Computer and Communi-
cations Security, pages 2–11, 2007.

[13] M. Dhawan and V. Ganapathy. Analyzing informa-
tion flow in Javascript-based browser extensions. In
Proceedings of the Annual Computer Security Ap-
plications Conference, 2010.

[14] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applica-
tions on the web. In Proceedings of the Operating
Systems Design and Implementation (OSDI), pages
339–354, 2008.

[15] M. T. Louw, J. S. Lim, and V. N. Venkatakrish-
nan. Enhancing web browser security against mal-
ware extensions. Journal in Computer Virology,
4(3):179–195, Aug. 2008.

[16] J. Newsome and D. Song. Dynamic taint analy-
sis for automatic detection, analysis, and signature
generation of exploits on commodity software. In
Proceedings of the Network and Distributed System
Security Symposium, Feb. 2005.

[17] C. Reis and S. D. Gribble. Isolating web programs
in modern browser architectures. In Proceedings of
the EuroSys conference, 2009.

[18] A. Slowinska and H. Bos. Pointless Tainting? Eval-
uating the Practicality of Pointer Tainting. In Pro-
ceedings of the EuroSys conference, Apr. 2009.

[19] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross-site scripting pre-
vention with dynamic data tainting and static analy-
sis. In Proceedings of the Network and Distributed
System Security Symposium, 2007.

[20] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Fel-
ten. Extensible security architectures for Java. In
Proceedings of the Symposium on Operating Sys-
tems Principles (SOSP), pages 116–128, 1997.

[21] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and communication abstractions for web
browsers in MashupOS. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP),
pages 1–16, 2007.

[22] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal
OS construction of the Gazelle web browser. In
Proceedings of the USENIX Security Symposium,
2009.

[23] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 79–93,
2009.

