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Motivation (1)

• Operating systems separate system into user land and kernel land

• Kernel and driver components run with elevated privileges

• Compromising of such a component: 

• How to protect these critical components?

– Possible solution: use virtualization technologies to detect

malicious activities in additional layer of privilege

Problem: how to detect malicious programs?

• Alternative: try to prevent malicious programs from being executed

• Focus on latter approach

August 14, 2009 Page 2



University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Motivation (2)

• Traditional approach followed by NICKLE and SecVisor

• Lifetime kernel code integrity

– No overwriting of existing code

– No injection of new code

• Attacker model

– May own everything in user land (admin/root privileges)

– Vulnerabilities in kernel components are allowed

• Common assumption: an attacker must always execute own code

• Can attacker carry out arbitrary computations nevertheless?

– Is it possible to create a real rootkit by code-reuse?

– Show how to bypass code integrity protections
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Return-Oriented Programming

• Introduced recently by Shacham

et al. [CCS07, CCS08, EVT09]

• Extension of infamous return-

to-libc attack

• Controlling the stack is sufficient 

to perform arbitrary control-flow 

modifications

• Idea: find enough useful 

instruction sequences to allow 

for arbitrary computations
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Overview
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Framework

• Problems attackers face:

– Varying environments: different codebase (driver & OS 

versions, etc.)

– Complex task: how to implement return-oriented tasks in an 

abstract manner?

• Facilitate development of complex return-oriented code

• Three core components:

1. Constructor

2. Compiler

3. Loader

• Currently supports 32bit Windows operating systems running IA-32
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Useful Instruction Sequences

<instruction 1>
…
<instruction n>
Ret

Example:

mov eax, [ecx]
add eax, edx
ret

August 14, 2009 Page 8

• Definition: instruction sequence that ends with 

a return

• How many instructions preceding a return 

should be considered?

 Must take side-effects into account

 Simplifying assumption: only consider one

preceding instruction

• Which registers may be altered?
 Only eax, ecx, and edx

• Not turned out to be problematic (see 

evaluation)
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Gadgets
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'And' gadget:
pop ecx | R: ntoskrnl.exe:D88B

| L: <RightSource>-124
mov edx, [ecx+0x7c] | R: ntoskrnl.exe:C7B4C
pop eax | R: ntoskrnl.exe:B0AE

| L: <LeftSource>
mov eax, [eax]      | R: ntoskrnl.exe:B13E
and eax, edx | R: win32k.sys:ADAE6
pop ecx | R: ntoskrnl.exe:D88B

| L: <Destination>
mov [ecx], eax | R: ntoskrnl.exe:45E4

pop ecx
ret

mov edx, [ecx+0x7c]
ret

pop eax
ret

mov eax, [eax]
ret

and eax, edx
ret

mov [ecx], eax
ret
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Automated Gadget Construction

• CPU is register-based

 Start from working registers

• Constructs lists of gadgets being bound to working registers

• Gradually construct further lists by combining previous gadgets
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Load constant into register pop eax

Load memory variable mov eax, [ecx]

Store memory variable mov [edx], eax

Perform addition add eax, ecx
add eax, [edx+1337h]
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Compiler

• Entirely self-crafted programming language

– Syntax similar to C

– All standard logical, arithmetic, and bitwise operations

– Conditions/looping with arbitrary nesting and subroutines

– Support for integers, char arrays, and structures (variable 

containers)

– Support for calling external, non return-oriented code

• Produces position-independent stack allocation of the program

• Program is contained in linear address region
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Loader

• Retrieves base addresses of the kernel and all loaded kernel 

modules (EnumDeviceDrivers)

• ASLR useless

• Resolves relative to absolute addresses

• Implemented as library
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Useful Instructions / Gadget Construction

• Tested Constructor on 10 different machines running different 

Windows versions (2003 Server, XP, and Vista)

• Full codebase and kernel + Win32 subsystem only (res.)

• Codebase always sufficient to construct all necessary gadgets
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Machine configuration # ret instr. # ret instr. (res)

Native / XP SP2 118,154 22,398

Native / XP SP3 95,809 22,076

VMware / XP SP3 58,933 22,076

VMware / 2003 Server SP2 61,080 23,181

Native / Vista SP1 181,138 30,922

Bootcamp / Vista SP1 177,778 30,922

Code sizes Native VMware Restricted

Vista SP1 26.33 MB 8.59 MB 4.58 MB
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Runtime Overhead

• Implementation of two identical quicksort programs

• Return-oriented vs. C (no optimizations)

• Sort 500,000 random integers

• Average slowdown by factor of ~135
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Rootkit Implementation (1)

• Experimental Setup

– Windows XP / Server 2003

– Custom vulnerable kernel driver (buffer overflow)

– Exploit vulnerability from userspace program

• Intricacies

– Interrupt: Windows borrows current kernel stack

 Backup code region

– Interrupt Request Levels (IRQLs): must not access pageable

memory in kernel mode

 Lock from userspace & allocate non-pageable kernel 

memory
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Rootkit Implementation (2)

• Traverses process list and removes specific process

• 6KB in size
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int ProcessName;
int ListStartOffset = &CurrentProcess->process_list.Flink - CurrentProcess;
int ListStart = &CurrentProcess->process_list.Flink;
int ListCurrent = *ListStart;
while(ListCurrent != ListStart) {

struct EPROCESS *NextProcess = ListCurrent - ListStartOffset;
if(RtlCompareMemory(NextProcess->ImageName, "Ghost.exe", 9) == 9) { break; }
ListCurrent = *ListCurrent;

}

struct EPROCESS *GhostProcess = ListCurrent - ListStartOffset;
GhostProcess->process_list.Blink->Flink = GhostProcess->process_list.Flink;  
GhostProcess->process_list.Flink->Blink = GhostProcess->process_list.Blink;  
GhostProcess->process_list.Flink = ListCurrent; 
GhostProcess->process_list.Blink = ListCurrent; 
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Conclusion / Future Work

• Return-oriented attacks against the kernel are possible

• Automated gadget construction

• Problem is malicious computation, not malicious code

• Code integrity itself is not enough

• Only non-persistent rootkit

– Extension already implemented

• Countermeasures against the attack

• Other operating systems to substantiate the claim of portability
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Questions?

Thank you for your attention
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