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Abstract
In this paper, we present an approach for verifying that
trusted programs correctly enforce system security goals
when deployed. A trusted program is trusted to only
perform safe operations despite have the authority to
perform unsafe operations; for example, initialization
programs, administrative programs, root network dae-
mons, etc. Currently, these programs are trusted without
concrete justification. The emergence of tools for build-
ing programs that guarantee policy enforcement, such as
security-typed languages (STLs), and mandatory access
control systems, such as user-level policy servers, finally
offers a basis for justifying trust in such programs: we
can determine whether these programs can be deployed
in compliance with the reference monitor concept. Since
program and system policies are defined independently,
often using different access control models, compliance
for all program deployments may be difficult to achieve
in practice, however. We observe that the integrity of
trusted programs must dominate the integrity of system
data, and use this insight, which we call the PIDSI ap-
proach, to infer the relationship between program and
system policies, enabling automated compliance verifi-
cation. We find that the PIDSI approach is consistent
with the SELinux reference policy for its trusted pro-
grams. As a result, trusted program policies can be de-
signed independently of their target systems, yet still be
deployed in a manner that ensures enforcement of system
security goals.

1 Introduction
Every system contains a variety of trusted programs. A
trusted program is a program that is expected to safely
enforce the system’s security goals despite being autho-
rized to perform unsafe operations (i.e., operations that
can potentially violate those security goals). For exam-
ple, the X Window server [37] is a trusted program be-
cause enables multiple user processes to share access to
the system display, and the system trusts it to prevent
one user’s data from being leaked to another user. A sys-
tem has many such trusted processes, including those for
initialization (e.g., init scripts), administration (e.g.,

software installation and maintenance), system services
(e.g., windowing systems), authentication services (e.g.,
remote login), etc. The SELinux system [27] includes
over 30 programs specifically-designated as trusted to
enforce multilevel security (MLS) policies [14].

An important question is whether trusted programs ac-
tually enforce the system’s security goals. Trusted pro-
grams can be complex software, and they traditionally
lack any declarative access control policy governing their
behavior. Of the trusted programs in SELinux, only the
X server currently has an access control policy. Even in
this case, the system makes no effort to verify that the X
server policy corresponds to the system’s policy in any
way. Historically, only formal assurance has been used
to verify that a trusted program enforces system secu-
rity goals, but current assurance methodologies are time-
consuming and manual. As a result, trusted programs
are given their additional privileges without any concrete
justification.

Recently, the emergence of techniques for building
programs with declarative access control policies moti-
vates us to develop an automated mechanism to verify
that such programs correctly enforce security goals. Pro-
grams written in security-typed languages [23, 26, 28] or
integrated with user-level policy servers [34] each in-
clude program-specific access control policies. In the
former case, the successful compilation of the program
proves its enforcement of an associated policy. In the lat-
ter case, the instrumentation of the program with a pol-
icy enforcement aims to ensure comprehensive enforce-
ment of mandatory access control policies. In general,
we would want such programs to enforce system secu-
rity goals, in which case we say that the program com-
plies with the system’s security goals.

We use the classical reference monitor concept [1] as
the basis for the program’s compliance requirements1:
(1) the program policy must enforce a policy that rep-
resents the system security goals and (2) the system pol-
icy must ensure that the program cannot be tampered.
We will show that both of these problems can be cast as
policy verification problems, but since program policies
and system policies are written in different environments,
often considering different security goals, they are not
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directly comparable. For example, program policy lan-
guages can differ from the system policy language. For
example, the security-typed language Jif [26] uses an in-
formation flow policy based on the Decentralized Label
Model [24], but the SELinux system policy uses an ex-
tended Type Enforcement policy [5] that includes multi-
level security labeling [2]. Even where program policies
are written for SELinux-compatible policy servers [34],
the set of program labels is often distinct from the set of
system labels. In prior work, verifiably-compliant pro-
grams were developed by manually joining a system pol-
icy with the program’s policy and providing a mapping
between the two [13]. To enable general programs to be
compliant, our goal is to develop an approach by which
compliant policy designs can be generated and verified
automatically.

As a basis for an automated approach, we observe that
trusted programs and the system data upon which it op-
erates have distinct security requirements. For a trusted
program, we must ensure that the program’s components,
such as its executable files, libraries, configuration, etc.,
are protected from tampering by untrusted programs. For
the system data, the system security policy should ensure
that all operations on that data satisfy the system’s se-
curity goals. Since trusted programs should enforce the
system’s security goals, their integrity must dominate the
system data’s integrity. If the integrity of a trusted pro-
gram is compromised, then all system data is at risk. Us-
ing the insight that program integrity dominates system
integrity, we propose the PIDSI approach to designing
program policies, where we assign trusted program ob-
jects to a higher integrity label than system data objects,
resulting in a simplified program policy that enables au-
tomated compliance verification. Our experimental re-
sults justify that this assumption is consistent with the
SELinux reference policy for its trusted programs. As
a result, we are optimistic that trusted program policies
can be designed independently of their target systems,
yet still be deployed in a manner that ensures enforce-
ment of system security goals.

After providing background and motivation for the
policy compliance problem in Section 2, we detail the
following novel contributions:

1. In Section 3, we define a formal model for policy
compliance problem.

2. In Section 4, we propose an approach called Pro-
gram Integrity Dominates System Integrity (PIDSI)
where trusted programs are assigned to higher in-
tegrity labels than system data. We show that com-
pliance program policies can be composed by relat-
ing the program policy labels to the system policy
on the target system using the PIDSI approach.

3. In Section 5.1, we describe policy compliance tools
that automate the proposed PIDSI approach such

that a trusted program can be deployed on an exist-
ing SELinux system and we can verify enforcement
of system security goals.

4. In Section 5.2, we show the trusted programs for
which there are Linux packages in SELinux are
compatible with the PIDSI approach with a few ex-
ceptions. We show how these can be resolved using
a few types of simple policy modifications.

This work is the first that we are aware of that enables
program and system security goals to be reconciled in a
scalable (automated and system-independent) manner.

2 Background
The general problem is to develop an approach for build-
ing and deploying trusted programs, including their ac-
cess control policies, in a manner that enables automated
policy compliance verification. In the section, we specify
the current mechanisms for these three steps: (1) trusted
program policy construction; (2) trusted program deploy-
ment; and (3) trusted program enforcement. We will use
the SELinux system as the platform for deploying trusted
programs.

2.1 Program Policy Construction
There are two major approaches for constructing pro-
grams that enforce a declarative access control policy:
(1) security-typed languages [26, 28, 33] (STLs) and (2)
application reference monitors [22, 34]. These two ap-
proaches are quite different, but we aim to verify policy
compliance for programs implemented either way.

Programs written in an STL will compile only if their
information flows, determined by type inferencing, are
authorized by the program’s access control policy. As
a result, the STL compilation guarantees, modulo bugs
in the program interpreter, that the program enforces the
specified policy. As an example, we consider the Jif STL.
A Jif program consists of the program code plus a pro-
gram policy file [12] describing a Decentralized Label
Model [24] policy for the program. The Jif compiler en-
sures that the policy is enforced by the generated pro-
gram. We would use the policy file to determine whether
Jif program complies with the system security goals.

For programs constructed with application reference
monitors, the program includes a reference monitor in-
terface [1] which determines the authorization queries
that must be satisfied to access program operations. The
queries are submitted to a reference monitor component
that may be internal or external to the program. The use
of a reference monitor does not guarantee that the pro-
gram policy is correctly enforced, but a manual or semi-
automated evaluation of the reference monitor interface
is usually performed [17]. As an example, we consider
the SELinux Policy Server [34]. A program that uses the
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SELinux Policy Server, loads a policy package contain-
ing its policy into the SELinux Policy Server. The pro-
gram is implemented with its own reference monitor in-
terface which submits authorization queries to the Policy
Server. We note that the programs that use an SELinux
Policy Server may share labels, such as the labels of the
system data, with other programs.

As an example, we previously reimplemented one of
the trusted programs in an SELinux/MLS distribution,
logrotate, using the Jif STL [13]. logrotate
ages logs by writing them to new files and is trusted
in SELinux/MLS because it can read and write logs
of multiple MLS secrecy levels. Our experience from
logrotate is that ensuring system security goals re-
quires the trusted program to be aware of the system’s
label for its data. For example, if logrotate accesses
a log file, it should control access to the file data based
on the system (e.g., SELinux) label of that file. We man-
ually designed the logrotate information flow pol-
icy to use the SELinux labels and the information flows
that they imply. Further, since logrotate variables
may also originate from program-specific data, such as
configurations, in addition to system files, the informa-
tion flow policy had to ensure that the information flows
among system data and program data was also correct.
As a result, the information flow policy required a man-
ual merge of program and system information flow re-
quirements.

2.2 Program Deployment
We must also consider how trusted programs are de-
ployed on systems to determine what it takes to verify
compliance. In Linux, programs are delivered in pack-
ages. A package is a set of files including the executable,
libraries, configuration files, etc. A package provides
new files that are specific to a program, but a program
may also depend on files already installed in the sys-
tem (e.g., system shared libraries, such as libc). Some
packages may also export files that other packages de-
pend on (e.g., special libraries and infrastructure files
used by multiple programs).

For a trusted program, such as logrotate, we ex-
pect that a Linux package would include two additional,
noteworthy files: (1) the program policy and (2) the
SELinux policy module2. The program policy is the file
that contains the declarative access control policy to be
enforced by the program’s reference monitor or STL im-
plementation, as described above.

In SELinux, the system policy is now composed from
the policy modules. SELinux policy modules specify the
contribution of the package to the overall SELinux sys-
tem policy [20]. While SELinux policy modules are spe-
cific to programs, they are currently designed by expert
system administrators. Our logrotate program pol-

icy is derived from the program’s SELinux policy mod-
ule, and we envision that program policies and system
policy modules will be designed in a coordinated way
(e.g., by program developers rather than system admin-
istrators) in the future, although this is an open issue.

An SELinux policy module consists of three compo-
nents that originate from three policy source files. First,
a .te file defines a set of new SELinux types3 for this
package. It also defines the policy rules that govern pro-
gram accesses to its own resources as well as system re-
sources. Second, a .fc file specifies the assignment of
package files to SELinux types. Some files may use types
that are local to the policy module, but others may be as-
signed types defined previously (e.g., system types like
etc t is used for files in /etc). A .if file defines a set
of interfaces that specify how other modules can access
objects labeled with the types defined by this module.

When a package is installed, its files are downloaded
onto the system and labeled based on the specification
in the .fc file or the default system specification. Then,
the trusted program’s module policy is integrated into the
SELinux system policy4, enabling the trusted program to
access system objects and other programs to access the
trusted program’s files. There are two ways that another
program can access this package’s files: (1) because a
package file is labeled using an existing label or (2) an-
other module is loaded that uses this module’s interface
or types. As both are possible for trusted programs, we
must be concerned that the SELinux system policy may
permit an untrusted program to modify a trusted pro-
gram’s package file.

For example, the logrotate package includes
files for its executable, configuration file, documen-
tation, man pages, execution status, etc. Some
of these files are assigned new SELinux types de-
fined by the logrotate policy module, such as
the executable (logrotate exec t) and its status
file (logrotate var lib t), whereas others are as-
signed existing SELinux types, such as its configuration
file (etc t). The logrotate policy module uses sys-
tem interfaces to obtain access to the system data (e.g.,
logs), but no other processes access logrotate inter-
faces. As a result, logrotate is only vulnerable to
tampering because some of the system-labeled files that
it provides may be modified by untrusted processes.

We are also concerned that a logrotate process
may be tampered by the system data that it uses (e.g.,
Biba read-down [4]). For example, logrotate may
read logs that contain malicious data. We believe that
systems and programs should provide mechanisms to
protect themselves from the system data that they pro-
cess. Some interesting approaches have been proposed to
protect process integrity [19, 30], so we consider this an
orthogonal problem that we do not explore further here.
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Figure 1: Deployment and Installation of a trusted package. First, we check two compliance goals: (1) the system
protects the application and (2) the application enforces system goals. Second the package is installed: the policy
module is integrated into the system policy and application files are installed.

2.3 Program Enforcement
To justify a system’s trust, any trusted program must en-
force a policy that complies with the system’s security
goals. The reference monitor concept [1] has been the
guide for determining whether a system enforces its se-
curity goals, and we leverage this concept in defining
compliance. A reference monitor requires three guaran-
tees to be achieved: (1) complete mediation must ensure
that all security-sensitive operations are authorized; (2)
a reference monitor must be tamperproof to enforce its
policy correctly; and (3) a reference monitor must be
simple enough to verify enforcement of security goals.
While the reference monitor concept is most identified
with operating system security, a trusted program must
also satisfy these guarantees to ensure that a system’s se-
curity goal is enforced. As a result, we define that a pro-
gram enforces a system’s security goals if it satisfies the
reference monitor guarantees in its deployment on that
system.

In prior work, we developed a verification method that
partially fulfilled these requirements. We developed a
service, called SIESTA, that compares program policies
against SELinux system policies, and only executes pro-
grams whose policies permit information flows autho-
rized in the system policy [13]. This work considered
two of the reference monitor guarantees. First, we used
the SIESTA service to verify trust in the Jif STL imple-
mentation of the logrotate program. Since the Jif
compiler guarantees enforcement of the associated pro-
gram policy, this version of logrotate provides com-
plete mediation, modulo the Java Virtual Machine. Sec-
ond, SIESTA performs a policy analysis to ensure that
the program policy complies with system security goals
(i.e., the SELinux MLS policy). Compliance was defined
as requiring that the logrotate policy only authorized
an operation if the SELinux MLS policy) also permitted

that operation. Thus, SIESTA is capable of verifying a
program’s enforcement of system security goals.

We find two limitations to this work. First, we had to
construct the program access control policy relating sys-
tem and program objects in an ad hoc manner. As the
resultant program policy specified the union of the sys-
tem and program policy requirements, it was much more
complex than we envisioned. Not only is it difficult to
design a compliant program access control policy, but
that policy may only apply to a small number of target
environments. As we discussed in Section 2.1, program
policies should depend on system policies, particularly
for trusted programs that we expect to enforce the sys-
tem’s policy, making them non-portable unless we are
careful. Second, this view of compliance does not pro-
tect the trusted program from tampering. As described
above, untrusted programs could obtain access to the
trusted program’s files after the package is installed, if
the integrated SELinux system policy authorizes it. For
example, if an untrusted program has write access to the
/etc directory where configuration files are installed,
as we demonstrated was possible in Section 2.2, SIESTA
will not detect that such changes are possible.

In summary, Figure 1 shows that we aim to define an
approach that ensures the following requirements:

• For any system deployment of a trusted program,
automatically construct a program policy that is
compliant with the system security goals, thus satis-
fying the reference monitor guarantee of being sim-
ple enough to verify.

• For any system deployment of a trusted program,
verify, in a mostly-automated way, that the system
policy does not permit tampering of the trusted pro-
gram by any untrusted program, thus satisfying the
reference monitor guarantee of being tamperproof.
The typical number of verification errors must be
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Figure 2: The two policy compliance problems: (1) ver-
ify that the program policy complies with the system’s
information flow goals and (2) verify that the system pol-
icy, including the program contribution (e.g., SELinux
policy module), enforces the tamperproofing goals of the
program.

small and there must be a set of manageable resolu-
tions to any such errors.

In the remainder of the paper, we present a single ap-
proach that solves both of these requirements.

3 Policy Compliance
Verification of these two trusted program requirements
results in the same conceptual problem, which we call
policy compliance problems. Figure 2 shows these two
problems. First, we must show that the program policy
only authorizes operations permitted by the system’s se-
curity goal policy. While we have shown a method by
which such compliance can be tested previously [13,14],
the program policy was customized manually for the sys-
tem. Second, we also find that the system policy must
comply with the program’s tamperproof goals. That is,
the system policy must not allow any operation that per-
mits tampering the trusted program. As a result, we need
to derive the tamperproof goals from the program (e.g.,
from the SELinux policy module).

In this section, we define the formal model for veri-
fying policy compliance suitable for both the problems
above. However, as can be seen from Figure 2, the
challenge is to develop system security goals, program
policies, and tamperproof goals in a mostly-automated
fashion that will encourage successful compliance. The
PIDSI approach in Section 4 provides such guidance.

3.1 Policy Compliance Model
We specify system-wide information-flow goals as a se-
curity lattice L. We assume that elements of L have both

an integrity and a confidentiality component: this is the
case for both MLS labels in SELinux [11] and labels
from the DLM [25]. Let Integrity(l) and Conf(l) be the
integrity and confidentiality projections of a label l ∈ L,
respectively. Let the lattice L have both a top element,
, and a bottom element ⊥. We use high = Integrity(⊥)
and low = Integrity() to denote high and low integrity
and write high  low to indicate that high integrity data
can flow to a low integrity security label, but not the re-
verse.

An information-flow graph is a directed graph G =
(V, E) where V is the set of vertices, each associated
with a label from a security lattice L. We write V (G) for
the vertices of G and E(G) for the edges of G, and for
v ∈ V (G) we write Type(v) for the label on the vertex
v. Both subjects (e.g., processes and users) and objects
(e.g., files and sockets) are assigned labels from the same
security lattice L. The edges in G describe the informa-
tion flows that a policy permits.

We now formally define the the concept of compliance
between a graph G and a security lattice L. For u, v ∈
V (G), we write u v if there is a path between vertices
u and v in the graph G. An information-flow graph G is
compliant with a security lattice L if all paths through the
combined information-flow graph imply that there is a
flow in L between the types of the elements in the graph.

Definition 3.1 (Policy Compliance). An information-
flow graph G is compliant with a security lattice L if
for each u, v ∈ V (G) such that u  v, then Type(u) 
Type(v) in the security lattice L.

With respect to MAC policies, a positive result of the
compliance test implies that the information-flow graph
for a policy does not permit any operations that violate
the information-flow goals as encoded in the lattice L.
If G is the information flow graph of a trusted program
together with the system policy, then a compliance test
verifies that the trusted program only permits informa-
tion flows allowed by the operating system, as we desire.

3.2 Difficulty of Compliance Testing
The main difficulty in compliance testing is in automati-
cally constructing the program, system, and goal policies
shown in Figure 2. Further, we prefer design construc-
tions that will be likely to yield successful compliance.

The two particularly difficult cases are the program
policies (i.e., upper left in the figure) and the tamper-
proof goal policy (i.e. lower right in the figure). The pro-
gram policy and tamperproof goal policies require pro-
gram requirements to be integrated with system require-
ments, whereas the system policy and system security
goals are largely (although not necessarily completely)
independent of the program policy. For example, while
the system policy must include information flows for the
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program, the SELinux system includes policy modules
for the logrotate and other trusted programs that can
be combined directly.

First, it is necessary for program policies (i.e., upper
left in the figure) to manage system objects, but often
program policy and system policy are written with dis-
joint label sets. Thus, some mapping from program la-
bels to system labels is necessary to construct a system-
aware program policy before the information flow goals
encoded in L can be evaluated. Let P be an information-
flow graph relating the program subjects and objects and
and S be information-flow graph relating the system sub-
jects and objects. Let P⊕S be the policy that arises from
combining P and S to form one information-flow graph
through some sound combination operator ⊕; that is, if
there is a runtime flow in the policy S where the program
P has been deployed, then there is a flow in the informa-
tion flow graph P ⊕S. Currently, there are no automatic
ways to combine such program and system graphs into
a system-aware program policy, meaning that ⊕ is im-
plemented in a manual fashion. A manual mapping was
used in previous work on compliance [13].

Second, the tamperproof goal policy (i.e., lower right
in the figure) derives from the program’s integrity re-
quirements for its objects. Historically, such require-
ments are not explicitly specified, so it is unclear which
program labels imply high integrity and which files
should be assigned those high integrity labels. With the
use of packages and program policy modules, the pro-
gram files and labels are identified, but we still lack in-
formation about what defines tamperproofing for the pro-
gram. Also, some program files may be created at in-
stallation time, rather than provided in packages, so the
integrity of these files needs to be determined as well.
We need a way to derive tamperproof goals automati-
cally from packages and policy modules.

4 PIDSI Approach
We propose the PIDSI approach (Program Integrity
Dominates System Integrity), where the trusted pro-
gram objects (i.e., package files and files labeled using
the labels defined by the module policy) are labeled such
that their integrity is relative to all system objects. The
information flows between the system and the trusted
program can then be inferred from this relationship. We
have found that almost all trusted program objects are
higher integrity than system objects (i.e., system data
should not flow to trusted program objects). One excep-
tion that we have found is that both trusted and untrusted
programs are authorized to write to some log files. How-
ever, a trusted program should not depend on the data in
a log file. While general cases may eventually be iden-
tified automatically as low integrity, at present we may
have a small number of cases where the integrity level

X

L

H

Program Info 

Flow Graph (P)
System Info Flow 

Graph, (S)

High Integrity (default)

Low Integrity (rare)

Figure 3: The PIDSI approach relates program labels P
to system labels S, such that the program-defined ob-
jects are higher integrity than the system data objects (as-
signed to H), with some small number of low integrity
exceptions (assigned to L).

must be set manually.
Our approach takes advantage of a distinction between

the protection of the trusted program and protection of
the data to which it is applied. Trusted program pack-
ages contain the files necessary to execute the program,
and the integrity of the program’s execution requires pro-
tection of these files. On the other hand, the program is
typically applied to data whose protection requirements
are defined by the system.

4.1 PIDSI Definition
By using the PIDSI approach between trusted program
and the system, we can deploy that trusted program on
different systems, ensuring compliance. Figure 3 demon-
strates this approach. First, the program defines its own
set of labels, which are designed either as high or low
integrity. When the program is deployed, the system la-
bels are placed in between the program’s high and low
integrity labels. This allows an easy check of whether a
program is compliant with the system’s policy, regardless
of the specific mappings from system inputs and outputs
to program inputs and outputs.

In the event that the trusted program allows data at a
low integrity label to flow to a high label, then this ap-
proach can trick the system into trusting low integrity
data. To eliminate this possibility, we automatically ver-
ify that no such flows are present in the program policy.

For confidentiality, we found that the data stored by
most trusted programs was intended to be low secrecy.
The only exception to this rule that we found in the
trusted program core of SELinux was sshd; this pro-
gram managed SSH keys at type sshd key t, which
needed to be kept secret5. We note that if program data
is low secrecy as well as high integrity the same infor-
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mation flows result, system data may not flow to program
data, so no change is required to the PIDSI approach. Be-
cause of this, we primarily evaluate the PIDSI approach
with respect to integrity.

In this context, the compliance problem requires
checking that the system’s policy, when added to the pro-
gram, does not allow any new illegal flows. We con-
struct the composed program policy P  from P and S.
To composte P and S into P  = P ⊕ S, first, split P
into subgraphs H and L as follows: if u ∈ P is such that
Integrity(Type(u)) = high, then u ∈ H , and if u ∈ P
is such that Integrity(Type(u)) = low, then u ∈ L. P 

contains copies of S, H , L, with edges from each vertex
in H to each vertex in S, and edges from each vertex in
S to L. The constructed system policy P  corresponds to
the deployment of the program policy P on the system
S.

Theorem 4.1. Assume for all v ∈ V (P ),
Conf(Type(v)) = Conf(⊥). Given test policy P
and target policy S, if for all u ∈ H , v ∈ L, there is no
edge (v, u) ∈ P , then the test policy P is compliant with
the constructed system policy P .

Given the construction, the only illegal flow that can
exist in P  is from a vertex v ∈ L, which has a low in-
tegrity label, to one of the vertices u ∈ H , which has a
high integrity label. The graph S is compliant with P 

by definition, and the edges that we add between sub-
graphs are from H to S and S to L: these do not upgrade
integrity.

We argue that the PIDSI approach is consistent with
the view of information flows in the trusted programs of
classical security models. For example, MLS guards are
trusted to downgrade the secrecy of data securely. Since
an MLS guard must not lower the integrity of any down-
graded data, it is reasonable to assume that the integrity
of an MLS guard must exceed the system data that it pro-
cesses. In the Clark-Wilson integrity model [7], only
trusted transformation procedures (TPs) are permitted
to modify high integrity data. In this model, TPs must
be certified to perform such high integrity modifications
securely. Thus, they also correspond to our notion of
trusted programs. We find that other trusted programs,
such as assured pipelines [5], also have a similar rela-
tionship to the data that they process.

4.2 PIDSI in Practice
In this section, we describe how we use the PIDSI ap-
proach to construct the two policy compliance prob-
lems defined in Section 3 for SELinux trusted pro-
grams. Our proposed mechanism for checking compli-
ance of a trusted program during system deployment
was presented in Figure 1: we now give the specifics
how this procedure would work during an installation of

Tamperproof
Goals

Information-
Flow Goals

Program
Policy

System
Policy

Complies with?

Complies with?

PIDSI combination of the 
logrotate Policy 

with the SELinux Policy

SELinux Policy
with the logrotate

Policy Module

From logrotate

Package and SELinux Policy Module
(see Section 5)

SELinux MLS Policy

Figure 4: logrotate instantiation for the two policy
compliance problems: (1) the program policy is derived
using the PIDSI approach and the SELinux MLS pol-
icy forms the system’s information flow goals and (2)
the system policy is combined with the logrotate
SELinux policy module and the tamperproofing goals
are derived from the logrotate Linux package.

logrotate. Figure 4 shows how we construct both
problems for logrotate on an SELinux/MLS system.
For testing compliance against the system security goals,
we use the PIDSI approach to construct the logrotate
program policy and use the SELinux/MLS policy for the
system security goals. For testing compliance against
the tamperproof goals, we use the SELinux/MLS pol-
icy that includes the logrotate policy module for the
system policy and we construct the tamperproof goal pol-
icy from the logrotate package. We argue why these
constructions are satisfactory for deploying trusted pro-
grams, using logrotate on SELinux/MLS as an ex-
ample.

For system security goal compliance, we must show
that the program policy only permits information flows
in the system security goal policy. We use the PIDSI
approach to construct the program policy as described
above. For the Jif version of logrotate, this en-
tails collecting the types (labels) from its SELinux policy
module, and composing a Jif policy lattice where these
Jif version of these labels are higher integrity (and lower
secrecy) than the system labels. Rather than adding each
system label to the program policy, we use a single la-
bel as a template to represent all of the SELinux/MLS
labels [13]. We use the SELinux/MLS policy for the
security goal policy. This policy clearly represents the
requirements of the system, and logrotate adds no
additional system requirements. While some trusted pro-
grams may embody additional requirements that the sys-
tem must uphold (e.g., for individual users), this is not
the case for logrotate. As a result, to verify compli-
ance we must show that there are no information flows in
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the program policy from system labels to program labels,
a problem addressed by previous work [13].

For tamperproof goal compliance, we must show that
the system policy only permits information flows that
are authorized in the tamperproof goal policy. The sys-
tem policy includes the logrotate policy module, as
the combination defines the system information flows
that impact the trusted program. The tamperproof pol-
icy is generated from the logrotate package and its
SELinux policy module. The logrotate package
identifies the labels of files used in the logrotate program.
In addition to these labels, any new labels defined by
the logrotate policy module, excepting process la-
bels which are protected differently as described in Sec-
tion 2.2, are also added to the tamperproof policy. The
idea is that these labels may not be modified by untrusted
programs. That is, untrusted process labels may not have
any kind of write permission to the logrotate labels.
Unlike security goal compliance, the practicality of tam-
perproof compliance is clear. It may be that system poli-
cies permit many subjects to modify program objects,
thus making it impossible to achieve such compliance.
Also, it may be difficult to correctly derive tamperproof
goal policies automatically. In Section 5, we show pre-
cisely how we construct tamperproof policies and test
compliance, and examine whether tamperproof compli-
ance, as we have defined it here, is likely to be satisfied
in practice.

5 Verifying Compliance in SELinux
In this section, we evaluate the PIDSI approach against
actual trusted programs in the SELinux/MLS system.
As we discussed in Section 4.2, we want to determine
whether it is possible to automatically determine tam-
perproof goal policies and whether systems are likely
to comply with such policies. First, we define a
method for generating tamperproof goal policies auto-
matically and show how compliance is evaluated for the
logrotate program. Then, we examine whether eight
other SELinux trusted programs meet satisfy tamper-
proof compliance as well. This group of programs was
selected because: (1) they are considered MLS-trusted
in SELinux and (2) these programs have Linux packages
and SELinux policy modules. Our evaluation finds that
there are only 3 classes of exceptions that result from our
compliance checking for all of these evaluated packages.
We identify straightforward resolutions for each of these
exceptions. As a result, we find that the PIDSI approach
appears promising for trusted programs in practice.

5.1 Tamperproof Compliance
To show how tamperproof compliance can be checked,
we develop a method in detail for the logrotate pro-
gram on a Linux 2.6 system with a SELinux/MLS strict

reference policy. To implement compliance checking
with the tamperproof goals, we construct representations
of the system (SELinux/MLS) policy and the program’s
tamperproof goal policy. Recall from Section 3 that all
the information flows in the system policy must be au-
thorized by the tamperproof goal policy for the policy to
comply.

5.1.1 Build the Tamperproof Goal Policy
To build the tamperproof goal policy, we build an
information-flow graph that relates the program labels to
system labels according to the PIDSI approach. Building
this graph consists of the following steps:

1. Find the high integrity program labels.
2. Identify the trusted system subjects.
3. Add information flow edges between the program

labels, trusted subject labels, and remaining (un-
trusted) SELinux/MLS labels authorized by the
PIDSI approach.

Find the high integrity program labels. This step en-
tails collecting all the labels associated with the pro-
gram’s files, as these will all be high integrity per the
PIDSI approach. These labels are a union of the pack-
age file labels determined by the file contexts (.fc file
in the SELinux policy module and the system file con-
text) and the newly-defined labels in the policy module
itself. First, the logrotate package includes the files
indicated in Table 1. This table presents lists a set of
files, the label assigned to each, whether such label is
a program label (i.e., defined by the program’s policy
module) or a system label, and the result of the tamper-
proof compliance check, described below. Second, some
program files may be generated after the package is in-
stalled. These will be assigned new labels defined in the
program policy module. An example of a logrotate
label that will be assigned to a file that is not included
in the package is logrotate lock t. In Section 6,
we discuss other system files that a trusted program may
depend upon.

Identify trusted subjects. Trusted subjects are
SELinux subjects that are entrusted with write permis-
sions to trusted programs. Based on our experience
in analyzing SELinux/MLS, we identify the following
seven trusted subjects: dpkg script t, dpkg t,
portage t, rpm script t, rpm t, sysadm t,
prelink t. These labels represent package managers
and system administrators; package managers and
system administrators must be authorized to modify
trusted programs. These subjects are also trusted by
programs other than logrotate. We would want to
control what code is permitted to run as these labels, but
that is outside the scope of our current controls.
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File SELinux Type Policy Writers Exceptions
/etc/logrotate.conf etc t system 18 integrity
/etc/logrotate.d etc t system 18 integrity
/usr/sbin/logrotate logrotate exec t module 8 no
/usr/share/doc/logrotate/CHANGES usr t system 7 no
/usr/share/man/logrotate.gz man t system 8 no
/var/lib/logrotate.status logrotate var lib t module 8 no

Table 1: logrotate Compliance Test Case and Results: there are two exceptions, but they originate from the same
system label etc t.

logrotate
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etc_t

usr_t

man_t

logrotate

_var_lib
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dpkg_
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sysadm_
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Figure 5: Part of the tamperproof goal policy’s
information-flow graph for logrotate. Only trusted
labels (dotted line circles) and the program labels them-
selves are allowed to write to files with the program
labels (solid line circles), which represent the high-
integrity files according to the PIDSI approach. Not
shown: edges from the trusted subjects to each of the
program labels to the the right.

Add information flow edges. This step involves
adding edges between vertices (labels) in the tamper-
proof goal information-flow graph based on the PIDSI
approach. The PIDSI approach allows program labels
to read and write each other, but the only SELinux/MLS
labels that may write program labels are the trusted sub-
jects (and read as well). Other SELinux labels are re-
stricted to reading the program labels only. Figure 5
presents an example of a tamperproof goal policy’s
information-flow graph. Notice that only the system
trusted labels (dotted circles) are allowed to write to pro-
gram labels (solid line circles). The application has high
integrity requirements for etc t; the graph therefore in-
cludes edges that represent these requirements. The same
set of edges are also added for the other program labels
(presented to the right in the figure).

5.1.2 Build the System Policy
The system policy is represented as an information-flow
graph (see Section 3). Building this graph consists of the
following steps:

1. Create an information-flow graph that represents the

current SELinux/MLS policy.
2. Add logrotate program’s information flow ver-

tices and edges based on its SELinux policy mod-
ule.

3. Remove edges where neither vertex is in the tam-
perproof goal policy.

Create an information flow graph. We convert the
current SELinux/MLS policy into an information-flow
graph. Each of the labels in the SELinux/MLS policies
is converted to a vertex. Information-flow edges are
created by identifying read-like and write-like permis-
sions [10, 29] for subject labels to objects labels. The
following example illustrates the process we follow to
create a small part of the graph. Rules 1-3 and 6 are
system rules, rules 4-5 are module rules (defined in the
logrotate policy module).

1. allow init t init var run t:file

{create getattr read append write

setattr unlink};
2. allow init t bin t:file

{{read getattr lock execute ioctl}
execute no trans};

3. allow init t etc t:file

{read getattr lock ioctl};
4. allow logrotate t etc t:file

{read getattr lock ioctl};
5. allow logrotate t bin t:file

{{read getattr lock execute ioctl}
execute no trans};

6. allow chfn t etc t:file

{create ioctl read getattr write

setattr append link unlink rename};

Figure 6 shows the result of the parsing of the previ-
ous rules. In this example, subjects with type init t
are allowed to read from and write to init var run t
and logrotate t is allowed to read from etc t and
bin t.

We note that Figure 6 shows that chfn t has write
access to etc t which logrotate t can read. While
logrotate cannot write any file with the label etc t,
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etc_t

init_t

init_var

_run_t

bin_t

logrotate

_t

chfn_t

Figure 6: Information-flow graph for the system pol-
icy, including the logrotate program’s policy mod-
ule. chfn t is not trusted to modify other trusted pro-
grams, but it has write access to logrotate’s files la-
beled etc t.

it provides such a file via its package installation, so it
depends on the integrity of files of the label. This will be
identified as a tamperproof compliance exception below.

We are able to parse the text version of an SELinux
policy (file policy.conf) with a C program inte-
grated with Flex and Bison. We are also able to analyze
the binary version of the SELinux system policy.

Add logrotate program’s information flows. In
a similar fashion to the method above, we extend the
information flow graph with the vertices (labels) and
edges (read and write flows) from the logrotate pol-
icy module.

Remove edges where neither vertex is in the tamper-
proof goal policy. As these flows cannot tamper the
logrotate program, we remove these edges from the
system policy for compliance testing.

5.1.3 Evaluating logrotate
This section presents how we automatically test tam-
perproof compliance. Tamperproof compliance is based
checking the system policy for information flow integrity
as defined by the tamperproof goal policy.

Integrity Compliance Checking. To detect integrity vi-
olations, we identify information flows that violate the
Biba integrity requirement [4]: an information flow from
a low integrity label (type in SELinux) to a high in-
tegrity label. read and write arguments are subject
and object.

NonBibaF lowsSELinux(P olicy) =

{(t1, t2) : t1, t2 ∈ types(P olicy). highintegrity(t1)∧
lowintegrity(t2) ∧ (read(t1, t2) ∨ write(t2, t1))}

We use the XSB Prolog engine [32] as the underlying
platform. We developed a set of prolog queries based on
the NonBiba Flows rule to detect the labels that affect
compliance (i.e., the high integrity requirement that are
not enforced by the system policy).

As mentioned in the previous section, we evaluate
tamperproof compliance at installation time. Each time
we load the policy graphs generated above into the Pro-
log engine and we run the integrity Prolog queries to
determine if any flows satisfy (negatively) the NonBiba
Flows, thus violating compliance.

Results. Table 1 presents the results for compliance
checking logrotate against the generated tamper-
proof goal policy (see column 4). Only etc t has unau-
thorized writers. In the SELinux/MLS reference pol-
icy, these writers are programs with legitimate reasons
to write to files in the /etc directory, but none have le-
gitimate reasons to write to logrotate files. For ex-
ample, chfn, groupdadd, passwd, and useradd
are programs that modify system files that store user
information in /etc, kudzu is an program that de-
tects and configures new and/or changed hardware in
a system and requires to update its database stored in
/etc/sysconfig/hwconf, and updfstab is de-
signed to keep /etc/fstab consistent with the devices
plugged in the system.

The obvious solution would be to refine the labels for
files in /etc to eliminate these kinds of unnecessary and
potentially-risky operations.

5.2 Evaluating other Trusted Programs
Table 2 shows a summary of the results from applying
the PIDSI approach to eight SELinux trusted programs
for which policy modules and packages are defined. The
table shows: (1) trusted package, (2) file labels (SELinux
types) used per package, (3) number of writers detected
per type (Writers) and (4) exceptions. The integrity re-
quirement assigned by default is high integrity for all
types, except for the ones marked with **; because of the
semantics associated to /var, various applications write
to this directory, we assign low integrity requirement to
var log t and var run t.

The common system types (bin t, etc t,
lib t, man t, sbin t and usr t) are marked
with † in the last two columns. The results for these
types are displayed in Table 3. The results show only
two exceptions, none in Table 2 and two in Table 3.

These reasons behind and resolutions for these excep-
tions are shown in Table 4. One good resolution would
be a refinement of the policies: programs should have
particular labels for their files, even if they are installed
in system directories, instead of using general system la-
bels. The use of a general system label gives all system
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Package SELinux Label Writers Exception

cups

initrc exec t 8 no
textrel shlib t 9 no

lpr exec t 8 no
dbusd etc t 7 no

system types † †
var log t** 14 no
var run t** 10 no
var spool t 10 no

dmidecode
dmidecode exec t 8 no

system types † †

hald

locale t 7 no
initrc exec t 8 no
hald exec t 8 no
dbusd etc t 7 no

system types † †

iptables
iptables exec t 8 no

initrc exec t 8 no
system types † †

kudzu
locale t 7 no

initrc exec t 8 no
system types † †

Network
Manager

initrc exec t 8 no
NetworkManager 8 no

var run t
NetworkManager 8 no

exec t
dbusd etc t 7 no

system types † †

rpm

rpm exec t 8 no
rpm var lib t 7 no
system types † †
var spool t 10 no

sshd

sshd exec t 8 no
sshd var run t 8 no

ssh keygen exec t 8 no
ssh keysign exec t 8 no

Table 2: Results of applying the PIDSI approach to
SELinux Trusted Packages. Columns with a ‘†’ are dis-
played in table 3

programs access to these files (case APP LABELS in Ta-
ble 4). However, this option is not always possible, as
sometimes a program actually requires access to system
files. In such cases, the programs have to be trusted (case
ADD in Table 4). For example, some trusted programs
read information from the /etc/passwd file, so those
subjects permitted to modify that file must be trusted.
Only a small number of such programs must be trusted.

6 Discussion
Trusted programs may use system files, such as system
libraries or the password file, in addition to the files pro-
vided in their packages. Because some of our trusted pro-
gram packages installed their own libraries under the sys-

SELinux Label Writers Exceptions
bin t 9 no
etc t 18 integrity
lib t 8 no

man t 8 integrity
sbin t 8 no
usr t 7 no

Table 3: System labels referenced by the packages pre-
sented in Table 2. Only etc t and man t have conflicts;
the number of conflicting types per case can not be high
(Writers column is an upper limit since it includes trusted
writers), so we can precisely examine each exception and
suggest resolutions (shown in Table 4).

tem label lib t our analysis included system libraries.
Therefore, application integrity not only depends on the
integrity of the files in the installation package but also
on some other files. In general, the files that the program
execution depends on should be comprehensively identi-
fied. These should be well-known per system.

An issue is whether a trusted program may create a file
whose integrity it depends upon that has a system label.
For example, a trusted program generates the password
file, but this used by the system, so it has a system label.
We did not see a case where this happened for our trusted
programs, but we believe that this is possible in practice.
We believe that more information about the integrity of
the contents generated by the program will need to be
used in compliance testing. For example, if the program
generates data it marks as high integrity, then we could
leverage this in addition to package files and program
policy labels to generate tamperproof goal policies.

An issue with our approach is the handling of low in-
tegrity program objects. Since low integrity program ob-
jects are the lowest integrity objects in the system, any
program can write to these objects. We find that we
want low integrity program objects to be relative to the
trusted programs; lower than all trusted programs, but
still higher than system data. Further investigation is re-
quired.

The approach in this paper applies only to trusted pro-
grams. We make no assumptions about the relationship
between untrusted program and the system data. In fact,
we are certain that there is system data that should not
be accessed by most, if not all, untrusted programs. Note
that there is no advantage to verifying the compliance of
untrusted program, because the system does not depend
on untrusted programs to enforce its security goals. Such
programs have no special authority.

7 Related Work
Policy Analysis. Policies generally contain a consider-
able number of rules that express how elements in a given
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SELinux
Label

Conflicting Labels Type of Exception Resolution
Method

Comment

etc t groupadd t, passwd t,
useradd t, chfn t

Integrity ADD The conflicting labels require access to the
the same file /etc/passwd

etc t updfstab t,
ricci modstorage t,
firstboot t

Integrity ADD The first two labels have legitimate rea-
sons to modify /etc/fstab. The last
type modifies multiple files in /etc

etc t postgresql t,kudzu t Integrity APP LABELS The conflicting types need access to appli-
cation files labeled with system labels

man t system crond t Integrity REMOVE crond does not need to write manual pages
ADD: Add conflicting types to the set of trusted readers (confidentiality) or writers (integrity).
APP LABELS: The associated application requires access to a file that is application specific but was labeled using system
labels. Adding application specific labels to handle those files solves the conflict.
REMOVE: The permission requested is not required

Table 4: Compliance Exceptions and Resolutions. This table details the exceptions to tamperproof compliance
presented in Table 3. It shows the list of conflicting, untrusted subjects and the resolution method, per case.

environment must be controlled. Because of the size of
a policy and the relationships that emerge from having
a large number of rules, it is difficult to manually eval-
uate whether a policy satisfies a given property or not.
As a consequence, tools to automatically analyze pol-
icy are necessary. APOL [35], PAL [29], SLAT [10],
Gokyo [16] and PALMS [15] are some of the tools de-
veloped to analyze SELinux policies; however, each of
these tools focuses on the analysis of single security poli-
cies. Of these, only PALMS offers mechanisms to com-
pare policies; in particular it addresses compliance eval-
uation, but our approach to compliance is broader and
allows the compliance problem to be automated.

Policy Modeling. We need a formal model to reason
about the features of a given policy. Such a model should
be largely independent of particular representation of the
targeted policies and should enable comparisons among
different policies. Multiple models have been proposed
and each one of them defines a set of components that
need to be considered when translating a policy to an
intermediate representation. Cholvy and Cuppens [6] fo-
cus on permissions, obligations, prohibitions and provide
a mechanism to check regulation consistency. Bertino et
al. [3] focus on subjects, objects and privileges, as well
as the organization of these components and the set of
authorization rules that define the relationships among
components and the set of derived rules that may be gen-
erated because of a hierarchical organization. Kock et
al. [18] represent policies as graphs with nodes that rep-
resent components(processes, users, objects) and edges
that represent rules and a set of constraints that globally
applied to the system. In any case, policy modeling be-
comes a building block in the process of evaluating com-
pliance. Different policies must be translated to an inter-
mediate representation (a common model) so they can be
compared and their properties evaluated.

Policy Reconciliation. Policy compliance problems

may resemble policy reconciliation problems. Given two
policies A and B that define a set of requirements, a rec-
onciliation algorithm looks for a specific policy instance
C that satisfies the stated requirements. Policy compli-
ance in a general sense, i.e. ‘Given a policy A and a pol-
icy B, is B compliant with A?’ means ‘is any part of A
in conflict with B?’. Previous work [21] shows that rec-
onciliation of three or more policies is intractable. Com-
pliance is also a intractable problem since this would re-
quire to checking all possible paths in B against all possi-
ble paths in A. Although both of these problems are sim-
ilar in that they both test policy properties and are non-
tractable in general cases (no restrictions), they differ in
their inputs and expected outputs. While in the case of
reconciliation, an instance that satisfies the requirements
has to be calculated, in the case of compliance, policy
instances are given and one is evaluated against the other
one.

Policy Compliance. The security-by-contract
paradigm resembles our policy compliance model. It is
one of the mechanisms proposed to support installation
and execution of potentially malicious code from a third
party in a local platform. Third party applications are
expected to come with a security contract that specifies
application behavior regarding security issues. The first
step in the verification process is checking whether the
behaviors allowed by the contract are also allowed by
the local policy [8]. In the most recent project involving
contract matching, contract and policy are security au-
tomatons and the problem of contract matching becomes
a problem of testing language inclusion for automatons.
While there is no known polynomial technique to test
language inclusion for non-deterministic automatons,
determining language inclusion for deterministic au-
tomatons is known to be polynomial [9]. One main
advantage of our representation is that we are verifying
policies that are actually implemented by the enforcing
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mechanism, not high level statements that may not
be actually implemented because of the semantic gap
between specification and implementation. In addition,
the enforcing mechanism is part of the architecture.

8 Conclusion
This work is driven by the idea of unifying application
and system security policies. Since applications and sys-
tems policies are independently developed, they use dif-
ferent language syntax and semantics. As a consequence,
it is difficult to prove or disprove that programs enforce
system security goals. The emergence of mandatory ac-
cess control systems and security typed languages makes
it possible to automatically evaluate whether applications
and systems enforce common security goals. We reshape
this problem as a verification problem: we want to eval-
uate if applications are compliant with system policies.

We found that compliance verification involves two
tasks: we must ensure that the system protects appli-
cation from being tampered with, as well as verify that
the application enforces system security goals. In or-
der to automate the mapping between the program pol-
icy and the system policy, we proposed the PIDSI (Pro-
gram Integrity Dominates System Data Integrity) ap-
proach. The PIDSI approach relies on the observation
that in general program objects are higher integrity than
system objects. We tested the trusted program core of the
SELinux system to see if its policy was compatible with
the PIDSI approach. We found that our approach accu-
rately represents the SELinux security design with a few
minor exceptions, and requires little or no feedback from
administrators in order to work.

Notes
1The program verification (e.g., STL compilation) enforces the

complete mediation guarantee.
2At present, module policies are not included in Linux packages,

but RedHat, in particular, is interested in including SELinux module
policies in its rpm packages in the future [36].

3SELinux uses the term type for its labels, as it uses an extended
Type Enforcement policy [5].

4As described above, this must be done manually now, via
semodule, but the intent is that when you load a package contain-
ing a module policy, someone will install the module policy.

5In this case, violating the confidentiality of SSH keys enables a
large class of integrity attacks. This phenomenon has been discussed
more generally by Sean Smith [31].
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