
University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09August 14, 2009 Page 1

Return-Oriented Rootkits: Bypassing Kernel

Code Integrity Protection Mechanisms

Ralf Hund Thorsten Holz Felix C. Freiling

University of Mannheim

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Motivation (1)

• Operating systems separate system into user land and kernel land

• Kernel and driver components run with elevated privileges

• Compromising of such a component:

• How to protect these critical components?

– Possible solution: use virtualization technologies to detect

malicious activities in additional layer of privilege

Problem: how to detect malicious programs?

• Alternative: try to prevent malicious programs from being executed

• Focus on latter approach

August 14, 2009 Page 2

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Motivation (2)

• Traditional approach followed by NICKLE and SecVisor

• Lifetime kernel code integrity

– No overwriting of existing code

– No injection of new code

• Attacker model

– May own everything in user land (admin/root privileges)

– Vulnerabilities in kernel components are allowed

• Common assumption: an attacker must always execute own code

• Can attacker carry out arbitrary computations nevertheless?

– Is it possible to create a real rootkit by code-reuse?

– Show how to bypass code integrity protections

August 14, 2009 Page 3

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Return-Oriented Programming

• Introduced recently by Shacham

et al. [CCS07, CCS08, EVT09]

• Extension of infamous return-

to-libc attack

• Controlling the stack is sufficient

to perform arbitrary control-flow

modifications

• Idea: find enough useful

instruction sequences to allow

for arbitrary computations

August 14, 2009 Page 4

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

August 14, 2009 Page 5

 Motivation

 Automating Return-Oriented Programming

 Evaluation

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Framework

• Problems attackers face:

– Varying environments: different codebase (driver & OS

versions, etc.)

– Complex task: how to implement return-oriented tasks in an

abstract manner?

• Facilitate development of complex return-oriented code

• Three core components:

1. Constructor

2. Compiler

3. Loader

• Currently supports 32bit Windows operating systems running IA-32

August 14, 2009 Page 6

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Framework Overview

August 14, 2009 Page 7

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Useful Instruction Sequences

<instruction 1>
…
<instruction n>
Ret

Example:

mov eax, [ecx]
add eax, edx
ret

August 14, 2009 Page 8

• Definition: instruction sequence that ends with

a return

• How many instructions preceding a return

should be considered?

 Must take side-effects into account

 Simplifying assumption: only consider one

preceding instruction

• Which registers may be altered?
 Only eax, ecx, and edx

• Not turned out to be problematic (see

evaluation)

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Gadgets

August 14, 2009 Page 9

'And' gadget:
pop ecx | R: ntoskrnl.exe:D88B

| L: <RightSource>-124
mov edx, [ecx+0x7c] | R: ntoskrnl.exe:C7B4C
pop eax | R: ntoskrnl.exe:B0AE

| L: <LeftSource>
mov eax, [eax] | R: ntoskrnl.exe:B13E
and eax, edx | R: win32k.sys:ADAE6
pop ecx | R: ntoskrnl.exe:D88B

| L: <Destination>
mov [ecx], eax | R: ntoskrnl.exe:45E4

pop ecx
ret

mov edx, [ecx+0x7c]
ret

pop eax
ret

mov eax, [eax]
ret

and eax, edx
ret

mov [ecx], eax
ret

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Automated Gadget Construction

• CPU is register-based

 Start from working registers

• Constructs lists of gadgets being bound to working registers

• Gradually construct further lists by combining previous gadgets

August 14, 2009 Page 10

Load constant into register pop eax

Load memory variable mov eax, [ecx]

Store memory variable mov [edx], eax

Perform addition add eax, ecx
add eax, [edx+1337h]

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Compiler

• Entirely self-crafted programming language

– Syntax similar to C

– All standard logical, arithmetic, and bitwise operations

– Conditions/looping with arbitrary nesting and subroutines

– Support for integers, char arrays, and structures (variable

containers)

– Support for calling external, non return-oriented code

• Produces position-independent stack allocation of the program

• Program is contained in linear address region

August 14, 2009 Page 11

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Loader

• Retrieves base addresses of the kernel and all loaded kernel

modules (EnumDeviceDrivers)

• ASLR useless

• Resolves relative to absolute addresses

• Implemented as library

August 14, 2009 Page 12

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

August 14, 2009 Page 13

 Motivation

 Automating Return-Oriented Programming

 Evaluation

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Useful Instructions / Gadget Construction

• Tested Constructor on 10 different machines running different

Windows versions (2003 Server, XP, and Vista)

• Full codebase and kernel + Win32 subsystem only (res.)

• Codebase always sufficient to construct all necessary gadgets

August 14, 2009 Page 14

Machine configuration # ret instr. # ret instr. (res)

Native / XP SP2 118,154 22,398

Native / XP SP3 95,809 22,076

VMware / XP SP3 58,933 22,076

VMware / 2003 Server SP2 61,080 23,181

Native / Vista SP1 181,138 30,922

Bootcamp / Vista SP1 177,778 30,922

Code sizes Native VMware Restricted

Vista SP1 26.33 MB 8.59 MB 4.58 MB

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Runtime Overhead

• Implementation of two identical quicksort programs

• Return-oriented vs. C (no optimizations)

• Sort 500,000 random integers

• Average slowdown by factor of ~135

August 14, 2009 Page 15

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

August 14, 2009 Page 16

 Motivation

 Automating Return-Oriented Programming

 Evaluation

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Rootkit Implementation (1)

• Experimental Setup

– Windows XP / Server 2003

– Custom vulnerable kernel driver (buffer overflow)

– Exploit vulnerability from userspace program

• Intricacies

– Interrupt: Windows borrows current kernel stack

 Backup code region

– Interrupt Request Levels (IRQLs): must not access pageable

memory in kernel mode

 Lock from userspace & allocate non-pageable kernel

memory

August 14, 2009 Page 17

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Rootkit Implementation (2)

• Traverses process list and removes specific process

• 6KB in size

August 14, 2009 Page 18

int ProcessName;
int ListStartOffset = &CurrentProcess->process_list.Flink - CurrentProcess;
int ListStart = &CurrentProcess->process_list.Flink;
int ListCurrent = *ListStart;
while(ListCurrent != ListStart) {

struct EPROCESS *NextProcess = ListCurrent - ListStartOffset;
if(RtlCompareMemory(NextProcess->ImageName, "Ghost.exe", 9) == 9) { break; }
ListCurrent = *ListCurrent;

}

struct EPROCESS *GhostProcess = ListCurrent - ListStartOffset;
GhostProcess->process_list.Blink->Flink = GhostProcess->process_list.Flink;
GhostProcess->process_list.Flink->Blink = GhostProcess->process_list.Blink;
GhostProcess->process_list.Flink = ListCurrent;
GhostProcess->process_list.Blink = ListCurrent;

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09August 14, 2009 Page 19

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Conclusion / Future Work

• Return-oriented attacks against the kernel are possible

• Automated gadget construction

• Problem is malicious computation, not malicious code

• Code integrity itself is not enough

• Only non-persistent rootkit

– Extension already implemented

• Countermeasures against the attack

• Other operating systems to substantiate the claim of portability

August 14, 2009 Page 20

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Questions?

Thank you for your attention

August 14, 2009 Page 21

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

References

• [RAID08] Riley et al.: Guest-Transparent Prevention of Kernel Rootkits with

VMM-based Memory Shadowing

• [ACM07] Seshadri et al.: A Tiny Hypervisor to Provide Lifetime Kernel Code

Integrity for Commodity OSes

• [CCS07] Shacham: The Geometry of Innocent Flesh on the Bone: Return-

into-libc without Function Calls

• [CCS08] Buchanan et al.: When Good Instructions Go Bad: Generalizing

Return-Oriented Programming to RISC

• [BUHO] Butler and Hoglund: Rootkits : Subverting the Windows Kernel

August 14, 2009 Page 22

