Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
14th USENIX Security Symposium — Abstract

Pp. 113–128 of the Proceedings

MulVAL: A Logic-based Network Security Analyzer

Xinming Ou, Sudhakar Govindavajhala, Andrew W. Appel, Princeton University

Abstract

To determine the security impact software vulnerabilities have on a particular network, one must consider interactions among multiple network elements. For a vulnerability analysis tool to be useful in practice, two features are crucial. First, the model used in the analysis must be able to automatically integrate formal vulnerability specifications from the bug-reporting community. Second, the analysis must be able to scale to networks with thousands of machines.

We show how to achieve these two goals by presenting MulVAL, an end-to-end framework and reasoning system that conducts multihost, multistage vulnerability analysis on a network. MulVAL adopts Datalog as the modeling language for the elements in the analysis (bug specification, configuration description, reasoning rules, operating-system permission and privilege model, etc.). We easily leverage existing vulnerability-database and scanning tools by expressing their output in Datalog and feeding it to our MulVAL reasoning engine. Once the information is collected, the analysis can be performed in seconds for networks with thousands of machines.

We implemented our framework on the Red Hat Linux platform. Our framework can reason about 84% of the Red Hat bugs reported in OVAL, a formal vulnerability definition language. We tested our tool on a real network with hundreds of users. The tool detected a policy violation caused by software vulnerabilities and the system administrators took remediation measures.

  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until August 2006, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2005 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 3 Aug. 2005 ch
Technical Program
Security '05 Home
USENIX home