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Motivation

• Binary signature based detection inherently 
ineffective
– We all know the problems...
– Arms-race, pretty much a lost battle

• Network based approaches evadable
– Systems scan for communication artifacts
– Encryption / blending thwart detection

Why do we propose yet another
malware detection scheme (yamds)?
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Motivation

• Don't rely on artifacts of malware instances
– Instead focus on generic patterns

• Proposed solution:
– Detection based on malware's behavior
– Behavior is hard to obfuscate
– Behavior is hard to randomize
– Behavior is often stable across various malware version

Why do we propose yet another
malware detection scheme (yamds)?



Secure Systems Lab
Technical University Vienna

4

Motivation

• Behavior-based detection received some attention 
over last couple of years

• Despite promising detection results, binary signatures 
remain the method of choice

• TODO: Behavior graphs are not new, but we bring 
together the effectiveness of taint based systems and 
provide it on an efficient end host

• See WAV -2:45
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Outline

• Motivation

• Detecting Behavior
– Motivating example  (Agent)

• Matching Behavior Graphs

• Extracting Behavior Graphs

• Evaluation
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Detecting Behavior
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Detecting Behavior

• Characteristic malware behavior
– Manifest on system (i.e., survive reboot)

• (Over-) write system executables, dlls, files
• Create registry entries (autorun)
• Register as Windows (startup) service

– Conceal from being detected
• Restart under some stealthy name (e.g., svchost.exe)
• Inject into legitimate processes

– Replicate
• Send eMails ('check out this picture I found: pic.jpg.exe')
• Copy to Samba shares, USB drives, etc.
• Scan and exploit services on LAN or WAN
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Detecting Behavior
System Overview

• Detection based on execution characteristics
– Execute malware in full system emulator (Anubis)
– Monitor interaction with the operating system
– Perform detailed (taint-) analysis
– Generate detection graphs

• Describe sequence of required system calls leading to security 
relevant system activity

• Include dependencies to related, previous calls (using taint 
dependencies)

• Detect described behavior on end host
– Log system call activity of unknown executable
– Match against behavior graph
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Detecting Behavior
Developer Perspective

• Example: Agent (trojan horse)

• As part of its system manifestation, it
– Reads content from binary image
– Decrypts binary content

• Proprietary decryption routine
• Simple, XOR based algorithm

– Stores binary in system file (C:\Wind...\drivers\ip6fw.sys)
– Later, restarts IPv6 firewall

• Turns itself into a system service
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Detecting Behavior
Taint-Trace Perspective

GetModuleFileNameA

NtCreateFile

NtCreateSection

NtMapViewOfSection

NtWriteFile

NtCreateFile

Name

FileHandle

SectionHandle

FileHandle
(read & decrypt buffer)

Mode: Open

Mode: Create

C:\Win...
\ip6fw.sys
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Detecting Behavior
System Perspective
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Detecting Behavior
System Perspective
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Detecting Behavior
System Perspective
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Detecting Behavior
System Perspective
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Detecting Behavior
System Perspective
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Detecting Behavior

• Detection based on execution characteristics
– Works well as long as we can see all types of dependencies 

between system calls
– Handle dependencies

• Insufficient for detection
• Behavior graphs break into trivial subgraphs

– Data dependencies
• Convenient for behavior graph generation
• Necessary for behavior detection
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Matching Behavior Graphs
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Matching Behavior Graphs

• Maintaining dependencies using taint propagation
– Performance overhead: Extended emulation engine
– Memory overhead: Shadow memory
– Not applicable to production systems / end hosts

• Maintaining dependencies without taint propagation
– Handle dependencies

• Direct value propagation
• System provided identifiers

– File, section, process, thread handles
– Registry keys
– Socket identifiers

– Must be constant between call invocations
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Matching Behavior Graphs

• Maintaining dependencies without taint propagation
– Data dependencies

• Arbitrary data (& control) dependency between system calls
• Might modify values between system calls

– Our proposal: Anticipate precise call arguments
• Use recorded execution semantics
• Extract data propagation/manipulation formulas
• Emulate taint dependency between system call A and B

– Log outgoing parameters of call A
– Use as input to propagation formula
– Predicted incoming parameters for system call B
– Compare predicted and monitored input parameters
– Assume dependency between A and B if prediction holds
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Matching Behavior Graphs
System Perspective

GetModuleFileNameA

Name

(read & decrypt buffer)

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

SectionHandle

Mode: Open

NtWriteFile
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FileHandle

Mode: Create

C:\Win...
\ip6fw.sys
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Matching Behavior Graphs
System Perspective

GetModuleFileNameA

Name
f
1, data

(read & decrypt buffer)
f
4, data

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

f
2, handle

SectionHandle
f
3, handle

Mode: Open

NtWriteFile

NtCreateFile

FileHandle

f
5, handle

Mode: Create

C:\Win...
\ip6fw.sys
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Matching Behavior Graphs
System Perspective
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Matching Behavior Graphs
System Perspective

NtMapViewOfSection

NtWriteFile

f
5, handle

NtMapViewOfSection(out m_buffer[0...size],
                   out m_size)

NtCreateFile(out c_handle)
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Matching Behavior Graphs
System Perspective

NtMapViewOfSection

NtWriteFile
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(p_buffer, p_size) = f
4
(m_buffer, m_size)
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Matching Behavior Graphs
System Perspective
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Extracting Behavior Graphs
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Extracting Behavior Graphs

• Analyze executable in Anubis sandbox
– Obtain instruction level log

• Defeats packers

– Obtain program flow log
– Obtain memory access log
– Generate precise taint propagation trees

• Data/control dependencies
• Instructions that access/generate tainted data
• Link system calls consuming data (sinks) with all taint 

generating calls (sources)

Anubis Scanner

Slicer
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Extracting Behavior Graphs

• Scan logs for security relevant behavior
– Provided with a list of interesting system calls

• Extract graphs matching behavior
– Include triggering system call X
– Link in system calls providing tainted data to X
– Analyze dependencies:

• Label edges with handle dependencies
• Call slicer for all data dependencies

Anubis Scanner

Slicer
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Extracting Behavior Graphs

• Find encoding formula for each data dependency
• Binary program slicing

– Resolve def-use chains
• Starting at selected call invocation
• Iterate backwards (using program flow logs)
• Aided by taint information and memory access logs

– Optional:
• Symbolic execution to simplify encoding function

– Embed into dynamically loadable library (dll)
– Label graph edges with appropriate function (dll)

Anubis Scanner

Slicer
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Extracting Behavior Graphs

• Resolving def-use chains
– Three possible sources

1) Previous system call invocation
• Replaced with stub
• Provides input values to slice (i.e., recorded, outgoing system 

call parameters)

2) Immediate values
• Implicitly encoded in binary slice (e.g., push $0x3)

Anubis Scanner

Slicer
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Extracting Behavior Graphs

• Resolving def-use chains
– Three possible sources

       3) Preinitialized data segments
• BSS section

– Constants
– Static strings

• Two-sided approach:
– Use static values from Anubis analysis
– Dynamically inspect running process

Anubis Scanner

Slicer
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Extracting Behavior Graphs

• Fully automated process
– Analyze binary
– Generate behavior graph(s)
– Extract propagation formulas
– Verify graph on binary

• Run binary & scanner on real host
• Verify behavior graph matches (only) on intended 

executable

Anubis Scanner

Slicer
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Evaluation
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Evaluation

• Effectiveness of behavior graphs
– Applicable to polymorphic variants of a malware sample?
– General enough for whole malware families?

• Efficiency of behavior graph matching
– Overhead through system call logging
– Additional system load through dependency verification
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Effectiveness

• Six current threats / threat families
• Identified using AV (binary) signature
• Encountered 0 false positives

Name Type Samples
Variants Samples

AV Our detected

Exploit-based worm 50 2 1 50 1.00
Beagle Mass-mailing worm 50 20 14 46 0.92

Mass-mailing worm 50 32 12 47 0.94
Mass-mailing worm 50 20 2 41 0.82
Mass-mailing worm 50 22 12 46 0.92

Agent Trojan horse 50 6 3 49 0.98

Total 300 102 44 279 0.93

Eff.

Allaple

Mydoom
Mytob
Netsky



Secure Systems Lab
Technical University Vienna

38

Effectiveness

• Experiment:

Can the system detect malware instances 
never seen by the graph generator?

Name Samples
AV variants Samples

New Known detected

50 0 50 45 0.90
Beagle 50 24 26 30 0.60

50 24 26 36 0.72
50 46 4 5 0.10
13 8 5 7 0.54

Agent 50 6 44 45 0.90

Total 263 108 155 168 0.63

Eff.

Allaple

Mydoom
Mytob
Netsky
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Effectiveness

• Experiment:

Name Samples
AV variants Samples

New Known detected New Known

50 0 50 45 0.90
Beagle 50 24 26 30 0.60

50 24 26 36 0.72
50 46 4 5 0.10
13 8 5 7 0.54

Agent 50 6 44 45 0.90

Total 263 108 155 168 0.23 0.92

Eff.

Allaple

Mydoom
Mytob
Netsky

Can the system detect malware instances 
never seen by the graph generator?
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Efficiency

• I-O bound activity
– Compressing, archiving

• CPU bound computation
– Compilation, rendering

Test Baseline Log Full scanner

7-zip (benchmark)   114 sec 117 sec 2.3 % 118 sec 2.4 %
7-zip (compress) 318 sec 328 sec 3.1 % 333 sec 4.7 %
7-zip (archive) 213 sec 225 sec 6.2 % 231 sec 8.4 %
IE (rendering) 0.41 pages/s 0.39 pages/s 4.4 % 0.39 pages/s 4.4 %
VC++ (compile) 104 sec 117 sec 12.2 % 146 sec 39.8 %
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Summary

• Behavior can be detected
– Monitor from system perspective
– Match against behavior graphs
– Link graph nodes through argument dependencies

• Handle dependencies
– Vital for checking
– BUT not specific enough for doing detection

• Data dependencies
– Anticipate future call arguments
– Efficient replacement for taint dependencies
– Provided through slicing malware semantics
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Summary

• Evaluation
– Behavior detection is fast enough for end hosts
– Approach intrinsically robust against polymorphism and 

metamorphism
– To some extent, behavior graphs are usable across malware 

variants



Secure Systems Lab
Technical University Vienna

43

Thanks for your attention!
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