
Secure Systems Lab
Technical University Vienna

1

Effective and Efficient Malware
Detection at the End Host

Clemens KOLBITSCH, Paolo MILANI COMPARETTI, Engin KIRDA,

Christopher KRUEGEL, Xiaoyong ZHOU, XiaoFeng WANG

ck@iseclab.org

Secure Systems Lab [TU Vienna, Institute Eurecom Sophia Antipolis, UC Santa Barbara]

Indiana University at Bloomington

Secure Systems Lab
Technical University Vienna

2

Motivation

• Binary signature based detection inherently
ineffective
– We all know the problems...
– Arms-race, pretty much a lost battle

• Network based approaches evadable
– Systems scan for communication artifacts
– Encryption / blending thwart detection

Why do we propose yet another
malware detection scheme (yamds)?

Secure Systems Lab
Technical University Vienna

3

Motivation

• Don't rely on artifacts of malware instances
– Instead focus on generic patterns

• Proposed solution:
– Detection based on malware's behavior
– Behavior is hard to obfuscate
– Behavior is hard to randomize
– Behavior is often stable across various malware version

Why do we propose yet another
malware detection scheme (yamds)?

Secure Systems Lab
Technical University Vienna

4

Motivation

• Behavior-based detection received some attention
over last couple of years

• Despite promising detection results, binary signatures
remain the method of choice

• TODO: Behavior graphs are not new, but we bring
together the effectiveness of taint based systems and
provide it on an efficient end host

• See WAV -2:45

Secure Systems Lab
Technical University Vienna

5

Motivation

• Behavior-based detection received some attention
over last couple of years

• Despite promising detection results, binary signatures
remain the method of choice

• TODO: Behavior graphs are not new, but we bring
together the effectiveness of taint based systems and
provide it on an efficient end host

• See WAV -2:45

binary signatures

+ efficiency

­ evasion

­ emulation

behavior
+ effectiveness

Secure Systems Lab
Technical University Vienna

6

Motivation

• Behavior-based detection received some attention
over last couple of years

• Despite promising detection results, binary signatures
remain the method of choice

• TODO: Behavior graphs are not new, but we bring
together the effectiveness of taint based systems and
provide it on an efficient end host

• See WAV -2:45

binary signatures

­ evasion

­ emulation
+ efficiency

behavior
+ effectiveness

Secure Systems Lab
Technical University Vienna

7

Outline

• Motivation

• Detecting Behavior
– Motivating example (Agent)

• Matching Behavior Graphs

• Extracting Behavior Graphs

• Evaluation

Secure Systems Lab
Technical University Vienna

8

Detecting Behavior

Secure Systems Lab
Technical University Vienna

9

Detecting Behavior

• Characteristic malware behavior
– Manifest on system (i.e., survive reboot)

• (Over-) write system executables, dlls, files
• Create registry entries (autorun)
• Register as Windows (startup) service

– Conceal from being detected
• Restart under some stealthy name (e.g., svchost.exe)
• Inject into legitimate processes

– Replicate
• Send eMails ('check out this picture I found: pic.jpg.exe')
• Copy to Samba shares, USB drives, etc.
• Scan and exploit services on LAN or WAN

Secure Systems Lab
Technical University Vienna

10

Detecting Behavior
System Overview

• Detection based on execution characteristics
– Execute malware in full system emulator (Anubis)
– Monitor interaction with the operating system
– Perform detailed (taint-) analysis
– Generate detection graphs

• Describe sequence of required system calls leading to security
relevant system activity

• Include dependencies to related, previous calls (using taint
dependencies)

• Detect described behavior on end host
– Log system call activity of unknown executable
– Match against behavior graph

Secure Systems Lab
Technical University Vienna

11

Detecting Behavior
Developer Perspective

• Example: Agent (trojan horse)

• As part of its system manifestation, it
– Reads content from binary image
– Decrypts binary content

• Proprietary decryption routine
• Simple, XOR based algorithm

– Stores binary in system file (C:\Wind...\drivers\ip6fw.sys)
– Later, restarts IPv6 firewall

• Turns itself into a system service

Secure Systems Lab
Technical University Vienna

12

Detecting Behavior
Taint-Trace Perspective

GetModuleFileNameA

NtCreateFile

NtCreateSection

NtMapViewOfSection

NtWriteFile

NtCreateFile

Name

FileHandle

SectionHandle

FileHandle
(read & decrypt buffer)

Mode: Open

Mode: Create

C:\Win...
\ip6fw.sys

Secure Systems Lab
Technical University Vienna

13

Detecting Behavior
System Perspective

GetModuleFileNameA

Name

(read & decrypt buffer)

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

SectionHandle

Mode: Open

NtWriteFile

NtCreateFile

FileHandle

Mode: Create

C:\Win...
\ip6fw.sys

Secure Systems Lab
Technical University Vienna

14

Detecting Behavior
System Perspective

GetModuleFileNameA

Name

(read & decrypt buffer)

NtWriteFile

NtCreateFile

FileHandle

Mode: Create

C:\Win...
\ip6fw.sys

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

SectionHandle

Mode: Open

Secure Systems Lab
Technical University Vienna

15

Detecting Behavior
System Perspective

GetModuleFileNameA

Name

(read & decrypt buffer)

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

SectionHandle

Mode: Open

NtWriteFile

NtCreateFile

FileHandle

Mode: Create

C:\Win...
\ip6fw.sys

Secure Systems Lab
Technical University Vienna

16

Detecting Behavior
System Perspective

NtCreateFile

NtCreateSection

NtMapViewOfSection

SectionHandle

Mode: Open

FileHandle

NtWriteFile

NtCreateFile Mode: Create

C:\Win...
\ip6fw.sys

FileHandle

Secure Systems Lab
Technical University Vienna

17

Detecting Behavior
System Perspective

NtCreateFile

NtCreateSection

NtMapViewOfSection

SectionHandle

Mode: Open

FileHandle

NtWriteFile

NtCreateFile Mode: Create

C:\Win...
\ip6fw.sys

FileHandle

Secure Systems Lab
Technical University Vienna

18

Detecting Behavior

• Detection based on execution characteristics
– Works well as long as we can see all types of dependencies

between system calls
– Handle dependencies

• Insufficient for detection
• Behavior graphs break into trivial subgraphs

– Data dependencies
• Convenient for behavior graph generation
• Necessary for behavior detection

Secure Systems Lab
Technical University Vienna

19

Matching Behavior Graphs

Secure Systems Lab
Technical University Vienna

20

Matching Behavior Graphs

• Maintaining dependencies using taint propagation
– Performance overhead: Extended emulation engine
– Memory overhead: Shadow memory
– Not applicable to production systems / end hosts

• Maintaining dependencies without taint propagation
– Handle dependencies

• Direct value propagation
• System provided identifiers

– File, section, process, thread handles
– Registry keys
– Socket identifiers

– Must be constant between call invocations

Secure Systems Lab
Technical University Vienna

21

Matching Behavior Graphs

• Maintaining dependencies without taint propagation
– Data dependencies

• Arbitrary data (& control) dependency between system calls
• Might modify values between system calls

– Our proposal: Anticipate precise call arguments
• Use recorded execution semantics
• Extract data propagation/manipulation formulas
• Emulate taint dependency between system call A and B

– Log outgoing parameters of call A
– Use as input to propagation formula
– Predicted incoming parameters for system call B
– Compare predicted and monitored input parameters
– Assume dependency between A and B if prediction holds

Secure Systems Lab
Technical University Vienna

22

Matching Behavior Graphs
System Perspective

GetModuleFileNameA

Name

(read & decrypt buffer)

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

SectionHandle

Mode: Open

NtWriteFile

NtCreateFile

FileHandle

Mode: Create

C:\Win...
\ip6fw.sys

Secure Systems Lab
Technical University Vienna

23

Matching Behavior Graphs
System Perspective

GetModuleFileNameA

Name
f
1, data

(read & decrypt buffer)
f
4, data

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

f
2, handle

SectionHandle
f
3, handle

Mode: Open

NtWriteFile

NtCreateFile

FileHandle

f
5, handle

Mode: Create

C:\Win...
\ip6fw.sys

Secure Systems Lab
Technical University Vienna

24

Matching Behavior Graphs
System Perspective

GetModuleFileNameA

Name
f
1, data

(read & decrypt buffer)
f
4, data

NtCreateFile

NtCreateSection

NtMapViewOfSection

FileHandle

f
2, handle

SectionHandle
f
3, handle

Mode: Open

NtWriteFile

NtCreateFile

FileHandle

f
5, handle

Mode: Create

C:\Win...
\ip6fw.sys (read & decrypt buffer)

f
4, data

NtMapViewOfSection

NtWriteFile

Secure Systems Lab
Technical University Vienna

25

Matching Behavior Graphs
System Perspective

NtMapViewOfSection

NtWriteFile

f
5, handle

NtMapViewOfSection(out m_buffer[0...size],
 out m_size)

NtCreateFile(out c_handle)

Secure Systems Lab
Technical University Vienna

26

Matching Behavior Graphs
System Perspective

NtMapViewOfSection

NtWriteFile

f
5, handle

NtMapViewOfSection(out m_buffer[0...size],
 out m_size)

NtCreateFile(out c_handle)

NtWriteFile(in w_handle,
 in w_buffer[0...size],
 in w_size)

(p_buffer, p_size) = f
4
(m_buffer, m_size)

Secure Systems Lab
Technical University Vienna

27

Matching Behavior Graphs
System Perspective

NtMapViewOfSection

NtWriteFile

f
5, handle

NtMapViewOfSection(out m_buffer[0...size],
 out m_size)

NtCreateFile(out c_handle)

NtWriteFile(in w_handle,
 in w_buffer[0...size],
 in w_size)

(p_buffer, p_size) = f
4
(m_buffer, m_size)

Secure Systems Lab
Technical University Vienna

28

Extracting Behavior Graphs

Secure Systems Lab
Technical University Vienna

29

Extracting Behavior Graphs

• Analyze executable in Anubis sandbox
– Obtain instruction level log

• Defeats packers

– Obtain program flow log
– Obtain memory access log
– Generate precise taint propagation trees

• Data/control dependencies
• Instructions that access/generate tainted data
• Link system calls consuming data (sinks) with all taint

generating calls (sources)

Anubis Scanner

Slicer

Secure Systems Lab
Technical University Vienna

30

Extracting Behavior Graphs

• Scan logs for security relevant behavior
– Provided with a list of interesting system calls

• Extract graphs matching behavior
– Include triggering system call X
– Link in system calls providing tainted data to X
– Analyze dependencies:

• Label edges with handle dependencies
• Call slicer for all data dependencies

Anubis Scanner

Slicer

Secure Systems Lab
Technical University Vienna

31

Extracting Behavior Graphs

• Find encoding formula for each data dependency
• Binary program slicing

– Resolve def-use chains
• Starting at selected call invocation
• Iterate backwards (using program flow logs)
• Aided by taint information and memory access logs

– Optional:
• Symbolic execution to simplify encoding function

– Embed into dynamically loadable library (dll)
– Label graph edges with appropriate function (dll)

Anubis Scanner

Slicer

Secure Systems Lab
Technical University Vienna

32

Extracting Behavior Graphs

• Resolving def-use chains
– Three possible sources

1) Previous system call invocation
• Replaced with stub
• Provides input values to slice (i.e., recorded, outgoing system

call parameters)

2) Immediate values
• Implicitly encoded in binary slice (e.g., push $0x3)

Anubis Scanner

Slicer

Secure Systems Lab
Technical University Vienna

33

Extracting Behavior Graphs

• Resolving def-use chains
– Three possible sources

 3) Preinitialized data segments
• BSS section

– Constants
– Static strings

• Two-sided approach:
– Use static values from Anubis analysis
– Dynamically inspect running process

Anubis Scanner

Slicer

Secure Systems Lab
Technical University Vienna

34

Extracting Behavior Graphs

• Fully automated process
– Analyze binary
– Generate behavior graph(s)
– Extract propagation formulas
– Verify graph on binary

• Run binary & scanner on real host
• Verify behavior graph matches (only) on intended

executable

Anubis Scanner

Slicer

Secure Systems Lab
Technical University Vienna

35

Evaluation

Secure Systems Lab
Technical University Vienna

36

Evaluation

• Effectiveness of behavior graphs
– Applicable to polymorphic variants of a malware sample?
– General enough for whole malware families?

• Efficiency of behavior graph matching
– Overhead through system call logging
– Additional system load through dependency verification

Secure Systems Lab
Technical University Vienna

37

Effectiveness

• Six current threats / threat families
• Identified using AV (binary) signature
• Encountered 0 false positives

Name Type Samples
Variants Samples

AV Our detected

Exploit-based worm 50 2 1 50 1.00
Beagle Mass-mailing worm 50 20 14 46 0.92

Mass-mailing worm 50 32 12 47 0.94
Mass-mailing worm 50 20 2 41 0.82
Mass-mailing worm 50 22 12 46 0.92

Agent Trojan horse 50 6 3 49 0.98

Total 300 102 44 279 0.93

Eff.

Allaple

Mydoom
Mytob
Netsky

Secure Systems Lab
Technical University Vienna

38

Effectiveness

• Experiment:

Can the system detect malware instances
never seen by the graph generator?

Name Samples
AV variants Samples

New Known detected

50 0 50 45 0.90
Beagle 50 24 26 30 0.60

50 24 26 36 0.72
50 46 4 5 0.10
13 8 5 7 0.54

Agent 50 6 44 45 0.90

Total 263 108 155 168 0.63

Eff.

Allaple

Mydoom
Mytob
Netsky

Secure Systems Lab
Technical University Vienna

39

Effectiveness

• Experiment:

Name Samples
AV variants Samples

New Known detected New Known

50 0 50 45 0.90
Beagle 50 24 26 30 0.60

50 24 26 36 0.72
50 46 4 5 0.10
13 8 5 7 0.54

Agent 50 6 44 45 0.90

Total 263 108 155 168 0.23 0.92

Eff.

Allaple

Mydoom
Mytob
Netsky

Can the system detect malware instances
never seen by the graph generator?

Secure Systems Lab
Technical University Vienna

40

Efficiency

• I-O bound activity
– Compressing, archiving

• CPU bound computation
– Compilation, rendering

Test Baseline Log Full scanner

7-zip (benchmark) 114 sec 117 sec 2.3 % 118 sec 2.4 %
7-zip (compress) 318 sec 328 sec 3.1 % 333 sec 4.7 %
7-zip (archive) 213 sec 225 sec 6.2 % 231 sec 8.4 %
IE (rendering) 0.41 pages/s 0.39 pages/s 4.4 % 0.39 pages/s 4.4 %
VC++ (compile) 104 sec 117 sec 12.2 % 146 sec 39.8 %

Secure Systems Lab
Technical University Vienna

41

Summary

• Behavior can be detected
– Monitor from system perspective
– Match against behavior graphs
– Link graph nodes through argument dependencies

• Handle dependencies
– Vital for checking
– BUT not specific enough for doing detection

• Data dependencies
– Anticipate future call arguments
– Efficient replacement for taint dependencies
– Provided through slicing malware semantics

Secure Systems Lab
Technical University Vienna

42

Summary

• Evaluation
– Behavior detection is fast enough for end hosts
– Approach intrinsically robust against polymorphism and

metamorphism
– To some extent, behavior graphs are usable across malware

variants

Secure Systems Lab
Technical University Vienna

43

Thanks for your attention!

	Paper Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Overview
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Thanks for your attention!

