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Abstract

The browser has become the de facto platform for ev-
eryday computation. Among the many potential attacks
that target or exploit browsers, vulnerabilities in browser
extensions have received relatively little attention. Cur-
rently, extensions are vetted by manual inspection, which
does not scale well and is subject to human error.

In this paper, we present VEX, a framework for high-
lighting potential security vulnerabilities in browser ex-
tensions by applying static information-flow analysis to
the JavaScript code used to implement extensions. We
describe several patterns of flows as well as unsafe pro-
gramming practices that may lead to privilege escala-
tions in Firefox extensions. VEX analyzes Firefox ex-
tensions for such flow patterns using high-precision,
context-sensitive, flow-sensitive static analysis. We an-
alyze thousands of browser extensions, and VEX finds
six exploitable vulnerabilities, three of which were previ-
ously unknown. VEX also finds hundreds of examples of
bad programming practices that may lead to security vul-
nerabilities. We show that compared to current Mozilla
extension review tools, VEX greatly reduces the human
burden for manually vetting extensions when looking for
key types of dangerous flows.

1 Introduction

Driving the Internet revolution is the modern web
browser, which has evolved from a relatively simple
client application designed to display static data into a
complex networked operating system tasked with man-
aging many facets of a user’s on-line experience. To
help meet the varied needs of a broad user population,
browser extensions expand the functionality of browsers
by interposing on and interacting with browser-level
events and data. Some extensions are simple and make
only small changes to the appearance of web pages or the
browser itself. Other extensions provide more sophis-

ticated functionality, such as NOSCRIPT that provides
fine-grained control over JavaScript execution [20], or
GREASEMONKEY that provides a full-blown program-
ming environment for scripting browser behavior [6].
These are just a few of the thousands of extensions cur-
rently available for Firefox, the second most popular
browser today1.

Extensions written with benign intent can have subtle
vulnerabilities that expose the user to a disastrous attack
from the web, often just by viewing a web page. Fire-
fox extensions run with full browser privileges, so at-
tackers can potentially exploit extension weaknesses to
take over the browser, steal cookies or protected pass-
words, compromise confidential information, or even hi-
jack the host system, without revealing their actions to
the user. Unfortunately, tens of extension vulnerabili-
ties have been discovered in the last few years, and capa-
ble attacks against buggy extensions have already been
demonstrated [23].

To help reduce the attack surface for extensions,
Mozilla provides a set of security primitives to ex-
tension developers. However, these security primi-
tives are discretionary, and can be difficult to under-
stand and use correctly. For example, Firefox pro-
vides an evalInSandbox (text, sandbox) function
that returns the result of evaluating the text string
under the restricted privileges associated with the en-
vironment sandbox. Using evalInSandbox correctly
requires developers to test the result of a call to
evalInSandbox with the non-traditional “===” rather
than “==”, as the “==” operation may invoke unsafe code
as a side effect (See http://developer.mozilla.org/

En/Components.utils.evalInSandbox for details).
Current approaches from the research community pro-

pose dynamic techniques for improving the security of
extensions. The SABRE system tracks tainted JavaScript

1Firefox now surpasses Internet Explorer in W3schools traffic
(www.w3schools.com/browsers/browsers_stats.asp),
arguably due to the popularity of Firefox extensions.



objects to prevent extensions from accessing sensitive in-
formation unsafely [9]. Although SABRE can prevent po-
tentially malicious flows from both exploited extensions
and from malicious extensions, SABRE adds overhead to
all JavaScript execution within the browser, adding 6.1x
overhead for the SunSpider benchmark and 2.36x over-
head for the V8 JavaScript benchmark. Furthermore,
SABRE’s dynamic nature pushes security violation no-
tification to users who are unable to determine if a par-
ticular flow is malicious or benign. The Google Chrome
Extension System revisits the overall extension API to
make it easier for the browser to enforce least privilege
and strong isolation on extensions [4]. Their system
works by partitioning the full set of extension function-
ality into different protection domains, and sand-boxing
extensions to prevent them from obtaining more privi-
leges than needed. Although this system is likely to limit
the damage from some extension attacks, it does little to
prevent the vulnerabilities themselves.

In this paper, we propose VEX, a system for find-
ing vulnerabilities in browser extensions using static
information-flow analysis. Many vulnerabilities trans-
late to certain types of explicit information flows from
injectable sources to executable sinks. For extensions
written with benign intent, most attacks involve the at-
tacker injecting JavaScript into a data item that is sub-
sequently executed by the extension under full browser
privileges. We identify key flows of this nature that can
lead to security vulnerabilities, and we analyze for these
flows statically using high-precision static analysis that
is both path-sensitive and context-sensitive, to minimize
the number of false positive suspect flows. VEX uses
precise summaries to analyze code, and has special fea-
tures to handle the quirks of JavaScript (e.g., VEX does
a constant string analysis for expressions that flow into
the eval statement). Because VEX uses static analysis,
we avoid the runtime overhead induced by dynamic ap-
proaches.

Determining whether extensions are malicious or har-
bor security vulnerabilities is a hard problem. Exten-
sions are typically complex artifacts that interact with
the browser in subtle and hard to understand ways. For
example, the ADBLOCK PLUS extension performs the
seemingly simple task of filtering out ads based on a
list of ad servers. However, the ADBLOCK PLUS im-
plementation consists of over 11K lines of JavaScript
code. Similarly, the NOSCRIPT extension provides fine-
grained control over which domains are allowed to ex-
ecute JavaScript and basic cross-site scripting protec-
tion. The NOSCRIPT extension implementation consists
of over 19K lines of JavaScript code. Also, ADBLOCK
PLUS had 30 releases in 1/1/06–11/20/09, and NO-
SCRIPT had 38 releases just in 1/1/09–11/20/09. While
Mozilla uses volunteers to vet each new extension and re-

vision before posting it on their official list of approved
Firefox extensions, examining an extension to find a vul-
nerability requires a detailed understanding of the code
to reason about anything beyond the most basic type of
information flow. Thus tools to help vet browser exten-
sions can be very useful for improving the security of
extensions.

We show that VEX can catch several known vulnera-
bilities, such as a vulnerability in the FIZZLE extension
[8], and also find new problems, including exploitable
vulnerabilities in BEATNIK and WIKIPEDIA TOOLBAR.
In particular, VEX reported a previously unknown vul-
nerability in WIKIPEDIA TOOLBAR that could lead to an
attack, and that resulted in the report CVE-2009-4127.
We reported this vulnerability to the WIKIPEDIA TOOL-
BAR developers, who fixed the extension. We also show
that VEX can help to find the use of unsafe programming
practices, such as misuse of evalInSandbox, that can
result from subtle information flows.

The remainder of the paper is organized as follows.
Section 2 describes the threat model and the assumptions
under which we analyze the browser extensions. Sec-
tion 3 provides background material on the architecture
of Firefox and the nature of certain key undesirable in-
formation flows in its extensions. Section 4 describes our
static analysis and the various design choices we made to
build VEX. Section 5 lists and describes our results. Sec-
tion 6 surveys related work, and Section 7 concludes the
paper.

2 Threat model, assumptions, and usage
model

In this paper, we focus on finding security vulnerabili-
ties in buggy browser extensions. We do not try to iden-
tify malicious extensions, bugs in the browser itself, or
bugs in other browser extensibility mechanisms, such as
plug-ins. We assume that the developer is neither mali-
cious nor trying to obfuscate extension functionality, but
we assume the developer could write incorrect code that
contains vulnerabilities.

We use two attack models. First, we consider attacks
that originate from web sites, and we assume the attacker
can send arbitrary HTML and JavaScript to the user’s
browser. We focus on attacks where this untrusted data
can lead to code injection or privilege escalation through
buggy extensions. In the second attack model, we con-
sider some web sites as trusted. For example, if an exten-
sion gleans information from Facebook, we assume that
the Facebook code will not include arbitrary HTML and
JavaScript, but only well formatted and trusted data.

According to the Mozilla developer site, Mozilla has
a team of volunteers who help vet extensions manually.
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Figure 1: The overall analysis process of VEX.

They run new and updated extensions isolated in a vir-
tual machine to test the user experience. The editors also
use a validation tool, which uses grep to look for key in-
dicators of bugs. Many of the patterns they search for
involve interactions between extensions and web pages,
and they use their understanding of these patterns to help
guide their inspection of the code. Our goal is to help
automate this process, so that analysts can quickly hone
in on particular snippets of code that are likely to contain
security vulnerabilities. Figure 1 shows our overall work
flow for using VEX.

3 Background

3.1 Mozilla privilege levels
Firefox has two privilege levels: page, for the web page
displayed in the browser’s content pane; and chrome, for
elements belonging to Firefox and its extensions, i.e., ev-
erything surrounding the content pane. Page privileges
are more restrictive than chrome privileges. For exam-
ple, a page loaded from site x cannot access content from
sites other than x. General Firefox code runs with full
chrome privileges, which give it access to all browser
states and events, OS resources like the file system and
network, and all web pages. Firefox provides the ex-
tensions with full chrome privileges by exposing a spe-
cial API called the XPCOM Components to extension
JavaScript, thereby allowing the extensions to have ac-
cess to all the resources Firefox can access.

Extensions can often access objects that run with page
privileges and interact with page content, as well as ob-
jects that run with full chrome privileges. Extensions can
also include user interface components via a chrome doc-

ument, which also runs with full chrome privileges. For
example, the object window refers to the chrome win-
dow and the object window.content refers to the con-
tent window. To access the document object referring
to the content (i.e., the user page), the extension has to
access the document property of the content window,
i.e., window.content.document.

To make this extension architecture practical, Firefox
has APIs for extension code to communicate across pro-
tection domains. These interactions are one cause of ex-
tension security vulnerabilities. As the Mozilla devel-
oper site explains, “One of the most common security is-
sues with extensions is execution of remote code in privi-
leged context. A typical example is an RSS reader exten-
sion that would take the content of the RSS feed (HTML
code), format it nicely and insert into the extension win-
dow. The issue that is commonly overlooked here is that
the RSS feed could contain some malicious JavaScript
code and it would then execute with the privileges of the
extension – meaning that it would get full access to the
browser (cookies, history etc) and to user’s files” [sic].

3.2 Points of attack

Here we discuss key vulnerable points for code injection
and privilege escalation attacks against non-malicious
extensions: eval, evalInSandbox, innerHTML, and
wrappedJSObject. We focus on these Firefox features
because they are key points of interaction between ob-
jects with page and chrome privileges, respectively, and
this interaction is a key source of security vulnerabilities,
as noted above. Though other avenues of attack are pos-
sible, we do not consider them here.
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eval: The eval function call interprets string data as
JavaScript, which it executes dynamically. This flexible
mechanism can be used to generate JavaScript code dy-
namically, for example to serialize JSON objects. How-
ever, this flexibility can lead to code injection vulnera-
bilities in extensions. If extensions execute eval func-
tions on un-sanitized strings that come from untrusted
web pages, the attacker will be able to inject JavaScript
code that will run with full chrome privileges.

InnerHTML: Each HTML element for a page has an
innerHTML property that defines the text that occurs be-
tween that element’s opening and closing tag. Exten-
sions can change the innerHTML property to alter ex-
isting document object model (DOM) elements, or to
add new DOM elements. When an extension modifies
the innerHTML property, the browser re-parses and pro-
cesses the new data. Thus, passing specially crafted un-
sanitized strings (e.g., <img> tags with script in their
onload attribute) into innerHTML modifications can
lead to code injection attacks.

EvalInSandbox: One way Firefox facilitates com-
munication across protection domains is through the
evalInSandbox method. This method enables exten-
sions to execute JavaScript in the extension’s context
with restricted privileges, thus enabling extensions to
process untrusted data from web pages safely. The
sandbox object is an empty JavaScript object created
with restricted privileges. For example, the call s =
Sandbox("http://www.w3.org/") creates a sandbox
swhere code can execute with page privileges, as though
it came from the domain www.w3.org. One can add
properties to this object by calling the evalInSandbox

function, and any attempts to access global scope ob-
jects from within evalInSandbox, including privileged
chrome objects, are denied. evalInSandbox compli-
cates extension programming because objects returned
from the method call execute in the extension with full
chrome privileges. Since methods associated with the
object could have been modified within the sandbox, they
should not be called in the chrome context. For example,
“==” should not be used on these objects as its evaluation
calls the tostring or valueOf method, which could
have been modified; instead the non-traditional “===”
operator needs to be used.

wrappedJSObject: JavaScript objects can be dynam-
ically modified. That means that any web page can
modify the properties of the document object. For ex-
ample, a web page can reassign the getElementById

method to return a malicious script. To prevent this
script from being executed by the extension when

it calls window.content.document.getElementById,
Firefox automatically wraps the object so that the
window.content.document accesses only use the orig-
inal document object, not the modified one. However,
Firefox also provides the wrappedJSObject method,
which lets the extension access the modified version,
even when automatic wrapping is turned on; calling
wrappedJSObject on a content document is potentially
dangerous.

3.3 Suspicious flow patterns

In this section we discuss the five source to sink
flows that might be vulnerable. Specifically, we track
flows from Resource Description Framework (RDF)
data (e.g., bookmarks) to innerHTML, content document
data to eval, content document data to innerHTML,
evalInSandbox return objects used improperly by code
running with chrome privileges, or wrappedJSObject
return object used improperly by code running with
chrome privileges. These flows do not always result in
a vulnerability, and they are by no means an exhaustive
list of all possible extension security bugs, but they are
the patterns we use in our tool.

RDF is a model for describing hierarchical relation-
ships between browser resources [33]. Extension de-
velopers can store persistent extension data in an RDF
file, or access browser resources, such as bookmarks,
stored in RDF format. RDF data can come from un-
trusted sources. For example, when a user stores a book-
mark, Firefox records the un-sanitized title of the book-
marked page in the RDF file. Extensions that use RDF
data need to sanitize it properly if they use it directly in
an innerHTML statement that modifies an element in a
chrome document.

Content document data flowing to eval or innerHTML
can sometimes be exploited. This flow can result in script
execution with chrome privileges if specially crafted
content from the window.content.document ob-
ject is passed to eval or innerHTML or an element in the
chrome document.

For evalInSandbox and wrappedJSObject, prob-
lems can only result if the return values of these
constructs are executed with chrome privileges. For
evalInSandbox this means comparing return values us-
ing == or != from code running with chrome privileges.
For wrappedJSObject, this means making method calls
on returned objects from code running with chrome priv-
ileges.

Such flow patterns may occur in only a few
of the extensions that use these constructs. Ac-
cording to the Mozilla extension review web page,
reviewers have an open-source automatic tool to
help with reviews (see https://addons.mozilla.org/
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en-US/firefox/pages/validation), but this tool just
greps for strings that indicate dangerous patterns. Af-
terward, the reviewer must go through the code of each
suspect extension to understand the flows and determine
which constitute vulnerabilities and which are benign.
As this task is difficult, painful, and error-prone, we de-
signed the VEX tool to help extension reviewers vet the
flows in extensions automatically, greatly reducing the
number of extensions that need manual review.

4 Static information flow analysis

We develop a general explicit information flow static
analysis tool VEX for JavaScript that computes flows be-
tween any source and sink, including the flows described
in Section 3.3. While we could develop analysis tech-
niques for a particular source and sink, we prefer a more
general technique that will perform the analysis once,
and from the results, allow us to search for any source-
to-sink flow. This allows VEX to be run in a single pass
over thousands of extensions, rather than using separate
passes for each target pattern.

To support fine-grained information-flow analysis,
VEX tracks the precise dependencies of flows from vari-
ables to objects created in the JavaScript extension, using
a taint-based analysis. Motivated by the fact that every
flow reported needs to be checked manually for attacks,
which can take considerable human effort, we aim for
an analysis that admits as few false positives as possi-
ble (false positives are non-existent flows reported by the
tool).

Statically analyzing JavaScript extensions for flows is
a non-trivial task. JavaScript extensions have a large
number of objects and functions. In addition to the ob-
jects defined in the program, the extensions can also ac-
cess the browser’s DOM API and the Firefox Extension
API provided by XPCOM components. The objects are
also dynamic, in the sense that new object properties can
be created dynamically at run-time. Functions are ob-
jects in JavaScript, and hence can be created, redefined
dynamically, and passed as parameters. The challenge is
to accurately keep track of such objects, properties, and
the corresponding flows to them.

Our analysis keeps track of an abstract heap (AH) that
is not a priori bounded, and keeps track of the precise
heap nodes and field relations and corresponding flows,
but ignores the exact primitive values in the heap (like
integers). However, we bound the number of iterations
in computing the least fixed-point, and hence the abstract
heap gets bounded implicitly.

The abstract heap transformations for any statement
closely mimic a big-step operational semantics for
JavaScript, except that primitive values are forgotten, and

hence conditionals are not evaluated; we refer the reader
to work on operational semantics of JavaScript [27, 18].

Apart from tracking heap structures, the abstract heap
also records explicit-flow dependencies to heap nodes,
and the rules for updating flows naturally depend on the
program’s semantics. Also, as we talk about in more
detail below, there are some aspects of the heap (such
as prototype fields) that are not currently supported in
our tool. The static analysis itself is flow-sensitive and
context-sensitive, and the context-sensitivity is handled
using classical function-summary based methods.

The above choices, namely the choice of abstract
heaps, and the context-sensitive flow-sensitive analysis,
are design choices we have made, based on our exper-
iments with extensions for over a year, and were moti-
vated to reduce false positives. However, we have not
tried all variants of these choices, and it is possible that
other choices (for example, choosing to bound abstract
heaps by merging objects created at a program site), may
also work well on extensions. However, we do know that
context-sensitivity is important (in several extensions we
manually examined) and further flow-sensitivity seems
important if the tool is extended to consider sanitization
routines as flow-stoppers.

The rest of this section is structured as follows. First
we explain our analysis using abstract heaps for a core
subset of JavaScript, which does not have statements like
eval, associative array accesses, calls to Firefox APIs,
etc. Subsequently, we describe how we handle the as-
pects not covered in the core.

4.1 Analysis of a core subset of JavaScript
Core JavaScript: A core subset of JavaScript is given
in Figure 2; this core reflects the aspects of JavaScript de-
scribed above, but omits certain features (such as eval)
which we will describe later.

Abstract Heaps: Our analysis keeps track of a one ab-
stract heap at each program point. This abstract heap
tracks JavaScript objects and functions and the relation-
ships between them in the form of a graph. Each node
in the graph is a heap location generated by the program.
Two different nodes, n1 and n2 are connected by an edge
labeled f , if node n1’s property f may refer to n2. To
keep track of the actual information flows between differ-
ent program variables, we also keep track of all the pro-
gram variables that flow into the nodes in abstract heap.
Let PVar be the set of all the program variables in the
JavaScript program.

More precisely, an abstract heap σ is a tuple (ns , n,d,
fr , dm , tm), where:

• ns is a set of heap locations,
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EXPRESSIONS ::=
| c (CONSTANT)
| x (VARIABLE)
| x.f (FIELD ACCESS)
| x.prot (PROTO ACCESS)
| eop e (BINARY OP)
| this (THIS)
| {f1 : e1, . . . , fn : en} (OBJECT LITERAL)
| function (p1, . . . , pn){S} (FUNCTION DEF)
| f(a1, . . . , an) (FUNCTION CALL)
| new f(a1, . . . , an) (NEW)

STATEMENTS ::=
| skip (SKIP)
| S1;S2 (SEQ)
| var x (VARIABLE DECL.)
| x := e (ASSIGN 1)
| x.f := e (ASSIGN 2)
| if e then S1 else S2 (CONDITIONAL)
| while e do S od (WHILE)
| return e (RETURN)

Figure 2: Core JavaScript syntax.

• n ∈ (ns ∪ {⊥}) represents the current node, and is
either a node in the heap or the symbol ⊥,

• d ⊆ PVar represents the subset of program vari-
ables that flow in to the current node n,

• fr ⊆ ns × PVar × (ns ∪ {⊥}) encodes the
pointers representing properties (fields). A triple
(n1, f, n2) ∈ fr means that the property f of the
object n1 may be located at n2.

• dm ⊆ ns×PVar is a relation that denotes a depen-
dency map. A pair (n1, x) ∈ dm denotes that the
program variable x flows into the node n1.

• tm : ns×ns is a “this-map” relation, which is actu-
ally the relation of a function. A pair (n1, n2) ∈ tm
means that the scope of n1 is n2.

Notation: The relation tm will always be a function; we
define formally the function tm : ns → ns as tm(n) =
n′, where (n, n′) ∈ tm . Let dm : ns → 2PVar be the
function that corresponds to the relation dm , dm(n) =
{x|(n, x) ∈ dm}, i.e. the set of all the program variables
that flow into the node n.

The Analysis: We now describe our analysis for the
core subset of JavaScript. VEX handles functions and
objects by creating a node for every object or func-
tion and their properties. Relationships between various
nodes are accurately generated and tracked in the anal-
ysis. JavaScript uses prototype-based inheritance; how-
ever, our analysis does not track prototypes. Instead, a

new property insertion into the prototype field of an ob-
ject is treated as if the property is being inserted into the
object itself. We found that this is sufficient in case of
JavaScript extensions as the inheritance chain is not deep
in most cases. VEX keeps track of the accurate scope
information using the this-map.

Our analysis consists of a set of rules for generating
abstract heaps at program points, and is defined by es-
sentially capturing the effect of statements on the abstract
heap. These rules follow a big-step operational seman-
tics adapted to work on the abstracted heap.

The big step operational semantics on abstract heaps
is defined as a relation , (Prog, σ) ⇓ σ′, where Prog is
an program expression or statement and σ and σ′ are ab-
stract heaps. Such a relation intuitively means that σ′ is
the heap obtained from the complete evaluation of Prog
starting from the heap σ. This resulting heap, in every
iteration, will be merged with the current heap after the
program, conservatively taking the union of dependen-
cies.

We now define this relation for expressions and state-
ments.

Notation: For any abstract heap σ, let σ = (nsσ , nσ ,
dσ , frσ , dmσ , tmσ). In other words, nσ refers to the
second component of σ, etc. The function fresh() cre-
ates a new heap location. A special node nG repre-
sents the global heap, which consists of the objects like
Object, Array, etc.

Evaluating expressions:
Figure 3 gives the rules for evaluating expressions in the
program.

Rule (CONSTANT) evaluates to a ⊥ node with empty
dependencies. Rule (THIS) extracts the scope of the cur-
rent node. The next five rules describe the variable and
field access expressions.

In case of a variable access, the existence property x
is checked in the current scope (represented by nσ(rule
(VAR))), and returned if it exists. If it is not in the cur-
rent scope, then the global node (rule (GLOBAL VAR))
is checked for property x. If it exists, then it is returned
with dependencies. If the location for a particular vari-
able is found in neither the current scope nor the global
scope, using rule (UNINITIALIZED VAR) we create a
new node nnew and add it to the global scope. Similar
rules apply for field accesses in rules (FIELD ACCESS)
and (UNINIT FLD).

For binary operators(rule (BINARY OP)), we return
the union of dependencies of both the expressions. When
an object literal expression((OBJ. LIT.)) is encountered,
a summary is computed by recursively creating heap lo-
cations for each of its properties and then creating the
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.

(c, σ) ⇓ (nsσ ,⊥, ∅, frσ , dmσ , tmσ)
(CONSTANT) .

(this , σ) ⇓ (nsσ , tmσ(nσ), dmσ(tmσ(nσ)), frσ , dmσ , tmσ)
(THIS)

(nσ , x, nx) ∈ frσ

(x, σ) ⇓ (nsσ , nx, dmσ(nx), frσ , dmσ , tmσ)
(VAR)

6 ∃n′
x.(nσ , x, n

′
x) ∈ frσ (nG, x, nx) ∈ frσ

(x, σ) ⇓ (nsσ , nx, dmσ(nx), frσ , dmσ , tmσ)
(GLOBAL VAR)

6 ∃n′
x.(nσ , x, n

′
x) ∈ frσ 6 ∃n′′

x.(nG, x, n
′′
x) ∈ frσ nG 6= nσ

(x, σ) ⇓ (nsσ ∪ {nnew},nnew , ∅, frσ ∪ {(nG, x,nnew )}, dmσ , tmσ ∪ {(nnew , nG)})
(UNITIALIZED VAR)

where, nnew = fresh()

(x, σ) ⇓ σ′ (nσ′ , f, nf ) ∈ frσ′

(x.f, σ) ⇓ (nsσ′ , nf , dσ′ ∪ dmσ′ (nf ), frσ′ , dmσ′ , tmσ′ )
(FIELD ACCESS)

(x, σ) ⇓ σ′

(x.prot, σ) ⇓ σ′ (PROT ACCESS)

(x, σ) ⇓ σ′ 6 ∃nf .(nσ′ , f, nf ) ∈ frσ′

(x.f, σ) ⇓ (nsσ′ ∪ {nnew},nnew , dσ′ , frσ′ ∪ {(nσ′ , f,nnew )}, dmσ′ , tmσ′ ∪ {(nnew ,nσ′ )})
(UNINIT FLD)

where,nnew = fresh()

(e1, σ) ⇓ σ1 (e2, σ) ⇓ σ2
(e1op e2, σ) ⇓ (nsσ1 ∪ nsσ2 ,⊥, dσ1 ∪ dσ2 , frσ1 ∪ frσ2 , dmσ1 ∪ dmσ2 , tmσ1 ∪ tmσ2 )

(BINARY OP)

(e1, σ) ⇓ σ1 . . . (en, σ) ⇓ σn
({f1 : e1, . . . , fn : en}, σ) ⇓ σ′ (OBJ. LIT.)

where,

nσ′ = fresh() = nnew dσ′ =
n⋃
i=1

dσi

nsσ′ = nsσ ∪ {nnew} ∪ (
n⋃
i=1

nsσi ) frσ′ = frσ ∪ (
n⋃
i=1

(nnew , fi,nσi ))

dmσ′ = dmσ ∪ (
n⋃
i=1

dmσi ) tmσ′ = tmσ ∪ (
n⋃
i=1

(nσi ,nnew ))

(S, σ′′) ⇓ σ′

(function (p1, . . . , pn){S}, σ) ⇓ σ′ (FUN-DEF)
where,

nsσ′′ = nsσ ∪ {n0
new} ∪ (

n⋃
i=1

npi
new ) nσ′′ = fresh() = n0

new dσ′′ = ∅

n RET
new = fresh() ∀i ∈ {1, . . . , n}.npi

new = fresh()

frσ′′ = frσ ∪ {(n0
new , RET,n RET

new )} ∪ (
n⋃
i=1

{(n0
new , i,n

pi
new )})

dmσ′′ = dmσ ∪ (
⋃n
i=1{( RET, i), (npi

new , i)})

tmσ′′ = tmσ ∪ {(n0
new ,nσ)} ∪ {(n RET

new ,n0
new )} ∪ (

n⋃
i=1

(npi
new ,n

0
new ))

(f, σ) ⇓ σ′′ (nσ′′ , RET, n′) ∈ frσ (e1, σ) ⇓ σ1 . . . (en, σ) ⇓ σn
(f(e1, . . . , en), σ) ⇓ (nsσ ,⊥, d′, frσ , dmσ , tmσ)

(FUN-CALL1)
where, d′ =

n⋃
i=1

(∃(n′, i) ∈ dmσ .dσi )

(f, σ) ⇓ σ′′ nσ′′ = ⊥ (e1, σ) ⇓ σ1 . . . (en, σ) ⇓ σn

(f(e1, . . . , en), σ) ⇓ (nsσ ,⊥,
n⋃
i=1

dσi , frσ , dmσ , tmσ))

(FUN-CALL2)

Figure 3: Semantics for all core expressions except new.

graph where the new object node is linked to the proper-
ties with the labeled edges.

A function definition((FUN-DEF)) is treated in a simi-
lar fashion as the object literal, except that new summary
locations are created for each of the function arguments
and also for the return variable (i.e. n RET

new ). The function
body is evaluated with respect to the new heap. The re-
sult of the evaluation is the new heap with the function
summary attached to the node n RET

new . A function call(rule
(FUN-CALL1)) uses this summary to compute the node
and dependencies of the return value. The return value
of the function can be obtained by evaluating each of the
function argument expressions, and replacing the appro-
priate nodes in the function summary with the values re-
turned. If the function is not defined, then the dependen-
cies of the return values are the union of dependencies of
the individual function parameters(rule (FUN-CALL2)).

A constructor expression (containing new) is similar to a
function call, where if the object being instantiated is re-
trieved from the local or the global scope, then a copy of
the graph starting with this object is created and returned.

Evaluating statements:
The statement semantics are given in Figure 4. A vari-
able declaration(VAR. DECL.) creates a new node in
the current scope. If the heap node for that variable al-
ready exists, it is replaced by this new node. The as-
signment statement (rules (ASSIGN1) and (ASSIGN2))
evaluates the left hand side and the right hand side ex-
pressions, replaces the node on the left hand side with
the node on the right hand side. Note that conditionals in
if-then-else and while statements are, of course,
not evaluated as our heaps are symbolic. The while state-
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.
(skip, σ) ⇓ σ

(SKIP)
(C1, σ) ⇓ σ′ (C2, σ

′) ⇓ σ′′

(C1;C2, σ) ⇓ σ′′ (SEQ)

(nσ, x, nx) ∈ frσ
(var x, σ) ⇓ (ns,nσ, dσ, fr, dmσ, tm)

(VAR.DECL.) where, ns = (nsσ ∪ {nnew}) \ {nx}
fr = (frσ \ {(nσ, x, nx)}) ∪ {(nσ, x,nnew )}
tm = tmσ ∪ {(nnew ,nσ)}

(e, σ) ⇓ σ′′ (x, σ) ⇓ σx
(x := e, σ) ⇓ (ns,nσ, dσ, fr, dm, tm)

(ASSIGN1)
where, ns = nsσx ∪ nsσ′′

fr = (frσ′′ \ {(nσ, x,nσx)}) ∪ {(nσ, x,nσ′′)}
dm = dmσ′′

tm = tmσ ∪ {(nσ′′ , tmσx(nσx))}
(e, σ) ⇓ σ′′ (x, σ) ⇓ σx (x.f, σ) ⇓ σf

(x.f := e, σ) ⇓ σ′ (ASSIGN2)
where,nσ′ = nσ dσ′ = dσ
frσ′ = (frσ′′ \ {(nσx , f,nσf )}) ∪ {(nσx , f,nσ′′)}
dmσ′ = dmσ′′ ∪ {(nσ′′ , y)|y ∈ dσx} ∪ {(nσx , y)|y ∈ dσ′′}
tmσ′ = tmσ ∪ {(nσ′′ ,nσx)}

(S1, σ) ⇓ σ1 (S2, σ) ⇓ σ2

(if e then S1 else S2, σ) ⇓ (nsσ1 ∪ nsσ2 ,nσ, dσ, frσ1 ∪ frσ2 , dmσ1 ∪ dmσ2 , tmσ1 ∪ tmσ2)
(COND)

(S1, σ) ⇓ σ′

(while e do S1 od , σ) ⇓ σ′ (WHILE1)
(S1, σ) ⇓ σ′ (while e do S1 od , σ′) ⇓ σ′′

(while e do S1 od , σ) ⇓ σ′′ (WHILE2)

(e, σ) ⇓ σ′

(return e, σ) ⇓ (nsσ′ ,nσ, dσ, frσ′ ∪ {(nσ, RET,nσ′)}, dmσ′ , tmσ′)
(RET)

Figure 4: Statement semantics.

ment is interesting: we evaluate the while body till we
reach a fixed point (or till we reach a fixed number of
loop un-rollings) as depicted in (WHILE2). However,
notice that the abstract heap is also allowed to immedi-
ately go across a while-loop (WHILE1). The semantics
for the rest of the statements is standard.

Given the above rules for abstract heaps, we start ana-
lyzing the JavaScript program using an initial state con-
sisting of a global heap, represented by node nG. This
global heap consists of summaries for a few built-in ob-
jects like Array. We evaluate the rules either till we
converge on a least fixed-point, or till we reach a preset
bound on the number of iterations.

4.2 Handling other features of JavaScript

Dynamic code: The eval method in JavaScript allows
execution of dynamically formed code, and is widely
used in browser extensions. While an accurate analysis
of the structure of dynamically created code is a research
topic in itself, and quite out of the scope of this paper,
we cannot simply ignore eval statements. Our approach
has been to implement a static constant-string analysis
for strings and subject the strings that are eval-ed to this
analysis. Our static analysis engine inserts these constant
strings into the code (as though it was static code), parses
it, and computes the flows for them. Strings that are not

statically known but subject to eval are essentially ig-
nored, and this causes our tool to be unsound (see a later
note on unsoundness). In most correct extensions, an
eval-ed statement is dynamically chosen from a set of
constant-strings or taken from trusted sources. Note that
if there is a flow from an untrusted source to an eval,
VEX will catch this flow, as it is a vulnerable flow pat-
tern.

innerHTML: Modifications of the innerHTML of an
HTML page by the extension makes the analysis con-
siderably more complex. For instance, if a function
a() calls function b() that calls function c(), and
c()makes innerHTML modifications, it is hard to sum-
marize this effect in the summary of c(), as the source
of the flow is not locally available. We handle this by cre-
ating a symbolic representation of the source, computing
summaries of innerHTML using this symbolic source,
and allowing outside methods to instantiate the symbolic
source to a concrete source in whichever context it be-
comes available.

Object properties accessed in the form of associative
arrays: In JavaScript, objects are treated as associative
arrays. This means that any property of the object can be
accessed using the array notation. Array indices could
be constant strings, which are then evaluated to get the
actual property being accessed; or they could be num-
bers, which indicate the property number that is being
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accessed; or they could be variables, that could be in-
stantiated at run time. VEX treats these cases in a con-
servative manner. Whenever a property is created in the
node scope, its dependencies are added to the dependen-
cies of the node as shown in the (ASSIGN 2) rule in the
Figure 4. If we cannot evaluate the array index for any
reason, it would be sufficient to retrieve the dependencies
of the object.

Functions that take arbitrary number of arguments:
Some functions in JavaScript can have variable numbers
of arguments. For example, the push method of the ar-
ray can be called with any number of arguments and the
arguments will be appended to the end of the array. To
handle this, the summary of the push method has a spe-
cial field indicating that it can take variable number of
arguments and when the method is called, we conser-
vatively append the dependencies of all the arguments
to the dependency set of the node representing the array
object.

Browser’s DOM API and XPCOM components:
These objects are treated as uninitialized variables,
fields and functions. The rules (UNINITIALIZED VAR),
(UNINIT FLD) and (FUN-CALL2) can be applied to
their accesses. When we need to keep track of the usage
of certain components we introduce the component
API function arguments into the dependency set. For
example the RDF datasource is accessed using the
following command:

rdf = Components.classes
[“@mozilla.org/rdf/rdf-service;1”]
.getService(Components.interfaces.nsIRDFService);

Our analysis introduces the string
“@mozilla.org/rdf/rdf-service;1” and the variable
nsIRDFService into the dependency set of the left hand
side variable rdf .

4.3 Unsoundness and incompleteness
A static analysis tool like VEX is inherently conservative.
First, if VEX reports a flow, there may be no such feasible
flow in the program (i.e. VEX can have false positives).
Though VEX over-approximates flows and tries to per-
form a sound analysis, there are several aspects of the
analysis which, if implemented soundly, will make the
tool throw too many infeasible flows, making it useless
in practice.

Consider a program where there is an eval of a string
that is dynamically created and not determinable stati-
cally. Since this string can be assigned any value, it could
be any arbitrary program that can create flows between
any of the variables in scope. A sound tool must nec-
essarily summarize the eval as causing flows from all

variables to all nodes, which would generate plenty of
false positives and would essentially be useless. False
negatives (i.e. miss detecting programs that have a flow),
are also possible because of the fact that we have several
uninitialized and unsummarized objects.

VEX has several sources of unsoundness and incom-
pleteness: handling of eval, handling of prototypes,
handling of higher-order functions, fixed number of un-
rolls of loops, handling with-scoping, handling excep-
tions, etc.

5 Evaluation

5.1 VEX implementation
The VEX tool checks for two kinds of flows: one from
injectable sources to executable sinks to check for script-
injection vulnerabilities, and the other, also modeled as
flows, that checks for unsafe programming practices.
VEX is implemented in Java (∼ 2000 LOC), and uti-
lizes a JavaScript parser built using the ANTLR parser
generator for the JavaScript 1.5 grammar provided by
ANTLR [1]. ANTLR outputs Java-based Abstract Syn-
tax Trees (AST) for JavaScript files, and VEX walks
through the ASTs computing the flow sets from all in-
teresting sources to all interesting sinks, in a single pass
analysis, using the static analysis described in Section 4.
For each sink object, VEX collects all the source objects
that flow into it and checks for the occurrence of flow
patterns. VEX reports these flows to the user along with
the source and sink locations in the code.

Flow patterns checked: The current version of VEX
checks for the following three flow patterns that capture
flows from injectable sources to executable sinks:

- Content Doc to Eval: The source location is any point
where the program accesses the API
window.content.document, and the source
object is the object that is returned from this call.
The sink locations are eval statements and the sink
objects are the objects being eval-ed.

- Content Doc to innerHTML: The source location
and source objects for these flows are the same
as above; the sink locations are the places where
the extension writes directly into the DOM us-
ing innerHTML commands, and the sink objects
are the objects being assigned by the innerHTML
command. These DOM elements may be exe-
cutable if they are in the chrome context.

- RDF to innerHTML: The source location and source
objects are given by any retrieval of RDF objects
(which are often injectable) and the sink locations
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and sink objects are innerHTML commands as
above.

Furthermore, VEX searches for the following patterns
that characterize two documented unsafe programming
practices that could lead to security vulnerabilities:

- evalInSandbox object to == or !=: This flow is
meant to detect an unsafe programming prac-
tice where an object retrieved by an eval in
a sandbox is subject to an == or != test (the
recommended practice is that such objects must
be tested with ===). The source location is hence
any evalInSandbox-statement and the corre-
sponding source objects are the objects returned by
the evalInSandbox call. The sink locations are
usages of == and !=, and the sink objects are the
objects that are subject to these comparisons.

- Method Call on wrappedJSObject: Objects ob-
tained using wrappedJSObject() commands are
usually untrusted, and methods of such objects
should not be called. The source locations are hence
uses of wrappedJSObject() and source objects are
the objects returned by them. Sink locations are
methods calls and the sink objects are the objects
whose methods are called.

The VEX tool can, of course, be adapted to other kinds
of suspect flows – source and sink locations are straight-
forward, and the source and sink objects must be speci-
fied carefully as above.

5.2 Evaluation methodology
The extensions we analyzed were chosen as follows.
First, in October 2008, we built a suite of extensions
using a random sample of 1827 extensions from the
Mozilla add-ons web site, by downloading the first exten-
sions in alphabetical order for all subject categories. In
November 2009, we downloaded 699 of the most popular
extensions. The two sets had 74 extensions in common,
for a total of 2452 extensions. Our suite includes multi-
ple versions of some extensions, allowing cross-version
comparisons. For instance, we found a vulnerability in a
new version of BEATNIK (see Section 5.4), though its au-
thors thought the vulnerabilities in the previous version
were fixed.

We extracted the JavaScript files from these extensions
and ran VEX on them, using a 2.4GHz 64 bit x86 proces-
sor with a maximum heap size of 4GB for the JVM.

5.3 Experimental results
Finding flows from injectible sources to executable
sinks: Figure 5 summarizes the experimental results

for flows that are from injectible sources to executable
sinks (the first three flows outlined above). The first
column is the number of extensions that syntactically
has code that could indicate such a flow, identified
using a grep-search. For the flow “Content-doc to
Eval”, the grep was for the string ‘eval(’; for “Content-
doc to InnerHTML” flows, the grep was for the string
‘innerHTML’; and for “RDF to InnerHTML” flows,
the search was for both the strings “‘innerHTML” and
“@mozilla.org/rdf/rdf-service;1”. As the table shows,
this search finds hundreds of suspect extensions, far more
than can be examined manually.

The third column indicates the number of extensions
on which VEX reports an alert with corresponding flows.
On an average, VEX took only 15.5 seconds per exten-
sion.

To look for potential attacks, we manually analyzed
most of the extensions with suspect flows that VEX
alerted us on, spending about two hours per extension
on average.

The next column reports the number of extensions on
which we could engineer an attack based on the flows
reported by VEX. We were able to attack six extensions,
of which only three extensions were already known to
be vulnerable. The attacks on Wikipedia Toolbar, Fizzle
version 0.5.1 and Fizzle version 0.5.2 extensions are new,
see Section 5.4 for more details.

The next column shows the extensions where the
source is code from a web site, and where an attack is
possible provided the web site can be attacked. In other
words, these extensions rely on a trusted web site as-
sumption (e.g., that the code on the Facebook website
is safe). We think that these are valid warnings that users
of an extension (and Mozilla) should be aware of; trusted
web sites can after all be compromised, and the code on
these sites can be changed leading to an attack on all
users of such an extension.

Not all flows lead to attacks – the next set of columns
describe the alerts that we were unable to convert to con-
crete attacks. Some flows were not exploitable as the
input is sanitized correctly (either by the extension or the
browser), preventing JavaScript injection, while others
were not exploitable as the sinks do not turn out to be
chrome executable contexts. These extensions are noted
in the next two columns. Finally, VEX, being a conser-
vative flow-analysis tool, does report alerts about flows
that do not actually exist— there were very few of these,
and are noted under the column “Non-existent flows”. A
discussion on flows that do not lead to attacks is given in
Section 5.5.

As noted in the last column, there were 13 extensions
with VEX alerts that were too complex(or obscurely writ-
ten) for us to manually analyze for an attack; we do not
know whether attacks on these are possible or not.
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Flow Pattern grep VEX Attackable Source is Not Attackable Unanalyzed
Alerts Alerts Extensions trusted Sanitized Non-chrome Non-existent

website input sinks flows
Content Doc to eval 430 13 2* 1 0 3 5 2
Content Doc to innerHTML 534 46 0 14 6 6 9 11
RDF to innerHTML 60 4 4** 0 0 0 0 0

Attackable Extensions: * WIKIPEDIA TOOLBAR V-0.5.7, WIKIPEDIA TOOLBAR V-0.5.9 ,
** FIZZLE V-0.5, FIZZLE V-0.5.1, FIZZLE V-0.5.2 & BEATNIK V-1.2

Figure 5: Flows from injectible sources to executable sinks.

Unsafe Programming Practices grep Alerts VEX Alerts
evalInSandbox Object to == or != 107 3
Method Call on wrappedJSObject 269 144

Figure 6: Results for unsafe programming practices.

Finding unsafe programming practices:
The results of the second set of experiments for flows
that characterize the two unsafe programming practices
of checking equality on objects evaluated in a sandbox
and calling methods of unwrapped JS objects are shown
in Figure 6.

The first column denotes the flow-pattern, the second
column shows the number of extensions that had a grep
pattern for the strings ‘evalInSandbox’ and ‘wrapped-
JSObject’, respectively. The third column shows the
number of extensions that VEX alerts. Note that these
flows correspond to unsafe programming practices de-
clared by Mozilla for extension writers, and hence should
be avoided. We analyzed 15 of the alerts and found that
all of the flows we inspected were feasible and real, but
we were unable to manually confirm the remainder be-
cause there were too many alerts to examine.

5.4 Successful attacks

Attack scripts: All our attack scenarios involve a user
who has installed a vulnerable extension who visits a ma-
licious page, and either automatically or through invok-
ing the extension, triggers script written on the malicious
page to execute in the chrome context. Figure 7 illus-
trates an attack payload that can be used in such attacks:
this script displays the folders and files in the root di-
rectory. The attack payloads could be much more dan-
gerous, where the attacker could gain complete control
of the affected computer using XPCOM API functions.
More examples of such payloads are enumerated in the
white-paper given in [13].

Let us now explain the various attacks we found on
web extensions:

Wikipedia Toolbar, up to version 0.5.9
If a user visits a web page with the directory display

<script>
var root = Components.classes
["@mozilla.org/file/local;1"].createInstance
(Components.interfaces.nsILocalFile);
try {
root.initWithPath("/."); // for Linux or Mac
}catch (er){
root.initWithPath("\\\\."); // for Windows
}
var drivesEnum = root.directoryEntries,
drives = [];
while (drivesEnum.hasMoreElements()) {
drives.push(drivesEnum.getNext().
QueryInterface(Components.interfaces.
nsILocalFile).path);
}
alert (drives);
</script>

Figure 7: Attack script to display directories.

attack script in its <head> tag, and clicks on one of
the Wikipedia toolbar buttons (unwatch, purge, etc.), the
script executes in the chrome context. The attack works
because the extension has the code given in Figure 8 in
its toolbar.js file.

script = window. content.document.
getElementsByTagName(‘‘script")[0].innerHTML;
eval (script);

Figure 8: Wikipedia toolbar code.

The first line gets the first <script> element from the
web page and executes it using eval. The extension de-
veloper assumes the user only clicks the buttons when
a Wikipedia page is open, in which case <script> may
not be malicious. But the user might be fooled by a ma-
licious Wikipedia spoof page, or accidentally press the
button on some other page, VEX led us to this previ-
ously unknown attack, which we reported to the devel-
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opers, who acknowledged it, patched it, and released a
new version. This resulted in a new CVE vulnerability
(CVE-2009-41-27). The fix involved inserting a condi-
tional in the program to check if the url of the page is
on the wikipedia domain and evaluating the script only if
this is true.

bookmarks.js:
1. function Bookmarks(){
2. var bookmarks = new Array();
3. this.load = function(){
4. bookmarks = new Array();
5. var rdf = Components.classes[

“@mozilla.org/rdf/rdf-service;1”]
.getService(Components.interfaces.nsIRDFService);

6. var bmds = rdf.GetDataSource(”rdf:bookmarks”);
7. var iter = bmds.GetAllResources();
8. while (iter.hasMoreElements()){
9. var element = iter.getNext();
10. bookmarks.push(

{name:element.name, url:element.url});
11. } } }

sys.js:
12. var sys = new Sys();
13. function Sys() {
14. var bookmarks = null;
15. this.startup = function() {
16. bookmarks = new Bookmarks();
17. bookmarks.load();
18. ui.buildFeedList(); }
19. this.getBookmarks(){
20. return bookmarks; } }

ui.js:
21. var ui = new Ui();
22. function Ui() {
23. this.buildFeedList = function() {
24. var bm = sys.getBookmarks();
25. for (var i=0; i<bm.size(); i++) {
26. var mark = bm.get(i);
27. html += <p> mark.name; }
28. div.innerHTML = html; } }

Figure 9: FIZZLE vulnerability code.

Fizzle versions 0.5, 0.5.1, 0.5.2
FIZZLE is a RSS/Atom feed reader that uses Livemark
bookmark feeds. Vulnerability report CVE-2007-1678
explains that FIZZLE VER.0.5 allows remote attackers
to inject arbitrary web scripts or HTML via RSS feeds.
FIZZLE’s RSS feeds are obtained from the bookmarks’
RDF resource, using the XPCOM RDF service. The au-
thor of FIZZLE purportedly fixed this vulnerability in the
next version; however, VEX signaled the presence of a
flow, and we found that the sanitization routine that the

programmer wrote was flawed, and the extension can
be attacked using suitably encoded scripts. These new
attacks for FIZZLE VER 0.5.1 and FIZZLE VER 0.5.2
were not known before, to the best of our knowledge.

Figure 9 gives a highly simplified version of FIZ-
ZLE, to show its information flows. When the user
clicks on the FIZZLE extension toolbar to see the feeds,
FIZZLE is initialized, i.e., sys.startup() on line
15 is called. This method loads the bookmarks from
the Firefox bookmarks folder. The title and URL of
the feeds are obtained from the bookmarks’ RDF re-
source and then stored in an array in FIZZLE when
bookmarks.load() is called. After the bookmarks
are loaded, ui.buildFeedList() is called. In this
method, the bookmark array is accessed on line 24 and
the elements are added to a variable named html on
line 27. This html variable is then assigned to the
innerHTML property of the 〈div〉 tag of an HTML page.
This page is then displayed in a frame in the browser.
The attack happens when a malicious RDF file is loaded,
where the name element of the feed contains JavaScript.
Assigning a specially crafted script to the innerHTML

property at line 28 results in the script being executed
under chrome privileges.

To detect this kind of attack, we must be able to deter-
mine that the information that flows into the html vari-
able and eventually into the innerHTML property is from
the bookmarks’ RDF resource. It is difficult to detect this
manually, because most extensions are encoded in many
separate JavaScript files spread across multiple directo-
ries, and the routines defined in these files have complex
interactions with each other. Even the example shown
in Figure 9 is spread over three different JavaScript files,
and we have omitted many lines of code from the func-
tions shown. As mentioned earlier, VEX users can define
summaries for library functions, or just rely on default
summaries. Given a function summary for the push
method of the Array object defined in the XPCOM li-
brary, VEX detects that FIZZLE has flows from the RDF
service to innerHTML.

Beatnik version 1.2
BEATNIK is another RSS reader with the same kind of
problematic flow as FIZZLE, documented in CVE-2007-
3110 for BEATNIK version 1.0. In the Mozilla add-ons
page for the subsequent version of BEATNIK, the exten-
sion developer said he had sanitized the RSS feed input.
VEX found that there were still flows from the book-
marks’ RDF to the innerHTML property in BEATNIK
version 1.2, because VEX currently does not consider
declassification via sanitization. Our manual examina-
tion showed the new sanitization to be inadequate. The
sanitization parses the feed input and checks whether the
nodes contain script. If the feed contains only text nodes,
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it is appended to the RSS feed title; otherwise it is dis-
carded. By encoding the 〈 and 〉 tags as their HTML
entity names, we can fool this routine. If we name the
RSS feed as follows:

Title &lt; /a &gt&lt; img src =
&quot;&quot; onerror= ’CODE FROM FIGURE 7’
& gt; Beatnik &lt;/img&gt; &lt; a &gt;

the string is converted into

Title </a> < img src =" " onerror= ’CODE
FROM FIGURE 7’> Beatnik </img> <a>

and results in an attack. To the best of our knowledge,
this attack has not been reported thus far. One must un-
derstand the extension code to form these attack strings;
in this case, the <a> tag had to be closed at the begin-
ning of the string and opened again at the end for the
script to work.

5.5 Flows that do not result in attacks
Figure 10 gives several examples of the suspect flows
that we manually analyzed and for which either trusted
sources were assumed by the extension or we could not
find attacks.

The first set has extensions reading values from web-
sites or sources it trusts, and the values flow to eval,
innerHTML, or evalInSandbox. Of course, if the
trusted sources are compromised, then the extensions
may become vulnerable.

The second set illustrates examples where the input
was sanitized between the source and the sink (we do
not know for sure that the sanitization is adequate, but
we were unable to attack it). The third set of extensions
had non-chrome sinks. The last two examples show false
positives where the flows reported by VEX do not exist.
These false alarms are because of the way VEX handles
variable dependencies imprecisely. For example, the last
alarm is caused by the rule ASSIGN2 in Figures 3 and 4,
which conservatively adds the dependencies of variable
x to field f .

6 Related work

Maffeis et. al. [27] proposed a small-step operational
semantics for JavaScript, using which they analyze se-
curity properties of web applications. This operational
semantics is then useful for generating safe subsets of
JavaScript and to manually prove that the so-called safe
subsets of JavaScript are in fact vulnerable to certain
attacks [28]. Our operational semantics is inspired by
their approach, although we take an alternate approach
of abstracting the primitive values in the program. This

helps us in proposing a precise information flow analy-
sis approach for a non-trivial JavaScript program. More
recently, Guha et. al. [18] also provide an operational
semantics for JavaScript (albeit without semantics for
eval) with the goal of making it easier to prove properties
about the JavaScript programs.

Recent work by Ter Louw et al. [25] highlights some
of the potential security risks posed by browser exten-
sions, and proposes run time support for restricting the
interactions between browsers and extensions. Our tech-
niques are complementary to these techniques since, as
our experiments show, even restricted interfaces can still
be susceptible to security vulnerabilities.

Most recent work on the security of browser exten-
sibility mechanisms focuses on plugin security. Plug-
ins are external applications hosted within the browser
that are used to render non-HTML content, such as Flash
videos. The first work to examine security issues for
browser plugins was Janus [14], which discusses sand-
boxing techniques for browser-helper applications, such
as PDF viewers. More recently, the OP [15] and Gazelle
[16] web browsers tackle this same issue by applying
many of the principles from the original Janus work to
modern browser plugins.

The general idea of secure extensibility has been stud-
ied by the systems community with projects that focus
on providing secure extensions for operating systems
via type safe programming languages [5, 31, 36], proof-
carrying code [29], new OS abstractions [10], and soft-
ware fault isolation [11]. To date, none of these tech-
niques have been adapted to address the special security
needs of web browser extensibility mechanisms.

Static information flow analysis has been used in a
number of previous projects. The work proposed in [2]
tracks whether various variables in the program are in-
dependent from each other both through explicit and im-
plicit flows. Researchers have employed static analysis
for web applications with the goal of identifying and
preventing cross-site scripting attacks [26]. For exam-
ple, Pixy [21] is a taint based static analyzer for PHP
that detects flows; WebSSARI [19] offers similar facili-
ties. Vogt et al. [32] propose combining static and dy-
namic techniques to prevent cross-site scripting. Xie
and Aiken propose a static analysis of PHP for SQL in-
jection vulnerabilities [34]. Livshits and Lam develop
flow-insensitive static analysis tools for security proper-
ties [24].

More recently, researchers have developed a
flow-insensitive static information flow methods for
JavaScript [7, 17]. In contrast, VEX’s analysis is
flow-sensitive and context-sensitive. In [7] the authors
essentially perform a flow-insensitive static analysis
on the code, and delegate analysis of dynamic code to
runtime checks. Furthermore, their analysis is context-
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Classification Extension Flow pattern/Unsafe practice Explanation

Source is trusted
website

TWITZER - TWITTER MORE! v.1.3 Content Doc to innerHTML Works only when on Twitter
ANSWERS v-2.3.50 Content Doc to innerHTML Works only on answers.com
MYSPACE FRIEND RENAMER v-.86 Content Doc to innerHTML Fetches friend names from prefs.js, where

they are stored during instantiation

Sanitized Input GIRL IN WONDERLAND v-0.808 Content Doc to innerHTML Assigns a Flash URL to innerHTML of an el-
ement on the page, and sanitizes the URL be-
fore assignment; is the sanitization complete?

AUTOSLIDESHOW v-0.3.4 Content Doc to innerHTML Has a flow from the image name urls to
innerHTML. The extension did not sanitize
the inputs in any way. However, the Firefox
DOM API methods encoded the urls when
they were being handled by the extension.

Non-chrome
sinks

UNHIDE FIELDS v-0.2e Content Doc to innerHTML Creates a frame on top of the current content
document and displays the hidden fields in a
page in that frame

WEB DEVELOPER v-1.1.6 Content Doc to innerHTML Generates a non-chrome document in a new
tab or window and appends the stylesheet in-
formation of a page as a node in this page

Non-existent
flows

POWER TWITTER v-1.37 Content Doc to eval Has document, content and window depen-
dencies, but they are chrome elements, not
content

INTERCLUE v-1.5.7 Content Doc to eval Caused by the ASSIGN1 rule

Figure 10: Example extensions.

insensitive, which could generate a lot of false-positives
if used for analyzing browser extensions. VEX does
not delegate any work to runtime checks. Guarnieri
et. al. [17] popose a mostly-static enforcement for
JavaScript analysis. Their threat model is that of a
malicious JavaScipt widget that could run in the same
page as a hosting site and which may contain code
obfuscation. Their policies are based on searching for
forbidden objects or methods in the code which requires
an accurate pointer analysis which they define.

Several dynamic analysis techniques with static instru-
mentation have been proposed for JavaScript to check
information-flow properties [35, 22]. SABRE [9] is a
framework for dynamically tracking in-browser informa-
tion flows for analyzing JavaScript-based browser exten-
sions. We believe that dynamic techniques are not the
best choice for vetting web extensions, as we think it is
best to analyze extensions statically before they are un-
leashed on ordinary users. However, dynamic techniques
that prevent certain script injection attacks can be useful
when enforced by the web browser. The drawback is
that the web browser must choose an appropriate action
to take when it detects a questionable flow. Querying
the user may not be wise, and default options may be-
come too restrictive. Additionally, SABRE imposes a
performance and memory overhead to the browser be-
cause of the need to keep track of the security label for
every JavaScript object inside the browser.

Recently, Freeman and Liverani from Security Assess-
ment have written a white paper [12] detailing the pos-
sible attacks on Firefox extensions. We are currently in
the process of extending VEX to incorporate some of the

source/sink pairs shown in that paper.

7 Conclusions

Our main thesis is that most vulnerabilities in web ex-
tensions can be characterized as explicit flows, which
in turn can be statically analyzed. VEX is a proof-
of-concept tool for detecting potential security vulner-
abilities in browser extensions using static analysis for
explicit flows. VEX helps automate the difficult man-
ual process of analyzing browser extensions by identify-
ing and reasoning about subtle and potentially malicious
flows. Experiments on thousands of extensions indicate
that VEX is successful at identifying flows that indicate
potential vulnerabilities. Using VEX, we identify three
previously unknown security vulnerabilities and three
previously known vulnerabilities, together with a variety
of instances of unsafe programming practices.

The most important future direction we envision is to
extend the VEX analysis in three ways. First, the static
analysis can benefit from a points-to analysis that is more
precise on certain aspects of JavaScript such as higher-
order functions, prototypes, and scoping. The second
important extension is to define a more complete set of
flow-patterns (sources and sinks) that capture vulnera-
bilities. In preliminary work, we have found 16 more
known vulnerabilities, of which 14 can be characterized
using information flow-patterns. Identifying statically
these source-sink pairs and adding them to VEX would
yield a more comprehensive tool. In the direction of re-
ducing false positives, automatically building attack vec-
tors for statically discovered flows can help synthesize
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attacks; a key challenge in achieving this would be in
handling sanitization routines effectively [3, 30].
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