
Baaz: A System for Detecting Access Control Misconfigurations

Tathagata Das

Microsoft Research India

tathadas@microsoft.com

Ranjita Bhagwan

Microsoft Research India

bhagwan@microsoft.com

Prasad Naldurg

Microsoft Research India

prasadn@microsoft.com

Abstract

Maintaining correct access control to shared resources

such as file servers, wikis, and databases is an important

part of enterprise network management. A combination

of many factors, including high rates of churn in organi-

zational roles, policy changes, and dynamic information-

sharing scenarios, can trigger frequent updates to user

permissions, leading to potential inconsistencies. With

Baaz, we present a distributed system that monitors up-

dates to access control metadata, analyzes this informa-

tion to alert administrators about potential security and

accessibility issues, and recommends suitable changes.

Baaz detects misconfigurations that manifest as small in-

consistencies in user permissions that are different from

what their peers are entitled to, and prevents integrity and

confidentiality vulnerabilities that could lead to insider

attacks. In a deployment of our system on an organiza-

tional file server that stored confidential data, we found

10 high level security issues that impacted 1639 out of

105682 directories. These were promptly rectified.

1 Introduction

In present-day enterprise networks, shared resources

such as file servers, web-based services such as wikis,

and federated computing resources are becoming in-

creasingly prevalent. Managing such shared resources

requires not only timely availability of data, but also cor-

rect enforcement of enterprise security policies.

Ideally, all access should be managed through a per-

fectly engineered role-based access control (RBAC) sys-

tem. Individuals in an organization should have well-

defined and precise roles, and access control to all re-

sources should be based purely on these roles. When

a user changes her role, her access rights to all shared

resources should automatically change according to the

new role with immediate effect.

In reality though, several organizations use disjoint ac-

cess control mechanisms which are not kept consistent.

Often, access is granted to individual users rather than to

appropriate roles. To make matters worse, administrators

and resource owners manually provide and revoke access

on an as-needed and sometimes ad-hoc basis. As access

requirements and rights of individuals in the enterprise

change over time, it is widely recognized [19, 12, 5] that

maintaining consistent permissions to shared resources

in compliance with organizational policy is a significant

operational challenge.

Incorrect access permissions, or access control mis-

configurations, can lead to both security and accessibility

issues. Security misconfigurations arise when a user who

should not have access to a certain resource according to

organizational policy, does indeed have access. Accord-

ing to a recent report [12], 50 to 90% of the employees in

4 large financial organizations had permissions in excess

to what was entitled to their organizational role, opening

a window of opportunity for insider attacks that can lead

to disclosure of confidential information for profit, data

theft, or data integrity violations. The 2007 Price Water-

house Cooper survey on the global state of information

security found that 69% of database breaches were by

insiders [24]. On the other hand, accessibility misconfig-

urations arise when a user who should legitimately have

access to an object, does not. Such misconfigurations, in

addition to being annoyances, impact user productivity.

Security and accessibility misconfigurations occur due

to several reasons. One contributing factor is the high

rate of churn in organizations, and in organizational roles

among existing employees, which necessitate changes

in access permissions. In the same report [12], it was

estimated that in one business group of 3000 people,

1000 organizational changes were observed over a pe-

riod of few months. Another factor is the dynamic na-

ture of information sharing workflows, where employ-

ees work together across organizational groups on short-

term collaborations. When permissions are granted to

shared resources for such collaborations, they are rarely

revoked. In longer time-scales, organizations also update

their policies in response to changing protection needs.

Very often, these policies are not explicitly written down

and system administrators, who have an operational view

of security, may not have a global view of organizational

needs, and may not be able to make these changes in a

timely manner.

To make matters worse, very often, no complete high-

level manifests exist, which correctly assign access per-

missions for a resource according to organizational pol-

icy. Consequently, given the large numbers of shared re-

sources, different access control mechanisms and enter-

prise churn, it is difficult for administrators to manually

manage access control.

To address these limitations of existing access control

management systems, we present Baaz, a system that

monitors access control metadata of various shared re-

sources across an enterprise, finds security and acces-

sibility misconfigurations using fast and efficient algo-

rithms, and suggests suitable changes.

To our knowledge, Baaz is the first system that helps

an administrator audit access control mechanisms and

discover critical security and accessibility vulnerabilities

in access control without using a high-level policy mani-

fest. To do this, Baaz uses two novel algorithms: Group

Mapping, which correlates two different access control

or group membership datasets to find discrepancies, and

Object Clustering, which uses statistical techniques to

find slight differences in access control between users in

the same dataset.

We do not claim that techniques we use in Baaz will

find all misconfigurations, as the notion of policy itself is

not defined in most of our deployment settings. Also,

given that access permissions change very organically

over time and several of these changes are linked to ad-

hoc and one-off access requirements, it is very difficult

for an automated system to deduce the exact and com-

plete list of all misconfigurations. However, our deploy-

ment experiences with real datasets have shown Baaz to

be very effective at flagging high-value security and ac-

cessibility misconfigurations.

The operational context and main characteristics of

Baaz are:

• No assumption of well-defined policy: Baaz does

not require a high-level policy manifest, though it

can exploit one if it exists. Rather than checking for

“correct” access control, it checks for “consistent”

access control by comparing users’ access permis-

sions and memberships across different resources.

• Proactive vs Reactive: Baaz takes as input static

permissions, such as access control lists, rather than

access logs. This approach helps fix misconfigura-

tions before they can be exploited, reducing chances

of insider attacks. However, the system can be eas-

ily augmented to process access logs if required.

• Timeliness: Baaz continuously monitors access

control, so it can be configured to detect and report

misconfigurations on sensitive data items as they

occur, or just present periodic reports for less sensi-

tive data.

We present results from Baaz deployments on three

heterogeneous resources across two organizations, We

interacted with system administrators of both organiza-

tions to validate the reports and found a number of high-

value security and accessibility misconfigurations, some

of which were fixed immediately by the respective sys-

tem administrators. In all these organizations, no pol-

icy manifest was readily available. Before we deployed

Baaz, these administrators had to examine thousands of

individual or group permissions to validate whether these

permissions were intended. The utility of Baaz can be

gauged to some extent from some comments we received

from administrators:

“This report is very useful. I didn’t even know

these folks had access!”

“This output tells me how many issues there

are. Now I HAVE to figure out what to do in

the future to handle access control better.”

“I did not realize that our policy change had

not been implemented!”

Our Baaz deployment in one organization found 10 se-

curity and 8 accessibility misconfigurations in confiden-

tial data stored on a shared file server. The security mis-

configurations were providing 7 users unwarranted ac-

cess to 1639 directories.

The rest of the paper is organized as follows: Section 2

describes our problem scope and assumptions. Section 3

presents the system architecture of Baaz, as well as an

overview of our algorithm workflow. Section 4 explains

our Matrix Reduction procedure for generating summary

statements and reference groups, followed by Sections 5

and 6, in which we present our Group Mapping and Ob-

ject Clustering algorithms. In Section 7, we outline more

detailed issues we encountered while designing the sys-

tem, and in Section 8, we describe our implementation,

deployment and evaluation of the Baaz prototype. Re-

lated work is presented in Section 9, and Section 10 sum-

marizes the paper.

2 System Assumptions

The main goal of Baaz is to find misconfigurations in ac-

cess control permissions (as in ACLs) typically caused

by inadvertent misconfigurations, which are difficult for

an administrator to detect and rectify manually. We

do not detect misconfigurations of access permissions

caused by manipulation by active adversaries. We as-

sume that the inputs to our tool, such as the ACLs and

well-known user groups, are not tampered. In many or-

ganizations, only administrators or resource owners will

be able to view and modify these metadata in the first

place, so this assumption is reasonable.

In our target environment, a definition of correct pol-

icy is not explicitly available. Therefore, rather than

checking for correct access control, which we believe is

difficult, the system checks for consistent access control.

Essentially, Baaz finds relatively small inconsistencies in

�����������

	�
��
���������

������
	������

�����������
������

����

���������
	
���

���������
����������
����

 ���!�
���������

������
 �����

"������
#���������

���������	
�����

������������������

����
�������
�
�
��

����������
�
��

����
����������
��
�
��

����

����

���� ���� ������

Figure 1: Baaz System Architecture

user permissions by comparing different sets of access

control lists, or by comparing user permissions within

the same access control list. We assume that large differ-

ences in access control are not indicative of misconfig-

urations. Clearly, our definition of small inconsistencies

and large differences (provided in Sections 5 and 6) will

govern the set of misconfigurations we find. It is possi-

ble that this may lead to the system missing some gen-

uine problems which is an inherent limitation. In fact, as

described in Section 8.2, our deployment of Baaz missed

detecting some valid misconfigurations. However, ad-

ministrators can tune these parameters to keep the output

concise and useful.

3 System Overview

In this section, we present an overview of the system

components of Baaz. At the heart of our system, as

shown in Figure 1, is a central server that collects ac-

cess permission and membership change events from dis-

tributed stubs attached to shared resources. This server

runs the misconfiguration detection algorithm when it re-

ceives these change events, and generates a report. An

administrator/resource owner can decides whether each

misconfiguration tuple that Baaz reports is valid, invalid,

or an intentional exception. Administrators/owners will

need to fix the valid misconfigurations manually. We

now provide an overview of the client stubs and server

functions.

3.1 Baaz Client Stubs

Baaz stubs continuously monitor access control permis-

sions on shared resources such as file servers, wikis,

version-control systems, and databases, and they monitor

updates to memberships in departmental groups, email

lists, etc. Each stub translates the access permissions for

a shared resource into a binary relation matrix, an ex-

ample of which is shown in Figure 2. Each such matrix

captures relations specific to the resource that the stub

runs on. For example, a file server stub captures the user-

file access relationship, relating which users can access

given files. On a database that stores organizational hi-

erarchy, the Baaz stubs capture the user-group member-

ship relation, relating which users are members of given

groups. We shall refer to an element in the relation ma-

trix M as Mi,j . A “1” in the ith row and the jth column

of M indicates the relation holds between the entity at

row i with the entity at column j, e.g., user i can read file

j, or user i belongs to group j, whereas a “0” indicates

that the relation does not hold.

Each Baaz stub sends Mi,j to the Baaz server either

periodically, or in response to a change in the relation-

ship. Section 7.2 further describes various issues that

we need to consider while designing and implementing

stubs.

3.2 Baaz Server

At initial setup, an administrator registers pairs of sub-

ject datasets and reference datasets with the server,

which form inputs to the server’s misconfiguration detec-

tion algorithm. The subject dataset is the access control

dataset which an administrator wants to inspect for mis-

configurations. A reference dataset is a separate access

control or group membership dataset that Baaz treats as

a baseline against which it compares the subject. In a

sense, one can view the subject dataset as the implemen-

tation, and the reference dataset as an approximate pol-

icy, and the process of misconfiguration detection com-

pares the implementation with the approximate policy.

Figure 2 shows an example subject dataset relation

matrix of ten users (labeled as A to J) and 16 objects

(labeled as 1 to 16), and Figure 3 shows an example ref-

erence dataset relation matrix of the same set of users

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 1 1 1 1 1
B 1 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1
F 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1
H 1 1 1 1 1
I 1
J

Figure 2: Example subject dataset’s relation matrix

� � � �
� � �
� � �
� � � � �
� � �
� �
� �
� �
� �
	

 �

Figure 3: Example reference dataset’s relation matrix

and 4 groups (labeled as W to Z). We will use these ex-

ample inputs to illustrate our misconfiguration detection

algorithm.

Administrators can register multiple subject-reference

pairs with the server, and each pair is processed inde-

pendently, with the server periodically generating one

misconfiguration report for each. If any changes are de-

tected in matrices corresponding to a registered subject-

reference pair, the server runs the misconfiguration de-

tection algorithm, which has three steps:

Matrix Reduction: In the first step, the server re-

duces the subject and reference datasets’ relation matri-

ces to summary statements that capture sets of users that

have similar access permissions and group memberships.

Each summary statement can be thought of as a high-

level statement of policy intent, gleaned entirely from the

low-level relation matrices. We explain this procedure in

Section 4.

Group Mapping: In this step, our goal is to uncover

access permissions in the subject dataset that seem in-

consistent with patterns in the reference dataset. Con-

sider an example where the subject is a file server, and

a reference is a list of departmental groups, as shown in

Figure 1. Say a directory hierarchy on the file server can

be accessed by all members in the human resources de-

partment in an organization, and by only one member of

the facilities department. This has a high likelihood of

being a security misconfiguration. Section 5 explains

this procedure.

Object Clustering: Finally, in the Object Clustering

phase, Baaz finds potential inconsistencies in the subject

dataset by comparing summary statements for the sub-

ject that are “similar”, but not the same. The main idea is

that a user whose access permissions differ only slightly

from that of a larger set of users could potentially be a

misconfiguration. For example, if 10 users in the subject

dataset can access a given set of 100 files, but say an 11th

user can access only 99 of these files, Baaz flags a candi-

date accessibility misconfiguration. We describe this in

Section 6.

The system reports security candidates as “A user set

U MAY NOT need access to object set O” . Accessibility

candidates are of the form “A user set U MAY need ac-

cess to object set O” At this point, the administrator will

need to identify reported misconfiguration candidates as

“valid”, “invalid”, or “intentional exceptions”, which are

defined as follows.

Valid: The misconfiguration candidate is correct, and the

administrator needs to make the recommended changes.

Invalid: The misconfiguration candidate is incorrect,

and the administrator should not make the recommended

changes.

Intentional Exception: The administrator should not

make the recommended changes, but the candidate pro-

vides useful information to the administrator.

The intentional exception category captures all re-

ported misconfigurations that correspond to exceptions

which appear out of the ordinary but are legitimate. Ad-

ministrators found these exceptions to be useful as they

help check compliance and may, over time, become valid

misconfigurations. An example of an intentional excep-

tion is a user who has just changed roles. To help with

the transition, he still has access to some documents re-

lated to his previous role. Hence while his access should

not be revoked at the current time, it should probably be

in the near future.

The server archives candidates marked as invalid, and

does not explicitly display them in future reports. The re-

ports will, however, display intentional exceptions. Sec-

tion 7.1 describes more specific issues related to server

design and evaluation.

One of the important properties of our algorithms is

that the misconfiguration candidates converge to a steady

state. That is, if we run our Group Mapping and Ob-

ject Clustering algorithms repeatedly starting from a

given raw configuration, and if we resolve our miscon-

figurations as suggested, we will eventually (and fairly

quickly) reach a state where no new candidates appear.

This guarantee is what we call internal consistency. We

will illustrate this through our examples in Sections 4 and

� � � � � � � � 	 �
 �� �� �� �� �� ��
� � � � � �
� � � � � �
 � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � �
� �
�

Subject Dataset Summary Statements

1. {C,D} → {15, 16}
2. {C,D,E, F,G} → {6, 7}
3. {A,B, C,D} → {9, 10, 11, 12}
4. {A,B, C,D, I} → {13}
5. {C,D,E, F,G,H} → {1, 2, 3, 4, 5}

Figure 4: The result of the matrix reduction step on our

example subject dataset’s matrix.

5. The detailed proof is available on our webpage 1. In

the next three sections, we describe the server algorithm

in detail.

4 Matrix Reduction

We apply the matrix reduction procedure on the rela-

tion matrices of both the subject and reference datasets.

The goal of this step, in the context of the subject

dataset, is to find summary statements relating sets of

users (user-sets) that can access the same sets of ob-

jects (object-sets). Given a relation matrix, different

kinds of summaries can be generated. Role mining al-

gorithms [22, 25, 18, 28, 10], for example, try to find

minimal overlapping sets of users and objects that have

common permissions. In contrast, we find user-sets that

have access to disjoint object-sets, as required by our

misconfiguration detection algorithms. For the reference

dataset, we find group membership summaries in a simi-

lar manner.

4.1 Subject Dataset

Our algorithm takes the relation matrix for the subject

dataset as input, and examines each column, grouping

together all objects that have identical column vectors.

Essentially, it groups all objects that are accessible to an

identical set of users.

Figure 4 shows the summary statements that our Ma-

trix Reduction algorithm finds for the example shown

earlier in Figure 2. Each greyscale coloring within the

matrix represents a distinct summary statement. The list

of summary statements that our algorithm yields is also

shown in the figure. The first statement arises from users

C and D having identical access rights, since they both

1http://research.microsoft.com/baaz

� � � �
� � �
� � �
� � � � �
� � �
� �
� �
� �
� �
	

 �

Reference Dataset Summary Statements

1. G1 : {C,D,E, F,G,H, J} → {X}
2. G2 : {A,B, C} → {W,Y }
3. G3 : {C,D} → {Z}

Figure 5: The result of the matrix reduction step on our

example reference dataset’s matrix.

have access to objects 15 and 16, and to no other object.

We therefore interpret this in the following way: Users

C and D have exclusive access to objects 15 and 16, i.e.

no other user has access to these objects.

The Baaz server finds all such summary statements to

completely capture the matrix. Next, it explicitly filters

out all summary statements that involve only one user

since our algorithm only looks for misconfigurations in-

volving objects that are shared between more than one

user. Figure 6 presents this algorithm in detail.

Complexity: Since the algorithm simply involves one

sweep through the subject’s relation matrix, grouping to-

gether identical columns, it runs in O(nm) time, where n
is the number of users in the matrix and m is the number

of objects.

EXTRACT SUMMARY STATEMENTS

Input: M {binary relation matrix of all users U and all objects O}
Output: S {set of summary statements [Uk → Ok]}
Uses: H {hashtable, indexed by sets of users, stores sets of ob-
jects}
1: S = φ,H = φ
2: for all o ∈ O do
3: U = Get User Set(M, o) // gets the set of users who can

access o
4: if H.contains(U) then
5: OU = H.get(U)
6: H.put(U,OU

⋃

{o})
7: else
8: H.put(U, {o})
9: end if

10: end for
11: for all Uk ∈ H.keys do
12: Ok = H.get(Uk)
13: S = S

⋃

{[Uk → Ok]}
14: end for
15: return S

Figure 6: Algorithm to extract summary statements

given the users and the access control matrix

C, D
G3

C, D, E, F, G
G1 - H - J

A, B, C, D
G2

A, B, C, D, I
G2

C, D, E, F, G, H
G1 - JD D, I

User-set 1 User-set 2 User-set 3 User-set 4 User-set 5

Figure 7: The result of the Group Mapping algorithm on the example subject matrix.

4.2 Reference Dataset

We apply the same process on the matrix for the refer-

ence dataset. The summary statements that our algo-

rithm finds for the reference dataset relation matrix are

shown in Figure 5. We call the user-set in each summary

statement obtained from the reference dataset a reference

group. The reference groups for our example are:

G1 = {C,D,E, F,G,H, J}
G2 = {A,B,C}
G3 = {C,D}

The objects W,X, Y, Z are merely used to find the ref-

erence groups, and are not used by future phases of our

algorithm.

5 Group Mapping

In this section, we describe the Group Mapping algo-

rithm, that takes as input the user-sets representing the

subject dataset, and the reference groups discovered from

the reference dataset, and finds the best mapping from the

each user-set to the reference groups. The server uses

these maps to flag outliers (users) as misconfiguration

candidates. We first explain why Group Mapping is a

useful step in finding misconfigurations. Next, we ex-

plain how Group Mapping works on our example data,

and then we present the algorithm in detail.

5.1 Algorithm

Now we describe the Group Mapping algorithm in more

detail. Table 1 summarizes the list of symbols and vari-

ables we use here, and in the description of the Object

Clustering algorithm.

5.2 Intuition and Definitions

The Group Mapping algorithm for finding misconfigura-

tions relies on the following two assumptions:

1. Users in the same reference group should have same

access permissions.

2. Given a set of reference groups that have the same

access permissions, any user who is not a member

of these reference groups should not have the same

access permissions as users within these reference

groups.

Based on these two assumptions, we define misconfig-

uration candidates for the algorithm to find as follows:

Accessibility (based on Assumption 1): If a majority

of the members of a reference group all have ac-

cess to a set of objects, and a minority do not have

access to the same set of objects, then we flag the

users without access as accessibility misconfigura-

tion candidates.

Security (based on Assumption 2): Of all users in a

user-set, if a majority of them form one or more ref-

erence groups, and a minority of users do not form

any reference groups, we flag the minority of users

as security misconfiguration candidates.

Following these definitions, the first thing to do is to

find a mapping from user-sets to reference groups. How-

ever, since we are looking for outliers, we do not restrict

the algorithm to finding an exact and complete mapping.

Our goal is to find the “best-effort” mapping from user-

sets to reference groups. In this process, some users in

the user-sets may not map to any reference group, or a

user-set may map to a reference group that has some ex-

traneous users, who are not part of the user-set.

To illustrate with our running example, our Group

Mapping algorithm maps the five user-sets in the sum-

mary statements we found in Figure 4 to the reference

groups found in the Section 4.2 as shown in Figure 7.

For the user-set of summary statement 1, the mapping is

exact. For the user-set for statement 2, the best map is

G1, which covers all users but also includes users H and

J who are not in the user-set. For the user-set in sum-

mary statement 4, the best map is G2, while users D and

I remain unmapped.

From this mapping, using the assumptions and defini-

tions stated above, we infer the following misconfigura-

tion candidates:

1. From summary statement 2, users H and J MAY

need access to objects 6, 7.

2. From summary statement 3, user D MAY NOT need

access to objects 9, 10, 11, and 12.

3. From summary statement 4, users D and I MAY

NOT need access to object 13.

4. From summary statement 5, user J MAY need access

to objects 1, 2, 3, 4, and 5.

Symbol Definition

n number of users

m number of objects

l number of summary statements/user-sets from subject dataset

g number of reference groups from reference dataset

Ui → Oi ithsummary statement for subject, with Ui being the user-set and Oi being the object-set

Gj jth reference group

Ci set of groups used to cover user-set Ui

Ti list of uncovered users in user-set Ui after covering it by Ci

∆Gj list of users in Gj but not in user-set Ui, where Gj ∈ Ci

Table 1: Table summarizing all symbols used to explain Group Mapping and Object Clustering

The second and third are security misconfiguration

candidates, while the first and fourth are accessibility

misconfiguration candidates. User-set 1 does not gen-

erate a misconfiguration candidate because the mapping

is exact.

Fixing these misconfigurations will improve the map-

ping from user-sets to reference groups in future runs of

the algorithm. For example, if the administrator removes

user D’s access to objects 9, 10, 11 and 12, the next time

the algorithm runs, the summary statement 3 will reduce

to {A,B,C} → {9, 10, 11, 12}. Group mapping will

exactly map the new user-set to G2, and hence the num-

ber of misconfiguration candidates will reduce. This is

what we mean by our algorithm reaching an internally

consistent state, as mentioned in Section 3.2.

Note that in flagging these candidates, we may have

missed some misconfigurations. For example, it is cer-

tainly possible that users C and D (forming group G3)

should not have access to objects 15 and 16. But given

that there is no definition of correct policy, a complete

and correct list of misconfigurations cannot be expected.

However, Baaz does ensure that the permissions are con-

sistent across user-sets and the reference groups they

map to.

Baaz can use role mining algorithms in the Matrix Re-

duction step to find possibly a larger number of sum-

mary statements. However, our definitions of miscon-

figuration and our algorithms hinge on the property of

object-sets being disjoint, without which the system may

find conflicting misconfiguration candidates. For ex-

ample, if summary statement 3 included object 15, i.e.

{A,B,C,D} → {9, 10, 11, 12, 15}, the object 15 would

be common to the object-sets of summary statements 1

and 3. Then, from summary statement 3, Group Mapping

would suggest that D should not have access to object

15, but the exact Group Map for summary statement 1

indicates that D should have access to object 15. Hence,

while Baaz could use role mining algorithms, and lever-

age richer and larger numbers of user-sets, it would need

to include more logic to resolve such conflicts. Instead,

we go with the approach of using the simple Matrix Re-

duction algorithm that provides object-disjoint user-sets.

In spite of its procedural limitations, administrators

and resource owners in various domains have found

Baaz’s techniques very useful in finding genuine high-

value misconfigurations. We show this through our eval-

uation in Section 8,

Say the Matrix Reduction step from Section 4 out-

puts a total of l summary statements and g reference

groups. The input to the Group Mapping step is the

set of user-sets U = {U1, U2, · · · , Ul} from the sum-

mary statements, and the set of reference groups G =
{G1,G2, · · · ,Gg}. Our objective can now be expressed

in terms of finding a set cover for each user-set Ui using a

subset of the groups in G. A set cover, in its usual sense,

implies that the union of the covering subsets is exactly

equal to the set to be covered. But, we are interested in

finding an approximate set cover, where the cover need

not be exhaustive, and reference groups could include

members that are not in the user-set. The idea is to find

a maximal overlap between the subject dataset user-sets

and the reference groups. This approximate set cover Ci

may contain a group Gj such that some users in Gj are

absent in Ui, as shown in Figure 7 with user-sets 2 and 5.

Also, it is not necessary that Ci covers every user in Ui,

as shown with user-sets 3 and 4. We refer to the set of un-

covered users in Ui as Ti, i.e., is Ti = Ui−
⋃

∀Gj∈Ci
Gj.

We choose an approximate set cover based on the min-

imum description length (MDL) principle [11], which en-

sures that the overlap is large, while the leftover set of

uncovered users is small. In other words, |Ci| + |Ti| is

minimum over all possible approximate set covers. The

minimum set cover problem is known to be NP-Hard, as

it can take running time that is exponential on the set of

users. By the same logic, the problem of finding approx-

imate set cover with minimum description length is also

NP-Hard. In practice, we have found that if the num-

ber of reference groups is less than 20, then it is fea-

sible to solve it exactly on our testbed computers. For

larger reference datasets, we use a well-known greedy

approximation algorithm [16], which picks the set that

has the maximal overlap, removes it from the reference

set, and repeats the process. This is known to work

within O(log m) of optimal, where m is the number of

GROUP MAPPING

Input: S {summary statements}, G {reference groups}
Output:
GAM {accessibility misconfigs [users,objects]},
GSM {security misconfigs [users,objects]}

1: GAM = φ ; GSM = φ
2: U = all user-sets in the extracted summary statements S
3: for all Ui ∈ U do
4: (Ci, Ti) = Map Groups (Ui,G)
5: for all Gj ∈ Ci do

6: if
|Gj−Ui|

|Ui|
< 0.5 then

7: GAM = GAM
⋃

{[Gj − Ui, Oi]}
8: end if
9: end for

10: if
|Ti|
|Ui|

< 0.5 then

11: GSM = GSM
⋃

{[Ti, Oi]}
12: end if
13: end for
14: return GAM,GSM

MAP GROUPS (APPROXIMATE)
Input: Ui {set to be covered}, G {Groups}
Output: Ci {cover from G}, Ti {uncovered users in Ui}

1: Ci = φ ; Ti = φ ; G′ = φ ; U ′
i
= Ui

2: for all G ∈ G do

3: if
|Gj−Ui|

|Ui|
< 0.5 then

4: G′ = G′ ∪ {G}
5: end if
6: end for
7: repeat
8: MDLmin = MDL(Ui, Ci) ; Gmin = φ
9: for all G ∈ G′ do

10: if MDL(Ui, Ci ∪ {G}) < MDLmin then
11: Gmin = G

12: MDLmin = MDL(Ui, Ci ∪ {Gmin})
13: end if
14: end for
15: if Gmin = φ then
16: return Ci, U

′
i

17: end if
18: Ci = Ci

⋃

{Gmin} ; U ′
i
= U ′

i
−Gmin

19: until U ′
i
= φ

20: return Ci, φ

Figure 8: Group Mapping Algorithm.

users in the user set, for the original minimum set cover

problem. We modify this algorithm suitably to gener-

ate the approximate set cover with minimum description

length.

Figure 8 shows the pseudocode for our Group Map-

ping algorithm. The main steps of the algorithm for a

given list of user-sets {U1, U2, · · · , Ul} can be summa-

rized as follows:

Step 1: For each user-set, first eliminate all groups in

which more than half of the users are not members

of the user-set (lines 2–6 in MAP GROUPS, Fig-

ure 8). Since less than half of the users in these

reference group intersect with the user-set, this ref-

erence group will not figure in either security or ac-

cessibility misconfiguration candidates as defined in

Section 5.2.

Step 2: When the number of groups in G is less than

20, we exhaustively search for all set covers and

use the minimum. For larger G, we use a modi-

fied version of the greedy set-cover algorithm to do

the matching, as shown in Figure 8. For each user-

set Ui, we pick a group G that overlaps maximally

with Ui (pick any one in case of ties). To apply

the minimum description length principle, we de-

fine the description length for Ui in terms of G as

|Ui − G| + |G − Ui|. For example, in user-set 2,

two potential mappings are G1 as shown in the ex-

ample, or G3, which contains users C and D. In

the former case, |U2 − G1| is 0, and |G1 − U2| is

2, since G1 contains two extraneous users, H and

J . In the latter mapping, |U2 −G3| is 3, since G3

covers C and D and does not include E, F and G.

Also, |G3−U2| is 0. Therefore the MDL metric for

the former cover is 2, while in the latter case it is 3.

Hence our algorithm picks G1 as the cover. Refer

to lines 8–14 in MAP GROUPS, Figure 8.

Add this selected group to the cover Ci. Remove

the covered users from Ui to get U ′
i and repeat until

all users are covered, and the ones that cannot be

covered by any group are output as Ti. Refer to

lines 15–19 in MAP GROUPS, Figure 8.

Using this mapping, we can find both security and

accessibility misconfigurations for each user set Ui ex-

tracted from the summary statements (Ui → Oi), as

shown in lines 4–14 GROUP MAPPING, Figure 8. The

summary statement can be rewritten as:

{G
′

1 ∪ · · · ∪G
′

c ∪ Ti} → Oi.

where G
′

j = Gj ∩ Ui, ∀Gj ∈ Ci. Let ∆Gj be the

users in Gj who are not in Ui. Note that Step 1 en-

sures that
|∆Gj|
|Gj|

< 0.5, that is ∆Gj is a minority in Gj.

Based on the intuition provided in the previous section,

we infer that users in ∆Gj (if any) may require access

to the objects Oi. Hence, the intended access should be

{G1 ∪ · · · ∪ Gc ∪ Ti} → Oi and for each Gj ∈ Ci

such that corresponding ∆Gj 6= φ, the system reports

accessibility misconfiguration candidate as:

users in ∆Gj MAY need access to Oi

Finding security misconfiguration candidates is a

slightly different process. Again, for a given user-set Ui,

the users in Ti are those that do not match any of the ref-

erence groups but still have access to Oi. If these users

form a minority of the users in the user-set Ui, that is

|Ti|
|Ui|

< 0.5 and Ti 6= φ, then the system infers that the in-

tended access should be {G1 ∪ · · · ∪Gc} → Oi and all

users in Ti are reported to be security misconfiguration

candidates as:

users in Ti MAY NOT need access to Oi

Note that while we use metrics based on simple ma-

jority and minority to detect misconfiguration candi-

dates, our prototype implementation supports any thresh-

old value between 0 and 1. A higher threshold may find

more valid misconfigurations but may also increase the

number of false alarms.

Complexity: The group mapping run time is bounded as

O(k2lg), where k is the maximum number of users in a

reference group, g is the number of reference groups and

l is the number of summary statements.

5.3 Misconfiguration Prioritization

When Baaz presents the misconfiguration report to the

administrator, it lists the candidates in a priority order.

Prioritization of candidate misconfigurations is impor-

tant because administrators may not have the time to vali-

date all misconfiguration candidates that Baaz outputs, as

in Dataset 2 in Section 8. In such cases, a ranking func-

tion helps them focus their attention on the high-value

candidates.

The main intuition behind our ranking function is that

when the mismatches between a user-set and its covering

reference group is smaller, the possibility of the miscon-

figuration candidate being a valid issue is higher. The

formula used for prioritization of both accessibility and

security candidates capture this measure of difference in

similarity between a user-set and its cover.

For accessibility misconfigurations, for a given Ui, the

system computes a priority over each reference groupGj

in Ci, as:

P(accessibility misconfig) = 1−

∑c

j=1
|∆Gj|

|Ui|

For security misconfiguration candidates, we use the

fraction of potentially unauthorized users to prioritize as

follows. The smaller the fraction of uncovered users, the

higher the priority.

P(security misconfig) = 1−
|Ti|

|Ui|

6 Object Clustering

Our second technique for finding misconfiguration can-

didates is Object Clustering. This procedure uses only

the summary statements as input and is therefore partic-

ularly useful in the absence of suitable reference groups.

� � � � � � � � 	 �
 �� �� �� �� �� ��
� � � � � �
� � � � � �
 � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� �
�

����������������� �����

���������������	���� ����� ���
��������
���

	 ���

����������������� ���	�

�������������� ���
� ������������

��

� ��

Figure 9: The result of the Object Clustering algorithm

on the example subject matrix.

6.1 Intuition

We first present the intuition behind our Object Cluster-

ing algorithm. When the access permissions for a small

user-set is only slightly different from the access control

for a much larger user-set, this may indicate a misconfig-

uration.

Figure 9 explains this intuition using our example. Ob-

serve that the user-sets for summary statements 3 and 4

differ in one user – I – because I has access to object

13, but does not have access to any of 9, 10, 11 and 12.

On the other hand, users A, B, C and D have access to

objects 9, 10, 11, 12 and 13. Therefore, Baaz suggests a

security misconfiguration candidate:

user I MAY NOT need access to object 13.

Similarly, summary statements 5 and 2 differ in only

one user – H – because H does not have access to objects

6 and 7. Users C, D, E, F and G have access to 1, 2,

3, 4, 5, 6 and 7. Therefore, as shown in the figure, Baaz

suggests an accessibility misconfiguration candidate:

user H MAY need access to objects 6 and 7.

The matrix in Figure 9 shows that if an administra-

tor or resource owner determines that these are indeed

valid misconfigurations and fixes them, the matrix be-

comes more uniform. A future iteration of matrix reduc-

tion will output fewer summary statements. In this ex-

ample, C, D, E, F , G and H now have identical access

and hence the reduction will remove summary statement

2. Similarly, since user I will no longer have access to

object 13, statement 4 will not be found in future itera-

tions. This will lead to our algorithms finding the same

number, or fewer misconfiguration candidates in the fu-

ture, if no changes are made to the input matrices. This

supports our claim of internal consistency in Section 3.2.

OBJECT CLUSTERING

Input: S {summary statements}
Output: OAM {accessibility misconfigurations [users, objects]},
OSM {security misconfigurations [users, objects]}

1: OAM = φ ; OSM = φ
2: for all pairs of summary statements in S , [U1, O1] & [U2, O2]

do

3: if
|U1−U2|

|U1|
< 0.5 and

|U2−U1|
|U1|

< 0.5 and
|O2|
|O1|

< 0.5 then

4: if U1 − U2 6= φ then

5: OAM = OAM
⋃

{[U1 − U2, O2]}
6: end if
7: if U2 − U1 6= φ then

8: OSM = OSM
⋃

{[U2 − U1, O2]}
9: end if

10: end if
11: end for
12: return OAM,OSM

Figure 10: Object Clustering algorithm.

The Group Mapping and Object Clustering phases do

not find disjoint sets of misconfigurations. For exam-

ple, both the above misconfigurations were also flagged

by Group Mapping. We intend to use Object Clustering

as a fallback in situations where there do not exist suit-

able reference groups to flag misconfiguration candidates

through Group Mapping.

6.2 Algorithm
We now describe the Object Clustering algorithm in de-

tail. We first look for pairs of summary statements with

the following template:

U1 → O1 and U2 → O2 such that
|U1−U2|

|U1|
< 0.5,

|U2−U1|
|U1|

< 0.5, and
|O2|
|O1|

< 0.5

Now, our definition of an object misconfiguration is as

follows: For the two summary statements, U1 → O1 and

U2 → O2 that match the template, say |U1 − U2|/|U1|
and |U2 −U1|/|U1| are both smaller than 0.5 (a majority

of users in U1 are in U2 and vice-versa), and |O2|/|O1| is

smaller than 0.5 (O2 is less than half the size of O1). We

characterize a security misconfiguration candidate as:

U2 − U1 MAY NOT need access to O2.

and an accessibility misconfiguration candidate is

given as:

U1 − U2 MAY need access to O2.

Complexity: Given that there are l summary statements,

n users, and m objects, the Object Clustering algorithm

runs in O(l2(n+m)) time.

6.3 Misconfiguration Prioritization
In the report, as in the case of Group Mapping, the Baaz

server prioritizes these misconfigurations using the intu-

ition that the more similar the user-sets U1 and U2, and

the smaller the size of O2, the higher the probability that

the candidate is a genuine misconfiguration. The metric

we use is the harmonic mean:

P(misconfig) = 0.5 ∗
(

(1− |∆U|
|U1|

) + (1− |O2|
|O1|

)
)

Here ∆U corresponds to U2 −U1 or U1−U2 depend-

ing on whether it is a security or an accessibility miscon-

figuration.

7 System Experiences
In this section, we describe issues that impact the quality

of the misconfiguration reports produced by Baaz, based

on our experiences in implementing and evaluating the

Baaz server and stubs for our prototype, and discuss how

we address them in our system design.

7.1 Server Design Issues
Here, we discuss our choice of reference dataset in our

deployment and how an administrator can tune report

time.

Choosing reference datasets: An administrator

needs to use domain knowledge to choose the right ref-

erence dataset for a given subject dataset. We observe

that the output reports vary depending on how rich or

rigid the reference groups are. Some reference datasets,

such as organizational group-membership relations, are

rigid and structured, and contain few reference groups,

potentially generating many misconfiguration candidates

in the Group Mapping step, several of which may be in-

valid. This is because fewer groups will yield more ap-

proximate covers.

On the other hand, if a reference dataset contains a

large number of reference groups, such as a set of email

distribution lists, the report will contain fewer candidates

because the chances of finding exact covers increases. As

a result, the algorithm may not detect some valid mis-

configurations. An administrator can decide which refer-

ence dataset to use, based on the sensitivity of the subject

dataset, trading manual effort of validation for caution.

For example, if a subject dataset folder is marked confi-

dential, the administrator may choose to compare it with

the organizational hierarchy, whereas email lists may be

a better choice for less sensitive information.

In our evaluation described in Section 8, we choose

email distribution lists as a reference dataset for two

datasets and organizational hierarchy as a reference for

one dataset, and our results verify our observations

above.

Tuning report time: Since change events trigger

Baaz’s misconfiguration detection algorithms, the server

may generate reports even in transient states while ad-

ministrators manually change permissions. To avoid

such spurious reports, each pair of subject and refer-

ence datasets has an associated report time (Tr): Baaz

includes a candidate in its report only if it has existed for

at least Tr time. The administrator can configure Tr to be

short for subjects that store highly sensitive data, while it

can be high for less important subjects. In our deployed

prototype, we found that we could generate a report as

fast as one second after a stub reports a change, or delay

its reporting using Tr, as required.

7.2 Stub Design Issues

We identify two design issues that directly play a role in

the quality of generated reports:

Modeling access control: The system’s misconfigu-

ration detection can only be as good as the data the stub

provides. Access control mechanisms can be compli-

cated [20], which sometimes makes capturing complete

semantics in a stub quite hard. In our stub implemen-

tations, we have used a conservative approach towards

modeling access control: if there is ambiguity of whether

an individual or group has access to an object, we assume

that they do indeed have access. This approach catches

more security candidates albeit at the risk of increasing

the number of false alarms. Previously proposed security

monitoring systems have tackled this problem [6] using

a similar strategy.

Stub customization: Access mechanisms of different

kinds of resources will require custom stub implemen-

tations that can specifically understand the underlying

access controls. Similarly, stubs may need to be cus-

tomized to different data layouts containing group mem-

bership data. However, some stubs can be reused across

resources. For example, in our prototype, we have imple-

mented a stub that can run on any SMB-based Windows

file share. We have also implemented customized stubs

to capture organizational hierarchy and email lists within

our enterprise, both of which reside on an Active Direc-

tory server [1] (an implementation of the Lightweight Di-

rectory Access Protocol, LDAP).

Access control permissions are not necessarily binary.

For example, in a file share, “read-only” access or “full

access” are only two of a number of different access

types possible. Consequently, our stub implementations

support various modes of operation. An administrator

can choose what a “1” in the binary relation matrix cap-

tures: full access, read-only access, any kind of access,

etc.

8 Evaluation

In this section, we first describe the implementation of

Baaz system components (Section 8.1). Next, we de-

scribe the results we achieve through our prototype de-

ployment (Section 8.2), followed by a description of the

collection, analysis, and validation of misconfiguration

reports from two other datasets (Section 8.3). Finally,

we present performance evaluation microbenchmarks for

demonstrating the scalability (Section 8.4) of the miscon-

figuration detection algorithms.

8.1 Implementation

We have implemented the Baaz server in C# using 2707

lines of code. We have also implemented Baaz stubs for

an SMB-based Windows file server, for organizational

groups in Active Directory [1], and for email distribu-

tion lists also stored in Active Directory. The Windows

file server stub is entirely event-based: it traps changes in

access control through the FileSystemWatcher [8] library

and reports these changes immediately to the server. Cur-

rently, we only trap changes to access control for direc-

tories, but we can easily extend this to capture changes

for individual files. The Active Directory stubs, on the

other hand, poll the database every 8 minutes since we

do not have the right permissions or mechanisms to build

an event-based stub for Active Directory. The file server

stub used 830 lines of C# code and the Active Directory

stub, which used a common code base for both the orga-

nizational groups and email lists, was 1327 lines of C#

code.

8.2 Evaluation Through Deployment

We have deployed Baaz within our organization, with

stubs continuously monitoring two resources within our

organization since August 19th, 2009. The stubs mon-

itor read access permissions for directories on a Win-

dows SMB file server that the employees use to share

confidential data, and an Active Directory server storing

email distribution lists relevant to the organization. Var-

ious groups within the organization actively use the file

server to share documents, hence we found significant

usage of access control capabilities on it.

The objective of our deployment was to see whether

Baaz could help find valid access control misconfigura-

tions on this file server. We therefore registered the file

server as the subject dataset and the email distribution list

as the reference dataset with the server. We decided to

use email distribution lists as opposed to organizational

hierarchy since our administrator observed that only or-

ganizational groups might not capture the various user

sets that actively use the file server.

We show our results in three steps: first, we show

how Baaz’s first report in the deployment was effective

in finding misconfigurations. Second, we show the util-

ity of continuously monitoring changes in access con-

trol to find misconfigurations. Third, we compare our

results with the ground-truth we established by manually

inspecting directory permissions on the file server, to de-

tect how many actual misconfigurations Baaz was able to

flag.

First-time report: Row 1 in Table 2 provides details

on this dataset, and row 1 in Table 3 gives the classifica-

Dataset Subject Reference Users Objects Ref Groups Summ Stmts

1 File Server Email Lists 119 105682 237 39

2 Shared Web Pages Email Lists 1794 1917 3385 307

3 Email Lists Org Grps 115 243 11 205

Table 2: Datasets used to evaluate Baaz.

Set Security Accessibility

Group Mapping Object Clustering Group Mapping Object Clustering

Tot. Val. Exc. Inv. Tot. Val. Exc. Inv. Tot. Val. Exc. Inv. Tot. Val. Exc. Inv.

1 11 10 0 1 11 7 1 3 8 8 0 0 9 0 0 9

2 7 3 0 4 0 0 0 0 9 4 1 4 0 0 0 0

3 18 6 5 7 0 0 0 0 33 6 0 27 0 0 0 0

Table 3: Misconfiguration analysis for each report generated by Baaz.

tion of the first-time report that Baaz generated using the

relation matrices that the stubs sent to the Baaz server

initially. The total number of users in the organization

is 149, the number of objects (directories) in the subject

data set’s relation matrix is 105682, and the total num-

ber of reference groups (or unique distribution lists) is

237. The matrix reduction phase on the subject dataset

produced 39 summary statements.

Baaz flagged a total of 39 misconfiguration candidates.

To validate these, we involved the system administrator

and the respective resource owners of the directories in

question.

Security: Of the 11 security candidates that Baaz

found through Group Mapping, 10 were valid secu-

rity issues which the administrator considered important

enough to fix immediately. Object Clustering found 7 of

these 10 security misconfigurations, showing that Baaz

would have been helpful in flagging security issues even

if reference groups were not available to it. However

it is clear that Group Mapping works more effectively

than Object Clustering when a suitable reference dataset

is available.

Accessibility: Baaz found 8 accessibility candidates

through Group Mapping, all of which were valid. All 9

accessibility issues that Object Clustering flagged were

invalid, showing that, with this dataset, while Group

Mapping worked well in bringing out both security and

accessibility issues, Object Clustering did well only with

the security misconfigurations. Object Clustering was

not effective in flagging valid accessibility issues since

the difference between the summary statements were un-

expectedly large.

Baaz found a total of 18 valid misconfigurations.

There were 10 security misconfigurations involving 7

users which, when corrected, fixed access permissions on

1639 out of 105682 directories on the file server. There

were 8 accessibility misconfigurations that affected 6

users and 163 directories.

Our deployment also helped us understand some of the

reasons for why misconfigurations occur in access con-

trol lists, which we summarize below.

• In most cases, the misconfigurations arise because

of employees changing their roles or, as in some ac-

cessibility issues, from new employees joining the

organization.

• One of the security misconfigurations was caused

by a policy change within the organization, which

had only been partially implemented. Certain older

employees had greater degree of access than newer

employees since the administrator had inadvertently

applied the policy change only to employees who

had joined after the change was announced.

• A resource owner misspelt the name of one of the

users they wanted to provide access to, inadver-

tently providing access to a completely unrelated

employee.

Real-time report: In our deployment, the stubs and

the server are running continuously, monitoring access

control and group membership changes and subsequently

running the misconfiguration detection algorithm. On

September 20th, 2009, an employee within the organi-

zation adopted a new role, which was reflected by his ad-

dition to certain email distribution lists. The Baaz stub

reported these changes to the server, following which

the server reported one new accessibility misconfigu-

ration candidate within one second. The administrator

considered this accessibility misconfiguration important

enough to rectify promptly. This emphasizes the value of

Baaz’s continuous monitoring approach since it enables

administrators to detect misconfigurations in a nearly

real-time fashion, just after they occur.

Comparison to Ground-Truth: To understand how

close Baaz was to finding all misconfigurations for this

file server, we manually examined access permissions of

all directories on the file server from the root down to

three levels. Beyond the third level, we only examined

directories whose access permissions differed from their

parent directories. We examined a total of 276 directo-

ries.

For each directory, we asked the directory owner two

questions: If any user permissions to the directory should

be revoked (security misconfiguration), and if anyone

else should be provided access (accessibility misconfig-

uration). This procedure took two days to complete be-

cause of the manual effort involved. While we cannot

claim that even this procedure would find all possible

misconfigurations, we felt this exercise formed a good

base-line to compare against Baaz.

We found that Baaz missed 4 security misconfigura-

tions and 1 accessibility misconfiguration. Two secu-

rity issues went undetected because an email list rele-

vant to these issues was marked as private by the owner,

and hence our Active Directory stub could not read the

members. If we had the permission to run the stub with

administrator privileges, Baaz would have flagged these

issues. The other 3 issues (2 security and 1 accessibility)

were genuinely missed by Baaz since there were no ref-

erence groups that matched the user-set, and the number

of users involved in the misconfiguration (2) were more

than half the size of the user-set (3).

Hence, while Baaz genuinely missed 3 misconfigura-

tions, it did flag 18 valid misconfigurations which the ad-

ministrator found very useful.

8.3 Snapshot Evaluation

We evaluated Baaz on two other subject and reference

data pairs. We wrote stubs to gather snapshots of ac-

cess control and group memberships from these datasets

and generated a one-time report. Rows 2 and 3 of Ta-

ble 2 describe the datasets and Table 3 summarize our

findings. Dataset 2’s subject is a server hosting shared

internal web pages for projects and groups across an or-

ganization. The stub for this subject reads access per-

missions stored in an XML file in a custom format. The

reference was, again, a set of email distribution lists cre-

ated for this organization. This subject dataset comprised

1794 users and 1917 objects. For this dataset alone, the

administrator decided to concentrate on misconfiguration

candidates with priority more than 0.8.

In Dataset 3, the subject dataset is the set of email lists

used as reference in Dataset 1, and the reference is the

set of organizational groups. Here, each organizational

group consists of a manager and all employees who re-

port directly to the manager. As we have mentioned ear-

lier, a reference dataset in Baaz may itself be inaccurate.

Hence, this evaluation helps us check how stale the mem-

berships to these email lists are. The number of users in

this Dataset is 115 and the number of objects is 243. The

slight discrepancy in the number of users in Datasets 1

and 3 is due to organizational churn in the period be-

tween when we ran the two experiments.

Baaz found many valid misconfigurations in all these

datasets. Across all datasets, most security misconfigu-

rations resulted due to role changes. Other security mis-

configurations arose because an individual user, who had

full permissions to an object, had inadvertently given ac-

cess to another user who should not have had access.

The causes of accessibility misconfigurations, similarly,

were moves across organizations or inadvertent mistakes

on the part of the individual manually assigning permis-

sions.

We now summarize some other insights we acquired

through this evaluation.

Administrator input: Baaz can only make recom-

mendations. Only an administrator, or someone who has

semantic knowledge about access requirements, needs to

make the final decision of whether a misconfiguration is

valid, an exception or invalid. For distributed access con-

trol systems such as Windows file servers, the validation

will have to be through querying multiple people in the

organization since objects involved in the misconfigura-

tion can have different owners. This is not a simple task.

Despite this difficulty, overall, the administrators and

resource owners found the system very useful since it

found several valid security and accessibility misconfig-

urations. Moreover, what the administrators appreciated

was that, instead of tracking down correct access for po-

tentially thousands of objects, they needed to concentrate

on a much smaller set of misconfiguration candidates

that Baaz reports. For Datasets 1 and 3, the validation

was mostly through conversation and email, and took ap-

proximately one hour. For Dataset 2, it took a total of

three days turnaround time since we communicated only

through email with resource owners who were at a re-

mote site to complete the validation. Note that these are

total turnaround times: it does not mean that an admin-

istrator spent three complete days just on the validation

procedure.

Group Mapping vs Object Clustering: While Group

Mapping is universally effective at finding misconfigura-

tions, the Object Clustering approach is effective only in

datasets which have a lot of statistical similarity. This

is because Object Clustering relies on finding small de-

viations from a regular and often-repeated pattern of ac-

cess control permissions. Datasets 2 and 3 do not have

a regular pattern since most project web pages and email

distribution lists had unique access permissions. Conse-

quently, Object Clustering does not report any miscon-

figurations for these datasets. On the other hand, it does

find misconfigurations for the file server (Dataset 1) since

there were many directories on the file servers we evalu-

ated with the same access permissions.

Invalid Misconfigurations: The number of invalid

misconfigurations varies significantly across the different

datasets. This is related to our discussion in Section 7.1.

 0

 50

 100

 150

 200

 250

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

A
lg

o
ri
th

m
 r

u
n
ti
m

e
 (

m
s
)

Subject matrix size

ref. groups = 1296
ref. groups = 324

ref. groups = 81

Figure 11: Scalability of the Baaz Algorithm

The organizational groups form a rigid reference dataset,

so in Dataset 3, we see a large number of invalid miscon-

figurations. Across the datasets however, the number of

invalid misconfigurations were small enough not to dis-

courage an administrator in adopting our tool.

8.4 Algorithm Performance

In this Section, we concentrate on the performance and

scalability of the server algorithm. We used Dataset 1

described in Table 2 for this experiment.

We ran the misconfiguration detection algorithm on

the dataset while varying the subject relation matrix size,

keeping the number of reference groups constant. To in-

crease the matrix size, we increased the directory depth

up to which we included objects into the subject’s re-

lation matrix, consequently increasing the number of ob-

jects, and therefore, the number of columns in the matrix.

Figure 11 shows the results of our experiments. Each

line represents the algorithm’s total run time which in-

cludes all three phases – Matrix Reduction, Group Map-

ping and Object Clustering – with different numbers of

reference groups. We varied the number of reference

groups by adding artificially created groups to the ref-

erence dataset while ensuring that the additional groups

follow the same size distribution as the real reference

groups. Every point in the graph is averaged across 20

runs. We ran all the experiments on a machine with a 3

GHz Intel Core 2 Duo CPU and 4 GB Memory, running

a 64-bit version of Windows Server 2008.

With a matrix size of 2.7 million, and with 1296 ref-

erence groups, the misconfiguration detection takes a to-

tal of 246 ms to run. The increase in time is fairly lin-

ear in the matrix size because the Matrix Reduction step

dominates the total run-time of the algorithm. For the

same data point, where Matrix Reduction needs to in-

spect roughly 2.7 million cells in the subject’s relation

matrix, Group Mapping needed to process only 24 sum-

mary statements and 1296 reference groups, and Ob-

ject Clustering processed 24C2 = 276 summary statement

pairs.

Projecting from this graph, for a subject dataset rep-

resenting 100,000 employees and 100,000 objects, i.e.,

a matrix size of 1010, and a reference dataset involving

1296 groups, the misconfiguration detection would take

approximately 340 seconds to run. Our experiments indi-

cate that the algorithm can scale to large datasets (much

larger than encountered in our deployments as shown in

Table 2), and run fast enough to provide prompt miscon-

figuration reports.

9 Related Work

In this section, we discuss our work in the context of

related research.

Recent work by Baker et al. in detecting policy mis-

configurations [4] uses data mining to infer association-

rules between groups of resources that can be accessed

by common sets of users, based on an off-line analysis

of access attempts in log files. The authors use the pro-

file and frequency of granted requests to predict and fix

operational accessibility issues. For example, if a user

belonging to such a common set inadvertently does not

have access to a particular resource, their tool will flag

this as a misconfiguration, and refer this to an appropri-

ate resource owner.

Baaz on the other hand operates on access permis-

sions. Consequently, in most cases, Baaz can flag and

suggest fixes for misconfigurations before they can be

exercised operationally. While access log analysis is an

extremely useful mechanism in detecting security and

accessibility issues, the approach is inherently comple-

mentary to the approach of analyzing access control per-

missions. Ideally, the two should be used in tandem.

Also, Baaz primarily uses a different technique, Group

Mapping, whereby the system compares subject and ref-

erence datasets: several of the misconfigurations that the

Group Mapping algorithm found in our evaluation could

not have been found using association rules alone. These

include the examples presented in Section 8.2 where

users change roles, or new employees join an organiza-

tion, and have not accessed any resources yet. In ad-

dition, Baaz finds both security and accessibility issues

whereas Baker et al. concentrate only on accessibility

issues.

Finally, the goal of their misconfiguration detection is

similar in intent to Baaz’s Object Clustering algorithm.

While Baaz focuses on identifying sets of users that can

access disjoint sets of objects, they identify all possible

sets of users who have common access permissions to

(possibly overlapping) sets of objects. In Baaz, we

chose to focus on disjoint object-sets for reasons ex-

plained earlier.

Network intrusion prevention and detection systems

also have a similar operational view of misconfigura-

tions [15, 14]. An attempt is made to characterize nor-

mal behavior, as opposed to anomalous behavior, and

any deviation from this characterization is flagged as a

potential vulnerability. In contrast, research on automat-

ically discovering attack graphs [2, 23], by correlating in-

formation across lists of known software-vulnerabilities,

improper access controls, and network misconfigura-

tion issues, have a forensic flavor. This aspect is fur-

ther explored in more recent work such as HeatRay [6],

which explores identity-snowball attacks based on over-

entitled user privileges across a networked enterprise.

The HeatRay tool outputs suggestions to administrators

to prune privilege-lists on particular machines, maximiz-

ing security versus availability tradeoffs, using machine

learning and combinatorial optimization techniques. A

system such as Baaz can help an administrator decide

whether to remove access permissions as suggested by

HeatRay.

Other related work on policy anomaly detection in-

cludes the work on access control spaces [13] where the

authors describe a policy-authoring tool called Gokyo

that can help discover policy coverage issues.While

Gokyo assumes a high-level policy manifest exists, Baaz

works in scenarios where such manifests are not avail-

able.

Role-based access control (RBAC) [21] is widely cited

as a useful management tool to control access permis-

sions by separating out the user-role and role-permission

relationships. However, RBAC is known to be difficult

to implement in practice [5, 12]. The problem of role

mining [22, 25, 18, 28, 10] is related to Baaz’s matrix

reduction step (Section 4), where we find related user

and object groups. In role-mining, the user-object access

matrix is analyzed to find maximal overlapping group-

ings of users and objects that have the same permissions.

In contrast, in Baaz, we are interested in misconfigura-

tions on shared-object permissions, as opposed to dis-

covering common patterns of access across user groups.

Nevertheless, like organizational groups, email groups,

and distribution lists, the output of a role-mining algo-

rithm, specifically the user-role mappings, can be used

as an input to our group mapping phase. We believe that

even if organizations adopt some flavor of RBAC, a sys-

tem like Baaz is useful in discovering misconfigurations

caused by exceptions and role changes. There is also a

wealth of related work on the topic of clustering in gen-

eral, and a summary of this is outside the scope of this

work.

Policy anomaly detection is also a popular subject of

study in the firewall and network configuration space.

Here, existing tools [27] explore the semantics of differ-

ent filtering rules and firewall policies. Testing and static

analysis techniques [26, 17, 3] have been proposed to ex-

plore and understand how policy configurations satisfy

properties such as redundancy and contradiction. How-

ever, all of these techniques are specific to firewall con-

figurations and are inherently different from Baaz which

uses comparison across ACL datasets and within the

same dataset to find misconfigurations.

Several network security scanning tools are actively

used by network administrators to find vulnerabilities

such as open ports, vulnerable applications and poor

passwords [7, 9]. Baaz’s purpose and techniques target

a different problem – finding access control misconfigu-

rations – and are therefore complementary to the intent

of these tools. In fact, a number of such tools and sys-

tems should be used in tandem to ensure a high level of

security for all enterprise resources.

10 Conclusion

In this paper, we have described the design, implementa-

tion and evaluation of Baaz, a system used to detect ac-

cess control misconfigurations in shared resources. Baaz

continuously monitors access permissions and group

memberships, and through the use of two techniques –

Group Mapping and Object Clustering – finds candidate

misconfigurations in the access permissions. Our eval-

uation shows that Baaz is very effective at finding real

security and accessibility misconfigurations, which are

useful to administrators.

Acknowledgments

We would like to thank our shepherd, Somesh Jha, for

his valuable comments and suggestions. We would also

like to thank Ohil Manyam for testing and optimizing

the prototype Baaz system, Rashmi K. Y, Geoffry Nord-

lund, and Chuck Needham for help with evaluating Baaz,

and Geoffrey Voelker, Venkat Padmanabhan and Vishnu

Navda for providing insightful comments that improved

earlier drafts of this paper.

References

[1] Active Directory. http://www.microsoft.com/win

dowsserver2003/technologies/directory/activedire-

ctory/.

[2] P. Ammann, D. Wijesekera, and S. Kaushik. Scal-

able, graph-based network vulnerability analysis.

In Proceedings of the 9th ACM conference on Com-

puter and communications security, 2002.

[3] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Fir-

mato: A novel firewall management toolkit. ACM

Trans. Comput. Syst., 22(4):381–420, 2004.

[4] L. Bauer, S. Garriss, and M. K. Reiter. Detecting

and resolving policy misconfigurations in access-

control systems. In Proc. SACMAT ’08, pages 185–

194, New York, NY, USA, 2008. ACM.

[5] Bruce Schneier, Real-World Access Control.

http://www.schneier.com/crypto-gram-0909.html.

[6] J. Dunagan, A. X. Zheng, and D. R. Simon. Heat-

ray: Combating identity snowball attacks using ma-

chine learning, combinatorial optimization and at-

tack graphs. SIGOPS Oper. Syst. Rev., 2009.

[7] D. Farmer and E. H. Spafford. The COPS secu-

rity checker system. In Proceedings of the Summer

Usenix Conference, 1990.

[8] File System Watcher Class.

http://msdn.microsoft.com/en-us/library/system.io.

filesystemwatcher.aspx.

[9] S. S. A. T. for Analyzing Networks.

http://www.porcupine.org/satan.

[10] M. Frank, D. Basin, and J. M. Buchmann. A class

of probabilistic models for role engineering. In

CCS ’08. ACM, 2008.

[11] P. D. Grunwald. The Minimum Description Length

Principle. The MIT Press, 2007.

[12] Information Risk in the Professional Services-

Field Study Results from Financial In-

stitutions and a Roadmap for Research.

http://mba.tuck.dartmouth.edu/digital/Research/

ResearchProjects/DataFinancial.pdf.

[13] T. Jaeger, X. Zhang, and A. Edwards. Policy man-

agement using access control spaces. ACM Trans.

Inf. Syst. Secur., 6(3):327–364, 2003.

[14] A. Joshi, S. T. King, G. W. Dunlap, and P. M.

Chen. Detecting past and present intrusions

through vulnerability-specific predicates. SIGOPS

Oper. Syst. Rev., 39(5):91–104, 2005.

[15] S. T. King and P. M. Chen. Backtracking intrusions.

SIGOPS Oper. Syst. Rev., 37(5):223–236, 2003.

[16] C. Lund and M. Yannakakis. On the hardness of

approximating minimization problems. J. ACM,

41(5):960–981, 1994.

[17] A. Mayer, A. Wool, and E. Ziskind. Fang: A fire-

wall analysis engine. In SP ’00: Proceedings of

the 2000 IEEE Symposium on Security and Pri-

vacy, page 177, Washington, DC, USA, 2000. IEEE

Computer Society.

[18] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li,

E. Bertino, S. Calo, and J. Lobo. Mining roles

with semantic meanings. In Proceedings of the

13th ACM symposium on Access control models

and technologies, 2008.

[19] Privileged Password Management: combat-

ing the insider threat and meeting com-

pliance regulations for the enterprise.

http://www.cyber-ark.com/constants/white-

papers.asp?dload=IDC White Paper.pdf.

[20] M. Russinovich, D. Solomon, and A. Ionescu. Win-

dows Internals, 5th Edition. Microsoft Press, 2009.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and

C. E. Youman. Role-based access control models.

Computer, 29(2):38–47, 1996.

[22] J. Schlegelmilch and U. Steffens. Role mining with

orca. In Proc. SACMAT ’05, pages 168–176, 2005.

[23] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and

J. M. Wing. Automated generation and analysis of

attack graphs. In Proceedings of the 2002 IEEE

Symposium on Security and Privacy, 2002.

[24] The insider threat: automated identity

and access controls can help organiza-

tions mitigate risks to important data.

http://findarticles.com/p/articles/mi m4153/is 2 65/

ai n25449309.

[25] J. Vaidya, V. Atluri, and J. Warner. Roleminer: min-

ing roles using subset enumeration. In CCS ’06,

pages 144–153. ACM, 2006.

[26] A. Wool. Architecting the lumeta firewall analyzer.

In SSYM’01: Proceedings of the 10th conference on

USENIX Security Symposium, pages 7–7, Berkeley,

CA, USA, 2001. USENIX Association.

[27] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah,

and P. Mohapatra. Fireman: A toolkit for firewall

modeling and analysis. In Proceedings of the 2006

IEEE Symposium on Security and Privacy. IEEE

Computer Society, 2006.

[28] D. Zhang, K. Ramamohanarao, and T. Ebringer.

Role engineering using graph optimisation. In SAC-

MAT ’07, pages 139–144. ACM, 2007.

