Compromising Electromagnetic Emanations
of Wired and Wireless Keyboards

Martin Vuagnoux
LASEC/EPFL
martin.vuagnoux@epfi.ch

Abstract

Computer keyboards are often used to transmit confiden-
tial data such as passwords. Since they contain elec-
tronic components, keyboards eventually emit electro-
magnetic waves. These emanations could reveal sensi-
tive information such as keystrokes. The technique gen-
erally used to detect compromising emanations is based
on a wide-band receiver, tuned on a specific frequency.
However, this method may not be optimal since a sig-
nificant amount of information is lost during the signal
acquisition. Our approach is to acquire the raw signal
directly from the antenna and to process the entire cap-
tured electromagnetic spectrum. Thanks to this method,
we detected four different kinds of compromising elec-
tromagnetic emanations generated by wired and wireless
keyboards. These emissions lead to a full or a partial
recovery of the keystrokes. We implemented these side-
channel attacks and our best practical attack fully recov-
ered 95% of the keystrokes of a PS/2 keyboard at a dis-
tance up to 20 meters, even through walls. We tested
12 different keyboard models bought between 2001 and
2008 (PS/2, USB, wireless and laptop). They are all vul-
nerable to at least one of the four attacks. We conclude
that most of modern computer keyboards generate com-
promising emanations (mainly because of the manufac-
turer cost pressures in the design). Hence, they are not
safe to transmit confidential information.

1 Introduction

Today, most of the practical attacks on computers exploit
software vulnerabilities. New security weaknesses are
disclosed every day, but patches are commonly delivered
within a few days. When a vulnerability is based on hard-
ware, there is generally no software update to avoid the
exposure: the device must be changed.

Computer keyboards are often used to transmit sensi-
tive information such as passwords, e.g. to log into com-

Sylvain Pasini
LASEC/EPFL
sylvain.pasini @epfl.ch

puters, to do e-banking money transfer, etc. A weakness
in these hardware devices will jeopardize the security of
any password-based authentication system.

Compromising electromagnetic emanation problems
appeared already at the end of the 19*" century. Be-
cause of the extensive use of telephones, wire networks
became extremely dense. People could sometimes hear
other conversations on their phone line due to undesired
coupling between parallel wires. This unattended phe-
nomenon, called crosstalk, may be easily canceled by
twisting the cables.

A description of some early exploitations of compro-
mising emanations has been recently declassified by the
National Security Agency [26]. During World War II,
the American Army used teletypewriter communications
encrypted with Bell 131-B2 mixing devices. In a Bell
laboratory, a researcher noticed, quite by accident, that
each time the machine stepped, a spike appeared on an
oscilloscope in a distant part of the lab. To prove the vul-
nerability of the device, Bell engineers captured the com-
promising emanations emitted by a Bell 131-B2, placed
in a building across the street and about 25 meters away.
They were able to recover 75% of the plaintext.

During the Vietnam war, a sensor called Black Crow
carried aboard C-130 gunships was able to detect the
electromagnetic emanations produced by the ignition
system of trucks on the Ho Chi Minh trail, from a dis-
tance up to 10 miles [25, 11].

1.1 Related Work

Academic research on compromising electromagnetic
emanations started in the mid 1980’s and there has been
significant recent progresses [28, 1]. The threat related
to compromising emanations has been constantly con-
firmed by practical attacks such as Cathode Ray Tubes
(CRT) displays image recovery [34], Liquid Crystal Dis-
play (LCD) image recovery [20], secret key disclo-
sure [16], video displays risks [18, 33] or radiations from

USENIX Association

18th USENIX Security Symposium 1

FPGAs [24].

Compromising electromagnetic emanations of serial-
port cables have been already discussed by Smul-
ders [30] in 1990. PS/2 keyboards still use bi-directional
serial communication to transmit the pressed key code to
the computer. Hence, some direct compromising electro-
magnetic emanations might appear. However, the char-
acteristics of the serial line changed since the 90°s. The
voltage is not 15 volts anymore and the transition times
of the signals are much longer (from picoseconds to mi-
croseconds).

Since keyboards are often the first input device of a
computer system, they have been intensively studied.
For instance, the exploitation of visual compromising
information leaks such as optical reflections [S] which
could be applied to keyboards, the analysis of surveil-
lance video sequences [6] which can be used by an at-
tacker to recover the keystrokes (even with a simple we-
bcam) or the use of the blinking LEDs of the keyboard
as a covert channel [21]. Acoustic compromising emana-
tions from keyboards have been studied as well. Asonov
and Agrawal [4] discovered that each keystroke produces
a unique sound when it is pressed or released and they
presented a method to recover typed keystrokes with a
microphone. This attack was later improved, see [38, 7].
Even passive timing analysis may be used to recover
keystrokes. Song et al. highlighted that the keystroke
timing data measured in older SSH implementations [32]
may be used to recover encrypted passwords. A risk of
compromising emission from keyboards has been postu-
lated by Kuhn and Anderson [20, 17, 2]. They also pro-
posed countermeasures (see US patent [3]). Some unof-
ficial documents on TEMPEST [37] often designate key-
boards as potential information leaking devices. How-
ever, we did not find any experiment or evidence proving
or refuting the practical feasibility to remotely eavesdrop
keystrokes, especially on modern keyboards.

1.2 Our Contribution

This paper makes the following main contributions:

A Full Spectrum Acquisition Method. To detect com-
promising electromagnetic emanations a receiver tuned
on a specific frequency is generally used. It brings the
signal in base band with a limited bandwidth. Therefore,
the signal can be demodulated in amplitude (AM) or fre-
quency (FM). This method might not be optimal. Indeed,
the signal does not contain the maximal entropy since a
significant amount of information is lost. We propose
another approach. We acquire the raw signal directly
from the antenna and analyze the entire captured electro-
magnetic spectrum with Short Time Fourier Transform
(also known as Waterfall) to distill potential compromis-
ing emanations.

The Study of Four Different Sources of Informa-
tion Leakage from Keyboards. To determine if key-
boards generate compromising emanations, we mea-
sured the electromagnetic radiations emitted when a key
is pressed. Due to our improved acquisition method,
we discovered several direct and indirect compromising
emanations which leak information on the keystrokes.
The first technique looks at the emanations of the falling
edges (i.e. the transition from a high logic state to a low
logic state) from the bi-directional serial cable used in the
PS/2 protocol. It can be used to reveal keystrokes with
about 1 bit of uncertainty. The second approach uses the
same source, but consider the rising and the falling edges
of the signal to recover the keystrokes with 0 bits of un-
certainty. The third approach is focused on the harmonics
emitted by the keyboard to recover the keystrokes with
0 bits of uncertainty. The last approach considers the
emanations emitted from the matrix scan routine (used
by PS/2, USB and Wireless keyboards) and yields about
2.5 bits of uncertainty per keystroke. This compromis-
ing emanation has been previously posited by Kuhn and
Anderson [3], although that work provided no detailed
analysis.

The Implementation and the Analysis of Four
Keystroke Recovery Techniques in Four Different
Scenarios. We tested 12 different keyboard models, with
PS/2, USB connectors and wireless communication in
different setups: a semi-anechoic chamber, a small of-
fice, an adjacent office and a flat in a building. We
demonstrate that these keyboards are all vulnerable to at
least one of the four keystroke recovery techniques in all
scenarios. The best attack successfully recovers 95% of
the keystrokes at a distance up to 20 meters, even through
walls. Because each keyboard has a specific fingerprint
based on the clock frequency inconsistencies, we can de-
termine the source keyboard of a compromising emana-
tion, even if multiple keyboards from the same model are
used at the same time. First, we did the measurements
in a semi-anechoic electromagnetic chamber to isolate
the device from external noise. Then we confirmed that
these compromising emanations are exploitable in real
situations.

We conclude that most of modern computer keyboards
generate compromising emanations (mainly because of
the manufacturer cost pressures in the design). Hence
they are not safe to transmit confidential information.

1.3 Structure of the Paper

Section 2 describes some basics on compromising elec-
tromagnetic emanations. In Section 3 we present our
acquisition method based on Short Time Fourier Trans-
form. In Section 4 we present four different setups used
for the measurements, from a semi-anechoic chamber to

18th USENIX Security Symposium

USENIX Association

real environments. In Section 5 we give the complete
procedure used to detect the compromising electromag-
netic emanations. Then, we detail the four different tech-
niques. In Section 6, we give the results of our measure-
ments in different setups. In Section 7, we describe some
countermeasures to avoid these attacks. In Section 8,
we give some extensions and improvements. Finally we
conclude.

2 Electromagnetic Emanations

Electromagnetic compatibility (EMC) is the analysis of
electromagnetic interferences (EMI) or Radio Frequency
Interferences (RFI) related to electric devices. EMC
aims at reducing unintentional generation, propagation
and reception of electromagnetic energy in electric sys-
tems. EMC defines two kinds of unwanted emissions:
conductive coupling and radiative coupling. Conductive
coupling requires physical support such as electric wires
to transmit interferences through the system. Radiative
coupling occurs when a part of the internal circuit acts
as an antenna and transmits undesired electromagnetic
waves. EMC generally distinguishes two types of elec-
tromagnetic emissions depending on the kind of the ra-
diation source: differential-mode and common-mode.

Differential-mode radiation is generated by loops
formed by components, printed circuit traces, ribbon ca-
bles, etc. These loops act as small circular antennas and
eventually radiate. These radiations are generally low
and do not disturb the whole system. Differential-mode
signals are not easily influenced by external radiations.
Moreover they can be easily avoided by shielding the
system.

Common-mode radiation is the result of undesired in-
ternal voltage drops in the circuit which usually appear
in the ground loop. Indeed, ground loop currents are due
to the unbalanced nature of ordinary transmitting and re-
ceiving circuits. Thus, external cables included in the
ground loop act as antennas excited by some internal
voltages. Because these voltage drops are not intention-
ally created by the system, it is generally harder to detect
and control common-mode radiations than differential-
mode radiations.

From the attacker’s point of view there are two types
of compromising emanations: direct and indirect emana-
tions.

Direct Emanations. In digital devices, data is encoded
with logic states, generally described by short burst of
square waves with sharp rising and falling edges. During
the transition time between two states, electromagnetic
waves are eventually emitted at a maximum frequency
related to the duration of the rise/fall time. Because
these compromising radiations are provided straight by

the wire transmitting sensitive data, they are called direct
emanations.

Indirect Emanations. Electromagnetic emanations may
interact with active electronic components which induce
new types of radiations. These unintended emanations
manifest themselves as modulations or inter-modulations
(phase, amplitude or frequency) or as carrier signals
e.g. clock and its harmonics. Non-linear coupling be-
tween carrier signals and sensitive data signals, crosstalk,
ground pollution or power supply DC pollution may gen-
erate compromising modulated signals. These indirect
emanations may have better propagation than direct em-
anations. Hence, they may be captured at a larger range.
The prediction of these emanations is extremely diffi-
cult. They are generally discovered during compliance
tests such as FCC [15], CISPR [10], MIL-STD-461 [22],
NACSIM-5000 [37], etc.

3 Electromagnetic Signal Acquisition

Two techniques are generally used to discover compro-
mising electromagnetic emanations.

3.1 Standard Techniques

A method consists in using a spectral analyzer to detect
signal carriers. Such a signal can be caught only if the
duration of the carrier is significant. This makes compro-
mising emanations composed of peaks difficult to detect
with spectral analyzers.

Another method is based on a wide-band receiver
tuned on a specific frequency. Signal detection process
consists in scanning the whole frequency range of the re-
ceiver and to demodulate the signal according to its am-
plitude modulation (AM) or frequency modulation (FM).
When an interesting frequency is discovered, narrow-
band antennas and some filters are used to improve the
Signal-to-Noise Ratio (SNR) of the compromising em-
anations. In practice, wide-band receivers such as R-
1250 [19] and R-1550 [12] from Dynamic Sciences In-
ternational, Inc. are used, see [17, 1]. Indeed, these
receivers are compliant with secret requirements for the
NACSIM-5000 [37] also known as TEMPEST. These de-
vices are quite expensive and unfortunately not owned
by our lab. Hence, we used a cheaper and open-source
solution based on the USRP (Universal Software Radio
Peripheral) [14] and the GNU Radio project [35]. The
USRP is a device which allows you to create a software
radio using any computer with USB port. With differ-
ent daughterboards, the USRP is able to scan from DC
to 2.9 GHz with a sample rate of 64 MS/s at a resolution
of 12 bits. The full range on the ADC is 2 volts peak
to peak and the input is 50 ohms differential. The GNU

USENIX Association

18th USENIX Security Symposium 3

Radio project is a powerful software library used by the
USRP to process various modulations (AM, FM, PSK,
FSK, etc.) and signal processing constructs (optimized
filters, FFT, etc.). Thus, the USRP and the GNU Radio
project may act as a wide-band receiver and a spectral
analyzer with software-based FFT computation.

3.2 Novel Techniques

Some direct and indirect electromagnetic emanations
may stay undetected with standard techniques, especially
if the signal is composed of irregular peaks or erratic
frequency carriers. Indeed, spectral analyzers need sig-
nificantly static carrier signals. Similarly, the scanning
process of wide-band receivers is not instantaneous and
needs a lot of time to cover the whole frequency range.
Moreover the demodulation process may hide some in-
teresting compromising emanations.

In this paper, we use a different method to de-
tect compromising electromagnetic emanations of key-
boards. First, we obtain the raw signal directly from the
antenna instead of a filtered and demodulated signal with
limited bandwidth. Then, we compute the Short Time
Fourier Transform (STFT), which gives a 3D signal with
time, frequency and amplitude.

Modern analog-to-digital converters (ADC) provide
very high sampling rates (Giga samples per second). If
we connect an ADC directly to a wide-band antenna, we
can import the raw sampled signal to a computer and we
can use software radio libraries to instantly highlight po-
tentially compromising emanations. The STFT compu-
tation of the raw signal reveals the carriers and the peaks
even if they are present only for a short time.

Unfortunately there is no solution to transfer the high
amount of data to a computer in real time. The data
rate is too high for USB 2.0, IEEE 1394, Gigabit Eth-
ernet or Serial ATA (SATA) interfaces. However, with
some smart triggers, we can sample only the (small) in-
teresting part of the signal and we store it in a fast ac-
cess memory. Oscilloscopes provide triggered analog-
to-digital converters with fast memory. We used a Tek-
tronix TDS5104 with 1 Mpt memory and a sample rate
of 5 GS/s. It can acquire electromagnetic emanations up
to 2.5 GHz according to the Nyquist theorem. More-
over, this oscilloscope has antialiasing filters and sup-
ports IEEE 488 General Purpose Interface Bus (GPIB)
communications. We developed a tool to define some
specific triggers (essentially peak detectors) and to ex-
port the acquired data to a computer under GNU/Linux
over Ethernet. Thus the signal can be processed with the
GNU Radio software library and some powerful tools
such as Baudline [29] or the GNU project Octave [13].
The advantage of this method is to process the raw sig-
nal, which is directly sampled from the antenna without

any demodulation. Moreover, all compromising electro-
magnetic emanations up to a frequency of 2.5 GHz are
captured. Thus, with this technique, we are able to high-
light compromising emanations quickly and easily. This
solution is ideal for very short data burst transmissions
used by computer keyboards.

4 Experimental Setup

The objective of this experiment is to observe the ex-
istence of compromising emanations of computer key-
boards when a key is pressed. Obviously electromagnetic
emanations depend on the environment. We defined four
different setups.

Setup 1: The Semi-Anechoic Chamber. We used a pro-
fessional semi-anechoic chamber (7 x 7 meters). Our
aim was not to cancel signal echos but to avoid external
electromagnetic pollution (Faraday cage). The antenna
was placed up to 5 meters from the keyboard connected
to a computer (the maximum distance according to the
echo isolation of the room). The tested keyboard was on
a one meter high table and the computer (PC tower) was
on the ground.

Setup 2: The Office. To give evidence of the feasibility
of the attacks with background noise, we measured the
compromising emanations of the keyboards in a small
office (3 x 5 meters) with two powered computers and
three LCD displays. The electromagnetic background
noise was quite important with a cluster of 40 comput-
ers 10 meters away from the office, more than 60 pow-
ered computers on the same floor and a 802.11n wireless
router at less than 3 meters away from the office. The
antenna was in the office and moved back through the
opened door up to 10 meters away from the keyboard in
order to determine the maximum range.

Setup 3: The Adjacent Office. This setup is similar to
the office setup but we measured the compromising ema-
nations of the keyboards from an adjacent office through
a wall of 15 cm composed of wood and plaster.

Setup 4: The Building. This setup takes place in a flat
which is in a building of five floors in the center of a
mid-size city. The keyboard was in the fifth floor. We
performed measurements with the antenna placed on the
same floor first. Then, we moved the antenna as far as
the basement (up to 20 meter from the keyboard).

Antennas. Since the compromising emanations were
found on frequency bands between 25 MHz and 300
MHz, we used a biconical antenna (50 Ohms VHA
9103 Dipol Balun) to improve the Signal-to-Noise Ratio
(SNR). We also tested if these compromising emanations
can be captured with a smaller antenna such as a simple
loop made of a wire of copper (one meter long).

18th USENIX Security Symposium

USENIX Association

Keyboards. We picked 12 different keyboard models
present in our lab: 7 PS/2 keyboards (Keyboard Al-
A7), 2 USB keyboards (Keyboard B1-B2), 2 Laptop key-
boards (Keyboard C1-C2) and 1 wireless keyboard (Key-
board D1). They were all bought between 2001 and
2008. We also collected measurements with the key-
board connected to a laptop with battery to avoid pos-
sible conductive coupling through the power supply. For
obvious security reasons, we do not give the brand name
and the model of the tested keyboards.

5 Discovering and Exploiting Emanations

To discover compromising emanations, we placed Key-
board A1 in the semi-anechoic chamber and we used the
biconical antenna. A diagram of the experiment is de-
picted in Figure 1. We acquired the raw signal with the
oscilloscope as explained above. Since the memory of
the oscilloscope is limited, we have to precisely trigger
data acquisition. First, we used the earliest falling edge
of the data signal sent when a key is pressed . We phys-
ically connected a probe on the data wire of the cable
between the keyboard and the computer.

Figure 2 gives the STFT of the captured raw signal
when the key E is pressed on an American keyboard.
With only one capture we are able to represent the entire
spectrum along the full acquisition time. In addition, we
have a visual description of all electromagnetic emana-
tions. In particular we clearly see some carriers (vertical
lines) and broadband impulses (horizontal lines). The
three first techniques are based on these compromising
emanations and are detailed in the following sections.

Our objective is to use an electromagnetic trigger,
since we normally do not have access to the data wire.
The discovered broadband impulses (horizontal lines)
can be used as a trigger. Thus, with only an antenna,
we are able to trigger the acquisition of the compromis-
ing electromagnetic emanations. More details are given
below.

Some keyboards do not emit electromagnetic emana-
tions when a key is pressed. But with a different trigger
model, based on peak detector as well, we discovered an-
other kind of emission, continuously generated (even if
no key is pressed). This is the last technique, detailed in
Section 5.4.

5.1 The Falling Edge Transition Technique

To understand how direct compromising emanations
may be generated by keyboards, we need to briefly de-
scribe the PS/2 communication protocol. According
to [9], when a key is pressed, released or held down,
the keyboard sends a packet of information known as a

scan code to the computer. In the default scan code set',
most of the keys are one-byte long encoded. Some ex-
tended keys are two or more bytes long. These codes
can be identified by the fact that their first byte is OXEO.
The protocol used to transmit these scan codes is a bi-
directional serial communication, based on four wires:
Vcce (5 volts), ground, data and clock. For each byte of
the scan code, the keyboard pulls down the clock sig-
nal at a frequency between 10 KHz and 16.7 KHz for
11 clock cycles. When the clock is low, the state of the
signal data is read by the computer. The 11 bits sent
correspond to a start bit (0), 8 bits for the scan code of
the pressed key (least significant bit first), an odd parity
check bit on the byte of the scan code (the bit is set if
there is an even number of 1’s), and finally a stop bit (1).
Figure 3 represents both data and clock signals when the
key E is pressed. Note that the scan code is binded to

JE— - .

[vi
Hloanwane

| Data

BEEE
1 |
NN

[vi
bloanwsno

Clock

K
D
E
K
B 3
TrEe
T

Antenna

[mV]
|
|
1

« E 1

1

|

Time in [ms]

Figure 3: Data, clock and the compromising emanation
captured (semi-anechoic chamber, Keyboard Al) with
the loop antenna at 5 meters (a wire of copper, one me-
ter long) when the key E (0x24) is pressed. Data signal
sends the message: 0 00100100 1 1.

a physical button on the keyboard, it does not represent
the character printed on that key. For instance, the scan
code of E is 0x24 if we consider the American layout
keyboard.

Logic states given by data and clock signals in the key-
board are usually generated by an open collector coupled
to a pull-up resistor. The particularity of this system is
that the duration of the rising edge is significantly longer
(2 ws) than the duration of the falling edge (200 ns).
Thus, the compromising emanation of a falling edge
should be much more powerful (and with a higher max-
imum frequency) than the rising edge. This property is
known and has been already noticed by Kuhn [17, p.35].
Clock and data signals are identically generated. Hence,

IThere are three different scan code sets, but the second one is com-
monly used by default.

USENIX Association

18th USENIX Security Symposium 5

Oscilloscope

.................... g STFT O Figure 2

Peak ' —————————————O Figure 6

V\?iied wiredless .)))) Antenna % A/D

eyboar

trigger
. E Figure 7
> Memory -n—) Filtering ngizgtrl?n —> Keystroke

Figure 1: Diagram of our equipment for the experiments.

Frequency in [MHz]

0 | 20 | |4() | | 60 | 80 | | 100 |

| 120 | 140 | 160 | 180 200 220 240
Il Il Il Il Il Il

o

Time in [ms]

Figure 2: Short Time Fourier Transform (STFT) of the
65536 points)

the compromising emanation detected is the combination
of both signals. However (see Figure 3), the edges of the
data and the clock lines are not superposed. Thus, they
can be easily separated to obtain independent signals.

Since the falling edges of clock signal will always be
at the same place, contrary to the falling edges of data
signal, we can use them to improve our trigger model.
Indeed we consider the detection of a signal based on 11
equidistant falling edges.

Indirect Emanations. If we compare the data signal and
the compromising emanation (see Figure 4) we clearly
see that the electromagnetic signal is not directly related
to the falling edge, as described by Smulders. Indeed, the
durations are not equivalent. Thus, the peaks acquired by
our antenna seem to be indirectly generated by the falling
edges of the combination of clock and data signals. They
are probably generated by a peak of current when the
transistor is switched. Nevertheless, these emanations,
represented by 14 peaks, 11 for the clock signal and 3
for the data signal (see the horizontal lines in Figure 2 or
the peaks in Figure 3) partially describe the logic state of
the data signal and can be exploited.

Collisions. Because only the falling edges are detected,
eventually collisions occur during the keystroke recov-
ery process. For instance, both E (0x24) and G (0x34)

raw signal depicted in Figure 6 (Kaiser windowing of 40,

vi
L U

[mV]
o
¥
£
E
g
E3
3
-
3
3
E

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8
Time in [ms]

Figure 4: A falling edge of the data signal (upper
graph) and the electromagnetic emanation of the key-
board (lower graph). The compromising emission is not
directly generated by the data signal such as described by
Smulders in [30].

share the same trace if we consider only falling edges.
We define the falling edge trace as ‘2’ when both data and
clock peaks are detected and ‘1’ when only a clock peak
is captured. The letters E (see lower graph in Figure 3)
and G may be described by the string 21112112111.

18th USENIX Security Symposium

USENIX Association

In Figure 5 we grouped every one byte-long scan code,
according to their shared falling edge-based traces.

Trace Possible Keys
21111111111 <non-US-1>
21111111121 <Release key>
21111111211 F11 KP KPO SL
21111112111 8 u
21111121111 2 a
21111121211 Caps_Lock
21111211111 F4
21111211211 - ; KP7
21111212111 5t
21112111111 F12 F2 F3
21112111121 Alt+SysRg
21112111211 9 Bksp Esc KP6 NL o
21112112111 3 6eg
21112121111 1 CTRL.L
21112121211 [
21121111111 F5 F7
21121111211 KP- KP2 KP3 KP5 i k
21121112111 bdhijmzx
21121121111 SHIFTL s y
21121121211 ’ ENTER]
21121211111 F6 F8
21121211211 / KP4 1
21121212111 f v
21211111111 F9
21211111211 , KP+ KP. KP9
21211112111 7 cn
21211121111 AltL w
21211121211 SHIFTR \
21211211111 F10 Tab
21211211211 KP1 p
21211212111 Space r
21212111111 F1
21212111211 0 KP8
21212112111 4 vy
21212121111 a
21212121211 =

Figure 5: The one byte-long scan codes classification,
according to the falling edges trace for an American key-
board layout.

Even if collisions appear, falling edge traces may be
used to reduce the subset of possible transmitted scan
codes. Indeed, the average number of potential charac-
ters for a falling edge trace is 2.4222 (2.0556 if we con-
sider only alpha-numeric characters and a uniform dis-
tribution). For example, an attacker who captured the
falling edge-based trace of the word password obtains
asubsetof 3-2-3-3-2-6-2-6 = 7776 potential words, ac-
cording to Figure 5. Thus, if the objective of the attacker
is to recover a secret password, he has significantly re-
duced the test space (the initial set of 36% ~ 24! is low-
ered to 213). Moreover, if the eavesdropped information
concerns an e-mail or a text in English, the plaintext re-

covery process can be improved by selecting only words
contained in a dictionary.

Feature Extraction. The recovery procedure is firstly
based on a trigger model, able to detect 11 equidistant
peaks transmitted in less than 1 ms. Then, we com-
pute the number of peaks, using a peak-detection algo-
rithm and the GNU Radio library. The feature extraction
is based on the number of peaks correlated to the most
probable value of the table depicted in Figure 5. The
main limitation of the recovery procedure is the ability
to trigger this kind of signal.

5.2 The Generalized Transition Technique

The previously described attack is limited to a partial re-
covery of the keystrokes. This is a significant limitation.
We know that between two *2’ traces, there is exactly one
data rising edge. If we are able to detect this transition
we can fully recover the keystrokes.

To highlight potential compromising emanations on
the data rising edge, we use a software band-pass filter to
isolate the frequencies of the broadband impulses (e.g.
105 MHz to 165 MHz of the raw signal in Figure 2).
Figure 7 corresponds to the filtered version of the raw
time-domain signal represented in Figure 6. We remark

8

Keyk;oard A1in Setup 1 a‘t 5 meters

6

Voltage in [mV]
o

0 0.2 0.4 0.6 0.8 1
Time in [ms]

Figure 6: Raw signal (Keyboard A1, Setup 1 at 5 meters
with the biconical antenna) when the key E is pressed.

that the filtering process significantly improves the SNR.
Thus, the peak detection algorithm is much more effi-
cient.

Furthermore, we notice that the energy of the peaks
of the clock falling edges is not constant. Empirically,
clock peaks have more energy when the state of data sig-
nal is high. Indeed, the data signal pull-up resistor is
open. When the clock signal is pulled down, the sur-
plus of energy creates a stronger peak. Hence, the peaks
generated by the falling edge of the clock signal intrinsi-
cally encode the logic state of the data signal. Because

USENIX Association

18th USENIX Security Symposium 7

Keyb‘oard A1 in Setup 1 a‘(5 meters

Voliage in [mV]

0 0.2 0.4 0.6 0.8 1
Time in [ms]

Figure 7: Band-pass (105-165MHz) filtered signal of
Figure 6.

there is exactly one rising edge between two falling edge
traces of ’2’, we simply consider the highest clock peak
as the rising edge data transition. For example in Fig-
ure 7, the rising edge data transitions are respectively at
peaks 5 and 9. Thus, the complete data signal is 0010
0100 which corresponds to 0x24 (E). Thus, we manage
to completely recover the keystrokes. Note that the band-
pass filter improves the previous attack as well. However,
the computation cost prevents real time keystroke recov-
ery without hardware accelerated filters.

Feature Extraction. The recovery procedure is firstly
based on the same trigger model described previously
(11 equidistant peaks detected in less than 1 ms). Then,
we filter the signal to consider only the frequency bands
containing the peak impulses. The feature extraction is
based on the detected peaks. First, we define the thresh-
old between a high peak and a low peak thanks to the
two first peaks. Indeed, because we know that data and
clock are pulled down, the first one corresponds to a state
where clock is high and data is low and the second one
describes the state where both signals are low. Then, we
determine the potential (and colliding) keystrokes with
Figure 5. In our example, it corresponds to the keys
3,6,E,G. Then, we select some bits which differenti-
ate these keys. According to their scan code 3=0x26,
6=0x36, E=0x24, G=0x34 we check the state of the
peaks 4 and 8 in Figure 7, which correspond to respec-
tively the second and the fifth bit of the scan codes. Be-
cause they are both low, we conclude that the transmitted
key is E.

5.3 The Modulation Technique

Figure 2 highlights some carriers with harmonics (verti-
cal lines between 116 MHz and 147 MHz). These com-
promising electromagnetic emissions come from unin-

tentional emanations such as radiations emitted by the
clock, non-linear elements, crosstalk, ground pollution,
etc. Determining theoretically the reasons of these com-
promising radiations is a very complex task. Thus, we
can only sketch some probable causes. The source of
these harmonics corresponds to a carrier of approxi-
mately 4 MHz which is very likely the internal clock of
the microcontroller inside the keyboard. Interestingly, if
we correlate these harmonics with both clock and data
signals, we clearly see modulated signals (in amplitude
and frequency) which fully describe the state of both
clock and data signals, see Figure 8. This means that
the scan code can be completely recovered from these
harmonics.

121 124

ol

Time in [ms]

JoUy

Figure 8: The amplitude and frequency modulations of
the harmonic at 124 MHz correlated to both data and
clock signals (Keyboard A1, semi-anechoic chamber at
5 meters).

Note that even if some strong electromagnetic interfer-
ences emerge, the attacker may choose non-jammed har-
monics to obtain a clear signal. It is even possible to su-
perpose them to improve the SNR. Compared to the pre-
vious techniques, the carrier-based modulation is much
more interesting for distant reception. Indeed, AM and
FM transmissions are generally less disrupted by noise
and obstacles such as walls, floors, etc. Moreover this
technique is able to fully recover the keystrokes. These
indirect emanations — which have no formal explanation,
but are probably based on crosstalk with the ground, the
internal clock of the microcontroller, data and clock sig-
nals — let the attacker recover the keystrokes of a key-
board.

This experiment shows that cheap devices such as key-
boards may radiate indirect emanations, which are much

18th USENIX Security Symposium

USENIX Association

more compromising than direct emanations. Even if the
SNR is smaller, the use of a frequency modulation sig-
nificantly improves the eavesdropping range. Moreover,
the attacker may avoid some noisy frequency bands by
selecting only the clearest harmonics. Furthermore, indi-
rect emanations completely describe both clock and data
signals.

Feature Extraction. The feature extraction is based
on the demodulation in frequency and amplitude of the
captured signal centered on the strongest harmonic. In
our example and according to Figure 8 the carrier cor-
responds to 124 MHz. We used the GNU Radio library
to demodulate the signal. However, we still need to use
the trigger model based on peak detector since the mem-
ory of the oscilloscope is limited. Another option is to
directly capture the signal with the USRP. Indeed, the
lower but continuous sampling rate of the USRP is suf-
ficient to recover the keystrokes. Unfortunately, the sen-
sitivity of the USRP is weaker than the oscilloscope and
the eavesdropping range is limited to less than 2 meters
in the semi-anechoic chamber.

5.4 The Matrix Scan Technique

The techniques described above are related to the use of
PS/2 and some laptop keyboards. However, new key-
boards tend to use USB or wireless communication. In
this section, we present another compromising emana-
tion which concerns all keyboard types: PS/2, USB,
Notebooks and even wireless keyboards. This attack was
previously postulated by Kuhn and Anderson [20] but no
practical data has appeared so far in the open literature.

Almost all keyboards share the same pressed key de-
tection routine. A major technical constraint is to con-
sider a key as pressed if the button is pushed for 10 ms,
see US Patent [31]. Thus every pressed key should be
detected within this time delay. From the manufacturer’s
point of view, there is another main constraint: the cost
of the device. A naive solution to detect pressed keys is
to poll each key in a row. This solution is clearly not op-
timal since it requires a large scan loop routine and thus
longer delays. Moreover important leads (i.e. one circuit
for each key) increase the cost of the device.

A smart solution [31] is to arrange the keys in a matrix.
The keyboard controller, often a 8-bit processor, parses
columns one-by-one and recovers the state of 8 keys at
once. This matrix scan process can be described as 192
keys (some keys may not be used, for instance modern
keyboards use 104/105 keys) arranged in 24 columns and
8 rows. Columns are connected to a driver chip while
rows are connected to a detector chip. Keys are placed
at the intersection of columns and rows. Each key is an
analog switch between a column and a row. The key-
board controller pulses each column through the driver

(using the address bus and the strobe signal). The detec-
tor measures the states of the 8 rows. Note that a row
is connected to 24 keys, but only one may be active, the
one selected by the driver. Suppose we pressed the key
corresponding to column 3 and row 5. The controller
pulses columns ..., 22, 23, 24, 1, 2 with no key event.
Now, the controller pulses column 3. Row 5, which cor-
responds to the pressed key, is detected. The keyboard
starts a subroutine to transmit the scan code of the key
to the computer. This subroutine takes some time. Thus,
the next column pulse sent by the scan routine is delayed.

Columns in the matrix are long leads since they con-
nect generally 8 keys. According to [31], these columns
are continuously pulsed one-by-one for at least 3us.
Thus, these leads may act as an antenna and generate
electromagnetic emanations. If an attacker is able to cap-
ture these emanations, he can easily recover the column
of the pressed key. Indeed, the following pulse will be
delayed.

To figure out if these emanations can be captured, we
picked Keyboard A6 and acquired the signal being one
meter from the keyboard in the semi-anechoic chamber
with a simple one meter long wire of copper as antenna.
Figure 9 gives the repeated peak burst continuously emit-
ted by the keyboard. Figure 10 shows the zoomed com-
promising emanations when the key C resp. key H is
pressed.

20

Key‘board A7 in Setup 1 ‘al 1 meter

Voltage in [mV]

-20

0 2 4 6 8 10
Time in [ms]

Figure 9: A large view of compromising emanations ex-
ploited by the Matrix Scan Technique, (Keyboard A7,
semi-anechoic chamber at 1 meter).

The key matrix arrangement may vary, depending on
the manufacturer and the keyboard model. We disman-
tled a keyboard and analyzed the key circuit layout to
retrieve the matrix key specifications. The right part of
the keyboard layout is depicted on Figure 11. We clearly
identify a column (black) and fours rows.

Figure 12 represents the groups of alphanumeric scan
codes according to their indirect compromising emana-

USENIX Association

18th USENIX Security Symposium 9

Keyboarr‘v A6in Setup 1 at 1 " eters (C) ——

Voltage in [mV]
= o

0 0.2 0.4 0.6 0.8 1

Voltage in [mV]

Time in [ms]

Figure 10: The matrix scan emanations for the letters C
and H (Keyboard A6, Setup 1 at 1 meter).

tions (or column number) for Keyboard A6. We describe
each electromagnetic signal as a number corresponding
to the delayed peak. For example, in Figure 10, the key
C is described as 12 and the key H as 7.

Even if this signal does not fully describe the pressed
key, it still gives partial information on the transmitted
scan code, i.e. the column number. So, as described in
the Falling Edge Transition Technique, collisions occurs
between key codes. Note that this attack is less efficient
than the first one since it has (for this specific keyboard)
in average 5.14286 potential key codes for a keystroke
(alpha-numeric only). However, an exhaustive search on
the subset is still a major improvement.

Note that the matrix scan routine loops continuously.
When no key is pressed, we still have a signal composed
of multiple equidistant peaks. These emanations may be
used to remotely detect the presence of powered comput-
ers.

Concerning wireless keyboards, the wireless data burst
transmission can be used as an electromagnetic trigger
to detect exactly when a key is pressed, while the ma-
trix scan emanations are used to determine the column
it belongs to. Moreover the ground between the key-
board and the computer is obviously not shared, thus the
compromising electromagnetic emanations are stronger
than those emitted by wired keyboards. Note that we do
not consider the security of the wireless communication
protocol. Some wireless keyboards use a weakly or not
encrypted channel to communicate with the computer,
see [8, 23].

Feature Extraction. To partially recover keystrokes, we
continuously monitor the compromising emanations of
the matrix scan routine with a specific trigger model.
According to Figure 12 the six first peaks are always
present, as well as the last three peaks. Indeed, these
peaks are never missing (or delayed). Thus, we use this

Figure 11: Scan matrix polls columns one-by-one. We
are able to deduce on which column the pressed key be-
longs to. On this keyboard, there will be a collision
between keystrokes 7, U, J, M, and others non alpha-
numeric keys such as F6, F7,”, and the dot.

Peak trace Possible Keys
7 6 7h JMNUY
8 4 5 BFGRTYV
9 Backspace ENTER
10 9L O
11 0P
12 3 8CDETITK
13 1 2SWXZ
14 SPACE A Q

Figure 12: The alpha-numeric key classification accord-
ing to the key scanning routing compromising emana-
tions (Keyboard A6 with American layout).

10

18th USENIX Security Symposium

USENIX Association

fixed pattern to define a trigger model. Moreover, the
matrix scan continuously radiates compromising emana-
tions since the key is pressed. When a keystroke subset is
detected, we acquire multiple samples until another pat-
tern is detected. Therefore, we pick the most often cap-
tured pattern.

5.5 Distinguishing Keystrokes from Multi-
ple Keyboards

The falling edge-based traces are distinguishable de-
pending on the keyboard model. Indeed, according to
the frequency of the peaks, the clock frequency incon-
sistencies, the duration between clock and data falling
edges, we are able to deduce a specific fingerprint for
every keyboard. When multiple keyboards are radiating
at the same time, we are able to identify and differenti-
ate them. For example, we measured a clock frequency
of 12.751 KHz when a key was pressed on a keyboard
and the clock frequency was 13.752 KHz when a key
was pressed on another keyboard. Thus, when an em-
anation is captured, we measure the time between two
falling edges of the clock and then we deduce if the scan
code comes from first or the second keyboard. In prac-
tice, we were able to differentiate all the keyboards we
tested, even if the brand and the model were equivalent.

This method can be applied to the Falling Edge Tran-
sition Technique, the Generalized Transition Technique
and the Modulation Technique since they rely on the
same kind of signal. The distinguishing process for
the Modulation Technique can even be improved by us-
ing the clock frequency inconsistencies of the micro-
controller as another identifier. For the Matrix Scan
Technique, the compromising electromagnetic emana-
tion burst emitted every 2.5 ms (see Figure 9) can be
used as a synchronization signal to identify a specific
keyboard emission among multiple keyboards. Addition-
ally, the duration between the scan peaks is different, de-
pending on the keyboard model. Thus, it may be used
to identify the source keyboard. However, the continu-
ous emission significantly deteriorates the identification
process.

Another physical element can be used to distinguish
keystrokes from multiple keyboards. For the three first
techniques, the broadband impulse range is determined
by the length of the keyboard cable, which forms a reso-
nant dipole. Thus, we can use this particularity to iden-
tify the source of a compromising emanation. An inter-
esting remark is that the length of the wire connecting
the computer to the keyboard is shorter in notebooks.
The frequency band of the compromising emanation is
higher and the SNR smaller. The Matrix Scan Technique
emanates at a higher frequency since the leads of the key-
board layout, acting as an antenna, are shorter.

6 Evaluation in Different Environments

While we have demonstrated techniques that should be
able to extract information from keyboard emanations,
we have not studied how they are affected by different
environments. In this section we study the accuracy of
our approaches in all the environments described. Our
analysis indicates that keyboard emanations are indeed
problematic in practical scenarios.

Evaluating the emission risks of these attacks is not
an easy task. Indeed, these results highly depend on
the antenna, the trigger model, pass-band filters, peak
detection, etc. Moreover, we used trivial filtering pro-
cesses and basic signal processing techniques. These
methods could be significantly improved using beam-
forming, smart antennas, better filters and complex trig-
gers. In addition, measurements in real environments
but the semi-anechoic chamber were subject to massive
change, depending on the electromagnetic interferences.
Figure 13 gives the list of vulnerable keyboards in all
setups, according to the four techniques previously de-
scribed. Note that all the tested keyboards (PS/2, USB,
wireless and laptop) are vulnerable to at least one of these
attacks. First, we present the measurements in Setup 1
(semi-anechoic chamber) to guarantee some stable re-
sults.

| Keyboard | Type | FETT | GTT | MT | MST |

Al PS/2 v v v v
A2 PS/2 v v v
A3 PS/2 v v v v
A4 PS/2 v v v

A5 PS/2 v v v

A6 PS/2 v v v
A7 PS/2 v v
Bl USB v
B2 USB v
Cl LT v v v
C2 LT v
DI Wi v

Figure 13: The vulnerability of the tested keyboards
according to the Falling Edge Transition Technique
(FETT), the Generalized Transition Technique (GTT),
the Modulation Technique (MT) and the Matrix Scan
Technique (MST).

6.1 Results in the Semi-Anechoic Chamber

We consider an attack as successful when we are able
to correctly recover more than 95% of more than 500
keystrokes. The Falling Edge Transition Technique, the
Generalized Transition Technique and the Modulation
Technique are successful in the semi-anechoic chamber

USENIX Association

18th USENIX Security Symposium 11

for all vulnerable keyboards. This means that we can
recover the keystrokes (fully or partially) to at least 5
meters (the maximum distance inside the semi-anechoic
chamber). However, the Matrix Scan Technique is lim-
ited to a range of 2 to 5 meters, depending on the key-
board. Figure 14 represents the probability of success
of the Matrix Scan Technique according to the distance
between the tested keyboard and the antenna.

e T "
\
\
\
\

\

\
X\

Less vulnerable keyboard =——s—
Most vulner‘able keyboard

Success probability of keystrokes recovery

‘ \»_.._M-—-W..._,

[1 2 3 4 5
Distance [m]

0.1

Figure 14: The success probability of the Matrix Scan
Technique in the semi-anechoic chamber according to
the distance.

We notice that the transition between a successful and
a missed attack is fast. Indeed, The correctness of the
recovery process is based on the trigger of the oscillo-
scope. If a peak is not detected, the captured signal is
incomplete and the recovered keystroke is wrong. Thus,
under a SNR of 6 dB there is nearly no chance to success-
fully detect the peaks. The SNR is computed according
to the average value of the peaks in volts divided by the
RMS of the noise in volts.

Considering 6 dB of SNR as a minimum, we are able
to estimate the theoretical maximum distance to suc-
cessfully recover the keystrokes for all techniques in the
semi-anechoic chamber. Figure 15 gives the estimated
maximum distance range according to the weakest and
the strongest keyboard.

In Figure 16 the upper graph gives the SNR of the
Falling Edge Transition Technique and the Generalized
Transition Technique on Keyboard Al from 1 meter to
5 meters. The middle graph details the SNR (in dB) of
the strongest frequency carrier of the Modulation Tech-
nique for the same keyboard. Thus, we can estimate the
maximum range of these attacks according to their SNR.
The lower graph gives the SNR of the Matrix Scan Tech-
nique for the same keyboard. All the measurements were
collected in the semi-anechoic chamber.

T
Maximum Distance ses=—s

Distance in [m]

FETT GTT MT MST

Figure 15: The theoretically estimated maximum dis-
tance range to successfully recover 95% of the keystroke
according the four techniques in the semi-anechoic
chamber, from the less vulnerable to the most vulnera-
ble keyboard.

SNR

Power in [dB]

N
“ T

SNR
QONPOOING

=TT
o
n
~
o
@
©
o
IN
IS
o
o

Distance in [m]

Figure 16: Signal-to-Noise ratio of the peaks [V] / RMS
of the noise [V] for the Falling Edge Transition Tech-
nique and the Generalized Transition Technique (upper
graph). SNR [dB] of the compromising carrier of the
Modulation Technique (middle graph). SNR of the peaks
[V] / RMS of the noise [V] for Matrix Scan Technique
(lower graph).

6.2 Results in Practical Environments

The second phase is to test these techniques in some
practical environments. The main difference is the
presence of a strong electromagnetic background noise.
However, all the techniques remain applicable.

Setup 2: The Office. Figure 17 gives the probability of
success of the Generalized Transition Technique on Key-
board A1 measured in the office according to the distance
between the antenna and the keyboard. We notice that the
sharp transition is present as well when the SNR of the
peaks falls under 6 dB. The maximum range of this at-

12

18th USENIX Security Symposium

USENIX Association

tack is between 3 and 7.5 meters depending on the tested
keyboard. Note that these values were unstable due to a
changing background noise. They correspond to an av-
erage on multiple measurements.

y \ \
\ \

0.5 \ \
0.4 \ \
0.3 \ \
0.2 \ \
0.1

Less vulnerable keyboard =—s—

Most vulner‘able keyboard - . "

0 2 4 6 8 10
Distance [m]

Success probability of keystrokes recovery

Figure 17: The success probability of the Generalized
Transition Technique in the office, according to the dis-
tance between the keyboard and the antenna (biconical).

The Modulation Technique is based on a signal car-
rier. The SNR of this carrier should determine the range
of the attack. However, we obtained better results with
the same trigger model used in the Falling Edge Transi-
tion Technique and the Generalized Transition Technique
than one based on the carrier signal only.

Because the Matrix Scan Technique is related to the
detection of the peaks, we noticed the same attenuation
when the SNR falls under 6 dB. Figure 18 gives the max-
imum range for the four techniques measured in the of-
fice.

T
Maximum Distance set=—t

Distance in [m]
>

FETT GTT MT MST

Figure 18: Maximum distance ranges, from the least vul-
nerable keyboard to the most vulnerable keyboard, to
successfully recover 95% of the keystroke according to
the techniques (in the office with the biconical antenna).

Setup 3: The Adjacent Office. Results on this setup
are basically the same as the previous setup (the office),
except that the wall made of plaster and wood removes 3
dB to the SNR.

Setup 4: The Building. We notice some unexpected re-
sults in this setup. Indeed, we are able to capture the sig-
nal and successfully recover the keystroke with a proba-
bility higher than 95% 20 meters away from the keyboard
(i.e. the largest distance inside the building). Sometimes
the environment can be extremely favorable to the eaves-
dropping process. For example, metallic structures such
as pipes or electric wires may act as antennas and sig-
nificantly improve the eavesdropping range. In this case,
the compromising emanations are carried by the shared
ground of the electric line. Thus, the range is defined by
the distance between the keyboard and the shared ground
and the distance between the shared ground and the an-
tenna. Note that the Matrix Scan Technique is easily dis-
rupted by a noisy shared ground, since the trigger model
is more complicated and the emanations weaker. For
this technique, we were only able to successfully capture
compromising emanations when the keyboard is at less
than one meter away from the shared ground. This setup
is interesting because it corresponds to a practical sce-
nario where the eavesdropper is placed in the basement
of a building and tries to recover the keystrokes of a key-
board at the fifth floor. Unfortunately, it was impossible
to provide stable measurements since they highly depend
on the environment. We noticed that the main (metallic)
water pipe of the building acts as an antenna as well and
can be used in place of the shared ground. Furthermore,
this antenna is less polluted by electronic devices.

Perfect Trigger. We tried the same experiment in the of-
fice, but the background noise was too strong. Indeed, we
were not able to successfully detect the compromising
emissions. However, with a probe physically connected
to the data wire, we correctly triggered the emanations.
Indeed, the electromagnetic compromising emissions are
present in the shared ground. The limitation concerns
only the trigger. All the techniques were applicable on
the whole floor (about 20 meters) with the keyboard one
meter away from the shared ground.

Obviously, you can directly connect the oscilloscope
to the shared ground of the building to eavesdrop the
keystrokes. Note that an old PC tower used to supply
tested keyboards carries the compromising emanations
directly through the shared ground. But, this is out of
the scope of this paper since we focused our research on
electromagnetic emanations only. To avoid such conduc-
tive coupling through power supply, we performed our
measurements with the keyboards connected to a battery
powered laptop.

USENIX Association

18th USENIX Security Symposium 13

7 Countermeasures

In this Section, we suggest some possible countermea-
sures to protect keyboards against the four attacks.

The first solution to avoid the compromising emana-
tions seems trivial. We should shield the keyboard to
significantly reduce all electromagnetic radiations. Many
elements inside the keyboard may generate emanations:
the internal electronic components of the keyboard, the
communication cable, and the components of the moth-
erboard inside the computer. Thus, to eliminate these
emanations, we have to shield the whole keyboard, the
cable, and a part of the motherboard of the computer. We
discussed with a manufacturer and he pointed out that the
price to shield the entire keyboard will at least double the
price of the device. This solution may not be applica-
ble for cost reasons. One can find on the market some
keyboards which respect the NATO SDIP-27 standard.
All these documents remain classified and no informa-
tion is available on the actual emission limit or detailed
measurement procedures. Another solution is to protect
the room where vulnerable keyboards are used. For ex-
ample, the room can be shielded or a secure physical
perimeter can be defined around the room, for instance
100 meters. Attacks 1, 2 and 3 are directly related to the
PS/2 protocol. One solution to avoid unintended infor-
mation leaks is to encrypt the bi-directional serial com-
munication, see [3]. In modern keyboards, one chip con-
tains the controller, the driver, the detector, and the com-
munication interface. So, the encryption may be com-
puted in this chip and no direct compromising emana-
tions related to the serial communication will appear. At-
tack 4 is related to the scan matrix loop. A solution could
be to design a new scanning process algorithm. Even if
keyboards still use scan matrix loop routine, there exists
some applicable solutions. As described by Anderson
and Kuhn [3], the loop routine can be randomized. Actu-
ally columns are scanned in the incremental order 1, 2, 3,
..., 23,24, but it seems possible to change the order ran-
domly. Moreover, we can add some random delays dur-
ing the scanning loop process to obfuscate the execution
of the subroutine. Both solutions do not avoid electro-
magnetic emanations, but makes the keystrokes recovery
process theoretically impossible. Paavilainen [27] also
proposed a solution. It consists in high-frequency filter-
ing matrix signals before they are fed into the keyboard.
This will significantly limits compromising electromag-
netic emanations.

8 Extensions

Our study has shown that electromagnetic emanations of
modern wired and wireless keyboards may be exploited
from a distance to passively recover keystrokes. In this

section, we detail some extensions and remarks.

The main limitation of these attacks concerns the trig-
ger of the data acquisition. This can be improved with an
independent process, using specific filters between the
antenna and the ADC. Additionally, other compromising
emanations such as the sound of the pressed key could be
used as trigger. Furthermore, modern techniques such as
beamforming could significantly improve the noise fil-
tering.

Another improvement would be to simultaneously
leverage multiple techniques. For keyboards that are vul-
nerable to more than one technique, we could correlate
the results of the different techniques to reduce uncer-
tainty in our guesses.

Another extension would be to accelerate these attacks
with dedicated hardware. Indeed, the acquisition time
(i.e. the transfer of the data to a computer), the filter-
ing and decoding processes take time (about two seconds
per keystroke). With dedicated system and hardware-
based computation such as FPGAs, the acquisition, fil-
tering and decoding processes can obviously be instan-
taneous (e.g. less than the minimum time between two
keystrokes). However, the keystrokes distinguishing pro-
cess when multiple keyboards are radiating is still diffi-
cult to implement especially for the Matrix Scan Tech-
nique, since the acquisition process should be continu-
ous.

We spend time experimenting with different types of
antennas and analog-to-digital converters. In particular,
we used the USRP and the GNU Radio library to avoid
the need of an oscilloscope and to obtain a portable ver-
sion of the Modulation Technique. Indeed, we can hide
the USRP with battery and a laptop in a bag, the antenna
can be replaced by a simple wire of copper (one meter
long) which is taped on the attacker’s body hidden under
his clothes. With this transportable setup, we are able to
recover keystrokes from vulnerable keyboards stealthily.
However the eavesdropping range is less than two me-
ters.

9 Conclusion

We have provided evidence that modern keyboards ra-
diate compromising electromagnetic emanations. The
four techniques presented in this paper prove that these
inexpensive devices are generally not sufficiently pro-
tected against compromising emanations. Additionally,
we show that these emanations can be captured with rel-
atively inexpensive equipment and keystrokes are recov-
ered not only in the semi-anechoic chamber but in some
practical environments as well.

The consequences of these attacks is that compromis-
ing electromagnetic emanations of keyboards still rep-
resent a security risk. PS/2, USB laptop and wireless

14

18th USENIX Security Symposium

USENIX Association

keyboards are vulnerable. Moreover, there is no soft-
ware patch to avoid these attacks. We have to replace the
hardware to obtain safe devices. Due to cost pressure in
the design, manufacturers may not systematically protect
keyboards. However, some (expensive) secure keyboards
already exist but they are mainly bought by military or-
ganizations or governments.

The discovery of these attacks was directly related to
our method based on the analysis of the entire spectrum
and the computation of Short Time Fourier Transform.
This technique has some pros such as the human-based
visual detection of compromising emanations, the large
spectrum bandwidth, the use of the raw signal without
RF front-ends and the post-demodulation using software
libraries. The cons are the limited memory and the diffi-
culty to obtain efficient triggers. However, for short data
bursts, this solution seems relevant.

Future works should consider similar devices, such as
keypads used in cash dispensers (ATM), mobile phone
keypads, digicodes, printers, wireless routers etc. An-
other major point is to avoid the use of a peak detec-
tion algorithm since it is the main limitation of these at-
tacks. The algorithms of the feature extractions could
be improved as well. The correlation of these attacks
with non-electromagnetic compromising emanation at-
tacks such as optical, acoustic or time attacks could sig-
nificantly improve the keystroke recovery process.

We discussed with a few agencies interested by our
videos [36]. They confirmed that this kind of attack
has been practically done since the 1980’s on old com-
puter keyboards, with sharp transitions and high volt-
ages. However, they were not aware on the feasibility
of these attacks on modern keyboards. Some of these
attacks were not known to them.

Acknowledgments

We gratefully thank Pierre Zweiacker and Farhad
Rachidi from the Power Systems Laboratory (EPFL) for
the semi-anechoic chamber and their precious advices.
We also thank Eric Augé, Lucas Ballard, David Jilli,
Markus Kuhn, Eric Olson and the anonymous review-
ers for their extremely constructive suggestions and com-
ments.

References

[1] AGRAWAL, D., ARCHAMBEAULT, B., RAa0, J.R.,
AND ROHATGI, P. The EM Side-Channel(s). In
CHES (2002), B. S. K. Jr., Cetin Kaya Kog, and
C. Paar, Eds., vol. 2523 of Lecture Notes in Com-
puter Science, Springer, pp. 29-45.

[2] ANDERSON, R. J., AND KUHN, M. G. Soft Tem-
pest — An Opportunity for NATO. Protecting NATO
Information Systems in the 21st Century, Washing-
ton, DC, Oct 25-26 (1999).

[3] ANDERSON, R. J., AND KUHN, M. G. Lost Cost
Countermeasures Against Compromising Electro-
magnetic Computer Emanations. United States
Patent US 6,721,324 B1, 2004.

[4] AsoNov, D., AND AGRAWAL, R. Keyboard
Acoustic Emanations. In IEEE Symposium on Se-
curity and Privacy (2004), IEEE Computer Society,

pp- 3-11.

[5] BACKES, M., DURMUTH, M., AND UNRUH, D.
Compromising reflections-or-how to read lcd mon-
itors around the corner. In IEEE Symposium on Se-
curity and Privacy (2008), P. McDaniel and A. Ru-
bin, Eds., IEEE Computer Society, pp. 158—169.

[6] BALZAROTTI, D., CovA, M., AND VIGNA, G.
Clearshot: Eavesdropping on keyboard input from
video. In IEEE Symposium on Security and Pri-
vacy (2008), P. McDaniel and A. Rubin, Eds., IEEE
Computer Society, pp. 170-183.

[71 BERGER, Y., WOOL, A., AND YEREDOR, A.
Dictionary attacks using keyboard acoustic ema-
nations. In ACM Conference on Computer and
Communications Security (2006), A. Juels, R. N.
Wright, and S. D. C. di Vimercati, Eds., ACM,
pp. 245-254.

[8] BRANDT, A. Privacy Watch: Wire-
less Keyboards that Blab, January 2003.
http://www.pcworld.com/article/108712/
privacy_watch_wireless_keyboards_that_blab.html.

[9] CHAPWESKE, A. The PS/2 Mouse/Keyboard Pro-
tocol. http://www.computer-engineering.org/.

[10] CISPR. The International Spe-
cial Commitee on Radio Interference.
http://www.iec.ch/zone/emc/emc cis.htm.

[11] CORRELL, J. T. Igloo White - Air Force Magazine
Online 87, 2004.

[12] DYNAMIC SCIENCES INTERNATIONAL,
INc. R-1550a tempest receiver, 2008.
http://www.dynamicsciences.com/client/
show_product/33.

[13] EATSON, J. GNU Octave, 2008.

http://www.gnu.org/software/octave/.

[14] ETTUS, M. The Universal Software Radio Periph-
eral or USRP, 2008. http://www.ettus.com/.

USENIX Association

18th USENIX Security Symposium 15

[15]

[16]

[17]

[19]

[20]

[23]

[24]

[26]

FCC. Federal Communications Commission.
http://www.fcc.gov.

GANDOLFI, K., MOURTEL, C., AND OLIVIER,
F. Electromagnetic analysis: Concrete results. In
CHES (2001), Cetin Kaya Kog¢, D. Naccache, and
C. Paar, Eds., vol. 2162 of Lecture Notes in Com-
puter Science, Springer, pp. 251-261.

KuHnN, M. G. Compromising Emanations: Eaves-
dropping risks of Computer Displays. 7Technical
Report UCAM-CL-TR-577 (2003).

KunN, M. G. Security limits for compromis-
ing emanations. In CHES (2005), J. R. Rao and
B. Sunar, Eds., vol. 3659 of Lecture Notes in Com-
puter Science, Springer, pp. 265-279.

KUHN, M. G. Dynamic Sciences R-1250 Receiver,
2008. http://www.cl.cam.ac.uk/ mgk25/r1250/.

KUHN, M. G., AND ANDERSON, R. J. Soft
Tempest: Hidden Data Transmission Using Elec-
tromagnetic Emanations. In Information Hiding
(1998), D. Aucsmith, Ed., vol. 1525 of Lecture
Notes in Computer Science, Springer, pp. 124-142.

LOUGHRY, J., AND UMPHRESS, D. A. Informa-
tion leakage from optical emanations. ACM Trans.
Inf. Syst. Secur. 5, 3 (2002), 262-289.

MIL-STD-461. Electromagnetic
Characteristics Requirements for
https://acc.dau.mil/

CommunityBrowser.aspx?id=122817.

Interference
Equipment.

MOSER, M., AND SCHRODEL, P. 27MHz
Wireless Keyboard Analaysis Report, 2005.
http://www.blackhat.com/presentations/bh-dc-08/
Moser/Whitepaper/bh-dc-08-moser-WP.pdf.

MULDER, E. D., ORS, S. B., PRENEEL, B., AND
VERBAUWHEDE, I. Differential power and elec-
tromagnetic attacks on a FPGA implementation of
elliptic curve cryptosystems. Computers & Electri-
cal Engineering 33, 5-6 (2007), 367-382.

NALTY, B. C. The war against trucks: aerial in-
terdiction in southern Laos, 1968-1972. Air Force
History and Museums Program, United States Air
Force, 2005.

TEM-
2007.

NATIONAL SECURITY AGENCY.
PEST: A Signal Problem,
http://www.nsa.gov/public_info/_files/
cryptologic_spectrum/tempest.pdf.

[27] PAAVILAINEN, R. Method and device for signal
protection. United States Patent US 7,356,626 B2,
2008.

[28] QUISQUATER, J.-J., AND SAMYDE, D. Electro-
magnetic analysis (ema): Measures and counter-
measures for smart cards. In E-smart (2001), 1. At-
tali and T. P. Jensen, Eds., vol. 2140 of Lecture
Notes in Computer Science, Springer, pp. 200-210.

[29] SiGBLIPS DSP ENGINEERING. Baudline, 2008.

http://www.baudline.com.

[30] SMULDERS, P. The Threat of Information Theft by
Reception of Electromagnetic Radiation from RS-
232 Cables. Computers and Security 9, 1 (1990),

53-58.

[31] SONDERMAN, E. L., AND DAvVIS, W. Z. Scan-
controlled keyboard. United States Patent US

4,277,780, 1981.

[32] SONG, D. X., WAGNER, D., AND TIAN, X. Tim-
ing analysis of keystrokes and timing attacks on
ssh. In SSYM’01: Proceedings of the 10th con-
ference on USENIX Security Symposium (Berkeley,

CA, USA, 2001), USENIX Association, pp. 25-25.

[33] TANAKA, H. Information leakage via electromag-
netic emanations and evaluation of tempest coun-
termeasures. In ICISS (2007), P. D. McDaniel and
S. K. Gupta, Eds., vol. 4812 of Lecture Notes in
Computer Science, Springer, pp. 167-179.

[34] vAN Eck, W. Electromagnetic radiation from
video display units: an eavesdropping risk? Com-
put. Secur. 4,4 (1985), 269-286.

[35] VARIOUS AUTHORS. The GNU Software Radio,
2008. http://www.gnuradio.org/.

[36] VUAGNOUX, M., AND PASINI, S. Videos
of the Compromising Electromagnetic Ema-
nations of Wired Keyboards, October 2008.
http://lasecwww.epfl.ch/keyboard/.

[37] YOUNG, J. NSA Tempest Documents, 2008.
http://cryptome.info/0001/nsa-tempest.htm.

[38] ZHUANG, L., ZHOU, F., AND TYGAR, J. D. Key-
board acoustic emanations revisited. In ACM Con-
ference on Computer and Communications Security
(2005), V. Atluri, C. Meadows, and A. Juels, Eds.,
ACM, pp. 373-382.

16

18th USENIX Security Symposium

USENIX Association

Peeping Tom in the Neighborhood: Keystroke Eavesdropping on Multi-User

Systems
Kehuan Zhang XiaoFeng Wang
Indiana University, Bloomington Indiana University, Bloomington
kehzhang @indiana.edu xw7@indiana.edu

Abstract

A multi-user system usually involves a large amount of
information shared among its users. The security impli-
cations of such information can never be underestimated.
In this paper, we present a new attack that allows a ma-
licious user to eavesdrop on other users’ keystrokes us-
ing such information. Our attack takes advantage of the
stack information of a process disclosed by its virtual
file within procfs, the process file system supported by
Linux. We show that on a multi-core system, the ESP
of a process when it is making system calls can be ef-
fectively sampled by a “shadow” program that continu-
ously reads the public statistical information of the pro-
cess. Such a sampling is shown to be reliable even in the
presence of multiple users, when the system is under a
realistic workload. From the ESP content, a keystroke
event can be identified if they trigger system calls. As a
result, we can accurately determine inter-keystroke tim-
ings and launch a timing attack to infer the characters the
victim entered.

We developed techniques for automatically analyzing
an application’s binary executable to extract the ESP pat-
tern that fingerprints a keystroke event. The occurrences
of such a pattern are identified from an ESP trace the
shadow program records from the application’s runtime
to calculate timings. These timings are further analyzed
using a Hidden Markov Model and other public informa-
tion related to the victim on a multi-user system. Our
experimental study demonstrates that our attack greatly
facilitates password cracking and also works very well
on recognizing English words.

1 Introduction

Multi-user operating systems and application software
have been in use for decades and are still pervasive to-
day. Those systems allow concurrent access by multiple
users so as to facilitate effective sharing of computing

resources. Such an approach, however, is fraught with
security risks: without proper protection in place, one’s
sensitive information can be exposed to unintended par-
ties on the same system. This threat is often dealt with
by an access control mechanism that confines each user’s
activities to her compartment. As an example, programs
running in a user’s account are typically not allowed to
touch the data in another account without the permission
of the owner of that account. The problem is that dif-
ferent users do need to interact with each other, and they
usually expect this to happen in a convenient way. As
a result, most multi-user systems tend to trade security
and privacy for functionality, letting certain information
go across the boundaries between the compartments. For
example, the process status command ps displays the
information of currently-running processes; while this is
necessary for the purpose of system administration and
collaborative resource sharing, the command also en-
ables one to peek into others’ activities such as the pro-
grams they run.

In this paper, we show that such seemingly minor
information leaks can have more serious consequences
than the system designer thought. We present a new at-
tack in which a malicious user can eavesdrop on others’
keystrokes using nothing but her non-privileged account.
Our attack takes advantage of the information disclosed
by procfs [19], the process file system supported by most
Unix-like operating systems such as Linux, BSD, Solaris
and IBM AIX. Procfs contains a hierarchy of virtual files
that describe the current kernel state, including statistical
information about the memory of processes and some of
their register values. These files are used by the programs
like ps and top to collect system information and can
also help software debugging. By default, many of the
files are readable for all users of a system, which nat-
urally gives rise to the concern whether their contents
could disclose sensitive user information. This concern
has been confirmed by our study.

The attack we describe in this paper leverages the

USENIX Association

18th USENIX Security Symposium 17

procfs information of a process to infer the keystroke in-
puts it receives. Such information includes the contents
of the extended stack pointer (ESP) and extended instruc-
tion pointer (EIP) of the process, which are present in the
file /proc/pid/stat on a Linux system, where pid
is the ID of the process. In response to keystrokes, an
application could make system calls to act on these in-
puts, which is characterized by a sequence of ESP/EIP
values. Such a sequence can be identified through ana-
lyzing the binary executables of the application and used
as a pattern to fingerprint the program behavior related
to keystrokes. To detect the keystroke event at runtime,
we can match the pattern to the ESP/EIP values acquired
through continuously reading from the stat file of the
application’s process. As we found in our research, this
is completely realistic on a multi-core system, where the
program logging those register values can run side by
side with its target process. As such, we can figure out
when a user strokes a key and use inter-keystroke tim-
ings to infer the key sequences [26]. This attack can be
automated using the techniques for automatic program
analysis [20, 23].

Compared with existing side-channel attacks on
keystroke inputs [26, 3], our approach significantly low-
ers the bar for launching a successful attack on a multi-
user system. Specifically, attacks using keyboard acous-
tic emanations [3, 33, 2] require physically implanting a
recording device to record the sound when a user’s typ-
ing, whereas our attack just needs a normal user account
for running a non-privileged program. The timing attack
on SSH proposed in the prior work [26] estimates inter-
keystroke timings from the packets transmitting pass-
words. However, these packets cannot be deterministi-
cally identified from an encrypted connection [13]. In
contrast, our attack detects keystrokes from an applica-
tion’s execution, which is much more reliable, and also
works when the victim uses the system locally. Actually,
we can do more with an application’s semantic informa-
tion recovered from its executable and procfs. For exam-
ple, once we observe that the same user runs the com-
mand su multiple times through SSH, we can assume
that the key sequences she entered in these interactions
actually belong to the same password, and thus accumu-
late their timing sequences to infer her password, which
is more effective than using only a single sequence as
the prior work [26] does. As another example, we can
even tell when a user is typing her username and when
she inputs her password if these two events have different
ESP/EIP patterns in an application.

This paper makes the following contributions:

e Novel techniques for determining inter-keystroke
timings. We propose a suite of new techniques that
accurately detects keystrokes and determines inter-
keystroke timings on Linux. Our approach includes

an automatic program analyzer that extracts from
the binary executable of an application the instruc-
tions related to keystroke events, which are used to
build a pattern that fingerprints the events. During
the execution of the application, we use a shadow
program to log a trace of its ESP/EIP values from
procfs. The trace is searched for the occurrences of
the pattern to identify inter-keystroke timing. Our
attack does not need to change the application un-
der surveillance, and works even in the presence of
address space layout randomization [29] and realis-
tic workloads. Our research also demonstrates that
though other UNIX-like systems (e.g., FreeBSD
and OpenSolaris) do not publish these register val-
ues, they are subject to similar attacks that utilize
other information disclosed by their procfs.

e Keystroke analysis. We augmented the existing
keystroke analysis technique [26] with semantic
information: once multiple timing sequences are
found to be associated with the same sequence of
keys, our approach can combine them together to
infer these keys, which turns out to be very effec-
tive. We also took advantage of the information re-
garding the victim’s writing style to learn the En-
glish words she types.

o [mplementation and evaluations. We implemented
an automatic attack tool and evaluated it using real
applications, including vim, SSH and Gedit. Our
experimental study demonstrates that our attack is
realistic: inter-keystroke timings can be reliably
collected even when the system is under a realistic
workload. We also discuss how to defend against
this attack.

The attack we propose aims at keystroke eavesdrop-
ping. However, the privacy implication of disclosing the
ESP/EIP information of other users’ process can be much
more significant. With our techniques, such information
can be conveniently converted to a system-call sequence
that describes the behavior of the process, and some-
times, the data it works on and the activities of its users.
As a result, sensitive information within the process can
be inferred under some circumstances: for example, it is
possible to monitor a key-generation program to deduce
the secret key it creates for another user, because the key
is computed based on random activities within a system,
such as mouse moves, keystrokes and networking events,
which can be discovered using our techniques.

The information-leak vulnerability exploited by our
attack is pervasive in Linux: we checked 8 popular dis-
tributions (Red Hat Enterprise, Debian, Ubuntu, Gentoo,
Slackware, openSUSE, Mandriva and Knoppix) that rep-
resent the mainstream of Linux market [9] and found
that all of them publish ESP and EIP. Some other Unix-

18

18th USENIX Security Symposium

USENIX Association

like systems, particularly FreeBSD, have different im-
plementations of procfs that do not disclose the con-
tents of those registers to unauthorized party. However,
given unrestricted access to procfs, similar attacks that
use other information can still happen: for example, we
found that /proc/pid/status on FreeBSD reveals
the accumulated kernel time consumed by the system
calls within a process; such data, though less informative
than ESP/EIP, could still be utilized to detect keystrokes
in some applications, as discussed in Section 6.2. Funda-
mentally, we believe that the privacy risks of procfs need
to be carefully evaluated on multi-core systems, as these
systems enable one process to gather information from
other processes in real time.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of our attack. Section 3 elab-
orates our techniques for detecting inter-keystroke tim-
ings. Section 4 describes a keystroke analysis using the
timings. Section 5 reports our experimental study. Sec-
tion 6 discusses the limitations of our attack, similar at-
tacks on other UNIX-like systems and potential defense.
Section 7 surveys the related prior research, and Sec-
tion 8 concludes the paper.

2 Overview

This section describes our attack at a high level.

Attack phases. Our attack has two phases: first, the
timing information between keystrokes is collected, and
then such information is analyzed to infer the related key
sequences. These phases and their individual compo-
nents are illustrated in Figure 1. In the first phase, our
approach analyzes the binary executable of an applica-
tion to extract the ESP/EIP pattern that characterizes its
response to a keystroke event, and samples the stat file
of the application at its runtime to log a trace of those
register values. Inter-keystroke timings are determined
by matching the pattern to the trace. In the second phase,
these timings are fed into an analysis mechanism that
uses the Hidden Markov Model (HMM) to infer the char-
acters being typed.

An example. We use the code fragment in Figure 2 as
an example to explain the design of the techniques be-
hind our attack. The code fragment is part of an edi-
tor program' for processing a keystroke input. Upon re-
ceiving a key, the program first checks its value: if it is
‘MOV_CURSOR’, a set of API calls are triggered to move
the cursor; otherwise, the program makes calls to insert
the input letter to the text buffer being edited and display
its content. These two program behaviors produce two
different system call sequences, as illustrated in the fig-
ure. This example is written in C for illustration purpose.
Our techniques actually work on binary executables.

1. System Call System Call
2 if (input_ready()) { Sequence for | Sequence for
3 ¢ =vgetc(); MOV_CURSOR: | insert a char:
4 switch (c) {

5 .. read read

6 MOV_CURSOR:{ select select

7 select select

8 cursor_pos_info(); select select

9 update_cursor(); select select

10 .. select select

11 select select

12 % select select

13 default: { //insert a char | select select

14 select write

15 alloc_buf(); write select

16 insert_char(); select liseek

17 update_undo(); selec write

18 flush_buffers; select

19 fsync

20 } select

21} select

22 ..

23}

Figure 2: An Example.

To prepare for an attack, our approach first performs
a dynamic analysis on the program’s executable to ex-
tract its ESP/EIP pattern that characterizes the pro-
gram’s response to a keystroke input. Examples of
such a response includes allocating a buffer to hold
the input (alloc buf ()) and inserting it to the text
(insert_char ()). Inour research, we found that such
a pattern needs to be built upon system calls because
sampling of a process’s stat file can hardly achieve
the frequency necessary for catching the ESP/EIP pairs
unrelated to system calls (Section 3.1). When a system
call happens, the EIP of the process always points to vir-
tual Dynamic Shared Object (vDSO)? [22], a call entry
point set by the kernel, whereas its ESP value reflects
the dynamics of the process’s call stack. Therefore, our
approach uses the ESP sequence of system calls as the
pattern for keystroke recognition. Such a pattern is auto-
matically identified from the executable through a differ-
ential analysis or an instruction-level program analysis
(Section 3.1).

When the program is running on behalf of the victim,
our approach samples its stat file to get its ESP/EIP
values, from which we remove those unrelated to sys-
tem calls according to their EIPs. The rest constitutes an
ESP trace of the program’s system calls. This trace is
searched for the ESP patterns of keystrokes. Note that
the trace may only contain part of the patterns: in the
example, inserting a character triggers 17 system calls,
whereas only 5 - 6 of them appear in the trace. Our
approach uses a threshold to determine a match (Sec-
tion 3.3). Inter-keystroke timings are measured between
two successive occurrences of a same pattern.

The timings are analyzed using an n-Viterbi algo-
rithm [26] to infer the characters being typed: our ap-
proach first constructs an HMM based upon a set of train-

USENIX Association

18th USENIX Security Symposium 19

: Extract Keystroke Search the 1 > :
‘ . ESP Pattern pattern in | > character \
\ PBlnary sampling the ESP trace | | o HMM sequence \
| rogram Jprocipidistat - and ge.t . ‘ Training Data » recovered [
; at runtime keystroke timing| | :
[-l | -]
T L] L]
Phase 1 ! Phase 2

Figure 1: Attack phases

ing data that reflect the timing distributions of different
key pairs the victim types, and then runs the algorithm to
compute n most likely key sequences with regards to the
timing sequence acquired from the ESP trace. We extend
the algorithm to take advantage of multiple traces of the
same key sequence, which turns out to be particularly ef-
fective for password cracking. We also show that the
techniques are also effective in inferring English words a
user types.

Assumptions. We made the following assumptions in
our research:

e Capability to execute programs. To launch the at-
tack, the attacker should own or control an account
that allows her to execute her programs. This is
not a strong assumption, as most users of UNIX-
like systems do have such a privilege. The attacker
here could be a malicious insider or an intruder who
cracks a legitimate user’s account.

o Multi-core systems. To detect a keystroke, our
shadow process needs to access the ESP of the tar-
get process before it accomplishes key-related sys-
tem calls. However, due to process scheduling, this
is not very likely to happen on a single-core sys-
tem. On one hand, these system calls are typically
done within a single time slice. On the other hand,
the shadow process often lacks sufficient privileges
to preempt the target process when it is working
on keystroke inputs, as the latter is usually granted
with a high privilege during its interactions with the
user. As a result, our process can become com-
pletely oblivious to the keystroke events in the tar-
get process. This problem is effectively avoided
on a multi-core system, which allows us to reli-
ably detect keystroke events in the presence of re-
alistic workloads®, as observed in our experiment
(Section 5). Given the pervasiveness of multi-core
systems nowadays, we believe that the assumption
is reasonable.

e Access to the victim’s information. Our attack re-
quires a read access to the victim’s procfs files. This
assumption is realistic for Linux, on which most
part of procfs are readable for every user by default.
Though one can change her files’ permissions, this
can hardly eliminate the problem: all the procfs files
are dynamically created by the kernel when a new
process is forked and their default permissions are

also set by the kernel; as a result, one needs to re-
vise these permissions as soon as she triggers new
process, which is unreliable and also affects the use
of the tools such as top. The fundamental solu-
tion is to patch the kernel, which has not been done
yet. In addition, we assume that the attacker can
obtain some of the text the victim types as training
data. This is possible on a multi-user system. For
example, some commands typed by a user, such as
“su” and “1s”, causes new processes to be forked
and therefore can be observed by other users of the
system, which allows the observer to bind the tim-
ing sequence of the typing to the content of the text
the user entered. As another example, a malicious
insider can use the information shared with the vic-
tim, such as the emails they exchanged, to acquire
the latter’s text and the corresponding timings.

3 Inter-keystroke Timing Identification

In this section, we elaborate our techniques for obtaining
inter-keystroke timings from a process.

3.1 Pattern Extraction

The success of our attack hinges on accurate identifica-
tion of keystroke events from the victim’s process. We
fingerprint such an event with an ESP pattern of the sys-
tem calls related to a keystroke. The focus on system
calls here comes from the constraints on the informa-
tion obtainable from a process: on one hand, a signifi-
cant portion of the process’s execution time can be spent
on system calls, particularly when I/O operations are
involved; on the other hand, our approach collects the
process’s information through system calls and therefore
cannot achieve a very high sampling rate. As a result,
the shadow program that logs ESP/EIP traces is much
more likely to pick up system calls than other instruc-
tions. In our research, we found that more than 90% of
the ESP/EIP values collected from a process actually be-
long to system calls. Note that a process’s EIP when it is
making a system call always points to vDSO. It is used
in our research to locate the corresponding ESP whose
content is much more dynamic and thus more useful for
fingerprinting a keystroke event.

20

18th USENIX Security Symposium

USENIX Association

Our approach extracts the ESP pattern through an au-
tomatic analysis of binary executables. This analysis is
conducted offline and in an environment over which the
attacker has full control. Following we present two anal-
ysis techniques, one for the programs that execute in a
deterministic manner and the other for those whose exe-
cutions are affected by some random factors.

Differential analysis. Many text-based applications
such as vim are deterministic in the sense that two in-
dependent runs of these applications under the same
keystroke inputs yield identical system call traces and
ESP sequences. The ESP patterns of these applications
can be easily identified through a differential analysis
that compares the system call traces involving keystroke
events with those not. Specifically, our program analyzer
uses strace [27] to intercept the system calls of an ap-
plication and record their ESP values when it is running.
An ESP sequence is recorded before a keystroke is typed,
and another sequence is generated after the keystroke oc-
curs*. The ESP pattern for a keystroke event is extracted
from the second sequence after removing all the system
calls that happen prior to the keystroke, as indicated by
the first sequence. To ensure that the pattern does not
contain any randomness, we can compare the ESP trace
of typing the same character twice with the one involving
only a single keystroke to check whether the ESPs asso-
ciated with the second keystroke are identical to those
of the first one. The same technique is also applied to
test different keys that may have discrepant patterns. In
the example described in Figure 2, the ESP sequence of
vim before Line 2 is dropped from the traces involving
keystrokes and as a result, the system calls triggered by
the instructions from Line 7 to 11 are picked out as the
fingerprint for ‘MOV_CURSOR’ and those between Line
14 and 19 identified as the pattern for inserting a letter.
The ESP pattern identified above will go through a
false positive check to evaluate its accuracy for keystroke
detection. In other words, we want to know whether the
pattern or a significant portion of it can also be observed
when the user is not typing. This is achieved in our re-
search through searching for the pattern in an applica-
tion’s ESP trace unrelated to keystroke inputs. Specifi-
cally, our analyzer logs the execution time between the
first and the last system calls on the pattern, and uses this
time interval to define a duration window on the trace,
which we call trace window. The trace window is slid on
the trace to determine a segment against which the pat-
tern is compared. For this purpose, every ESP value on
the trace is labeled with the time when its correspond-
ing system call is invoked. The trace window is first lo-
cated prior to the first ESP value on the trace. Then, it
is slid rightwards: each slide either moves an ESP into
the window or moves one outside the window. After
a slide, our analyzer attempts to find the longest com-

o Matched : : : : :
valve || o o
Pattern |

AnESP | |

trace H . H H H i .
e | 1] bl il MTE tinge

complete)+ : : : : : : : r‘

¢ ViTrace | gjije 1ESP ' Slide 1ESP | ... 1 b
window ~——» —> — —

Figure 3: A false positive check. Spikes in the figure
represent ESP values.

mon sequence between the trace segment within the win-
dow and the pattern. This is the well-known LCS prob-
lem [4], which can be efficiently solved through dynamic
programming [15]. The size of such a sequence, which
we call an FP level, is recorded. As such, our approach
keeps on sliding the trace window to measure FP levels
until all the ESP values on the trace have left the window.

Figure 3 presents an example that shows how the al-
gorithm works. In the initial state, the trace window is
located before the first ESP value. Then the trace win-
dow starts to slide right to include the first ESP value,
which gives a FP level of one. After the window slides
again to include one more ESP value, our algorithm re-
turns a common sequence with two members. This pro-
cess continues, and finally, the window is moved to em-
brace all four trace members and we observe an FP level
of four. This algorithm identifies the portion of the pat-
tern that can show up in absence of keystrokes. The size
of the portion, as indicated by the FP level, is used to de-
termine a threshold for recognizing keystrokes from an
incomplete ESP trace sampled from a process, which is
elaborated in Section 3.3.

Instruction-level analysis. Applications with graphic
user interfaces (GUI) can work in a non-deterministic
manner: these applications are event-driven and can
change their system-call behaviors in response to the
events from operating systems (OS), which can be un-
predictable. For example, Gedit uses a timer to deter-
mine when to flash its cursor; the timer, however, can be
delayed when the process is switched out of the CPU,
which causes system call sequences to vary in different
runs of the application. To extract a pattern from these
applications, we adopted an instruction-level analysis as
described below.

Under Linux, many X-Window based applications are
developed using the GIMP Toolkit (aka. GTK+) [28].
GTK+ uses a standard procedure to handle the
keystroke event: a program uses a function such as
gtk.main_do_event (event) to process event;
when a key is pressed”, this function is invoked to trig-
ger a call-back function of the keystroke event. In our
research, we implemented a Pin [20] based analysis tool
that automatically analyzes a binary executable at the
instruction level to identify such a function. After a
key has been typed, our analyzer detects the keystroke

USENIX Association

18th USENIX Security Symposium 21

event from the function’s parameter and from that point
on, records all the system calls and their ESPs un-
til the executable is found to receive or dispatch a
new event, as indicated by the calls to the functions
like g_-main_context_acquire (). All these system
calls are thought to be part of the call-back function and
therefore related to the keystroke event®. The pattern for
keystroke recognition is built upon these calls. We also
check false positives of the pattern, as described before.

3.2 Trace Logging

Our attack eavesdrops on the victim’s keystrokes through
shadowing the process that receives her keystroke inputs.
Our shadow process stealthily monitors the target pro-
cess’s keystroke events by keeping track of its ESP/EIP
values disclosed by its stat file. Since the attack hap-
pens in the userland, the attacker has to use system calls
to open and read the file. Moreover, a more efficient
approach, memory mapping through mmap (), does not
work on the virtual file that exists only in memory. These
issues prevent the shadow process from achieving a high
sampling rate. For example, a program we implemented
for evaluating our approach updated ESP/EIP values ev-
ery 5 to 10 microseconds. As a result, we could end
up with an incomplete ESP/EIP trace of the target pro-
cess. This, however, is sufficient for determining inter-
keystroke timings, as we found in our research (Sec-
tion 3.3).

Trace logging with full steam can cost a lot of CPU
time. If the activity drags on, suspicions can be roused
and alarms can be triggered. To avoid being detected,
our attack takes advantage of the semantic information
recovered from procfs and the target application to con-
centrate the efforts of data collection on the time inter-
val when the victim is typing the information of interest
to the attacker. For example, the shadow process starts
monitoring the victim’s SSH process at a low rate, say
once per 100 milliseconds; once the process is observed
to fork a su process, our shadow process immediately
increases its sampling rate to acquire the timings for the
password key sequence. Another approach is using an
existing technique [32] to hide CPU usage: UNIX-like
systems keep track of a process’s use of CPU according
to the number of ticks it consumes at the end of each tick;
the trick proposed in [32] lets the attack process sleep just
before the end of each tick it uses and as a result, OS will
schedule a victim process to run and bill the whole tick
to that victim process instead of the attack process. We
implemented this technique and found that it was very
effective (Section 5).

3.3 Timing Detection

We determine inter-keystroke timings from the time in-
tervals between the occurrences of a pattern on an ESP
trace sampled from an application’s system calls. Two
issues here, however, complicate the task. First, some
Linux versions may run the mechanisms for address
space layout randomization (ASLR) [29] that can cause
the ESP values on the pattern to differ from those on the
trace. Second, the trace can be incomplete, containing
only part of the system calls on the pattern, which makes
recognition of the pattern nontrivial. Following we show
how these issues were handled in our research.

ASLR performed by the tools such as Pax [30]
involves randomly arranging the locations of an exe-
cutable’s memory objects such as stack, executable im-
age, library images and heap. It is aimed at thwarting
the attacks like control-flow hijacking that heavily rely
on an accurate prediction of target memory addresses.
Though the defense works on the attacks launched re-
motely, it is much less effective on our attack, which is
commenced locally. Specifically, the address for the bot-
tom of a process’s stack can be found in its stat and
/proc/PID/ maps7. This allows us to “normalize” the
ESP values on both the trace and the pattern with the dif-
ferences between the tops of the stack, as pointed by the
ESPs, and their individual bottoms. Neither does ASLR
prevent us from correlating an ESP/EIP pair on a trace
to a system call, though the knowledge about the vDSO
address may not be publically available on some Linux
versions: we can filter out the pairs unrelated to system
calls according to the observation that the vast majority
of the members on the trace actually belong to system
calls and therefore have the same EIP values.

To recognize an ESP pattern from an incomplete ESP
trace of system calls, we use a threshold 7: a segment of
the trace, as determined by the trace window, is deemed
matching the pattern if it contains at least 7 ESP values of
system calls and the sequence of these values also appear
on the pattern. The threshold here can be determined us-
ing the results of the false positive test described in Sec-
tion 3.1. Let & be the highest FP level found in the test,
and s be the number of the system calls that our shadow
process can find from a process when a keystroke occurs.
We let 7 = h + 1 if s > h. Intuitively, this means that
a trace segment is considered matching the pattern if it
does not contain any ESP sequences not on the pattern
and no segments unrelated to keystrokes can match as
many ESP values on the pattern as that segment does®.
If s < h, we have to set 7 = s because we cannot get
more than s ESP samples for every keystroke when mon-
itoring a process. Several measures can be taken to miti-
gate the false positives that threshold could bring in. One
approach is to leverage the observation that people typ-

22

18th USENIX Security Symposium

USENIX Association

o Matched o >
value I

Pattern ‘ |

An ESP I S
trace § j
(incomplete) ! I‘

1 2 3

Ly il
ol

45 :
Trace — 4 ™ | Trace

67 8
| Trace | [q | ; : itime
‘window 1: ‘window 2: ‘window 3

Figure 4: Using time frame d to remove possible false
positive matches

» Matched ! f

value I (I I T

Pattern ‘TT\ “H L1 n

AnESP | L ‘ | |

trace : P i i

(incomplete). | T T 1 1 o
123 4 56 7809 10 1112
M Timing 1> % Timing2 < Timing 3 " time

Figure 5: Pattern matching on an ESP trace and the
timing interval

ically type more than one key within a short period of
time. Therefore, we can require that a segment matching
a pattern according to 7 be preceded or followed by an-
other pattern-matching segment within a predetermined
time frame d, before both of them can be deemed to be
indicative of keystroke events. Figure 4 presents an ex-
ample in which the segment within the Window 2 is not
treated as a match to the pattern because there is no other
matches happening within the time frame d either before
or after the window. In another approach, we use the ex-
ecution time of a process to estimate the time point when
it starts receiving keystrokes, which helps avoid search-
ing the trace unlinked to keystrokes.

After normalizing ESP values and determining the
threshold 7, our approach starts searching the trace sam-
pled from the victim’s process for the occurrences of the
pattern. The searching algorithm we adopted slides the
trace window in the same way as the false positive check
does (Section 3.1). For each slide, an LCS problem is
solved to find the longest common sequence between the
trace segment in the window and the pattern. If the length
of the sequence is no less than 7 and every member on
the segment is also on the sequence, the segment is la-
beled as a match. Once a match is found, we slide the
window rightwards to pass all trace members within a
short time interval that describes the minimal delay be-
tween two consecutive keystrokes, and then start the next
round of searching. This process continues until all trace
members pass the window. Then, our approach deter-
mines timings from the segments labeled as matches: the
time interval between two such segments is identified as
an inter-keystroke timing if there is no other labeled seg-
ments in-between and the duration of the interval is be-
low a predetermined threshold that serves to rule out the

long latencies caused by intermittent typing. An example
for illustrating the algorithm is presented in Figure 5, in
which the trace window locates four matches with 7 = 3,
and the durations between these matches are picked out
as inter-keystroke timings.

4 Keystroke Analysis

In this section, we describe how to use inter-keystroke
timings to infer the victim’s key sequence. Our approach
is built upon the technique used in the existing timing
attack [26]. However, we demonstrate that the technique
can become much more effective with the information
available on a multi-user system.

4.1 HMM-based Inference of Key Se-
quences

A Hidden Markov Model [24] describes a finite stochas-
tic process whose individual states cannot be directly ob-
served. Instead, the outputs of these states are visible
and therefore can be used to infer the existence of these
states. An HMM, like a regular Markov model, assumes
that the next states a system can move into only depend
on the current state. In addition, it has a property that
the outputs of a state are completely determined by that
state. These two properties allow a hidden sequence to
be easily computed and therefore make the model a per-
vasive tool for the purposes such as speech recognition
and text modeling.

Prior research [26] models the problem of key infer-
ence using an HMM. Specifically, let Ky,..., K1 be
the key sequence typed by the victim, and ¢; € @
(1 <t < T)be a sequence of states representing the
key pair (K;_1, K;), where @ is the set of all possible
states. In each state g;, an inter-keystroke latency y; with
a Gaussian-like distribution can be observed. Our ob-
jective is to find out the hidden states (g1, ..., gr) from
the timings (y1,...,yr). This modeling is simple and
was shown to work well in practice [26], and is further
confirmed by our research, though it has oversimplified
the relations between the characters being typed: particu-
larly, the chance for a letter to appear at a certain position
in an English word may actually relate to all other letters
before it, which invalidates the HMM assumption that a
transition from g; to ¢;+1 depends only on ¢;.

The HMM for key inference can be solved us-
ing the Viterbi algorithm [24], a dynamic program-
ming algorithm that computes the most likely state se-
quence (g1, - . ., gr) from the observed timing sequence
(y1,---,yr). Let V(q;) be the probability of the se-
quence that most likely ends in ¢; at time ¢. The algo-
rithm computes V' (g;) through two steps. In the first
step, we assign a set of initial probabilities V' (q1) =

USENIX Association

18th USENIX Security Symposium 23

Prlgi|y1]. The second step inductively computes V' (g;)
forevery 1 < t < T and every ¢ € Q as V(q:) =
maxg, , Prye|q| Prigt|q—1]V (g:—1), where Prly:|q:]
can be estimated from a set of training data (the third
assumption in Section 2) and Pr[g:|g:—1], the transition
probability, comes from a uniform distribution over the
states reachable from ¢;—;. This step also keeps track
of all the prior states on the sequence with the probabil-
ity V(qt). The most likely sequence is identified from
the state g7 that maximizes V' (¢r). A direct application
of this approach, however, does not work well in prac-
tice, because even the most likely sequence usually has
a very small probability to match the real keystroke in-
puts. This problem is mitigated in the prior work [26]
that extends the algorithm to the n-Viterbi algorithm so
as to return the top n most likely sequences given a tim-
ing sequence. The difference here is that the n-Viterbi
algorithm changes the inductive step (the second step)
to identify the sequences with the n largest probabilities.
The details of the algorithm can be found in [26].

4.2 Password Cracking

The effectiveness of the n-Viterbi algorithm can be sig-
nificantly improved with the information available on a
multi-user system. Particularly, the name of a process
and its owner can be directly found from procfs or indi-
rectly from running commands such as ps or top. Once
the same user is observed to run the same application
multiple times and if such interactions happen within a
no-so-long period of time and all involve typing pass-
words, a reasonable assumption we can make is that all
these passwords are actually the same. Therefore, we can
combine together the timing sequences recorded from in-
dividual interactions to infer a key sequence. Following
we describe two ways to do that.

Our first approach is simply averaging all the tim-
ings for every key pair to create a new sequence and
run the n-Viterbi algorithm over it. Formally, given m
timing sequences (yi,...,yn),..., (Y7 ..., y*), we
can compute a new sequence (yi,...,yr), where y; =
Ly cicm¥iand 1 < t < T. The rationale here is
that the distribution of the timing y} of a key pair ¢; is
a Gaussian-like unimodal distribution and therefore the
probability Pr[y:|g:] in the inductive step of the algo-
rithm is maximized when y; becomes the mean of the
distribution, which is approximated by averaging all y;.
This approach works particularly well when the means
of two key pairs are not extremely close.

The other approach, which we call the m-n-Viterbi
algorithm, utilizes multiple observations to perform
the inductive step of the original algorithm. Specifi-
cally, our approach replaces Pr|y:|g:] in that step with

Priyt,....y™aq) = Prlytlq)... Prly™|q] given

these observations (ytl, ..., y{") are independent from
each other. This treatment works even in the presence of
the key pairs with very close timing distributions. How-
ever, it needs a large number of timing sequences to get
a good outcome.

Our research shows that both approaches can signifi-
cantly shrink the space for searching a password. Actu-
ally, in our experiment (Section 5.2), we found that using
50 timing sequences, our techniques sped up the pass-
word searching by factors ranging from 250 to 2000.

4.3 English Text

Recovery of English text from a timing sequence is
no less challenging than password cracking. A pass-
word can be figured out through testing many candidates
against the target application or a hashed password list.
However, the same trick cannot be played on English
words because no application and password list can tell
you whether you made a right guess. All that we can do
is to check all the combinations of the possible words to
see whether a meaningful sentence comes out, which be-
comes a daunting task if the list of such words is long.
Moreover, it can be more difficult to find multiple tim-
ing sequences associated with the same text, and there-
fore the aforementioned approaches become less appli-
cable. On the bright side, English words are much less
random than passwords: the letters they include and the
combinations of those letters have distributions with low
entropies. Such a property can be leveraged to adjust
the transition probabilities of an HMM to improve the
outcomes of key sequence inference. Here we elaborate
such techniques used in our research.

A prominent property of English text is use of the
SPACE character to separate words. People tend to type
the letters in a word faster than SPACE, a signal for a
transition between words. This gives the character an
identifiable timing feature: typically the key pair involv-
ing SPACE incurs longer inter-keystroke latency than
other pairs, as illustrated in Figure 6. In our research,
we detected SPACE by checking if the timing interval is
larger than a predetermined threshold. This threshold
can be determined from the training data collected from
the victim’s typing. Knowledge about the SPACE key
helps us to divide a long timing sequence into a collec-
tion of small sequences, with each of them representing
a word, and then learn these words one by one.

Another important property of English text is its dis-
tinct distribution of letters. It is well known that some
letters such as ‘e’ occur more frequently than others, and
some bigrams like ‘th’ and trigrams like ‘ion’ are also
pervasive in a meaningful text. This fact has been lever-
aged by frequency analysis to crack classic ciphers [1].
The same game can also be played to make key se-

24

18th USENIX Security Symposium

USENIX Association

0.045

letter to letter
0.04 + SPACE to letter +++ 1
0.035 |
= 0.03 r threshold line
3 0.025
©
€ 0027
o

0.015 |
0.01
0.005

Mean (in millisecond)

Figure 6: Timing Distribution of SPACE-letter pair,
letter-letter pair and threshold

quence inference more effective: we can adjust the tran-
sition probabilities of an HMM to ensure that the transi-
tion between certain states such as (‘i’,°0’) to (‘o’, ‘n’)
is more likely to happen than others. These probabil-
ities can be conveniently obtained from various public
sources [18, 10] that provide the statistics of common
English text. Such statistics can be further tuned to the
victim’s writing style according to public writing sam-
ples such as her web pages and publications. Moreover,
it comes with no surprise that users on the same system
are often related: for example, they could all belong to
one organization. This allows the attacker to get familiar
with the victim’s writing from the information they ex-
changed, for example, the emails between them. In addi-
tion, since the timing sequence corresponding to such in-
formation can also be identified using our technique, the
attacker can actually use the information as the training
data for estimating the timing distributions of different
key pairs the victim typed.

5 Evaluation

In this section, we describe an experimental study of the
attack techniques we propose. Our objective is to under-
stand whether these techniques present a realistic threat.
To this end, we evaluated them using 3 common Linux
applications: vim, SSH and Gedit. In our experiments,
we first ran our approach to automatically extract timing
sequences when a user was typing, evaluated the accu-
racy of these timings and the effectiveness of the attack
under different workloads. Then, we analyzed them us-
ing our techniques to study how much keystroke infor-
mation could be deduced. Our experiments were mainly
carried out on a computer with a 2.40GHz Core 2 Duo
processor and 3GB memory, on which we conducted
our study under three Linux versions: RedHat Enterprise
Linux 4.0, Debian 4.0 and Ubuntu 8.04. We found that
our techniques worked effectively even in the presence
of realistic workloads on the server. This suggests that

Table 1: Normalized ESP pattern values (include system calls)

vim ssh gedit

SysCall ESP| SysCall ESP | SysCall ESP

read 1628| rt_sigprocmask| 4932 | gettimeofday 3624

select | 1604| rt_sigprocmask| 4932

select | 1876| read 20908

select | 2244| select 4548

select | 1540 rt_sigprocmask| 4932

select | 1908| rt_sigprocmask| 4932
select | 1556| write 37436
select | 1924| ioctl 37500

select | 1604| select 4548
write 1548| rt_sigprocmask| 4932
select | 1972 rt_sigprocmask| 4932

lseek | 1876 read 37436

write 1836| select 4548
select | 2180| rt_sigprocmask| 4932

fsync | 1752| rt_sigprocmask| 4932

select | 2148| write 4620
select 1972| select 4548

the information leaks caused by procfs can be a real se-
curity problem.

5.1 Inter-keystroke Timings

As the first step of our evaluation, we applied our tech-
nique to identify the timings from vim, SSH and Gedit
on a multi-core system.

vim. vim is an extremely common text editor, which
is supported by almost all Linux versions. It fits well
with the notion of deterministic programs as discussed
in Section 3.1, because independent runs of the appli-
cation with the same inputs always produce the same
system call sequence and related ESP sequence. This
property enabled us to identify its ESP pattern for a
keystroke event using the differential analysis. The pat-
tern we discovered for inserting a letter includes 17 calls.
These calls and their normalized ESP values are pre-
sented in Table 1. We further ran the application from
a user account to enter words, and in the meantime,
launched a shadow process from another account to col-
lect the ESP trace of the application. From the trace, our
approach automatically identified all the keystrokes we
typed. Table 2 shows a trace segment corresponding to
two keystrokes, which involves 5 system calls for each
keystroke.

In order to evaluate the accuracy of the timing se-
quence our shadow process found, an instrumented ver-
sion of vim was used in our experiment, which recorded
the time when it received a key from vgetc (). Such
information was used to compute a real timing sequence.
We compared these two sequences and found that the de-

USENIX Association

18th USENIX Security Symposium 25

Table 2: Examples of ESP traces (values that appear in the
pattern are in bold font).

vim ssh gedit
1604 4548 520
2244 4932 2988
1908 20908 3052
1924 4548 696
1972 37500 3624
1604 4548 3068
2244 37436 2988
1908 4932 696
1924 4620 520
1972 4548 2988

viations between corresponding timings were at most 1
millisecond, below 3% of the average standard deviation
of the timings of different key pairs, as illustrated in Ta-
ble 3. This demonstrates that the timings extracted from
the process were accurate.

SSH. The Secure Shell (SSH) has long been known to
have a weakness in its interactive mode, where every
keystroke is transmitted through a separate packet and
immediately after the key is pressed. This weakness can
be exploited to determine inter-keystroke timings for in-
ferring the sensitive information a user types, such as the
password for su. Prior work [26] proposes an attack that
eavesdrops on an SSH channel to identify such timings.
A problem of the attack, as pointed out by SSH Commu-
nications Security, is that determination of where a pass-
word starts in an encrypted connection can be hard [25].
This problem, however, does not present a hurdle to our
attack, because we can easily find out from procfs when
su is spawned from an SSH process, and start collecting
information from SSH from then on. This is exactly what
we did in our experiment.

Using the differential analysis, our approach automat-
ically discovered an ESP pattern from SSH when a key
was typed for entering a password for su. We further
ran a shadow process to monitor another user’s SSH pro-
cess: as soon as it forked an su process, our shadow
process started collecting ESP values from the SSH pro-
cess’s stat file. The trace collected thereby was com-
pared with the pattern to pinpoint keystroke events and
gather the timings between them. The pattern that we
found in our experiment included 17 system calls, of
which 7 to 10 appeared in every occurrence of the pat-
tern on the trace. The detailed experimental results are in
Table 1 and Table 2.

Verification of the correctness of those timings turned
out to be more difficult than we expected. su does not
read password characters one by one from the input. In-
stead, it takes all of them after a RETURN key has been
stroked. Therefore, instrumentation of its source code

Table 3: Examples of the timings measured from ESP traces
(Measured) and the real timings (Real) in milliseconds.

Timings vim ssh Gedit
measured| real| measured| real| measured| real
1 80 81 | 135 135| 301 303
2 139 139| 124 123| 285 285
3 88 88 | 103 103| 259 259
4 101 101| 110 109| 236 236
5 334 335| 134 134| 181 182
6 86 87 | 111 110| 265 265
7 124 124 132 132] 174 174

will not give us the real timing sequence. We solved
this problem by replacing su with another program that
recorded the time when it received a key from SSH, and
used such information to generate a timing sequence.
This sequence was found to be very close to the one we
got from the trace collected by our shadow process, as
described in Table 3. We further employed the timings
obtained from su to infer the passwords being typed,
which we found to be very effective (Section 5.2).

Gedit. Gedit is a text editor designed for the X
Window system. Like many other applications based
upon the GTK+, it is non-deterministic in the sense that
two independent runs of the application under the same
inputs often produce different system call sequences.
In our experiment, we performed an instruction-level
analysis of its binary executables using the Pin-based
tool we developed. This analysis revealed the call-
back function of the key-press event, from which we
extracted the system call sequence and related ESP
sequence. An interesting observation is that Gedit
actually does not immediately display a character a
user types: instead, it put the character to a buffer
through a GTK+ function gtk_text buffer_insert
_interactive_at_cursor (), which does not in-
volve any system calls, and the content of the buffer is
displayed when it becomes full or a timer expires. As a
result, we could not count on the system calls involved in
such a display process for fingerprinting keystrokes. Ac-
tually, only one system call was found to be present every
time when a key was received: gettimeofday (), a
call that Gedit uses to determine when to auto-save the
document the user is editing. This call seems too gen-
eral. However, its ESP value turned out to be specific
enough for a pattern: in our false positive check, we did
not find any other system calls within the application that
also had the same ESP. Moreover, our shadow process
always caught that ESP whenever we typed. Therefore,
this ESP value was adopted as the pattern in our experi-
ment. We further instrumented Gedit to dump the time
when this call was invoked for calculating the real timing
sequence. Table 1 shows that this sequence is very close
to the one collected by our shadow process.

26

18th USENIX Security Symposium

USENIX Association

=
=]
=]

©
o

o
=
T
i

IS
o
T
i

N
o
T
i

Percentage of keystrokes detected

— vim
- - SSH
Gedit
% 5 10 15 20 25 30
CPU usage
Figure 7: Percentage of keystrokes detected vs. CPU
usage
4.0 : :
— Serverl
35l — Server2 | |
o . — Server3
| | T
D30 T P N
%)
>
Z 250
O
Y
O 2.0F
(]
()]
8 15
C
[0}
1ot
o
0.5}
005 10 20 30 20 50 60 70 80

Time (in Hours)

Figure 8: CPU usages of three real-world servers during
72 hours

Impacts of server workloads. A multi-user system of-
ten concurrently serves many users. These users’ activi-
ties could interfere with the collection of inter-keystroke
timings. This problem was studied in our research
through evaluating the effectiveness of our attack under
different workloads. Specifically, we ran our attacks on
vim, SSH and Gedit under different CPU usages to
measure the percentage of the keystrokes still detectable
to our shadow process. The experimental results are
elaborated in Figure 7. Here, we sketch our findings.

We found that the impacts of workloads varied among
applications. The attacks on vim and SSH appear to be
quite resilient to the interferences from other processes:
our shadow process picked up 100% keystrokes for both
applications when CPU usage was no more than 10% and
still detected 94% from vim when the usage went above
20%. In contrast, the attack on Gedit was less robust:
we started missing keystrokes when more than 2% of

25

— Serverl
— Server2
— Server3

User numbers

1l

0 10 20 30 40 50 60 70 80
Time (in Hours)

Figure 9: Variations of user numbers on the three servers
during 72 hours

CPU time was consumed by other processes. This dis-
crepancy comes from applications’ ESP patterns: those
involving more system calls are easier to detect.

On the other hand, the workloads on a real-world sys-
tem are reasonable enough to be handled by our attack.
Figure 8 and 9 reports the CPU usages and user numbers
we measured from three real-world systems, including a
Linux workstation in a public machine room (Server 1), a
server for students’ course projects (Server 3) and a web
server of Indiana University that allows SSH connections
from its users (Server 2). The number of users on these
systems range from 1 to 24. Our 72-hour monitoring re-
veals that for 90 percent of time, the CPU usages of these
servers were below 3.2%.

We also implemented the technique proposed in [32]
to hide the CPU usage of our shadow process. As a re-
sult, the process appeared to consume 0% of CPU, as
observed from top. The cost, however, was that it only
reliably identified about 50% of keystrokes we entered.
Nevertheless, this still helped inference of keys, partic-
ularly when the same input from a user (e.g., password)
was sampled repeatedly, as discussed in Section 4.2.

5.2 Key Sequence Inference

We further studied how to use the timings to infer key
sequences. Experiments were conducted in our research
to evaluate our techniques using both passwords and En-
glish words. Here we report the results.

Password. To study the effectiveness of our approach
on passwords, we first implemented the n-Viterbi algo-
rithm [26] and used it to compute a baseline result, and
then compared the baseline with what can be achieved
by the analysis using multiple timing sequences, as de-
scribed in Section 4.2. Our experiment was carefully

USENIX Association

18th USENIX Security Symposium 27

Table 4: The percentage of the search space the attacker
has to search before the right password is found.

Method Test Cases

password 1| password 2| password 3
Baseline(n-Viterbi) | 7.8% 6.6% 6.8%
Timing Averaging 0.38% 0.34% 0.05%
m-n-Viterbi 0.39% 0.34% 0.05%

designed to make it comparable with that of the prior
work [26]: we chose 15 keys for training and testing an
HMM, which include 13 letters and 2 numbers®. From
these keys, we identified 225 key pairs and measured
45 inter-keystroke timings for each of these pair from
a user. We found that the timing for each pair indeed
had Gaussian-like distributions. These distributions were
used to parameterize two HMMs: one for the first 4 bytes
of an 8-byte password and the other for the second half.

We randomly selected 3 passwords from the space of
all possible 8-byte sequences formed by the 15 charac-
ters. For each password, we ran the n-Viterbi algorithm
on 50 timing sequences. Each of these sequences caused
the algorithm to produce a ranking list of candidate pass-
words. The position of the real password on the list de-
scribes the search space an attacker has to explore: for
example, we only need to check 1012 candidates if the
password is the 1012th member on the list, which re-
duces the search space for a 4-byte password by 50 times.
To avoid the intensive computation, our implementation
only output the top 4500 members from an HMM. We
found that for about 75% of the sequences tested in our
experiment, their corresponding passwords were among
these members. In Table 4, we present the averaged per-
centage of the search space for finding a password.

We tested the timing averaging approach and m-n-
Viterbi algorithm described in Section 4.2 with 50 timing
sequences for each password, and present the results in
Table 4. As the table shows, both approaches achieved
significant improvements over the n-Viterbi algorithm:
they shrank the search space by factors ranging from 250
to 2000. In contrast, the speed-up factor introduced by
the n-Viterbi algorithm was much smaller!®.

We also found that the speed-up factors achieved by
our approach, like the prior work [26], depended on the
letter pairs the victim chose for her password: if the tim-
ing distribution of one pair (Figure 6) is not very close
to those of other pairs, it can be more reliably deter-
mined, which contributes to a more significant reduc-
tion of searching spaces. For example, in Figure 6, a
password built on the pairs whose means are around 300
milliseconds is much easier to be inferred than the one
composed of the pairs around 100 milliseconds, as the
latter pairs are more difficult to distinguish from others
with very similar distributions. It is important to note that
those distributions actually reflect an individual’s typing

100%
90% —
80% — —1 1
70% — —
60% 1
50% — —1 —1 [
40% — — —
30% 1
20% — —
10% — —1 —1 [

0%

Top10 Top20 Top30 Top50 Top100 Top500

Figure 10: The success rates of the attack on English
words

practice, and therefore, the same password entered by
one can become easier to crack than by another.

English words. We also studied how the timing infor-
mation can help infer English words. To prepare for the
experiment, a program was used to randomly generate
character sequences with lengths of 3, 4 and 5 letters'!,
and from them, we selected 2103 words that also ap-
peared in a dictionary. These words were classified into
three categories according to their lengths. For the words
within each category, we computed a distribution using
their frequencies reported by [18] . These distributions
were used to determine the transition probabilities of the
HMMs for individual categories, which we applied to in-
fer the words with different lengths.

In the experiment, we randomly draw words from each
category in accordance with their distribution, and typed
them to collect timing sequences. The timing segments
that represented individual words were identified from
the sequences using the feature of the SPACE key. For
each segment, we picked up an HMM according to the
length of the word and solved it using the n-Viterbi algo-
rithm, which gave us a ranking list of candidates. From
the list, our approach further removed the candidates that
did not pass a spelling check. We tested 14 3-letter
words, 11 4-letter words and 14 5-letter words. The out-
comes are described in Figure 10. From the table, we can
see that the real words were highly ranked in most cases:
almost 40% of them appeared in top 10 and 86% among
top 50.

6 Discussion

6.1 Further Study of the Attack

Our current implementation only tracks the call-back
function for the key press event. We believe that the
pattern for keystroke recognition can be more specific
and easier to detect by adding the ESP sequences of the
system calls related to the key release event. Moreover,
we evaluated our approach using three applications. It is
interesting to know whether other common applications

28

18th USENIX Security Symposium

USENIX Association

are also subject to our attack. What we learnt from our
study is that our attack no longer works when system
calls are not immediately triggered by keystrokes. This
could happen when the victim’s process postpones the
necessary actions such as access to the standard I/O until
multiple keystrokes are received. For example, su does
not read a password character by character, and instead,
imports the string as a whole; as a result, it cannot be
attacked when it is not used under the interactive mode
of SSH. As another example, GTK+ applications tend to
display keys only when the buffer holding them becomes
full or a timer is triggered. Further study to identify the
type of applications vulnerable to our attack is left as our
future research. In addition, it is conceivable that the
same techniques can be applied beyond identification of
inter-keystroke timing. For example, we can track the
ESP dynamics caused by other events such as moving
mouse to peek into a user’s activities.

Our current research focuses more on extracting inter-
keystroke timings from an application than on analyz-
ing these timings. Certainly more can be done to im-
prove our timing analysis techniques. Specifically, pass-
word cracking can be greatly facilitated with the knowl-
edge about the types of individual password characters
such as letter or number. Acquisition of such knowl-
edge can be achieved using our enhanced versions of
the n-Viterbi algorithm that accept multiple timing se-
quences. This “classification” attack can be more effec-
tive than the timing attack proposed in [26], as it does
not need to deal with a large key-pair space. Moreover,
the approach we used to infer English words is still pre-
liminary. We did not evaluate it using long words, be-
cause solving the HMMs for these words can be time
consuming. A straightforward solution is to split a long
word into small segments and model each of them with
an HMM, as we did for password cracking. This treat-
ment, however, could miss the inherent relations between
the segments of a word, which is important because let-
ters in a word are often correlated. Fundamentally, the
first-order HMM we adopted is limited in its capability
of modeling such relations: it cannot describe the depen-
dency relation beyond that between two key pairs. Ap-
plication of other language models such as the high-order
HMM [12] can certainly improve our techniques.

Actually, ESP/EIP is by no means the only infor-
mation within procfs that can be used for acquiring
inter-keystroke timings. Other information that can
lead to a similar attack includes interrupt statistics
file /proc/interrupts, and network status data
/proc/net. The latter enables an attacker to track
the activities of the TCP connections related to the in-
puts from a remote client. Moreover, the procfs of most
UNIX-like systems expose the system time of a process,
i.e., the amount of time the kernel spends serving the sys-

tem calls from the process. Disclosure of such informa-
tion actually enables keystroke eavesdropping, which is
elaborated in Section 6.2.

6.2 Information Leaks in the Procfs of
Other UNIX-like Systems

Besides Linux, most other UNIX-like systems also im-
plement procfs. These implementations vary from case
to case, and as a result, their susceptibilities to side-
channel attacks also differ. Here we discuss such privacy
risks on two systems, FreeBSD and OpenSolaris.

FreeBSD manages its process files more cautiously
than Linux'?: it puts all register values into the file
/proc/pid/regs that can only be read by the owner
of a process, which blocks the information used by
our attack. However, we found that other informa-
tion released by the procfs can lead to similar attacks.
A prominent example is the system time reported by
/proc/pid/status, a file open to every user. Fig-
ure 11 shows the correlations between the time con-
sumed by vim and the keystrokes it received, as ob-
served in our research. This demonstrates that keystroke
events within the process can be identified from the
change of its system time, which makes keystroke eaves-
dropping possible. A problem here is that we may not
be able to detect special keys a user enters, for example,
“MOV_CURSOR”, which is determined from ESP/EIP in-
formation on Linux. A possible solution is using the dis-
crepancies of system-time increments triggered by dif-
ferent keys being entered to fingerprint these individual
keys. Further study of this technique is left to our future
research.

OpenSolaris kernel makes the /proc directory of a
process only readable to its owner, which prevents other
users from entering that directory. Interestingly, some
files under the directory are actually permitted to be read
by others, for supporting the applications such as ps
and top. Like FreeBSD, the registers of the process
are kept off-limits. However, other information, includ-
ing system time, is still open for grabs. Figure 11 il-
lustrates the changes of the system time versus a series
of keystrokes we entered on OpenSolaris, which demon-
strates that identification of inter-keystroke timings is
completely feasible on the system.

6.3 Defense

An immediate defense against our attack is to prevent
one from reading the stat file of another user’s process
once it is forked, which can be done by manually chang-
ing the permissions of the file. However, this approach is
not reliable because human are error-prone and whenever
the step for altering permissions is inadvertently missed,

USENIX Association

18th USENIX Security Symposium 29

FreeBSD
310000
305000 f R
300000 R
295000 P

290000 : : : :
600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

the time point when a key is entered (us)

System time (us)

OpenSolaris

30500 F T T T T T T

37000 | L

36000 L n n n n n
500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

the time point when a key is entered (us)

System time (us)
w
~
o1
(=3
(=]

Figure 11: System time (solid line) vs. keystroke events
(dashed line) in vim under FreeBSD (Release 7.1) and
OpenSolaris (Release 2008.11). In the experiments, we
found that the system time of vim changed only in re-
sponse to keystrokes, which were recorded by shadow
programs.

the door to our attack becomes wide open. The approach
also affects the normal operations of common tools such
as ps and top, which all depend on stat to acquire
process information. A complete solution is to patch
Linux kernels to remove the ESP and EIP information
from a process’s virtual file or move them into a separate
file which can only be read by the owner. The problem
is that there is no guarantee that other information dis-
closed by procfs will not lead to a similar attack (Sec-
tion 6.1 and Section 6.2). Detection of our attack can
also be hard, because our shadow process behaves ex-
actly like the legitimate tools such as top, which also
continuously read from virtual files. The shadow pro-
gram can also hide its CPU usage by leveraging existing
techniques [32]. Fundamentally, with the pervasiveness
of multi-core systems that enable one process to effec-
tively monitor another process’s execution, we feel it is
necessary to rethink the security implications of the pub-
lic information available on current multi-user systems.

7 Related Work

It has long been known that individual users can be char-
acterized by their unique and stable keystroke dynamics,
the timing information that can be observed when one is
typing [16]. Such information has been intensively stud-
ied for biometric authentication [21]. In comparison, lit-
tle has been done to explore its potential for inferring the
characters a user typed [6]. The first paper on this sub-
ject!® proposes to measure inter-keystroke timings from
the latencies between SSH packets [7] and use them to
crack passwords. Our attack takes a different path to ac-

quire timings: we take advantage of the information of a
process exposed by procfs to find out when a key is re-
ceived by the process, which has been made possible by
the rapid development of multi-core techniques. Com-
pared with the prior approach, our attack can happen to
the clients who use a multi-user system locally as well as
those who connect to the system remotely. Moreover, our
timing analysis is much more accurate than the prior ap-
proach, through effective use of the information available
from procfs. On the downside, we need a user account to
launch our attack, which is not required by the prior ap-
proach. Another prior proposal measures CPU timings
to acquire the information about the password a user en-
ters [31]. This approach only gets the information such
as password length and some special characters, and is
subject to the interference of the activities such as pro-
cessing mouse events, whereas our approach can accu-
rately identify the events related to keystrokes and infer
the characters being entered. Timing analysis has also
been applied to attack cryptosystems [5, 34, 17, 8].

Keyboard acoustic emanations [34] also leak out infor-
mation regarding a user’s keystrokes. Such information
has been leveraged by several prior approaches [2, 33, 3]
to identify the keys being entered. Similar to our attack,
some of these approaches also apply language models
(including the high-order HMM) to infer English words.
They all report very high success rates. Acoustic ema-
nations are associated to individual keys, whereas tim-
ings are measured between a pair of keys. This makes
character inference based on timings more challenging.
On the other hand, acquisition of acoustic emanations
requires physically implanting a recording device close
to the victim, whereas our attack only needs a normal
user account. Moreover, these attacks can only be used
against a local user. In contrast, our approach works on
both local and remote users.

8 Conclusion

In this paper, we present a new attack that allows a ma-
licious user to eavesdrop on other users’ keystrokes us-
ing procfs, a virtual file system that shares statistic infor-
mation regarding individual users’ processes. Our attack
utilizes the stack information of a process present in its
stat file on a Linux system to fingerprint its behavior
when a keystroke is received. Such behavior is modeled
as an ESP pattern of its system calls, which can be ex-
tracted from an application through automatic program
analysis. During the runtime of the application, our ap-
proach shadows its process with another process to col-
lect an ESP trace from its stat file. Our research shows
that on a multi-core system, the shadow process can ac-
quire a trace with a sufficient granularity for identifying
keystroke events. This allows us to determine the tim-

30

18th USENIX Security Symposium

USENIX Association

ings between keystrokes and analyze them to infer the
key sequence the victim entered. We also show that other
information available from procfs can be of great help
to character inference: knowing that the same user en-
ters her password to the same application, we can com-
bine multiple timing sequences related to the password to
significantly reduce the space for searching it. We also
propose to utilize the victim’s writing style to infer the
English words she enters. Both approaches are very ef-
fective, according to our experimental study.

Our attack can be further improved through adopt-
ing more advanced analysis techniques such as the high-
order HMM and other language model. The same idea
can also be applied to infer other user activities such
as moving and clicking mouse, and even deduce others’
secret keys. More generally, other information within
procfs, such as system time, can be used for a similar at-
tack, which threatens other UNIX-like systems such as
FreeBSD and OpenSolaris. Research in these directions
is left as our future work.

Acknowledgements

The authors thank our shepherd Angelos Stavrou for his
guidance on the preparation of the final version, and
anonymous reviewers for their comments on the draft of
the paper. We also thank Rui Wang for his assistance in
preparing one of the experiments reported in the paper.
This work was supported in part by the National Sci-
ence Foundation the Cyber Trust program under Grant
No. CNS-0716292.

References

[1] Cryptography/frequency analysis. http://en.wikibooks.
org/wiki/Cryptography:Frequency\.analysis,
Aug 2006.

[2] AsoNov, D., AND AGRAWAL, R. Keyboard acoustic emana-
tions. In JEEE Symposium on Security and Privacy (2004), pp. 3—
11.

[3] BERGER, Y., WOOL, A., AND YEREDOR, A. Dictionary attacks
using keyboard acoustics emanations. In CCS (2006), ACM,
pp. 245-254.

[4] BERGROTH, L., HAKONEN, H., AND RAITA, T. A survey of
longest common subsequence algorithms. In Proceedings of Sev-
enth International Symposium on String Processing and Informa-
tion Retrieval (2000), pp. 39-48.

[S] BRUMLEY, D., AND BONEH, D. Remote timing attacks are prac-
tical. In In proceedings of the 12th Usenix Security Symposium
(2003).

[6] BUCHHOLTZ, M., GILMORE, S. T., HILLSTON, J., AND NIEL-
SON, F. Securing statically-verified communications protocols
against timing attacks. Electronic Notes in Theoretical Computer
Science 128, 4 (2005), 123-143.

[7] DESIGNER, S., AND SONG, D. Passive analysis of ssh (secure
shell) traffic. Openwall advisory OW-003, March 2001.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

DHEM, J. F., KOEUNE, F., LEROUX, P.-A., MESTRE, P.,
QUISQUATER, J.-J., AND WILLEMS, J.-L. A practical im-
plementation of the timing attack. In Proceedings of CARDIS
(1998), pp. 167-182.

DISTROWATCH.COM. Top ten distributions: An overview
of today’s top distributions. http://distrowatch.com/
dwres.php?resource=major, 2008.

EDIT VIRTUAL LANGUAGE CENTER. Word frequency
lists. http://www.edict.com.hk/textanalyser/
wordlists.htm,as of September, 2008.

FERRELL, J. procfs: Gone but not forgotten.
http://www.freebsd.org/doc/en/articles/
linux-users/procfs.html, 2009.

FRANCOIS, M. J., AND PAUL, H. J. Automatic word recognition
based on second-order hidden markov models. In ICSLP (1994),
pp. 247-250.

HOGYE, M. A., HUGHES, C. T., SARFATY, J]. M., AND WOLF,
J. D. Analysis of the feasibility of keystroke timing attacks over
ssh connections. Technical Report CS588, School of Engineering
and Applied Science, University of Virginia, December 2001.

INC., R. Process directories. http://www.redhat.
com/docs/manuals/enterprise/RHEL-4-Manual/
en-US/ReferenceGuide/s2-proc-processdirs.
html, 2007.

JONES, N. C., AND PEVZNER, P. A. An Introduction to Bioin-
Sformatics Algorithms. the MIT Press, August 2004.

JOYCE, R., AND GUPTA, G. Identity authorization based on
keystroke latencies. Communications of the ACM 33, 2 (1990),
168-176.

KOCHER, P., JAE, J., AND JUN, B. Differential power analy-
sis. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology (1999), Springer-Verlag,
pp. 388-397.

LEECH, G., RAYSON, P., AND WILSON, A. Word frequencies in
written and spoken english: based on the british national corpus.
http://www.comp.lancs.ac.uk/ucrel/bncfreq.

Loscocco, P., AND SMALLEY, S. procfs analysis.
http://www.nsa.gov/SeLinux/papers/slinux/
node57.html, February 2001.

Luk, C. K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: building customized program analysis tools with dy-
namic instrumentation. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation (2005), pp. 190-200.

MONROSE, F., AND RUBIN, A. Authentication via keystroke dy-
namics. In Proceedings of the 4th ACM conference on Computer
and communications security (1997), ACM Press, pp. 48-56.

PETERSSON, J. What is linux-gate.so.1? http://www.
trilithium.com/johan/2005/08/1linux-gate/, as
of September, 2008.

PrOVOS, N. Systrace - interactive policy generation for sys-
tem calls. http://www.citi.umich.edu/u/provos/
systrace/, 2006.

RABINER, L. R. A tutorial on hidden markov models and se-
lected applications in speech recognition. Proceedings of the
IEEE 77,2 (1989), 257-286.

SECURITY, S. C. Timing analysis is not a real-life threat to
ssh secure shell users. http://www.ssh.com/company/
news/2001/english/all/article/204/, November
2001.

USENIX Association

18th USENIX Security Symposium 31

[26] SONG, D. X., WAGNER, D., AND TIAN, X. Timing analysis
of keystrokes and timing attacks on ssh. In USENIX Security
Symposium (2001), USENIX Association.

[27] SOURCEFORGE.NET. http://sourceforge.net/
projects/strace/, August 2008.

[28] TEAM, G. http://www.gtk.org, as of September, 2008.

[29] TEAM, P. Pax address space layout randomization (aslr). http:
//pax.grsecurity.net/docs/aslr.txt,March 2003.

[30] TEAM,P. http://pax.grsecurity.net/,as of Septem-
ber, 2008.

[31] TROSTLE, J. Timing attacks against trusted path. In /EEE Sym-
posium on Security and Privacy (1998).

[32] TSAFRIR, D., ETSION, Y., AND FEITELSON, D. G. Secretly
monopolizing the cpu without superuser privileges. In Proceed-
ings of 16th USENIX Security Symposium (Berkeley, CA, USA,
2007), USENIX Association, pp. 1-18.

[33] ZHANG, L., ZHOU, F., AND TYGAR, J. D. Keyboard acoustic
emanations revisited. In CCS’05: ACM Conference on Computer
and Communications Security (2005), ACM Press, pp. 373-382.

[34] ZHOU, Y., AND FENG, D. Side-channel attacks: Ten years after
its publication and the impacts on cryptographic module secu-
rity testing. csrc.nist.gov/groups/STM/cmvp/documents/fips140-
3/physec/papers/physecpaper19.pdf, December 2005.

Notes

'The program is actually a simplified version of vim.

2Some old Linux distributions such as RedHat Enterprise 4 do
not use vDSO, and instead then entry of their system calls points to
_dl_sysinfo_int80 in library /lib/ld-linux.so or /lib/ld.so.

3We designed our attack in a way that a keystroke event can be re-
liably identified even in the presence of some missing ESP/EIP values,
which could happen when the shadow process is preempted by other
processes (Section 3).

4 After the application enter the state that keystroke inputs are ex-
pected, our approach waits for a time period before exporting the first
sequence. This allows for the accomplishment of all the system calls
prior to keystrokes. Similarly, the second sequence is not exported un-
til the keystroke happens for a while so as to ensure that all the system
calls related to the stroke are completed.

SThere are actually two events associated with a keystroke: key
press and key release. We use the first event here for the simplicity
of explanation. Our technique can actually be applied to both events.

%We did not use the instructions such as ‘ret’ to identify the end of
a call-back function because compiler optimization could remove such
instructions from a binary executable.

7Some Linux versions such as RedHat [14] turn off the permissions
on maps but stat is always open.

8Theoretically, this approach may not eliminate false positives
when it comes to non-deterministic applications, because these applica-
tions may contain ESP sequences we did not observe during the offline
analysis.

9The prior work used 10 letters and 5 numbers. We increased the
number of letter keys to get a larger set of legitimate words for our
experiment on English text.

10The factor is actually below what was reported in the prior
work [26]. A possibility is that we adopted 225 key pairs rather than
142 used in the prior work.

"We did not choose longer words in our experiment to avoid inten-
sive computation. However, such a word can also be learnt through
splitting it into shorter segments and analyzing them using different
HMMs.

121t is reported that FreeBSD moves to phase out procfs [11].

3The possibility of timing attack on SSH has also been briefly dis-
cussed in [26].

32

18th USENIX Security Symposium

USENIX Association

A Practical Congestion Attack on Tor Using Long Paths

Nathan S. Evans
Colorado Research Institute
for Security and Privacy
University of Denver
Email: nevans6@du.edu

Abstract

In 2005, Murdoch and Danezis demonstrated the first
practical congestion attack against a deployed anonymity
network. They could identify which relays were on a
target Tor user’s path by building paths one at a time
through every Tor relay and introducing congestion.
However, the original attack was performed on only 13
Tor relays on the nascent and lightly loaded Tor network.

We show that the attack from their paper is no longer
practical on today’s 1500-relay heavily loaded Tor net-
work. The attack doesn’t scale because a) the attacker
needs a tremendous amount of bandwidth to measure
enough relays during the attack window, and b) there are
too many false positives now that many other users are
adding congestion at the same time as the attacks.

We then strengthen the original congestion attack by
combining it with a novel bandwidth amplification at-
tack based on a flaw in the Tor design that lets us build
long circuits that loop back on themselves. We show that
this new combination attack is practical and effective by
demonstrating a working attack on today’s deployed Tor
network. By coming up with a model to better under-
stand Tor’s routing behavior under congestion, we fur-
ther provide a statistical analysis characterizing how ef-
fective our attack is in each case.

1 Introduction

This paper presents an attack which exploits a weakness
in Tor’s circuit construction protocol to implement an im-
proved variant of Murdoch and Danezis’s congestion at-
tack [26,27]. Tor [12] is an anonymizing peer-to-peer
network that provides users with the ability to establish
low-latency TCP tunnels, called circuits, through a net-
work of relays provided by the peers in the network. In
2005, Murdoch and Danezis were able to determine the
path that messages take through the Tor network by caus-
ing congestion in the network and then observing the
changes in the traffic patterns.

Roger Dingledine
The Tor Project
Email: arma@mit.edu

Christian Grothoff
Colorado Research Institute
for Security and Privacy
University of Denver
Email: christian@ grothoff.org

While Murdoch and Danezis’s work popularized the
idea proposed in [1] of an adversary perturbing traffic
patterns of a low-latency network to deanonymize its
users, the original attack no longer works on the mod-
ern Tor network. In a network with thousands of relays,
too many relays share similar latency characteristics and
the amount of congestion that was detectable in 2005 is
no longer significant; thus, the traffic of a single normal
user does not leave an easily distinguishable signature in
the significantly larger volume of data routed by today’s
Tor network.

We address the original attack’s weaknesses by com-
bining JavaScript injection with a selective and asymmet-
ric denial-of-service (DoS) attack to obtain specific infor-
mation about the path selected by the victim. As a result,
we are able to identify the entire path for a user of today’s
Tor network. Because our attack magnifies the conges-
tion effects of the original attack, it requires little band-
width on the part of the attacker. We also provide an im-
proved method for evaluating the statistical significance
of the obtained data, based on Tor’s message scheduling
algorithm. As a result, we are not only able to determine
which relays make up the circuit with high probability,
we can also quantify the extent to which the attack suc-
ceeds. This paper presents the attack and experimental
results obtained from the actual Tor network.

We propose some non-trivial modifications to the cur-
rent Tor protocol and implementation which would raise
the cost of the attack. However, we emphasize that a full
defense against our attack is still not known.

Just as Murdoch and Danezis’s work applied to other
systems such as MorphMix [24] or Tarzan [36], our im-
proved attack and suggested partial defense can also be
generalized to other networks using onion routing. Also,
in contrast to previously proposed solutions to conges-
tion attacks [18,22-24,28,30,35,36], our proposed modi-
fications do not impact the performance of the anonymiz-
ing network.

USENIX Association

18th USENIX Security Symposium 33

2 Related Work

Chaum’s mixes [3] are a common method for achiev-
ing anonymity. Multiple encrypted messages are sent
to a mix from different sources and each is forwarded
by the mix to its respective destination. Combinations
of artificial delays, changes in message order, message
batching, uniform message formats (after encryption),
and chaining of multiple mixes are used to further mask
the correspondence between input and output flows in
various variations of the design [5,7,8,17,21,25,32,33].
Onion routing [16] is essentially the process of using
an initiator-selected chain of low-latency mixes for the
transmission of encrypted streams of messages in such a
way that each mix only knows the previous and the next
mix in the chain, thus providing initiator-anonymity even
if some of the mixes are controlled by the adversary.

2.1 Tor

Tor [12] is a distributed anonymizing network that uses
onion routing to provide anonymity for its users. Most
Tor users access the Tor network via a local proxy pro-
gram such as Privoxy [20] to tunnel the HTTP requests
of their browser through the Tor network. The goal is to
make it difficult for web servers to ascertain the IP ad-
dress of the browsing user. Tor provides anonymity by
utilizing a large number of distributed volunteer-run re-
lays (or routers). The Tor client software retrieves a list
of participating relays, randomly chooses some number
of them, and creates a circuit (a chain of relays) through
the network. The circuit setup involves establishing a
session key with each router in the circuit, so that data
sent can be encrypted in multiple layers that are peeled
off as the data travels through the network. The client
encrypts the data once for each relay, and then sends it to
the first relay in the circuit; each relay successively peels
off one encryption layer and forwards the traffic to the
next link in the chain until it reaches the final node, the
exit router of the circuit, which sends the traffic out to the
destination on the Internet.

Data that passes through the Tor network is packaged
into fixed-sized cells, which are queued upon receipt for
processing and forwarding. For each circuit that a Tor
router is a part of, the router maintains a separate queue
and processes these queues in a round-robin fashion. If
a queue for a circuit is empty it is skipped. Other than
using this fairness scheme, Tor does not intentionally in-
troduce any latency when forwarding cells.

The Tor threat model differs from the usual model for
anonymity schemes [12]. The traditional threat model
is that of a global passive adversary: one that can ob-
serve all traffic on the network between any two links.
In contrast, Tor assumes a non-global adversary which
can only observe some subset of the connections and

can control only a subset of Tor nodes. Well-known at-
tack strategies such as blending attacks [34] require more
powerful attackers than those permitted by Tor’s attacker
model. Tor’s model is still valuable, as the resulting
design achieves a level of anonymity that is sufficient
for many users while providing reasonable performance.
Unlike the aforementioned strategies, the adversary used
in this paper operates within the limits set by Tor’s at-
tacker model. Specifically, our adversary is simply able
to run a Tor exit node and access the Tor network with
resources similar to those of a normal Tor user.

2.2 Attacks on Tor and other Mixes

Many different attacks on low-latency mix networks and
other anonymization schemes exist, and a fair number of
these are specifically aimed at the Tor network. These
attacks can be broadly grouped into three categories:
path selection attacks, passive attacks, and active attacks.
Path selection attacks attempt to invalidate the assump-
tion that selecting relays at random will usually result in
a safe circuit. Passive attacks are those where the adver-
sary in large part simply observes the network in order to
reduce the anonymity of users. Active attacks are those
where the adversary uses its resources to modify the be-
havior of the network; we’ll focus here on a class of ac-
tive attacks known as congestion or interference attacks.

2.2.1 Path Selection Attacks

Path selection is crucial for the security of Tor users; in
order to retain anonymity, the initiator needs to choose a
path such that the first and last relay in the circuit won’t
collude. By selecting relays at random during circuit cre-
ation, it could be assumed that the probability of find-
ing at least one non-malicious relay would increase with
longer paths. However, this reasoning ignores the pos-
sibility that malicious Tor routers might choose only to
facilitate connections with other adversary-controlled re-
lays and discard all other connections [2]; thus the initia-
tor either constructs a fully malicious circuit upon ran-
domly selecting a malicious node, or fails that circuit and
tries again. This type of attack suggests that longer cir-
cuits do not guarantee stronger anonymity.

A variant of this attack called “packet spinning” [30]
attempts to force users to select malicious routers by
causing legitimate routers to time out. Here the at-
tacker builds circular paths throughout the Tor network
and transmits large amounts of data through those paths
in order to keep legitimate relays busy. The attacker
then runs another set of (malicious) servers which would
eventually be selected by users because of the attacker-
generated load on all legitimate mixes. The attack is suc-
cessful if, as a result, the initiator chooses only malicious
servers for its circuit, making deanonymization trivial.

34

18th USENIX Security Symposium

USENIX Association

2.2.2 Passive Attacks

Several passive attacks on mix systems were proposed
by Back et al. [1]. The first of these attacks is a “packet
counting” attack, where a global passive adversary sim-
ply monitors the initiator’s output to discover the number
of packets sent to the first mix, then observes the first mix
to watch for the same number of packets going to some
other destination. In this way, a global passive adversary
could correlate traffic to a specific user. As described
by Levine et al. [23], the main method of defeating such
attacks is to pad the links between mixes with cover traf-
fic. This defense is costly and may not solve the problem
when faced with an active attacker with significant re-
sources; an adversary with enough bandwidth can deal
with cover traffic by using up as much of the allotted
traffic between two nodes as possible with adversary-
generated traffic [4]. As a result, no remaining band-
width is available for legitimate cover traffic and the ad-
versary can still deduce the amount of legitimate traffic
that is being processed by the mix. This attack (as well
as others described in this context) requires the adversary
to have significant bandwidth. It should be noted that in
contrast, the adversary described by our attack requires
only the resources of an average mix operator.
Low-latency anonymity systems are also vulnerable
to more active timing analysis variations. The attack
presented in [23] is based on an adversary’s ability to
track specific data through the network by making mi-
nor timing modifications to it. The attack assumes that
the adversary controls the first and last nodes in the path
through the network, with the goal of discovering which
destination the initiator is communicating with. The au-
thors discuss both correlating traffic “as is” as well as al-
tering the traffic pattern at the first node in order to make
correlation easier at the last node. For this second corre-
lation attack, they describe a packet dropping technique
which creates holes in the traffic; these holes then per-
colate through the network to the last router in the path.
The analysis showed that without cover traffic (as em-
ployed in Tarzan [14, 15]) or defensive dropping [23],
it is relatively easy to correlate communications through
mix networks. Even with “normal” cover traffic where
all packets between nodes look the same, Shmatikov and
Wang show that the traffic analysis attacks are still vi-
able [35]. Their proposed solution is to add cover traffic
that mimics traffic flows from the initiator’s application.
A major limitation of all of the attacks described so
far is that while they work well for small networks, they
do not scale and may fail to produce reliable results for
larger anonymizing networks. For example, Back’s ac-
tive latency measuring attack [1] describes measuring
the latencies of circuits and then trying to determine the
nodes that were being utilized from the latency of a spe-
cific circuit. As the number of nodes grows, this attack

becomes more difficult (due to an increased number of
possible circuits), especially as more and more circuits
have similar latencies.

2.2.3 Congestion Attacks

A more powerful relative of the described timing attacks
is the clogging or congestion attack. In a clogging attack,
the adversary not only monitors the connection between
two nodes but also creates paths through other nodes and
tries to use all of their available capacity [1]; if one of the
nodes in the target path is clogged by the attacker, the ob-
served speed of the victim’s connection should change.

In 2005, Murdoch and Danezis described an attack on
Tor [27] in which they could reveal all of the routers in-
volved in a Tor circuit. They achieved this result using a
combination of a circuit clogging attack and timing anal-
ysis. By measuring the load of each node in the network
and then subsequently congesting nodes, they were able
to discover which nodes were participating in a particu-
lar circuit. This result is significant, as it reduces Tor’s
security during a successful attack to that of a collection
of one hop proxies. This particular attack worked well on
the fledgling Tor network with approximately fifty nodes;
the authors experienced a high success rate and no false
positives. However, their clogging attack no longer pro-
duces a signal that stands out on the current Tor network
with thousands of nodes. Because today’s Tor network
is more heavily used, circuits are created and destroyed
more frequently, so the addition of a single clogging cir-
cuit has less impact. Also, the increased traffic transmit-
ted through the routers leads to false positives or false
negatives due to normal network fluctuations. We pro-
vide details about our attempt to reproduce Murdoch and
Danezis’s work in Section 6.

McLachlan and Hopper [24] propose a similar cir-
cuit clogging attack against MorphMix [33], disproving
claims made in [36] that MorphMix is invulnerable to
such an attack. Because all MorphMix users are required
to also be mix servers, McLachlan and Hopper achieve
a stronger result than Murdoch and Danezis: they can
identify not only the circuit, but the user as well.

Hopper et al. [19] build on the original clogging attack
idea to construct a network latency attack to guess the lo-
cation of Tor users. Their attack is two-phase: first use a
congestion attack to identify the relays in the circuit, and
then build a parallel circuit through those relays to esti-
mate the latency between the victim and the first relay.
A key contribution from their work is a more mathemat-
ical approach that quantifies the amount of information
leaked in bits over time. We also note that without a
working congestion attack, the practicality of their over-
all approach is limited.

USENIX Association

18th USENIX Security Symposium 35

Client

Tor Node 3 - Our Exit Node

Tor Node 2 - Known

7

Server

Tor Node 1 - Unknown Node Malicious Client

High BW Tor N§d; 1

High BW Tor Node 2 Malicious Server

Figure 1: Attack setup. This figure illustrates the normal circuit constructed by the victim to the malicious Tor exit
node and the “long” circuit constructed by the attacker to congest the entry (or guard) node used by the victim. The
normal thin line from the client node to the server represents the victim circuit through the Tor network. The unwitting
client has chosen the exit server controlled by the adversary, which allows the JavaScript injection. The double thick
lines represent the long circular route created by the malicious client through the first Tor router chosen by the client.
The dotted line shows the path that the JavaScript pings travel.

3 Our Attack

Three features of Tor’s design are crucial for our attack.
First of all, Tor routers do not introduce any artificial de-
lays when routing requests. As a result, it is easy for
an adversary to observe changes in request latency. Sec-
ond, the addresses of all Tor routers are publicly known
and easily obtained from the directory servers. Tor de-
velopers are working on extensions to Tor (called bridge
nodes [10, 11]) that would invalidate this assumption, but
this service was not widely used at the time of this writ-
ing. Finally, the latest Tor server implementation that
was available at the time we concluded our original at-
tacks (Tor version 0.2.0.29-rc) did not restrict users from
establishing paths of arbitrary length, meaning that there
was no restriction in place to limit constructing long
paths through Tor servers.! We used a modified client
version (based on 0.2.0.22-rc) which used a small fixed
path length (specifically three) but modified it to use a
variable path length specified by our attacker.

Fig. 1 illustrates the three main steps of our attack.
First, the adversary needs to ensure that the initiator re-
peatedly performs requests at known intervals. Second,
the adversary observes the pattern in arrival times of
these requests. Finally, the adversary changes the pat-
tern by selectively performing a novel clogging attack on

ITor version 0.2.1.3-alpha and later servers restrict path lengths to
a maximum of eight because of this work.

Tor routers to determine the entry node. We will now
describe each of these steps in more detail.

3.1 JavaScript Injection

Our attack assumes that the adversary controls an exit
node which is used by the victim to access an HTTP
server. The attacker uses the Tor exit node to inject a
small piece of JavaScript code (shown in Fig. 2) into
an HTML response. It should be noted that most Tor
users do not disable JavaScript and that the popular Tor
Button plugin [31] and Privoxy [20] also do not disable
JavaScript code; doing so would prevent Tor users from
accessing too many web pages. The JavaScript code
causes the browser to perform an HTTP request every
second, and in response to each request, the adversary
uses the exit node to return an empty response, which is
thrown away by the browser. Since the JavaScript code
may not be able to issue requests precisely every second,
it also transmits the local system time (in milliseconds)
as part of the request. This allows the adversary to de-
termine the time difference between requests performed
by the browser with sufficient precision. (Clock skew
on the systems of the adversary and the victim is usu-
ally insignificant for the duration of the attack.) While
JavaScript is not the only conceivable way for an attacker
to cause a browser to transmit data at regular intervals
(alternatives include HTTP headers like refresh [13]

36

18th USENIX Security Symposium

USENIX Association

<script language="javascript">
var count,timer,xmlhttp = 0;
function runonce () {
xmlhttp = new XMLHttpRequest (); }
function start () {
xmlhttp.abort ();
xmlhttp = new XMLHttpRequest () ;
count++;
if (timer)
timer = setTimeout ("start ()",
myDate = new Date();
xmlhttp.open ("GET",
"/reportIn.html?num=" + count +
"gtime=" + myDate.getTime (), true);
xmlhttp.send("");
}
</script>

clearTimeout (timer) ;
1000) ;

Figure 2: JavaScript code injected by the adversary’s exit
node. Note that other techniques such as HTML refresh,
could also be used to cause the browser to perform peri-
odic requests.

and HTML images [19]), JavaScript provides an easy
and generally rather dependable method to generate such
a signal.

The adversary then captures the arrival times of the
periodic requests performed by the browser. Since the
requests are small, an idle Tor network would result in
the differences in arrival times being roughly the same
as the departure time differences — these are known be-
cause they were added by the JavaScript as parameters to
the requests. Our experiments suggest that this is often
true for the real network, as most routers are not seri-
ously congested most of the time. This is most likely
in part due to TCP’s congestion control and Tor’s built-
in load balancing features. Specifically, the variance in
latency between the periodic HTTP requests without an
active congestion attack is typically in the range of 0-5 s.

However, the current Tor network is usually not en-
tirely idle and making the assumption that the victim’s
circuit is idle is thus not acceptable. Observing conges-
tion on a circuit is not enough to establish that the node
under the congestion attack by the adversary is part of the
circuit; the circuit may be congested for other reasons.
Hence, the adversary needs to also establish a baseline
for the congestion of the circuit without an active con-
gestion attack. Establishing measurements for the base-
line is done before and after causing congestion in or-
der to ensure that observed changes during the attack are
caused by the congestion attack and not due to unrelated
changes in network characteristics.

The attacker can repeatedly perform interleaved mea-

surements of both the baseline congestion of the circuit
and the congestion of the circuit while attacking a node
presumed to be on the circuit. The attacker can continue
the measurements until either the victim stops using the
circuit or until the mathematical analysis yields a node
with a substantially higher deviation from the baseline
under congestion compared to all other nodes. Before we
can describe details of the mathematical analysis, how-
ever, we have to discuss how congestion is expected to
impact the latency measurements.

3.2 Impact of Congestion on Arrival Times

In order to understand how the congestion attack is ex-
pected to impact latency measurements, we first need to
take a closer look at how Tor schedules data for rout-
ing. Tor makes routing decisions on the level of fixed-
size cells, each containing 512 bytes of data. Each Tor
node routes cells by going round-robin through the list
of all circuits, transmitting one packet from each circuit
with pending data (see Fig. 3). Usually the number of
(active) circuits is small, resulting in little to no delay. If
the number of busy circuits is large, messages may start
to experience significant delays as the Tor router iterates
over the list (see Fig. 4).

Since the HTTP requests transmitted by the injected
JavaScript code are small (~250 bytes, depending on
count and time), more than one request can fit into a sin-
gle Tor cell. As a result multiple of these requests will
be transmitted at the same time if there is congestion at
arouter. A possible improvement to our attack would be
to use a lower level API to send the packets, as the XML-
HttpRequest object inserts unnecessary headers into the
request/response objects.

We will now characterize the network’s behavior un-
der congestion with respect to request arrival times. As-
suming that the browser transmits requests at a perfectly
steady rate of one request per second, a congested router
introducing a delay of (at most) n seconds would cause
groups of n HTTP requests to arrive with delays of ap-
proximately 0, 1, ..., n—1 seconds respectively: the first
cell is delayed by n—1 seconds, the cell arriving a second
later by n — 2 seconds, and the n-th cell arrives just be-
fore the round-robin scheduler processes the circuit and
sends all n requests in one batch. This characterization
is of course a slight idealization in that it assumes that
n is small enough to allow all of the HTTP requests to
be grouped into one Tor cell and that there are no other
significant fluctuations. Furthermore, it assumes that the
amount of congestion caused by the attacker is perfectly
steady for the duration of the time measurements, which
may not be the case. However, even without these ide-
alizations it is easy to see that the resulting latency his-
tograms would still become “flat” (just not as perfectly

USENIX Association

18th USENIX Security Symposium 37

A B C
o
o5
54|
[
o2 |cd
;Cl

Output Queue-\ t=2t=1t=0

>
Jm
e}

>

Output Queue

{=3t=2t=1t=0

| BO|AO| CO‘

|C1| BO| A0| CO‘

Figure 3: This example illustrates a Tor router which currently is handling three circuits at two points in time (! = 3
and t = 4). Circuits (A, B and C) have queues; cells are processed one at a time in a round-robin fashion. As the
number of circuits increases, the time to iterate over the queues increases. The left figure shows the circuit queues
and output queue before selection of cell C1 for output and the right figure shows the queues after queueing C1 for
output. The thicker bottom box of queue C (left) and queue B (right) shows the current position of the round-robin
queue iterator. At time ¢ = 1 the last cell from queue A was processed leaving the queue A empty. As a result, queue
A is skipped after processing queue C.

3
Jm

B1]

BO|

(o)

c4
C3|
C2|

Ccy

]

D3

D2

D1

E4|

E3|

E2|

E1]

]

[}
|z
1t
‘u
|=
L
|z
|2
lo

H3 K3| M3 N3

H2 K2 M3 N2 |0

ol |wi | ful md nd fod

lod |ng kol |to| md [nd o
T

Output Que?e\\ Coiiieg

>

B1]

BO|

le)

[z

C3|

C2

[e5]

]

D3

D2

D1

E4|

E3|

E2

E1

|

o)
=4
it
[
=

Gl |Hi K1
co| |Hd Kol
T~ -
—
T~

L

L1

Lo

=
|2
lo

M2 N2 02

M1 N1 01

M NO| ol

T~
Output Queue—__ N

f=3t=2t=1t=0

| EO| D0| CO‘

| F0| E0| D0| CO‘

Figure 4: This example illustrates a Tor router under congestion

case FO.

attack handling 15 circuit queues. Note that if a
circuit includes a node multiple times, the node assigns the circuit multiple circuit queues. In this example, not all of
the circuit queues are busy — this may be because the circuits are not in use or because other routers on the circuit
are congested. As in Fig. 3, the left and right figures show the state of the mix before and after queueing a cell, in this

38

18th USENIX Security Symposium

USENIX Association

regular in terms of arrival patterns) assuming the load
caused by the attacker is sufficiently high.

Since we ideally expect delays in message arrival
times for a congested circuit to follow a roughly flat dis-
tribution between zero and n, it makes sense to compute
a histogram of the delays in message arrival times. If
the congestion attack is targeting a node on the circuit,
we would expect to see a roughly equal number of mes-
sages in each interval of the histogram. We will call the
shape of the resulting histogram horizontal. If the circuit
is not congested, we expect to see most messages arrive
without significant delay which would place them in the
bucket for the lowest latency. We will call the shape of
the resulting histogram vertical. So for example, in Fig. 6
the control data are vertical, whereas the attack data are
more horizontal.

Note that the clock difference between the victim’s
system and the adversary as well as the minimal network
delay are easily eliminated by normalizing the observed
time differences. As a result, the latency histograms
should use the increases in latency over the smallest ob-
served latency, not absolute latencies.

3.3 Statistical Evaluation

In order to numerically capture congestion at nodes we
first measure the node’s baseline latency, that is latency
without an active congestion attack (at least as far as we
know). We then use the observed latencies to create n
bins of latency intervals such that each bin contains the
same number of data points. Using the y2-test we could
then determine if the latency pattern at the respective
peer has changed “significantly”. However, this simplis-
tic test is insufficient. Due to the high level of normal
user activity, nodes frequently do change their behavior
in terms of latencies, either by becoming congested or
by congestion easing due to clients switching to other
circuits. For the attacker, congestion easing (the latency
histogram getting more vertical) is exactly the opposite
of the desired effect. Hence the ordinary 2 test should
not be applied without modification. What the attacker is
looking for is the histogram becoming more horizontal,
which for the distribution of the bins means that there are
fewer values in the low-latency bins and more values in
the high-latency bins. For the medium-latency bins no
significant change is expected (and any change there is
most likely noise).

Hence we modify our computation of the x? value
such that we only include changes in the anticipated di-
rection: for the bins corresponding to the lowest third of
the latencies, the square of the difference between ex-
pected and observed number of events is only counted in
the summation if the number of observed events is lower
than expected. For the bins corresponding to the high-

est third of the latencies, the square of the difference be-
tween expected and observed number of events is only
counted if the number of observed events is higher than
expected. Since changes to the bins in the middle third
are most likely noise, those bins are not included in the
x? calculation at all (except as a single additional degree
of freedom).

Using this method, a single iteration of measuring the
baseline and then determining that there was a significant
increase in latency (evidenced by a large y2-value), only
signifies that congestion at the guard for the victim cir-
cuit was correlated (in time) with the congestion caused
by the attacker. Naturally, correlation does not imply
causality; in fact, for short (30-60 s) attack runs it fre-
quently happens that the observed y2-value is higher for
some false-positive node than when attacking the correct
guard node. However, such accidental correlations virtu-
ally never survive iterated measurements of the latency
baseline and x2-values under attack.

3.4 Congestion Attack

Now we focus on how the attacker controlling the exit
node of the circuit will cause significant congestion at
nodes that are suspected to be part of the circuit. In gen-
eral, we will assume that all Tor routers are suspects and
that in the simplest case, the attacker will iterate over all
known Tor routers with the goal of finding which of these
routers is the entry point of the circuit.

For each router X, the attacker constructs a long cir-
cuit that repeatedly includes X on the path. Since Tor re-
lays will tear down a circuit that tries to extend to the pre-
vious node, we have to use two (or more) other (prefer-
ably high-bandwidth) Tor routers before looping back to
X. Note that the attacker could choose two different (in-
voluntary) helper nodes in each loop involving X. Since
X does not know that the circuit has looped back to X,
Tor will treat the long attack circuit as many different
circuits when it comes to packet scheduling (Fig. 4).

Once the circuit is sufficiently long (we typically
found 24 hops to be effective, but in general this depends
on the amount of congestion established during the base-
line measurements), the attacker uses the circuit to trans-
mit data. Note that a circuit of length m would allow
an attacker with p bandwidth to consume m - p band-
width on the Tor network, with X routing as much as
752 bandwidth. Since X now has to iterate over an ad-
ditional % circuits, this allows the attacker to introduce
large delays at this specific router. The main limitation
for the attacker here is time. The larger the desired delay
d and the smaller the available attacker bandwidth p the
longer it will take to construct an attack circuit of suffi-
cient length m: the number of times that the victim node
is part of the attack circuit is proportional to the length of

USENIX Association

18th USENIX Security Symposium 39

Latency measurement graph freedomsurfers

Control Run —— ' j I j 1 160
Attack Run ---&--- L 4
rL_Downloaded Data ----* fi 150

~

- 140
130
120
110
100

() EN o o

Latency variance (in seconds)

o
Bytes expended by attacker (in kB)

Sample number

Latency measurement graph carini
16
Control Run —<— ' ' 40
15 Attack Run ---8--—
14 |-|_Downloaded Data -+

13
12
"
10

Latency variance (in seconds)

Bytes expended by attacker (in kB)

- N WA N ®

0 200 400 600 800 1000 1200
Sample number

Latency measurement graph bloxortsipt41

31

30 - Control Run —=— ' '
Attack Run ---&--—

Downloaded Data -+

Latency variance (in seconds)
Bytes expended by attacker (in kB)

Sample number

Latency measurement graph carini

13 1 Control Run —<—
Attack Run ---8--—
12 I-| Downloaded Data -+
ul] {40
M)

@ 10 - % x
2 o £
S 9t > 8 g
3 130 ¥
Zosp i BB K]
£ i i
37 ! £
£ 6 b 3
5 i 2
> 5 B g
e x
S 3}
g 4 8
5 £

3 &

2H

1

L - L gl il
0 200 400 600 800 1000 1200
Sample number

Figure 5: These figures show the results of perturbation of circuits in Tor and the resulting effects on latency. The
z-axes show sample numbers (one per second), and the (left) y-axes are latency variance observed on the circuits in
seconds. The attack on the first router of each circuit starts at time 600; the third line shows the amount of data (scaled)
that transferred through the attack circuit (scaled to the right y-axes). These are individual trials; each shows a single

control run and a single attack run.

the circuit m. In other words, the relationship between p,
m and the delay disd ~ p - m.

If the router X is independent of the victim circuit, the
measured delays should not change significantly when
the attack is running. If X is the entry node, the attacker
should observe a delay pattern that matches the power of
the attack — resulting in a horizontal latency variance his-
togram as described in Section 3.2. The attacker can vary
the strength of the attack (or just switch the long attack
circuit between idle and busy a few times) to confirm that
the victim’s circuit latency changes correlate with the at-
tack. It should be noted that the attacker should be care-
ful to not make the congestion attack too powerful, espe-
cially for low-bandwidth targets. In our experiments we
sometimes knocked out routers (for a while) by giving
them far too much traffic. As a result, instead of receiv-
ing requests from the JavaScript code with increasing la-
tencies, the attacker suddenly no longer receives requests
at all, which gives no useful data for the statistical evalu-
ation.

3.5 Optimizations

The adversary can establish many long circuits to be used
for attacks before trying to deanonymize a particular vic-
tim. Since idle circuits would not have any impact on
measuring the baseline (or the impact of using another at-
tack circuit), this technique allows an adversary to elim-
inate the time needed to establish circuits. As users can
only be expected to run their browser for a few minutes,
eliminating this delay may be important in practice; even
users that may use their browser for hours are likely to
change between pages (which might cause Tor to change
exit nodes) or disable Tor.

In order to further speed up the process, an adver-
sary can try to perform a binary search for X by ini-
tially running attacks on half of the routers in the Tor
network. With pre-built attack circuits adding an almost
unbounded multiplier to the adversary’s resources, it is
conceivable that a sophisticated attacker could probe a
network of size s in log, s rounds of attacks.

40

18th USENIX Security Symposium

USENIX Association

Histogram of latency measurements for freedomsurfers

600

I
Control Run #2628
Attack Run s

500 ontrol Run Regression Line L
Attack Run Regression Line

40

30

20

Number of measurements in range

Range of measurements (in seconds)

Histogram of latency measurements for carini

600 T T T I

I I T
Control Run s
Attack Run

Control Run Regression Line
Attack Run Regression Line

Number of measurements in range

Range of measurements (in seconds)

Histogram of latency measurements for bloxortsiptd 1

600

LI
Control Run #2628

Attack Run s

500 Control Run Regression Line L
Attack Run Regression Line

400

300

200

Number of measurements in range

100

12345678 91011121314151617 181920212223 24 2526 27 28 29 30 31

Range of measurements (in seconds)

Histogram of latency measurements for carini

600 T T T

Attack Run B

500 Control Run Regression Line L
Attack Run Regression Line

400

300

200

Number of measurements in range

100

Range of measurements (in seconds)

Figure 6: These figures show the results of four independent runs of our congestion attack. In the histograms the
z-axis groups ranges of latency variance values together and the y-axis represents the number of readings received
in that range. The hash marked bars represent the unperturbed measurements on a circuit and the plain bars show
measurements from the same circuit during the attack. The effect of the attack is a shift to higher latency values. The
first and second lines are linear least squares fit approximations for the baseline and congestion runs, respectively.
These data show the difference between a single control/attack run and are not averages of many runs.

In practice, pre-building a single circuit that would
cause congestion for half the network is not feasible;
the Tor network is not stable enough to sustain circuits
that are thousands of hops long. Furthermore, the differ-
ences in available bandwidth between the routers compli-
cates the path selection process. In practice, an adversary
would most likely pre-build many circuits of moderate
size, forgoing some theoretical bandwidth and attack du-
ration reductions for circuits that are more reliable. Fur-
thermore, the adversary may be able to exclude certain
Tor routers from the set of candidates for the first hop
based on the overall round-trip latency of the victim’s
circuit. The Tor network allows the adversary to mea-
sure the latency between any two Tor routers [19,27]; if
the overall latency of the victim’s circuit is smaller than
the latency between the known second router on the path
and another router Y, then Y is most likely not a candi-
date for the entry point.

Finally, the adversary needs to take into considera-
tion that by default, a Tor user switches circuits ev-
ery 10 minutes. This further limits the window of op-
portunity for the attacker. However, depending on the
browser, the adversary may be able to cause the browser
to pipeline HTTP requests which would not allow Tor to
switch circuits (since the HTTP session would not end).
Tor’s circuit switching also has advantages for the ad-
versary: every 10 minutes there is a new chance that the
adversary-controlled exit node is chosen by a particular
victim. Since users only use a small number of nodes for
the first node on a circuit (these nodes are called guard
nodes [29]), the adversary has a reasonable chance over
time to determine these guard nodes. Compromising one
of the guard nodes would then allow full deanonymiza-
tion of the target user.

USENIX Association

18th USENIX Security Symposium 41

300

T T
Rattensalat =—f=—
DigitalBrains ==¢==
BlueStar88a -
BlueStar88a-2 -
elct =

Chi Square Values of Attack vs. Baseline

30 60 920 120

150 180 210 240 270

Seconds of Measurement for Attack Run

Figure 7: This figure shows the development of y? values (using the modified x? calculation as described in Sec-
tion 3.3) for the various candidates over a prolonged period of performing a congestion attack on the various nodes.
The x? values are computed against a five-minute baseline obtained just prior to the congestion attack. The x? value
of the correct entry node quickly rises to the top whereas the x? values for all of the other candidates are typically
lower after about a minute of gathering latency information under congestion. This illustrates that a few minutes are

typically sufficient to obtain a meaningful x? value.

4 Experimental Results

The results for this paper were obtained by attacking Tor
routers on the real, deployed Tor network (initial mea-
surements were done during the Spring and Summer of
2008; additional data was gathered in Spring 2009 with
an insignificantly modified attacker setup; the modifica-
tions were needed because our original attack client was
too outdated to work with the majority of Tor routers at
the time). In order to confirm the accuracy of our experi-
ments and avoid ethical problems, we did not attempt to
deanonymize real users. Instead, we established our own
client circuits through the Tor network to our malicious
exit node and then confirmed that our statistical analysis
was able to determine the entry node used by our own
client. Both the entry nodes and the second nodes on the
circuits were normal nodes in the Tor network outside of
our control.

The various roles associated with the adversary (exit
node, malicious circuit client, and malicious circuit web-
server) as well as the “deanonymized” victim were dis-
tributed across different machines in order to minimize
interference between the attacking systems and the tar-
geted systems. For the measurements we had the simu-
lated victim running a browser requesting and executing
the malicious JavaScript code, as well as a machine run-
ning the listening server to which the client transmits the
“ping” signal approximately every second (Fig. 1). The

browser always connected to the same unmodified Tor
client via Privoxy [20]. The Tor client used the standard
configuration except that we configured it to use our ma-
licious exit node for its circuits. The other two nodes in
the circuit were chosen at random by Tor. Our malicious
exit node participated as a normal Tor router in the Tor
network for the duration of the study (approximately six
weeks). For our tests we did not actually make the exit
server inject the JavaScript code; while this is a relatively
trivial modification to the Tor code we used a simplified
setup with a webserver serving pages with the JavaScript
code already present.

The congestion part of the attack requires three com-
ponents: a simple HTTP server serving an “infinite”
stream of random data, a simple HTTP client down-
loading this stream of data via Tor, and finally a mod-
ified Tor client that constructs “long” circuits through
those Tor nodes that the attacker would like to congest.
Specifically, the modified Tor client allows the attacker
to choose two (or more) routers with high bandwidth and
a specific target Tor node, and build a long circuit by
repeatedly alternating between the target node and the
other high bandwidth nodes. The circuit is eventually ter-
minated by connecting from some high-bandwidth exit
node to the attacker’s HTTP server which serves the “in-
finite” stream of random data as fast as the network can
process it. As a result, the attacker maximizes the uti-
lization of the Tor circuit. Naturally, an attacker with

42

18th USENIX Security Symposium

USENIX Association

35(5 g T T

Chi Square Value

0 ! ! ! ! ! !

" chi éq4 Vallies for Router Rattensalat —‘-|——
Chi Sq. Values for Router TorSchleim ==¢-=
Chi Sq. Values for Router DigitalBrains -+

30 60 90 120 0 30

60 90 120 0 30 60 90 120

Seconds of Measurement in Run

Figure 8: This graph shows three sets of cumulative x? computations for three nodes; the actual entry node
(Rattensalat), a node that initially shows up as a false-positive (TorSchleim) and a typical negative
(DigitalBrains). As expected, the x? values (at time 120 s) are consistently the highest for the correct node;
false-positives can be ruled out through repeated measurements.

significant bandwidth can elect to build multiple circuits
in parallel or build shorter circuits and still exhaust the
bandwidth resources of the target Tor router.

In order to cause congestion, we simply started the
malicious client Tor process with the three chosen Tor
routers and route length as parameters and then at-
tempted to connect via 1ibcurl [6] to the respective
malicious server process. The amount of data received
was recorded in order to determine bandwidth consumed
during the tests. In order to further increase the load on
the Tor network the experiments presented actually used
two identical attacker setups with a total of six machines
duplicating the three machine setup described in the pre-
vious paragraph. We found path lengths of 24 (making
our attack strength eight times the attacker bandwidth)
sufficient to alter latencies. The overall strength of the
attack was measured by the sum of the number of bytes
routed through the Tor network by both attacker setups.
For each trial, we waited to receive six hundred responses
from the “victim”; since the browser transmitted requests
to Tor at roughly one request per second, a trial typically
took approximately ten minutes.

In addition to measuring the variance in packet ar-
rival time while congesting a particular Tor router, each
trial also included baseline measurements of the “un-
congested” network to discover the normal variance in
packet arrival time for a particular circuit. As discussed
earlier, these baseline measurements are crucial for deter-
mining the significance of the effect that the congestion
attack has had on the target circuit.

Fig. 5 illustrates how running the attack on the first hop
of a circuit changes the latency of the received HTTP re-
quests generated by the JavaScript code. The figure uses
the same style chosen by Murdoch and Danezis [27],
except that an additional line was added to indicate the
strength of the attack (as measured by the amount of traf-
fic provided by the adversary). For comparison, the first
half of each of the figures shows the node latency vari-
ance when it is not under active congestion attack (or at
least not by us).

While the plots in Fig. 5 visualize the impact of the
congestion attack in a simple manner, histograms show-
ing the variance in latency are more suitable to demon-
strate the significance of the statistical difference in the
traffic patterns. Fig. 6 shows the artificial delay experi-
enced by requests traveling through the Tor network as
observed by the adversary. Since Tor is a low-latency
anonymization service, the requests group around a low
value for a circuit that is not under attack. As expected,
if the entry node is under attack, the delay distribution
changes from a steep vertical peak to a mostly horizontal
distribution. Fig. 6 also includes the best-fit linear ap-
proximation functions for the latency histograms which
we use to characterize how vertical or how horizontal the
histogram is as described in Section 3.2.

Fig. 7 illustrates how the x? values evolve for various
nodes over time. Here, we first characterized the baseline
congestion for the router for five minutes. Then, the con-
gestion attack was initiated (congesting the various guard
nodes). For each attacked node, we used the modified

USENIX Association

18th USENIX Security Symposium 43

-10 N
1-1x10 Privacyhosting s

64177124055
DieYouRebelScum1
ArikaYumemiya = == s -
auk =
mrkoolltor ==+
TorSchleim
myrnaloy -
judas
"3 Doodles123
tin0
baphomet =+« »
kallio ===
diora reereeees
aquatorius
Einlauf =seeeees
dontmesswithme s
askatasuna
century

.99999

Product of Confidence Values

99 bt g

0O 2 4 6 8 10 12 14
Number of Runs

Rattensalat

SEC .
wiebud6B

hamakor TR

yavs ==

aUk TR
dontmesswithme

CThor

Raccoon
eponymousraga
BlueStar88a

wranglerrutgersedu == = ==+

conf555nick '
miskatonic

WeAreAHedge «+=+=:+

anon1984n2
c64177124055
bond

Server3 s

Product of Confidence Values

10 15 20 25 30
Number of Runs

Figure 9: Plot of the product of x? p-values for the top 20 candidate nodes (out of ~200 and ~250, respectively)
by run (a run is 300 s baseline vs. 300 s attack) for two entry nodes. The first hop (Privacyhosting (left),
Rattensalat (right)) routers were tested many more times than other routers, because the others quickly fell to low
values. We expect an attacker to perform more measurements for routers that score high to validate the correct entry
node was found. Our measurements demonstrate that the multiplied p-value remains consistently high for the correct
entry node. The y-axis is plotted on a log scale from 0to 1 —1 x 1071 and 1 — 1 x 10~2°, respectively. We speculate
that the lower maximum value for Privacyhosting is due to its higher bandwidth (900 kB/s vs. 231 kB/s).

x? summation (from Section 3.3) to determine how con-
gested the victim’s circuit had become at that time. We
computed (cumulative) X2 values after 30 s, 60 s, 90 s
and so forth. For the X2 calculations, we used 60 bins
for 300 baseline values; in other words, the time inter-
vals for the bins were chosen so that each bin contained
five data points during the five minutes of baseline mea-
surement. The 20 bins in the middle were not included
in the summation, resulting in 40 degrees of freedom.
As expected, given only 30 s of attack data some “inno-
cent” nodes have higher x? values compared to the entry
node (false-positives). However, given more samples the
x? values for those nodes typically drop sharply whereas
the x? value when congesting the entry node increases
or remains high. Of course, false-positive nodes y? val-
ues may increase due to network fluctuations over time
as well.

Unlucky baseline measurements and shifts in the base-
line latency of a router over time can be addressed by
iterating between measuring baseline congestion and at-

tack measurements. Fig. 8 shows three iterations of first
determining the current baseline and then computing x?
values under attack. Again the correct entry node ex-
hibits the largest x? values each time after about a minute
of gathering latency data under attack.

Given the possibility of false-positives showing up ini-
tially when computing x? values, the attacker should
target “all” suspected guard nodes for the first few it-
erations, and then focus his efforts on those nodes that
scored highly. Fig. 9 illustrates this approach. It com-
bines the data from multiple iterations of baseline mea-
surements and y? calculations from attack runs. The
attacker determines for each x? value the correspond-
ing confidence interval. These values are frequently
large (99.9999% or higher are not uncommon) since Tor
routers do frequently experience significant changes in
congestion. Given these individual confidence values for
each individual iteration, a cumulative score is computed
as the product? of these values. Fig. 9 shows the Tor

%It is conceivable that multiplying x? values may cause false-

44

18th USENIX Security Symposium

USENIX Association

Router IIp r | Peak BW | Configured BW
Rattensalat 0.999991 | 44 | 231kB/s 210 kB/s
c64177124055 0.903 3 569 kB/s 512 kB/s
Raccoon 0.891 8 | 3337 kB/s 4100 kB/s
wie6ud6B 0.890 11 120 kB/s 100 kB/s
SEC 0.870 13 | 4707 kB/s 5120 kB/s
cThor 0.789 8 553 kB/s 500 kB/s
BlueStar88a 0.734 7 111 kB/s 100 kB/s
bond 0.697 3 407 kB/s 384 kB/s
eponymousraga 0.458 7 118 kB/s 100 kB/s
conf555nick 0.450 5 275 kB/s 200 kB/s

Table 1: This table lists the top ten (out of 251 total) products of confidence intervals (p-values). r is the number of
iterations (and hence the number of factors in IIp) that was performed for the respective router. As expected, the entry

node Rattensalat achieves the highest score.

routers with the highest cumulative scores using this met-
ric from trials on two different entry nodes. Note that
fewer iterations were performed for routers with low cu-
mulative scores; the router with the highest score (after
roughly five iterations) and the most overall iterations is
the correctly identified entry node of the circuit.

Table 1 contrasts the product of x? values (as intro-
duced in Section 3.3) obtained while attacking the ac-
tual first hop with the product while attacking other Tor
routers. The data shows that our attack can be used to
distinguish the first hop from other routers when control-
ling the exit router (therefore knowing a priori the middle
router).

Finally, by comparing the highest latency observed
during the baseline measurement with the highest latency
observed under attack, Table 2 provides a simple illus-
tration showing that the congestion attack actually has a
significant effect.

5 Proposed Solutions

An immediate workaround that would address the pre-
sented attack would be disabling of JavaScript by the
end user. However, JavaScript is not the only means by
which an attacker could obtain timing information. For
example, redirects embedded in the HTML header could
also be used (they would, however, be more visible to
the end user). Links to images, frames and other fea-
tures of HTML could also conceivably be used to gener-
ate repeated requests. Disabling all of these features has
the disadvantage that the end user’s browsing experience
would suffer.

negatives should a single near-zero x2 value for the correct entry node
be observed. While we have not encountered this problem in practice,
using the mean of x2 values would provide a way to avoid this theoret-
ical problem.

A better solution would be to thwart the denial-of-
service attack inherent in the Tor protocol. Attackers
with limited bandwidth would then no longer be able to
significantly impact Tor’s performance. Without the abil-
ity to selectively increase the latency of a particular Tor
router, the resulting timing measurements would most
likely give too many false positives. We have extended
the Tor protocol to limit the length of a path. The details
are described in [9]; we will detail the key points here.

In the modified design, Tor routers now must keep
track of how often each circuit has been extended and
refuse to route messages that would extend the circuit
beyond a given threshold ¢. This can be done by tagging
messages that may extend the circuit with a special flag
that is not part of the encrypted stream. The easiest way
to do this is to introduce a new Tor cell type that is used
to flag cells that may extend the circuit. Routers then
count the number of messages with the special flag and
refuse to route more than a given small number (at the
moment, eight) of those messages. Routers that receive a
circuit-extension request check that the circuit-extension
message is contained in a cell of the appropriate type.
Note that these additional checks do not change the per-
formance characteristics of the Tor network. An attacker
could still create a long circuit by looping back to an
adversary-controlled node every ¢ hops; however, the ad-
versary would then have to provide bandwidth to route
every t-th packet; as a result, the bandwidth consump-
tion by the attacker is still bounded by the small constant
t instead of the theoretically unbounded path length m.

While this change prevents an attacker from construct-
ing a circuit of arbitrary length, it does not fully prevent
the attacker from constructing a path of arbitrary length.
The remaining problem is that the attacker could estab-
lish a circuit and then from the exit node reconnect to the
Tor network again as a client. We could imagine config-

USENIX Association

18th USENIX Security Symposium 45

Router Attacked Max Latency Difference | Avg. Latency Difference | Runs
Rattensalat 70352 ms 25822 ms 41
Wiia 46215 ms 470 ms 5
downtownzion 39522 ms 2625 ms 9
dontmesswithme 37648 ms 166 ms 8
wie6ud6B 35058 ms 9628 ms 9
TorSchleim 28630 ms 5765 ms 15
hamakor 25975 ms 6532 ms 8
Vault24 24330 ms 4647 ms 7
Einlauf 22626 ms 2017 ms 8
grsrlfz 22545 ms 10112 ms 2

Table 2: This table shows the top 10 highest latency differences between the maximum observed measurement in attack
runs versus the baseline runs for each router. Unsurprisingly, the difference between the maximum latency observed
during the congestion attack and the baseline measurement is significantly higher when attacking the correct first hop
compared to attacking other routers. Also included for comparision is the average max latency over all iterations (also

higher for the correct first hop), and the number of runs.

uring all Tor relays to refuse incoming connections from
known exit relays, but even this approach does not en-
tirely solve the problem: the attacker can use any ex-
ternal proxies he likes (e.g. open proxies, unlisted Tor
relays, other anonymity networks) to “glue” his circuits
together. Assuming external proxies with sufficient ag-
gregate bandwidth are available for gluing, he can build
a chain of circuits with arbitrary length. Note that the
solution proposed in [30] — limiting circuit construction
to trees — does not address this issue; furthermore, it
increases overheads and implementation complexity far
beyond the change proposed here and (contrary to the
claims in [30]) may also have an impact on anonymity,
since it requires Tor to fundamentally change the way
circuits are constructed. We leave a full solution to this
problem as an open research question.

Finally, given that strong adversaries may be able to
mount latency altering attacks without Tor’s “help”, Tor
users might consider using a longer path length than
the minimalistic default of three. This would involve
changes to Tor, as currently the only way for a user to
change the default path length would be to edit and re-
compile the code (probably out of scope for a “normal”
user). While the presented attack can be made to work
for longer paths, the number of false positives and the
time required for a successful path discovery increase
significantly with each extra hop. Using a random path
length between four and six would furthermore require
the adversary to confirm that the first hop was actually
found (by determining that none of the other Tor routers
could be a predecessor). Naturally, increasing the path
length from three to six would significantly increase the
latency and bandwidth requirements of the Tor network
and might also hurt with respect to other attacks [2].

6 Low-cost Traffic
Against Modern Tor

Analysis Failure

We attempted to reproduce Murdoch and Danezis’s
work [27] on the Tor network of 2008. Murdoch pro-
vided us with their code and statistical analysis frame-
work which performs their congestion attack while mea-
suring the latency of the circuit. Their analysis also deter-
mines the average latency and uses normalized latencies
as the strength of the signal.

The main difference in terms of how data is obtained
between Murdoch and Danezis and the attack presented
in Section 3 is that Murdoch and Danezis use a circuit
constructed by the attacker to measure the latency in-
troduced by the victim circuit whereas our attack uses
a circuit constructed by the victim to measure the latency
introduced by the attacker.

As in this paper, the adversary implemented by Mur-
doch and Danezis repeatedly switches the congestion at-
tack on and off; a high correlation between the presence
of high latency values and the congestion attack being
active is used to determine that a particular router is on
the circuit. If such a correlation is absent for the correct
router, the attack produces false negatives and fails. If a
strong correlation is present between high latency values
and random time periods (without an active attack) then
the attack produces false positives and also fails.

Fig. 10 shows examples of our attempts at the method
used in [27], two with the congestion attack being ac-
tive and two without. Our experiments reproduced Mur-
doch and Danezis’s attack setup where the attacker tries
to measure the congestion caused by the victim’s circuit.
Note that in the graphs on the right, the congestion at-
tack was run against a Tor router unrelated to the circuit

46

18th USENIX Security Symposium

USENIX Association

M&D Correlation on xbotA with Attack

0 100 200 300 400 500 600

Time

M&D Correlation on charlesbabbage with Attack

M&D Correlation on chaoscomputerclub42 w/o Attack

T '
>

M&D Correlation on sipbtor w/o Attack

500 600

Figure 10: These graphs show four runs of the method used in [27], two with the congestion attack being active (on
the left) and two without (on the right). The figure plots the observed latency of a router over time. Blue bars are used
to indicate when the congestion attack was active; in the case of the graphs on the right the attack was active on an
unrelated circuit. Red lines are drawn to latency values above average to mark latencies that correlate with the attack,

according to the Murdoch and Danezis style analysis.

and thus inactive for the circuit that was measured. Any
correlation observed in this case implies that Murdoch
and Danezis’s attack produces false positives. The “vi-
sual” look of the graphs is the same whether the attack is
targeted at that relay or not. Specifically, the graphs on
the right suggest a similar correlation pattern even when
the attack was “off” (or targeting unrelated Tor routers).
This is due to the high volume of traffic on today’s Tor
network causing baseline congestion which makes their
analysis too indiscriminate.

Table 3 shows some representative correlation val-
ues that were computed using the statistical analysis
from [27] when performed on the modern Tor net-
work. Note that the correlation values are high regard-
less of whether or not the congestion attack was actu-
ally performed on the respective router. For Murdoch
and Danezis’s analysis to work, high correlation values
should only appear for the attacked router.

The problem with Murdoch and Danezis’s attack and
analysis is not primarily with the statistical method; the
single-circuit attack itself is simply not generating a suf-
ficiently strong signal on the modern network. Fig. 11

plots the baseline latencies of Tor routers as well as the
latencies of routers subjected to Murdoch and Danezis’s
congestion attack in the style we used in Fig. 6. There are
hardly any noticeable differences between routers under
Murdoch and Danezis’s congestion attack and the base-
line. Fig. 12 shows the latency histograms for the same
data; in contrast to the histograms in Fig. 6 there is little
difference between the histograms for the baseline and
the attack.

In conclusion, due to the large amount of traffic on the
modern Tor network, Murdoch and Danezis’s analysis is
unable to differentiate between normal congestion and
congestion caused by the attacker; the small amount of
congestion caused by Murdoch and Danezis is lost in the
noise of the network. As a result, their analysis produces
many false positives and false negatives. While these ex-
periments only represent a limited case-study and while
Murdoch and Danezis’s analysis may still work in some
cases, we never got reasonable results on the modern Tor
network.

USENIX Association

18th USENIX Security Symposium 47

Router || Correlation | Attacked? | Peak BW [Configured BW |
morphiumpherrex 1.43 Yes 222 kB/s 201 kB/s
chaoscomputerclub23 1.34 No 5414 kB/s 5120 kB/s
humanistischeunionl 1.18 No 5195 kB/s 6000 kB/s
mikezhangwithtor 1.07 No 1848 kB/s 2000 kB/s
hummingbird 1.03 No 710 kB/s 600 kB/s
chaoscomputerclub4?2 1.00 Yes 1704 kB/s 5120 kB/s
degaussYourself 1.00 No 4013 kB/s 4096 kB/s
ephemera 0.91 Yes 445 kB/s 150 kB/s
fissefjaes 0.99 Yes 382 kB/s 50 kB/s
Zymurgy 0.86 Yes 230 kB/s 100 kB/s
charlesbabbage 0.53 Yes 2604 kB/s 1300 kB/s

Table 3: This table shows the correlation values calculated using the Murdoch and Danezis’s attack on the Tor network
in Spring of 2008. False positives and false negatives are both abundant; many naturally congested routers show a
strong correlation suggesting they are part of the circuit when they are not.

Latency measurement graph xbotA with attack

Control Run —— ' ' '
Attack Run —--&---

Latency variance (in seconds)

0 1000 2000 3000 4000 5000 6000
Sample number

Latency nent graph charl bage with attack

Control Run —<— ' ' '
55 H Attack Run —--&-—- 4

NN W oW A B
S & & & & &
— T T T

PR R

Latency variance (in seconds)

o
T

Al
0 1000 2000 3000
Sample number

4000 5000 6000

Latency measurement graph chaoscomputerclub42 no attack

Latency variance (in seconds)

Control Run —— ' ' '
2+ Attack Run ---&--—- 4

3000 4000 5000 6000
Sample number

1000 2000

Latency measurement graph sipbtor no attack

Latency variance (in seconds)

Control Run —<—
Attack Run —--&---

R

7

oie|

2000 3000 4000 5000 6000
Sample number

Figure 11: These graphs correspond to Fig. 10, showing the same attack in the style we used in Fig. 5. Note that during
the attack phase the congestion circuit is turned on and off just as illustrated in Fig. 10. For all four routers the latency

measurements are almost identical whether the attack was present or not.

48

18th USENIX Security Symposium

USENIX Association

Histogram of latency measurements for xbotA with attack

2000

T
Control Run

Attack Run I

1800 f22000%

PXXXXX
1600
1400
1200

1000

Number of measurements in range

1

Range of measurements (in seconds)

Histogram of latency measurements for charlesbabbage with attack

3000 T T T T T T

Control Run

Attack Run
2500

2000

1500

1000

Number of measurements in range

500

0 5 10 15 20 25 30 35 40 45 50 55

Range of measurements (in seconds)

Histogram of latency measurements for chaoscomputerclub42 with no attack

3000 .

Control Run d

Attack Run

2500 -

2000 -

1500 —

1000 -1

Number of measurements in range

500 —

I I
1 2

Range of measurements (in seconds)

Histogram of latency measurements for sipbtor no attack

3000 |

Control Run &4

Attack Run
2500 -

2000 —

1500 —

1000 -

Number of measurements in range

500 —

L
1

Range of measurements (in seconds)

Figure 12: Once more we show the same data for comparison as shown in Fig. 10, this time in the histogram style we
use in Fig. 6. The overlap between the control run and the attack run is difficult to see due to the similarity of latency

distributions.

7 Conclusion

The possibility of constructing circuits of arbitrary length
was previously seen as a minor problem that could lead
to a DoS attack on Tor. This work shows that the prob-
lem is more serious, in that an adversary could use such
circuits to improve methods for determining the path that
packets take through the Tor network. Furthermore, Tor’s
minimalistic default choice to use circuits of length three
is questionable, given that an adversary controlling an
exit node would only need to recover a tiny amount of
information to learn the entire circuit. We have made
some minimal changes to the Tor protocol that make it
more difficult (but not impossible) for an adversary to
construct long circuits.

Acknowledgments

This research was supported in part by the NLnet Foun-
dation from the Netherlands (http://nlnet.nl/)
and under NSF Grant No. 0416969. The authors thank

P. Eckersley for finding a problem in an earlier draft of
the paper and K. Grothoff for editing.

References

[1] BACK, A., MOLLER, U., AND STIGLIC, A. Traffic analysis at-
tacks and trade-offs in anonymity providing systems. In Proceed-
ings of Information Hiding Workshop (IH 2001) (April 2001),
1. S. Moskowitz, Ed., Springer-Verlag, LNCS 2137, pp. 245-257.

[2] BORIsovV, N., DANEZIS, G., MITTAL, P., AND TABRIZ, P. De-
nial of service or denial of security? How attacks on reliabil-
ity can compromise anonymity. In CCS "07: Proceedings of the
14th ACM conference on Computer and communications security
(New York, NY, USA, October 2007), ACM, pp. 92-102.

[3] CHAUM, D. L. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM 24, 2 (February 1981),
84-90.

[4] DAI, W. Two attacks against
http://www.weidai.com/freedom-attacks.txt, 2000.

freedom.

[5] DANEz1s, G., DINGLEDINE, R., AND MATHEWSON, N.
Mixminion: Design of a Type III Anonymous Remailer Proto-
col. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy (May 2003), pp. 2-15.

USENIX Association

18th USENIX Security Symposium 49

[6

=

(71

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

DANIEL STENBERG, E. A. libcurl, 1998-2009. Open Source
C-based multi-platform file transfer library.

DESMEDT, Y., AND KUROSAWA, K. How to break a practical
MIX and design a new one. In Advances in Cryptology — Eu-
rocrypt 2000, Proceedings (2000), Springer-Verlag, LNCS 1807,
pp. 557-572.

Diaz, C., AND SERJANTOV, A. Generalising mixes. In Proceed-
ings of Privacy Enhancing Technologies workshop (PET 2003)
(March 2003), R. Dingledine, Ed., Springer-Verlag, LNCS 2760,
pp. 18-31.

DINGLEDINE, R. Tor proposal
110: Avoiding infinite length circuits.
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/110-
avoid-infinite-circuits.txt, March 2007.

DINGLEDINE, R. Tor bridges specification. Tech. rep., The Tor
Project, https://svn.torproject.org/svn/tor/trunk/doc/spec/bridges-
spec.txt, 2008.

DINGLEDINE, R., AND MATHEWSON, N. Design of
a blocking-resistant anonymity system. Tech. rep., The
Tor Project, https://svn.torproject.org/svn/tor/trunk/doc/design-
paper/blocking.pdf, 2007.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium (August 2004).

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAs-
INTER, L., LEACH, P., AND BERNERS-LEE, T. RFC 2616:
Hypertext Transfer Protocol — HTTP/1.1. The Internet Society,
June 1999.

FREEDMAN, M. J., AND MORRIS, R. Tarzan: a peer-to-peer
anonymizing network layer. In CCS ’02: Proceedings of the
9th ACM conference on Computer and communications security
(New York, NY, USA, November 2002), ACM, pp. 193-206.

FREEDMAN, M. J., SIT, E., CATES, J., AND MORRIS, R. In-
troducing tarzan, a peer-to-peer anonymizing network layer. In
IPTPS *01: Revised Papers from the First International Workshop
on Peer-to-Peer Systems (London, UK, 2002), Springer-Verlag,
pp. 121-129.

GOLDSCHLAG, D. M., REED, M. G., AND SYVERSON, P. F.
Hiding Routing Information. In Proceedings of Information Hid-
ing: First International Workshop (May 1996), R. Anderson, Ed.,
Springer-Verlag, LNCS 1174, pp. 137-150.

GULCU, C., AND TSUDIK, G. Mixing E-mail with Babel. In
Proceedings of the Network and Distributed Security Symposium
- NDSS 96 (February 1996), IEEE, pp. 2—-16.

HAN, J., AND L1U, Y. Rumor riding: Anonymizing unstruc-
tured peer-to-peer systems. In ICNP ’06: Proceedings of the Pro-
ceedings of the 2006 IEEE International Conference on Network
Protocols (Washington, DC, USA, Nov 2006), IEEE Computer
Society, pp. 22-31.

HOPPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E. How
much anonymity does network latency leak? In CCS ’07: Pro-
ceedings of the 14th ACM conference on Computer and commu-
nications security (New York, NY, USA, October 2007), ACM,
pp- 82-91.

KEIL, F., SCHMIDT, D., ET AL. Privoxy - a privacy enhancing
web proxy. http://www.privoxy.org/.

KESDOGAN, D., EGNER, J., AND BUSCHKES, R. Stop-and-go
MiIXes: Providing probabilistic anonymity in an open system. In
Proceedings of the Second International Workshop on Informa-
tion Hiding (London, UK, 1998), Springer-Verlag, LNCS 1525,
pp- 83-98.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

LANDSIEDEL, O., PIMENIDIS, A., WEHRLE, K., NIEDER-
MAYER, H., AND CARLE, G. Dynamic multipath onion routing
in anonymous peer-to-peer overlay networks. Global Telecom-
munications Conference, 2007. GLOBECOM ’07. IEEE (Nov.
2007), 64-69.

LEVINE, B. N., REITER, M. K., WANG, C., AND WRIGHT,
M. K. Timing attacks in low-latency mix-based systems. In Pro-
ceedings of Financial Cryptography (FC ’04) (February 2004),
A. Juels, Ed., Springer-Verlag, LNCS 3110, pp. 251-265.

MCLACHLAN, J., AND HOPPER, N. Don’t clog the queue! cir-
cuit clogging and mitigation in p2p anonymity schemes. In Fi-
nancial Cryptography (2008), G. Tsudik, Ed., vol. 5143 of Lec-
ture Notes in Computer Science, Springer, pp. 31-46.

MOLLER, U., COTTRELL, L., PALFRADER, P., AND SAS-
SAMAN, L. Mixmaster Protocol — Version 2. IETF Internet
Draft, December 2004.

MURDOCH, S. J. Covert channel vulnerabilities in anonymity
systems. PhD thesis, University of Cambridge, December 2007.

MURDOCH, S. J., AND DANEZIS, G. Low-cost traffic analysis
of Tor. In SP ’05: Proceedings of the 2005 IEEE Symposium on
Security and Privacy (Washington, DC, USA, May 2005), IEEE
Computer Society, pp. 183-195.

NAMBIAR, A., AND WRIGHT, M. Salsa: a structured ap-
proach to large-scale anonymity. In CCS ’06: Proceedings of the
13th ACM conference on Computer and communications security
(New York, NY, USA, October 2006), ACM, pp. 17-26.

(DVERLIER, L., AND SYVERSON, P. Locating hidden servers. In
SP ’06: Proceedings of the 2006 IEEE Symposium on Security
and Privacy (Washington, DC, USA, May 2006), IEEE Com-
puter Society, pp. 100-114.

PAPPAS, V., ATHANASOPOULOS, E., IOANNIDIS, S., AND
MARKATOS, E. P. Compromising anonymity using packet spin-
ning. In Proceedings of the 11th Information Security Conference
(ISC 2008) (2008), T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee,
Eds., vol. 5222 of Lecture Notes in Computer Science, Springer,
pp. 161-174.

PERRY, M., AND SQUIRES, S.
https://www.torproject.org/torbutton/, 2009.

PFITZMANN, A., PFITZMANN, B., AND WAIDNER, M. ISDN-
mixes: Untraceable communication with very small bandwidth
overhead. In Proceedings of the GI/ITG Conference on Commu-
nication in Distributed Systems (February 1991), pp. 451-463.

RENNHARD, M., AND PLATTNER, B. Introducing MorphMix:
Peer-to-Peer based Anonymous Internet Usage with Collusion
Detection. In WPES ’02: Proceedings of the 2002 ACM work-
shop on Privacy in the Electronic Society (New York, NY, USA,
November 2002), ACM, pp. 91-102.

SERJANTOV, A., DINGLEDINE, R., AND SYVERSON, P. From a
trickle to a flood: Active attacks on several mix types. In 7/H ’02:
Revised Papers from the 5th International Workshop on Infor-
mation Hiding (London, UK, 2003), F. Petitcolas, Ed., Springer-
Verlag, LNCS 2578, pp. 36-52.

SHMATIKOV, V., AND WANG, M.-H. Timing analysis in low-
latency mix networks: Attacks and defenses. In Proceedings of
the 11th European Symposium on Research in Computer Security
(ESORICS) (September 2006), pp. 236-252.

WIANGSRIPANAWAN, R., SUSILO, W., AND SAFAVI-NAINI,
R. Design principles for low latency anonymous network sys-
tems secure against timing attacks. In Proceedings of the fifth
Australasian symposium on ACSW frontiers (ACSW ’07) (Dar-
linghurst, Australia, Australia, 2007), Australian Computer Soci-
ety, Inc, pp. 183-191.

50

18th USENIX Security Symposium

USENIX Association

