
USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



12th USENIX Security Symposium USENIX Association 257

Improving Host Security with System Call Policies

Niels Provos
Center for Information Technology Integration

University of Michigan
provos@citi.umich.edu

Abstract

We introduce a system that eliminates the need to
run programs in privileged process contexts. Using our
system, programs run unprivileged but may execute cer-
tain operations with elevated privileges as determined
by a configurable policy eliminating the need for suid
or sgid binaries. We present the design and analysis
of the “Systrace” facility which supports fine grained
process confinement, intrusion detection, auditing and
privilege elevation. It also facilitates the often diffi-
cult process of policy generation. With Systrace, it is
possible to generate policies automatically in a training
session or generate them interactively during program
execution. The policies describe the desired behavior of
services or user applications on a system call level and
are enforced to prevent operations that are not explic-
itly permitted. We show that Systrace is efficient and
does not impose significant performance penalties.

1 Introduction

Computer security is increasing in importance as
more business is conducted over the Internet. Despite
decades of research and experience, we are still unable
to make secure computer systems or even measure their
security.

We take for granted that applications will always
contain exploitable bugs that may lead to unauthorized
access [4]. There are several venues that an adversary
may choose to abuse vulnerabilities, both locally or
remotely. To improve the security of a computer sys-
tem, we try to layer different security mechanisms on
top of each other in the hope that one of them will be
able to fend off a malicious attack. These layers may
include firewalls to restrict network access, operating
system primitives like non-executable stacks or appli-
cation level protections like privilege separation [30]. In
theory and practice, security increases with the num-
ber of layers that need to be circumvented for an attack
to be successful.

Firewalls can prevent remote login and restrict ac-
cess, for example to a web server only [12]. However,
an adversary who successfully exploits a bug in the
web server and gains its privileges may possibly use
them in subsequent attacks to gain even more privi-
leges. With local access to a system, an adversary may
obtain root privileges, e.g., by exploiting setuid pro-
grams [5, 11], using localhost network access or special
system calls [8].

To recover quickly from a security breach, it is im-
portant to detect intrusions and to keep audit trails for
post-mortem analysis. Although there are many intru-
sion detection systems that analyze network traffic [27]
or host system activity [21] to infer attacks, it is often
possible for a careful intruder to evade them [31, 36].

Instead of detecting intrusions, we may try to con-
fine the adversary and limit the damage she can cause.
For filesystems, access control lists [15, 32] allow us
to limit who may read or write files. Even though
ACLs are more versatile than the traditional Unix ac-
cess model, they do not allow complete confinement of
an adversary and are difficult to configure.

We observe that the only way to make persistent
changes to the system is through system calls. They
are the gateway to privileged kernel operations. By
monitoring and restricting system calls, an application
may be prevented from causing harm. Solutions based
on system call interposition have been developed in the
past [20, 24]. System call interposition allows these
systems to detect intrusions as policy violations and
prevent them while they are happening. However, the
problem of specifying an accurate policy still remains.

This paper presents Systrace, a solution that effi-
ciently confines multiple applications, supports mul-
tiple policies, interactive policy generation, intrusion
detection and prevention, and that can be used to
generate audit logs. Furthermore, we present a novel
approach called privilege elevation that eliminates the
need for setuid or setgid binaries. We discuss the de-
sign and implementation of Systrace and show that it is
an extensible and efficient solution to the host security
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problem.
The remainder of the paper is organized as follows.

Section 2 discusses related work. In Section 3, we
provide further motivation for our work. Section 4
presents the design of Systrace and Section 5 discusses
its implementation. We present an analysis of the sys-
tem in Section 6. In Section 7, we present a detailed
performance analysis of our system. We discuss future
work in Section 8 and conclude in Section 9.

2 Related Work

Although capabilities [26] and access control
lists [15, 32] extend the traditional Unix access model
to provide finer-grained controls, they do not prevent
untrusted applications from causing damage. Instead,
we may use mechanisms based on system call inter-
ception or system call interposition to prevent damage
from successful intrusions.

Janus, by Goldberg et al. [20], is one of the first
system call interception tools. It uses the ptrace and
/proc mechanisms. Wagner states that ptrace is not a
suitable interface for system call interception, e.g., race
conditions in the interface allow an adversary to com-
pletely escape the sandbox [37]. The original Janus im-
plementation has several drawbacks: Applications are
not allowed to change their working directory or call
chroot because Janus cannot keep track of the appli-
cation’s changed state. Janus has evolved significantly
over time and its latest version uses a hybrid approach
similar to Systrace to get direct control of system call
processing in the operating system [18].

One particularly difficult problem in application
confinement is symlinks, which redirect filesystem ac-
cess almost arbitrarily. Garfinkel introduces safe call-
ing sequences that do not follow any symlinks [18].
The approach uses an extension to the open system
call that is specific to the Linux operating system but
breaks any application that accesses filenames contain-
ing symlinks. Systrace solves this problem using file-
name normalization and argument replacement. Cur-
rently, Janus does not address intrusion detection, au-
diting or policy generation.

Jain and Sekar [24] offer another fairly complete
treatment of system call interposition. On some sys-
tems their implementation is based on ptrace and suf-
fers the problems mentioned above. Furthermore, they
do not address the problem of naming ambiguities that
may result in policy circumvention. Because C++
is used as their policy language, creating comprehen-
sive policies is difficult. Systrace, on the other hand,
supports automatic and interactive policy generation

which allows us to create policies quickly even in very
complex environments.

Other systems that use mechanisms like system call
interception are BlueBox [10], Cerb [14], Consh [2],
MAPbox [1] and Subterfugue [13].

Peterson et al. present a general-purpose system call
API for confinement of untrusted programs [28]. The
API is flexible but has no provisions for recording audit
trails or intrusion detection. Furthermore, specifying
security policies is labor intensive as the sandbox needs
to be programmed into applications.

Domain Type Enforcement [3, 38] is a kernel-level
approach to restrict system access for all processes de-
pending on their individual domains. A complete DTE
implementation requires extensive changes to the op-
erating system and does not automatically extend to
new subsystems. Because policies are locked down on
system start, users may not create individual policies.
In contrast to Systrace, DTE domains do not differen-
tiate between users. We feel that system call interpo-
sition offers higher flexibility as it allows us to design
and create a simple system that also addresses policy
generation, audit trails, intrusion detection, etc.

The security architecture for the Flask microkernel
emphasizes policy flexibility and rejects the system call
interception mechanism claiming inherent limitations
that restrict policy flexibility [34]. Instead, the Flask
system assigns security identifiers to every object and
employs a security server for policy decisions and an
object server for policy enforcement. However, Sys-
trace uses a hybrid design that allows us to overcome
the traditional limitations of system call interception;
see Section 6.

SubOS [23] takes a similar approach based on object
labeling to restrict access to the system. Depending on
their origin, objects are assigned sub-user identifiers. A
process that accesses an object inherits its sub-user id
and corresponding restrictions. As a result, a process
subverted by a malicious object may cause only limited
damage. In practice, there are only a few applications
that can be subverted that way and enforcing security
policies for these applications is sufficient to prevent
malicious data from causing damage.

Forrest et al. analyze system call sequences to dis-
criminate between processes [16]. Their work is ex-
tended by Hofmeyer et al. to achieve intrusion detec-
tion by recording the system calls that an application
executes and comparing the recorded sequences against
a database of good sequences [21]. Abnormal sequences
indicate an ongoing intrusion. The training process
that collects good system call sequences is similar to
the automatic policy generation feature of Systrace.
Wespi et al. further extend this approach by using
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variable-length patterns to match audit events [39]. Al-
though analyzing system call or audit sequences is an
effective mechanism to detect intrusions, it does not
help to prevent them. Recent research also shows that
mimicry attacks can evade intrusion detection system
based on system call sequences [35, 36]. Systrace not
only detects such intrusions, it can also prevent them
or at least limit the damage they can cause. Further-
more, evasion attacks are not possible as we discuss in
Section 6.

3 Motivation and Threat Model

Most applications that run on computer systems are
too complex and complicated to trust: web browsers,
name servers, etc. Even with access to the source code,
it is difficult to reason about the security of these appli-
cations. They might harbor malicious code or contain
bugs that are exploitable by carefully crafted input.

Because it is not possible to find all vulnerabilities,
we assume the existence of programming errors known
to the adversary that she can use to gain unauthorized
access to the system.

We limit the impact an adversary can have on the
system by restricting the operations an application is
allowed to execute. The observation that changes rele-
vant to security are performed via system calls makes
the enforcement of restrictions at the system call level
a natural choice.

An application is confined by a set of restrictions
which are expressed by a security policy. Defining
a correct policy is difficult and not possible without
knowing all possible code paths that an uncompro-
mised application may take. Therefore we require the
policy language to be intuitive while still expressive.
It should be possible to generate policies without com-
plete knowledge of an application.

We may use the security policy as a specification
that describes the expected behavior of an applica-
tion. When monitoring the operations an application
attempts to execute, any deviation from the specified
policy indicates a security compromise [25]. To further
facilitate forensic analysis of an intrusion, we also wish
to generate an audit log of previous operations related
to the application.

Experience shows that adversaries escalate their
privileges by abusing setuid or setgid programs [5].
These programs are executed by the operating sys-
tem with different privileges than the user starting
them. Although increasing privileges is often necessary
for correct operation, the setuid model is too coarse
grained. We aim to provide a fine-grained model that

eliminates the need for setuid binaries and integrates a
method to elevate privilege into a policy language.

Systrace realizes these goals and is an effective im-
provement of host security that limits the damage an
adversary can cause by exploiting application vulnera-
bilities. The next section discusses the design of Sys-
trace.

4 Design

There are several approaches for implementing sys-
tem call interposition. We may use existing intercep-
tion mechanisms to create an implementation com-
pletely in user space, implement the system entirely
at the kernel-level, or choose a hybrid of both. A user
space implementation is often more portable but may
suffer a larger performance impact. Furthermore, the
interception mechanism may not provide the required
security guarantees or may make it difficult to keep
track of operating system state like processes exiting
and forking. A notable exception is SLIC [19], a mecha-
nism to create extensible operating systems via system
call interposition. Unfortunately, it is not portable and
adds significant complexity to the operating system.

On the other hand, an implementation completely
at the kernel-level is likely to be fast but less portable
and also causes a significant increase in the complexity
of the operating system.

We choose a hybrid approach to implement a small
part of the system at the kernel-level. The kernel-level
part supports a fast path for system calls that should
always be allowed or denied. That case should incur
almost no performance penality because it does not
require a context switch to ask a user space policy dae-
mon for a decision.

Some control in the kernel also allows us to make
the system fail-safe, i.e., no application can escape
its sandbox even if there are unforeseen errors that
might cause the monitor itself to terminate. When the
sandboxing process terminates, the kernel terminates
all processes that it was monitoring. Additionally, the
kernel keeps track of creation of new processes and of
processes that exit. Child processes inherit the policy
of their parent.

If the kernel cannot use the fast path for a system
call, it must ask the policy daemon in user space for
a policy decision. In that case, the process is blocked
until the daemon returns with an answer to permit the
system call or to deny it with a certain error code.
Information is exported from the kernel to user space
via a simple yet comprehensive interface.

The user space policy daemon uses the kernel inter-
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face to start monitoring processes and to get informa-
tion about pending policy decisions or state changes.
The state changes may be process creation, processes
exiting, processes changing uid or gid, and other state
changes.

The daemon may also request information about the
result of a system call. This allows us to know, for ex-
ample if the execve system call has succeeded in replac-
ing the current process image with a new application.
This event can install a new policy from the policy
database.

System call interception does not provide atomicity
between the time a policy decision is made and the
time a system call is executed, i.e. the time of check is
not the time of use (TOCTOU). As a result, an adver-
sary can change the system call before it is executed
but after the policy daemon has inspected it. For ex-
ample, two processes that share parts of their address
space may cooperate to present one set of system call
arguments to the policy daemon and another one to
the kernel. When the kernel suspends the first process
to consult the policy daemon, the second process is still
running and may change the system call arguments of
the first process after they have been inspected by the
daemon. For filesystem access, an adversary may also
redirect the access by changing a component in the file-
name to a symbolic link after the policy check. This
lack of atomicity may allow an adversary to escape the
sandbox.

We prevent these race conditions by replacing the
system call arguments with the arguments that were
resolved and evaluated by Systrace. The replaced ar-
guments reside in kernel address space and are avail-
able to the monitored process via a read-only look-aside
buffer. This ensures that the kernel executes only sys-
tem calls that passed the policy check.

Before making a policy decision, the system call and
its arguments are translated into a system independent
human-readable format. The policy language operates
on that translation and does not need to be aware of
system call specific semantics.

4.1 Policy

Existing frameworks for making policy decisions
propose generic policy languages [6, 7] and provide pol-
icy evaluation methods but are more complex than nec-
essary in our case. For that reason, we create our own
policy language and evaluator. This approach has also
been taken by other sandboxing tools [1, 20].

We use an ordered list of policy statements per sys-
tem call. A policy statement is a boolean expression B
combined with an action clause: B then action. Valid

actions are ask, deny or permit plus optional flags. If
the boolean expression evaluates to true, the specified
action is taken. The ask action requires the user to
deny or permit the system call explicitly.

A boolean expression consists of variables Xn and
the usual logical operators: and, or and not. The
variables Xn are tuples of the form (subject op data),
where subject is the translated name of a system call
argument, data is a string argument, and op a function
with boolean return value that takes subject and data
as arguments.

The set of all lists forms the security policy. For a
given system call, policy evaluation starts at the be-
ginning of the system call specific list and terminates
with the first boolean expression that is true; see Fig-
ure 1. The action from that expression determines if
the system call is denied or allowed.

If no boolean expression becomes true, the policy
decision is forwarded to the user of the application or
automatically denied depending on the configuration.
Section 4.2 explains in more detail how this mechanism
is used to generate policies interactively or automati-
cally. When denying a system call, it is possible to
specify which error code is passed to the monitored
application.

To create comprehensive policies that apply to dif-
ferent users, policy statements may carry predicates.
A policy statement is evaluated only if its predicate
matches and ignored otherwise. Using predicates, it is
possible to restrict the actions of certain users or be
more permissive with others, for example system ad-
ministrators. Predicates are appended to the policy
statement and are of the form if {user,group} op data,
where op is either equality or inequality and data a user
or group name.

The log modifier may be added to a policy statement
to record matching system calls. Every time a system
call matches this policy statement, the operating sys-
tem records all information about the system call and
the resulting policy decision. This allows us to create
arbitrarily fine-grained audit trails.

4.2 Policy Generation

Creating policies is usually relegated to the user who
wishes to sandbox applications. Policy generation is
not an easy task as some policy languages resemble
complicated programming languages [24]. Although
those languages are very expressive, the difficulty of
creating good policies increases with the complexity of
the policy language.

Our definition of a good policy is a policy that allows
only those actions necessary for the intended function-
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Policy: /usr/sbin/named, Emulation: native

native- sysctl: permit

native-accept: permit

native-bind: sockaddr match "inet-*:53" then permit

native-break: permit

native-chdir: filename eq "/" then permit

native-chdir: filename eq "/namedb" then permit

native-chroot: filename eq "/var/named" then permit

native-close: permit

native-connect: sockaddr eq "/dev/log" then permit

...

Figure 1: Partial policy for the name daemon. Policies can be improved iteratively by appending new policy statements.
The policy statement for bind allows the daemon to listen for DNS requests on any interface.

ality of the application but that denies everything else.
Clearly, we can construct a policy that matches our

definition by enumerating all possible actions that an
application needs for correct execution. If an action is
not part of that enumeration, it is not allowed.

In the following, we show how our policy language
facilitates policy construction. The policy language is
designed to be simple. Each policy statement can be
evaluated by itself, thus it is possible to extend a policy
by appending new policy statements. The major ben-
efit of this approach is that a policy can be generated
iteratively.

We create policies automatically by running an ap-
plication and recording the system calls that it exe-
cutes. We translate the system call arguments and
canonically transform them into policy statements for
the corresponding system calls. When an application
attempts to execute a system call during the training
run, it is checked against the existing policy and if not
covered by it, a new policy statement that permits this
system call is appended to the policy. Unlike intrusion
detection systems that analyze only sequences of sys-
tem call names [16, 21], our policy statements capture
the complete semantics of a system call and are not
subject to evasion attacks [36].

On subsequent runs of the application, the auto-
matically created policy is used. For some applications
that create random file names, it is necessary to edit
the policies by hand to account for nondeterminism.

When generating policies automatically, we assume
that the application itself does not contain malicious
code and that it operates only with benign data. Oth-
erwise, the resulting policies might permit undesirable
actions.

To address cases for which our assumptions do not
hold or for which it is impossible to exercise all code
paths in a training run, we use interactive policy gener-
ation. Interactivity implies a user needs to make pol-
icy decisions when the current policy does not cover

the attempted system call. When a policy decision is
required by the user, she is presented with a graphical
notification that contains all relevant information; see
Figure 2. She then either improves the current policy
by appending a policy statement that covers the cur-
rent system call, terminates the application, or decides
to allow or deny the current system call invocation.

Figure 2: A graphical notification assists the user when a
policy decision is required. A user may decide to allow or
deny the current system call or to refine the policy.

If we do not exercise all possible code paths, au-
tomatic policy generation does not enumerate all le-
gitimate actions of an application and by itself is not
sufficient to create a good policy. However, it provides
a base policy that covers a subset of necessary actions.
In conjunction with interactive policy generation, we
iteratively refine the policy by enumerating more valid
actions until the policy is good.

The system assists the user by offering generic policy
templates that can be used as a starting point. Once
an initial policy has been created, policy notifications
appear only when an attempted operation is not cov-
ered by the configured policy. This might indicate that
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a new code path is being exercised, or that a security
compromise is happening. The user may either permit
the operation or deny and investigate it.

Once a security policy for an application has been
finalized, automatic policy enforcement may be em-
ployed. In that case, the user is not asked for a pol-
icy decision when an application attempts to execute a
system call that is not covered by the policy. Instead,
the system call is denied and an error code returned to
the application. The errant attempt is logged by the
operating system.

4.3 Privilege Elevation

Beyond restricting an application to its expected be-
havior, there are situations in which we would like to
increase its privilege. In Unix, there are many system
services and applications that require root privilege to
operate. Often, higher privilege is required only for a
few operations. Instead of running the entire applica-
tion with special privilege, we elevate the privilege of a
single system call. The motivation behind privilege ele-
vation is the principle of least privilege: every program
and every user should operate using the least amount
of privilege necessary to complete the job [33].

To specify that certain actions require elevated priv-
ilege, we extend the policy language to assign the de-
sired privilege to matching policy statements. Systrace
starts the program in the process context of a less priv-
ileged user and the kernel raises the privilege just be-
fore the specified system call is executed and lowers it
directly afterwards.

As every user may run their own policy daemon,
privilege elevation is available only when the Systrace
policy daemon runs as root. Otherwise, it would be
possible for an adversary to obtain unauthorized privi-
leges by creating her own policies. Identifying the priv-
ileged operations of setuid or setgid applications allows
us to create policies that elevate privileges of those op-
erations without the need to run the whole application
at an elevated privilege level. As a result, an adversary
who manages to seize control of a vulnerable applica-
tion receives only very limited additional capabilities
instead of full privileges.

The ping program, for example is a setuid appli-
cation as it requires special privileges to operate cor-
rectly. To send and receive ICMP packets, ping cre-
ates a raw socket which is a privileged operation in
Unix. With privilege elevation, we execute ping with-
out special privileges and use a policy that contains a
statement granting ping the privilege to create a raw
socket.

Unix allows an application to discard privileges by

changing the uid and gid of a process. The change is
permanent and the process cannot recover those privi-
leges later. If an application occasionally needs special
privileges throughout its lifetime dropping privileges is
not an option. In this case, privilege elevation becomes
especially useful. For example, the ntpd daemon syn-
chronizes the system clock. Changing system time is
a privileged operation and ntpd retains root privileges
for its whole lifetime. A recent remote root vulnerabil-
ity [17] could have been prevented with single system
call privilege elevation.

5 Implementation

We now give an overview of the Systrace imple-
mentation. Systrace is currently available for Linux,
Mac OS X, NetBSD, and OpenBSD; we concentrate
on the OpenBSD implementation.

To help reason about the security of our implemen-
tation, simplicity is one of our primary goals. We keep
the implementation simple by introducing abstractions
that separate different functionalities into their own
components. A conceptual overview of the system call
interception architecture is shown in Figure 3.

When a monitored application executes a sys-
tem call, the kernel consults a small in-kernel policy
database to check if the system call should be denied
or permitted without asking the user space daemon.
At this point, policy decisions are made without in-
specting any of the system call arguments. Usually,
system calls like read or write are always permitted.
The kernel communicates via the /dev/systrace de-
vice to request policy decisions from the daemon.

While processes may have different policies, the ini-
tial policy for all system calls defers policy decisions to
a corresponding user space daemon. When the kernel
is waiting for an answer, it suspends the process that
requires a policy decision. If the process is awakened by
a signal before a policy decision has been received, the
kernel denies the current system call and returns an er-
ror. To enforce synchronization, each message from the
kernel carries a sequence number so that answers from
user space can be matched against the correct message.
The sequence number ensures that a user space policy
decision is not applied to a system call other than the
one that caused the message.

When the user space policy daemon receives a re-
quest for a decision, it looks up the policy associated
with the process and translates the system call argu-
ments. To translate them, we register translators for
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Figure 3: Overview of system call interception and policy decision. For an application executing in the sandbox, the
system call gateway requests a policy decision from Systrace for every system call. The in-kernel policy provides a fast
path to permit or deny system calls without checking their arguments. For more complex policy decisions, the kernel
consults a user space policy daemon. If the policy daemon cannot find a matching policy statement, it has the option
to request a refined policy from the user.

each argument in a system call. The translation of the
socket(AF INET, SOCK RAW, IPPROTO ICMP);

system call takes the following form:
socket: sockdom: AF INET, socktype: SOCK RAW

The third argument has not been translated because it
is irrelevant on the supported Unix systems.

While many argument translators are fairly simple,
translating filenames is more complicated. Filenames
in Unix are relative to the current working directory of
a process. In order to translate a filename into an un-
ambiguous absolute path name, we need to know the
current working directory of the monitored application
even if it is working in a chroot environment. Addition-
ally, all symbolic links in components of the filename
need to be resolved so that access restrictions imposed
by policy cannot be circumvented by an adversary1.

The translators also act as argument normalizers.
The argument replacement framework is used to re-
place the original arguments with their translation. As
the kernel sees only normalized arguments, an adver-
sary cannot use misleading arguments to circumvent a
security policy. The kernel makes the rewritten argu-
ments available to the monitored process via a look-
aside buffer before resuming execution of the system

1 For system calls like lstat or readlink, we resolve all but the
last component which may be a symbolic link as the operating
system does not follow it.

call. Furthermore, we disallow the process to follow
any symbolic links because no component of a normal-
ized filename contains symbolic links that should be
followed.

A policy statement that permits the creation of raw
sockets might look like this:

socket: socktype eq "SOCK RAW" then permit

The operators in the boolean expression use the
translated human-readable strings as input arguments.
We currently support eq, match, re and sub as op-
erators:

• The eq operator evaluates to true only if the sys-
tem call argument matches the text string in the
policy statement exactly.

• The match operator performs file name globbing
as found in the Unix shell. It can be used to match
files in directories for file name arguments.

• The re operator uses regular expressions to match
system call arguments. It is very versatile but
more expensive to evaluate than other operators.

• The sub operator evaluates to true only if the sys-
tem call argument contains the specified substring.

If evaluating the policy for the current system call
results in either deny or permit, the policy daemon re-
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turns the answer to the kernel which then awakens the
sleeping process. Otherwise, the user monitoring the
applications is asked for a policy decision. The notifi-
cation mechanism can be implemented independently
from the rest of the system and is currently either a
graphical user interface or a text prompt on the termi-
nal. At this point, the user can add new policy state-
ments to the policy.

Policies for system calls accessing the filesystems
tend to be similar. For example, the access, stat, and
lstat system calls all fulfill similar functionality. In or-
der to avoid duplication of policy, we introduce system
call aliasing to map system calls with similar function-
ality into a single virtual system call which is then used
for policy evaluation. Currently, fsread is used for sys-
tem calls that grant read access to filesystem objects,
and fswrite for system calls that cause change in the
filesystem. The open system call is mapped to fsread
or fswrite depending on the kind of filesystem access
that is indicated by its arguments. System call alias-
ing reduces the size of policies and simplifies policy
generation.

It is possible to make policies more flexible by us-
ing predicates. Policy statements are only evaluated if
their predicate matches. For example, to prevent root
access via the SSH daemon, a policy statement that
permits the execution of a shell could be predicated so
that it applies only to non-root users. In order to keep
track of a process’ uid and gid, the kernel sends infor-
mational messages to the policy daemon when those
values change.

The execve system call is treated specially. When
a process executes another application, its in-memory
image is replaced with the one of the executed pro-
gram. To support more fine-grained policies, we can
set a new policy for the process. The policy is obtained
from the name of the executed application. As a re-
sult, one Systrace daemon may concurrently enforce
multiple policies for multiple processes.

Policies for different applications are stored in a pol-
icy directory as separate files. Users may store their
own policies in a user specific policy directory. The
system administrator may also provide global policies
for all users. To sandbox applications, users start them
with the Systrace command line tool. Administrators
may assign a Systrace login shell to users to enforce
policy for all their applications.

6 Analysis

An adversary who takes control of a sandboxed ap-
plication may try to escape the sandbox by confusing

the policy enforcement tool and tricking it into allowing
actions that violate policy. Although many sandboxing
tools share common problems, we present novel solu-
tions to some of them and discuss inherent limitations
of policy systems based on system call interposition.

6.1 Security Analysis

To enforce security policies effectively by system call
interposition, we need to resolve the following chal-
lenges: incorrectly replicating OS semantics, resource
aliasing, lack of atomicity, and side effects of denying
system calls [18, 34, 37]. We briefly explain their nature
and discuss how we address them.

The sandboxing tool must track operating system
state in order to reach policy decisions. Systrace, for
example, must keep track of process uids and the file-
name of the program binary the monitored process is
executing. To avoid incorrectly replicating OS seman-
tics, our kernel-level implementation informs the Sys-
trace daemon about all relevant state changes.

Resource aliasing provides multiple means to ad-
dress and access the same operating system resource.
For example, on some Unix systems, it is possible to
gain access to files by communicating with a system
service or by using symbolic links in the filesystem to
create different names for the same file. An adversary
may use these indirections to circumvent policy and
obtain unauthorized access. The system call interposi-
tion mechanism is unaware of system services that al-
low proxy access to operating system resources. When
creating policies that allow a sandboxed application to
contact such system services, we need to be aware of
the consequences. However, we can prevent aliasing
via symbolic links or relative pathnames as discussed
below.

Another problem is the lack of atomicity between
the time of check and the time of use that may cause
the mapping of name to resource to change between
policy decision and system call execution. An adver-
sary may cause such a state change that allows a pro-
cess to access a different resource than the one origi-
nally approved, for example a cooperating process shar-
ing memory may rewrite system call arguments be-
tween policy check and execution.

Systrace solves both aliasing and atomicity problems
by normalizing the system call arguments. We provide
the normalized values to the operating system in such
a way that the name to resource mapping cannot be
changed by an adversary. For filenames, this includes
resolving all symbolic links and all relative paths. The
only exception are system calls like readlink, for which
we do not resolve the last component. As resolved file-
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names do not contain any symbolic links that should be
followed, the kernel denies the monitored process to fol-
low any symbolic links. Instead of placing the rewritten
arguments on the stack as done in MAPbox [1], we pro-
vide a read-only look-aside buffer in the kernel. Oth-
erwise, multi-threaded applications can change system
call arguments after the policy check.

As a result, evasion attacks [35, 36] are no longer
possible. System calls are allowed only if their argu-
ments match a statement in the policy and are denied
otherwise.

However, we need to take side effects of denying sys-
tem calls into consideration. If we assume correct se-
curity policy, system calls are denied only if an appli-
cation attempts to do something that it should not.
As the behavior of many applications depends on the
error code returned to them, we can specify the error
code as part of the Systrace policy. Every system call
has its own set of valid return codes which does not
always include EINTR or EPERM. To avoid confusing ap-
plications, we allow policies to set their own error codes
instead of mandating a fixed value2. For example, we
let the kernel return EACCESS for the stat system call
if the application should think that it is not permitted
to access a certain file. On the other hand, return-
ing ENOENT causes the application to think that the file
does not exist.

Furthermore, we address secure process detaching
and policy switching, problems that are often over-
looked. When an application executes a new program,
the operating system replaces the code that the pro-
cess is running with the executed program. If the new
program is trusted, we may wish to stop monitoring
the process that runs it. On the other hand, a new
program also implies new functionality that could be
confined better with a different, more suitable policy.
If requested, Systrace reports the return value of a sys-
tem call to indicate if it was successfully executed or
not. In the case of execve, success indicates that the
monitored process is running a new program and we al-
low the policy to specify if we should detach from the
process or allow a different policy to take effect. After
these changes take effect, the execution of the process
is resumed.

Because the security of our system relies on the in-
tegrity of the filesystem, we assume that it is secure. If
an adversary can control the filesystem, she may mod-
ify the policies that determine the permissible opera-
tions for monitored applications or replace trusted pro-
grams with malicious code.

2 This does not prevent faulty applications that are written
without proper error handling from misbehaving. In that case,
Systrace may help to identify incorrect exception handling.

Audit trails may be generated by adding the log
modifier to policy statements. An an example, for an
audit trail of all commands a user executes, it is suffi-
cient to Systrace her shell and log all the executions of
execve.

The benefit of privilege elevation is the reduction
of privilege an application requires for its execution.
Applications that formerly required root privilege for
their entire lifetime now execute only specific system
calls with elevated privilege. Other system calls are
executed with the privilege of the user who invoked
the application. The semantics of setuid prevent a user
from debugging privileged applications via ptrace. We
apply the same semantics when policy elevates an ap-
plication’s privilege.

6.2 Policy generation

Policy generation is an often neglected problem. In
order for a sandbox to function correctly, it requires
a policy that restricts an application to a minimal set
of operations without breaking its functionality. To
facilitate policy generation, our policy language allows
policies to be improved iteratively by appending new
policy statements.

We can generate policies automatically by execut-
ing applications and recording their normal behavior.
Each time we encounter a system call that is not part of
the existing policy, we append a new policy statement
that matches the current translated system call.

The resulting policy covers the executed code path
of the application. For applications that randomize
arguments, we post process the policy to make it inde-
pendent of arguments with random components.

For example, when mkstemp("/tmp/confXXXXXX")
creates the file /tmp/confJ31A69, automatic policy
generation appends a corresponding policy statement:
fswrite: filename eq "/tmp/confJ31A69" then permit

Post processing changes the policy statement so
that it is independent of the randomness and thus
applies to subsequent executions of the application:
fswrite: filename match "/tmp/conf*" then permit

Automatic policy generation and the process of pro-
filing normal application behavior by Hofmeyr et al.[21]
face similar problems. We need to make sure that no
abnormal behavior occurs during policy training and
try to exhaust all possible code paths. However, in-
teractive and automatic policy generation go hand in
hand. We do not require a complete policy to sandbox
an application because we may request a policy deci-
sion from the user if an operation is not covered by the
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Figure 4: Analysis of the number of system calls that
applications are allowed to execute. Most applications
use only sixty to ninety different system calls. As average
Unix systems support several hundred system calls, we
disallow the execution of all other system calls to prevent
an adversary from using them to cause damage. Note
that the abscissa origin is not zero.

existing policy.
The feasibility of our approach is demonstrated by

monkey.org, a Unix shell provider in Ann Arbor, who
uses Systrace to sandbox over two hundred users. They
generated separate policies for approximately 250 ap-
plications.

An analysis of the policies shows that applications
are allowed to call seventy one different system calls on
average; see Figure 4. Usually Unix systems support
several hundred system calls. When an adversary gains
control over an application, she may attempt to obtain
higher privileges by using all possible system calls3.
By limiting the adversary to only those system calls
required by the application, we reduce her potential to
cause damage.

We notice two peaks, one at sixty four system calls
and the other one at eighty seven. The first peak
is caused by policies for standard Unix utilities like
chmod, cat, rmdir or diff all of which have similar poli-
cies. The second peak is caused by identical policies for
the different utilities in the MH message system, which
require more system calls for establishing network con-
nections and creating files in the filesystem.

Most of the policy statements specify access to the
filesystem: 24% of them control read access, 6% write
access and 5% the execution of other programs.

3Recently discovered vulnerabilities in Unix operating sys-
tems allow an adversary to execute code in kernel context due
to incorrect argument checking on system calls [9, 29].

Figure 5: The cross correlation of the number of policy
violations and the number of program executions allows
us to identify users that exhibit unusual behavior. The
user with the most policy violations is the web server at-
tempting to execute user created CGI scripts.

6.3 Intrusion Detection and Prevention

The capability for intrusion detection and preven-
tion follows automatically from our design. System
calls that violate the policy are denied and recorded
by the operating system. This prevents an adversary
from causing damage and creates an alert that contains
the restricted operation.

A correct policy restricts an application to only
those operations required for its intended functional-
ity. While this prevents an adversary from harming
the operating system arbitrarily, she may still abuse
an application’s innate functionality to cause damage.
We employ audit trails to log potentially malicious ac-
tivity not prevented by policy.

At monkey.org, Systrace generated approximately
350,000 log entries for 142 users over a time period of
two months. The system is configured to log all denied
system calls as well as calls to execve and connect. By
correlating the number of programs executed with the
number of policy violations for all users, we identify
those users that exhibit unusual behavior. In Figure 5,
we notice a few users that generate an unproportion-
ally high number of policy violations compared to the
number of programs they execute. In this case, the
user with the most policy violations is the web server
attempting to execute user created CGI scripts. The
user that executes the most applications without fre-
quent policy violations uses MH to read her email.
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Mode
Real time User time System time
in µsec in µsec in µsec

Normal 0.35± 0.00 0.14± 0.03 0.22± 0.03
In-kernel 0.46± 0.01 0.17± 0.04 0.28± 0.04
User space 37.71± 0.18 0.30± 0.07 5.60± 0.61

Figure 6: A microbenchmark to compare the overhead of
a single geteuid system call for an unmonitored process
and for process confinement with different policies. Mak-
ing a policy decision in the kernel is considerably faster
than requesting a policy decision from the user space pol-
icy daemon.

6.4 Limitations

Although powerful, policy enforcement at the sys-
tem call level has inherent limitations. Monitoring the
sequence of system calls does not give complete in-
formation about an application’s internal state. For
example, system services may change the privilege of
a process on successful authentication but deny ex-
tra privilege if authentication fails. A sandboxing tool
at the system call level cannot account for such state
changes. However, it is still possible to enforce global
restrictions that state, for example, that root should
never be allowed to login. This is possible because
those restrictions do not depend on an application’s
internal state.
To increase the security of authentication services

like SSH, it is possible to use a combination of privi-
lege separation [30] and system call policy enforcement.
With privilege separation, the majority of an appli-
cation is executed in an unprivileged process context.
Vulnerability in the unprivileged code path should not
lead to privilege escalation. However, in a Unix sys-
tem an unprivileged process can still execute system
calls that allow local network access. Using Systrace
to sandbox the application, we can prevent the unpriv-
ileged process from executing any system calls that are
not necessary for its functionality.

7 Performance

To determine the performance impact of Systrace,
we measured its overhead on the execution time of
single system calls and on several applications. All
measurements were repeated at least five times on a
1.14 GHz Pentium III running OpenBSD. The results
are displayed as averages with corresponding standard
deviation.
We conduct the microbenchmarks of a single system

Mode
Real time User time System time
in µsec in µsec in µsec

Normal 5.52± 0.01 0.34± 0.20 5.08± 0.16
In-kernel 5.88± 0.03 0.31± 0.22 5.55± 0.22
1-deep 139.20± 0.09 0.56± 0.12 15.80± 1.01
2-deep 167.72± 0.41 0.64± 0.18 15.84± 1.10
3-deep 198.34± 0.67 0.40± 0.17 18.28± 0.38
4-deep 231.121± 0.27 0.43± 0.13 19.40± 1.39

Figure 7: A microbenchmark to compare the overhead
of the open system call. Due to filename normalization,
the time to make a policy decision in user space depends
on the number of components in the filename. Every
component adds about 30 µsec.

call by repeating the system call several hundred thou-
sand times and measuring the real, system, and user
time. The execution time of the system call is the time
average for a single iteration.
As a baseline, we measure the time for a single ge-

teuid system call without monitoring the application.
We compare the result with execution times obtained
by running the application under Systrace with two
different policies. The first policy permits the geteuid
via the in-kernel policy table. For the second policy,
the kernel consults the user space policy daemon for
a decision. We see that the in-kernel policy evalua-
tion increases the execution time by 31% ± 3% and
that slightly more time is spent in the kernel. When
the kernel has to ask the user space daemon for a pol-
icy decision, executing a single system call takes much
longer, mostly due to two context switches required for
every policy decision. The results are shown in Fig-
ure 6.
The open system call requires more work in the ker-

nel than getuid. A microbenchmark shows that the
in-kernel evaluation of the policy increases the execu-
tion time by 7%± 0.6%. The execution time for a user
space policy decision depends on the depth of the file
in the directory tree. When the path to the filename
has only one component, the increase in execution time
is over 25-fold. Each directory component in the path
adds approximately thirty microseconds to the execu-
tion time due to filename normalization, as shown in
Figure 7.
The last microbenchmark measures the overhead of

using the read system call to read a 1 kbyte buffer from
/dev/arandom, which outputs random data created by
a fast stream cipher. There is no noticeable difference
in execution time and system time increases by less
than 1% for in-kernel policy evaluation. We omit mea-
surement of user space because read requires no user
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Mode
Real time User time System time
in µsec in µsec in µsec

Normal 37.61± 0.03 0.11± 0.11 37.34± 0.10
In-kernel 37.61± 0.03 0.14± 0.16 37.45± 0.21

Figure 8: A microbenchmark to compare the overhead
of the read system call when reading a 1 kbyte buffer
from /dev/arandom. In this case, there is no measurable
performance penality for the in-kernel policy decision.

File size
Normal Systrace

Increase
in MByte in percent

0.5 0.88± 0.04 0.92± 0.07 4.5± 9.3
1.4 2.51± 0.01 2.52± 0.01 0.4± 0.6
2.3 4.15± 0.01 4.17± 0.01 0.5± 0.3
3.2 5.62± 0.01 5.64± 0.01 0.4± 0.3
4.0 7.18± 0.03 7.18± 0.03 0.0± 0.6
4.9 8.55± 0.01 8.57± 0.02 0.2± 0.3

Figure 9: A macrobenchmark comparing the runtime of
an unmonitored gzip process to gzip running under Sys-
trace. Because this benchmark is computationally inten-
sive, policy enforcement does not add a significant over-
head.

space policy decision. The results are shown in Fig-
ure 8.

Enforcing system call policies adds overhead to an
application’s execution time, but the overall increase is
small, on average.

Figure 9 compares the runtime of gzip for different
file sizes from 500 kByte to 5 MByte. Gzip executes
thirty system calls per second on average, most of them
read and write. In this case, the execution time is not
significantly effected by Systrace, because the applica-
tion spends most of its time computing, and executes
relatively few system calls.

To assess the performance penality for applications
that frequently access the filesystem, we created a
benchmark similar to the Andrew benchmark [22]. It
consists of copying a tar archive of the Systrace sources,
untarring it, running configure, compiling the sources
and then deleting all files in the source code sub-
directory.

During the benchmark, forty four application pro-
grams are executed. We use Systrace to generate poli-
cies automatically, then improve the policies that result
with a simple script. The benchmark executes approx-
imately 137, 000 system calls. A decomposition of the
most frequent system calls is shown in Figure 10. The
system call with the highest frequency is break which is
used to allocate memory. System calls that access the
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Figure 10: Histogram of system call frequency for com-
pilation benchmark. The performance impact of applica-
tion confinement depends mostly on the number of sys-
tem calls that require a policy decision by the user space
daemon. The histogram shows that the most frequent
system calls can be handled by the in-kernel policy.

Benchmark
Normal Systrace Increase
in sec in sec in percent

Compile 10.44± 0.09 13.71± 0.09 31± 1.4
Crawler 0.84± 0.03 0.88± 0.03 4.8± 5.2

Gzip-4.9M 8.55± 0.01 8.57± 0.02 0.2± 0.3

Figure 11: Overview of different macrobenchmarks com-
paring the execution time of an unmonitored run with the
execution time running under Systrace. The compilation
benchmark incurs the highest performance penality. On
the other hand, it is very complex, consisting of more than
forty applications and still shows acceptable performance.
Running the other benchmarks with Systrace incurs only
small performance penalties.

filesystem are also prominent.
A direct comparison between the execution times

is shown in Figure 11. Under Systrace, we notice
an increase in running time by 31% ± 1.4%. The
number of executed system calls increases to approx-
imately 726, 000 because filename normalization re-
quires the getcwd function, which causes frequent calls
to lstat and fstat. Running the same benchmark un-
der NetBSD 1.6I shows a significantly smaller increase
in system calls because it implements a getcwd system
call.

A second macrobenchmark measures the runtime of
a web crawler that downloads files from a local web
server. The crawler retrieves approximately one hun-
dred forty files with an average throughput of two
megabytes per second. For this macrobenchmark,
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the running time under Systrace increases only by
4.8%± 5.2%; see Figure 11.

The additional cost of Systrace, although noticeable
is not prohibitive, especially for interactive applications
like web browsers, in which there is no observable per-
formance decrease for the end user.

8 Future Work

This work opens up many avenues for future re-
search. Systrace may be used for quality assurance
by injecting random faults into a running application.
This allows us to introduce error conditions that are
not normally triggered and to observe if the applica-
tion recovers correctly from them. For example, we
may simulate resource starvation such as a full filesys-
tem or out-of-memory conditions. Using argument re-
placement, it is possible to change the way an appli-
cation interacts with the operating system. By chang-
ing filename arguments, it is possible to present a vir-
tual filesystem layout to the application. We may also
rewrite the addresses an application attempts to access
on the network. This allows us to redirect network traf-
fic to different hosts or to application-level firewalls.

9 Conclusion

This paper presented a new approach for applica-
tion confinement that supports automatic and inter-
active policy generation, auditing, intrusion detection
and privilege elevation and applies to both system ser-
vices and user applications. We argued that system call
interception is a flexible and appropriate mechanism
for intrusion prevention. Our hybrid implementation
enables fail-safe operation while maintaining low per-
formance overhead and good portability. This paper
addressed important issues not addressed by previous
research. The translation of system call arguments into
human-readable strings allows us to design a simple
policy language. It also enables our system to gen-
erate fine grained policies both automatically and in-
teractively. The resulting policies restrict applications
without breaking their functionality.

Privilege elevation in conjunction with application
confinement allows us to reduce significantly the priv-
ileges required by system services. Using privilege ele-
vation, we assign fine-grained privileges to applications
without requiring the root user. Instead of retaining
root privileges throughout an application’s lifetime, an
application may run without special privileges and re-
ceive elevated privileges as determined by policy.

Our security analysis discussed how we overcome
problems common to system call interception tools and
how our design allows for further functionality such as
intrusion detection and prevention.

We analyzed the performance of Systrace and
showed that additional performance overhead is ac-
ceptable and often not observable by the user of a sand-
boxed application.
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