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Abstract

Onewidely-usedtechniqueby which network attackers
attain anonymity and complicatetheir apprehensionis
by employing steppingstones: they launchattacksnot
from their own computerbut from intermediaryhosts
that they previously compromised.We developan effi-
cientalgorithmfor detectingsteppingstonesbymonitor-
ing a site’s Internetaccesslink. Thealgorithmis based
on thedistinctivecharacteristics(packetsize,timing) of
interactive traffic, andnot on connectioncontents,and
hencecanbeusedto find steppingstonesevenwhenthe
traffic is encrypted.We evaluatethealgorithmon large
Internetaccesstracesandfind thatit performsquitewell.
However, the successof the algorithm is temperedby
thediscovery that largesiteshave many userswho rou-
tinely traversesteppingstonesfor avarietyof legitimate
reasons.Hence,stepping-stonedetectionalsorequires
a significantpolicy componentfor separatingallowable
stepping-stonepairsfrom surreptitiousaccess.

1 Intr oduction

A major problemwith apprehendingInternetattackers
is the easewith which attackers can hide their iden-
tity. Consequently, attackersrun little risk of detection.
One widely-usedtechniquefor attaininganonymity is
for an attacker to use steppingstones: launchingat-
tacksnot from their own computerbut from intermedi-
ary hoststhat they previously compromised.Intruders
oftenassembleacollectionof accountsoncompromised
hosts,andthenwhenconductinganew attackthey log-in
througha seriesof thesehostsbeforefinally assaulting
thetarget.Sincesteppingstonesaregenerallyheteroge-
neous,diversely-administeredhosts,it is verydifficult to
traceanattackbackthroughthemto its actualorigin.�

Also with theLawrenceBerkeley NationalLaboratory.

There are a numberof benefitsto detectingstepping
stones:to flag suspiciousactivity; to maintainlogs in
casea break-inis subsequentlydetectedashaving come
from thelocal site; to detectinsideattackerslaundering
theirconnectionsthroughexternalhosts;to enforcepoli-
ciesregardingtransittraffic; andto detectinsecurecom-
binationsof legitimateconnections,suchasa clear-text
TelnetsessionthatexposesanSSHpassphrase.

The problemof detectingsteppingstoneswasfirst ad-
dressedin a ground-breakingpaperby Staniford-Chen
and Heberlein[SH95]. To our knowledge,other than
that work, the topic hasgoneunaddressedin the liter-
ature. In this paper, we endeavor to systematicallyan-
alyze the steppingstonedetectionproblemand devise
accurateand efficient detectionalgorithms. While, as
with mostformsof intrusiondetection,with enoughdili-
genceattackers can generallyevadedetection[PN98],
our idealgoalis to makeit painfully difficult for themto
doso.

The restof the paperis organizedas follows. We first
examinethe differenttradeoffs that comeup whende-
signing a steppingstonealgorithm (

�
3). We then in�

4 develop a timing-basedalgorithm that works sur-
prisingly well, per the evaluationin

�
5, andalsoeval-

uatetwo cheapcontext-basedtechniques.We conclude
in

�
6 with someof the remainingchallenges:in par-

ticular, theneedfor rich monitoringpolicies,givenour
discoverythatlegitimatesteppingstonesarein factvery
common;andthepossibilityof detectingnon-interactive
relaysandslaves.

2 Terminology and Notation

We begin with terminology. Whena person(or a pro-
gram)logs into onecomputer, from therelogs into an-
other, andperhapsa numberstill more,we refer to the



sequenceof loginsasa connectionchain [SH95]. Any
intermediatehostona connectionchainis calleda step-
pingstone. Wecall apairof network connectionsastep-
ping stoneconnectionpair if both connectionsarepart
of a connectionchain.

Sometimeswe will differentiatebetweenflow andcon-
nection. A bidirectionalconnectionconsistsof two uni-
directionalflows. Wetermtheseriesof flowsalongeach
directionof aconnectionchaina flowchain.

We usethefollowing additionalnotation:

�����	�
��� : a bi-directionalnetwork connectionbe-
tween ��� and ��� . We alsouse 
 � , 
 � , ... to denote
network connections.

��� ��� � � : a unidirectionalflow from � � to � � .
����������������� � is a binaryrelationdefinedover all con-

nectionsasfollows: 
 � ���!���"�#�$��� � 
 � if andonly if
 � and 
 � form asteppingstoneconnectionpair.

3 DesignSpace

In thissectionwediscussthetradeoffs of differenthigh-
level designconsiderationswhendevisingalgorithmsto
detectsteppingstones. Someof the choicesrelateto
the following observation about stepping-stonedetec-
tion: intuitively, thedifferencebetweenasteppingstone
connectionpair anda randomlypickedpair of connec-
tionsis thattheconnectionsin thesteppingstonepairare
muchmorelikely to havesomecorrelatedtraffic charac-
teristics. Hence,a generalapproachfor detectingstep-
ping stonesis to identify traffic characteristicsthat are
invariant or at leasthighly correlatedacrossstepping
stoneconnectionpairs,but not so for arbitrarypairsof
connection.Somepotentialcandidatesfor suchinvari-
antsare the connectioncontents,inter-packet spacing,
ON/OFFpatternsof activity, traffic volumeor rate,or
specificcombinationsof these. We examinetheseas
they arisein thesubsequentdiscussion.

3.1 Whether to analyzeconnectioncontents

A naturalapproachfor stepping-stonedetectionis to ex-
aminethecontentsof differentconnectionsto find those
that are highly similar. Suchan approachis adopted
in [SH95] andproveseffective. Considerablecaremust

be taken, though, becausewe will not find a perfect
matchbetweentwo steppingstoneconnections.They
may differ dueto translationsof characterssuchases-
capesequences,or the varying presenceof Telnetop-
tions[PR83b].

In addition, supposewe are monitoring connections� � �%� � and � � �&��' , where � � is the steppingstone
theattacker is usingto access�(' from � � . If weadopta
notionof “binning” in orderto groupactivity into differ-
ent time regions(for exampleto computecharacterfre-
quenciesasdonein [SH95]) thendueto thelagbetween
activity on � � �%� � andactivity on � � �%�(' , thecon-
tentsfalling into eachbin will matchimperfectly. Fur-
thermore,if theattacker is concurrentlyattacking�*) via�(� , thenthetraffic on �����&�(� will bea mixtureof that
from ���+�%� ' and that from ���,�&� ) , and neitherof
the latterconnections’contentswill show up exactly in�����%��� .
Theseconsiderationscomplicatecontent-baseddetec-
tion techniques.A morefundamentallimitation is that
content-basedtechniquescannot, unfortunately, work
whenthecontentis encrypted,suchasdueto useof Se-
cureShell(SSH;[YKSRL99]).

The goal of our work wasto seehow far we could get
in detectingsteppingstoneswithout relying on packet
contents,becauseby doingsowe canpotentiallyattain
algorithmsthat aremorerobust. Not relying on packet
contentsalsoyieldsapotentiallymajorperformancead-
vantage,whichis thatwethendonotneedto captureen-
tirepacketcontentswith thepacketfilter, butonlypacket
headers,considerablyreducingthepacket captureload.
However, wealsodevisedtwo cheapcontent-basedtech-
niquesfor purposesof comparison(

�
5.3), neitherof

which is robust, but both of which have the virtue of
beingverysimple.

3.2 Direct vs. indir ect steppingstones

Suppose� �.- � �/- �(' is a connectionchain. The direct
steppingstonedetectionproblemis to detectthat � � is a
steppingstoneif weareobservingnetwork traffic thatin-
cludesthepacketsbelongingto �0�+�%��� and �(�+�%� ' .
If, however, the connectionchainis ��� - ��� -�1�121$- � ' - � ) ,
thenthe indirect steppingstonedetectionproblemis to
detectthat connections�����&�(� and � ' �&� ) form a
steppingstonepair, giventhatwecanobservetheir traf-
fic but not the traffic belongingto � �3121�1 �(' (andhence
thereis noobviousconnectionbetween� � and ��' ).



Detectingdirectsteppingstonescanbesimplerthande-
tectingindirectonesbecausefor directoneswecanoften
greatlyreducethenumberof candidatesfor connection
pairs. On theotherhand,it is mucheasierfor attackers
to eludedirect steppingstonedetectionby simply in-
troducinganadditionalhopin thesteppingstonechain.
Furthermore,if we can detectindirect steppingstones
thenwe will have a considerablymoreflexible andro-
bustalgorithm,onewhich can,for example,beapplied
to traffic tracesgatheredatdifferentplaces(seebelow).

In this paperwe focuson the moregeneralproblemof
detectingindirectsteppingstones.

3.3 Real-timedetectionvs. off-line analysis

We would like to be able to detectsteppingstonesin
real-time,sowecanrespondto theirdetectionbeforethe
activity completes.Anotheradvantageof real-timede-
tectionis thatwedon’t havetostorethedatafor all of the
traffic, which canbevoluminous.For instance,a day’s
worth of interactive traffic (Telnet/Rlogin)at the Uni-
versity of California in Berkeley on averagecomprises
about1 GB of storagefor 20,000connections.

Algorithms that only work using off-line analysisare
still valuable,however, for situationsin whichretrospec-
tive detectionis needed,suchaswhenan attacked site
contactsthesite from which they wereimmediatelyat-
tacked. This lattersitecouldthenconsultits traffic logs
andrunanoff-line steppingstonedetectionalgorithmto
determinefrom wheretheattacker cameinto their own
siteto launchtheattack.

Sincereal-timealgorithmsgenerallycanalsobeapplied
to off-line analysis,we focushereon theformer.

3.4 Passive monitoring vs. active perturbation

Anotherdesignquestionis whetherthemonitorcanonly
perform passive monitoring or if it can actively inject
perturbingtraffic to thenetwork. Passivemonitoringhas
theadvantagethat it doesn’t generateadditionaltraffic,
andconsequentlycan’t disturbthe normaloperationof
the network. On the otherhand,an active monitor can
bemorepowerful in detectingsteppingstones:afterthe
monitor finds a stepping-stonecandidate,it could per-
turboneconnectionin thepairby inducinglossor delay,
andthenlook to seewhethertheperturbationis echoed
in theotherconnection.If so, thentheconnectionsare
very likely correlated.

Herewe focuson passive monitoring,both becauseof
its operationalsimplicity, andbecauseif we candetect
steppingstonesusingonly passive techniques,thenwe
will have a morebroadlyapplicablealgorithm,onethat
works without requiringthe ability to manipulateinci-
dentaltraffic.

3.5 Singlevs. multiple measurementpoints

Tracingtraffic at multiple pointscould potentiallypro-
vide moreinformationabouttraffic characteristics.On
the other hand, doing so complicatesthe problem of
comparingthetraffic traces,asnow wemustaccountfor
varying network delaysandclock synchronization.In
this paper, we confineourselvesto the singlemeasure-
mentpoint case,with our usualpresumptionbeingthat
thatmeasurementpoint is on theaccesslink betweena
siteandtherestof theInternet.

3.6 Filtering

An importantfactor for the successof someforms of
real-timestepping-stonedetectionis filtering. Themore
traffic that canbe discardedon a per-packet basisdue
to patternsin theTCP/IPheaders,thebetter, asthis can
greatlyreducetheprocessingloadon themonitor.

However, there is clearly a tradeoff betweenreduced
systemloadandlost information.First, if a monitorde-
tectssuspiciousactivity in a filtered stream,often the
filtering hasremoved sufficient accompanying context
thatit becomesquitedifficult determiningif theactivity
is indeedan attack. In addition,the existenceof filter-
ing criteriamakesit easierfor theattackersto evadede-
tectionby manipulatingtheir traffic so that it no longer
matchesthe filtering criteria. For example,an evasion
againstfiltering basedon packet size(seebelow) is to
usea Telnetclient modifiedto senda large numberof
do-nothingTelnetoptionsalongwith eachkeystroke or
line of input.

The main likely filtering criteria for stepping-stonede-
tection is packet size. Keystroke packets are quite
small. Even whenentire lines of input are transferred
using “line mode” [Bo90], packet payloadstend to be
much smaller than thoseusedfor bulk-transferproto-
cols. Therefore,by filtering packets to only capture
small packets, the monitor can significantly reduceits
packetcaptureload(for example,by weedingoutheavy
bulk-transfer SSH sessionswhile keeping interactive
ones).



3.7 Minimizing statefor connectionpairs

Sincepotentiallytherecanbe a large numberof active
connectionsseenby the monitor, it is often infeasible
to keepstepping-stonestatefor all possiblepairsof con-
nectionsdueto the 4 �

memoryrequirements.Therefore
weneedmechanismsthatallow usto only keepstatefor
a smallsubsetof thepossibleconnectionpairs.

Oneapproachis to limit our analysisto only detecting
direct steppingstones,but for the reasonsdiscussedin�

3.2 above, this is unappealing.Thereare, however,
othermechanismsthatwork well:

� Remove connectionpairssharingthesameport on
the samehost. If �����&�(� and ���+�&� ' both use
port 5 on host �(� , then most likely the two con-
nectionsaremerelyusing the sameserver on ��� ,
ratherthan � � accessinga server on � � and then
from that server runninga client on � � to access
a server on �(' . Removing suchconnectionpairs
is particularlyhelpful whentherearea largenum-
berof connectionsconnectingto thesamepopular
server—withoutsuchfiltering, when 6 connections
connectto the sameserver, we needto keepstate
for 798�79: �<;� connectionpairs!

Note that this mechanismis worth applyingeven
if we also test for directionality (seebelow), be-
causewhenthe monitor analyzesalready-existing
connections,their directionality is not necessarily
apparent.

� Remove connectionpairs with inconsistentdirec-
tions. Dependingon the topologyof the network
monitoringpoint, we may beableto classifycon-
nectionsas “inbound” or “outbound.” If so, then
wecaneliminateasconnectionpair candidatesany
pairs for which both connectionsare in the same
direction. While theseconnectionsmay in fact
form a chain,if themonitoringlocationis a choke-
point,meaningthesolepathinto or out of thesite,
then in this casetherewill be anotherconnection
in the oppositedirection with which we can pair
either of thesetwo connections.However, if the
sitehasmultiple ingress/egresspoints,thenwecan
only safelyapplysuchfiltering if all suchpointsare
monitoredandthemonitorscoordinatewith onean-
other.

� Remove connectionpairswith inconsistenttiming.
If two connectionsarea steppingstonepair, then
the “upstream”(closerto the attacker) connection
shouldencompassthedownstreamconnection:that

is, it shouldstart first and end last. Accordingly,
we can remove from our analysisany connection
pairs for which the connectionthat startedearlier
alsoterminatesearlier.

Note that there are two risks with this filtering.
First, it maybethattheupstreamconnectiontermi-
natesslightly soonerthanthedownstreamconnec-
tion, becauseof detailsof how the differentTCP
shutdown handshakesoccur. Second,this filtering
mayopenup themonitorto evasionby anattacker
who canforce their upstreamconnectionto termi-
natewhile leaving thedownstreamconnectionrun-
ning.

3.8 Traffic patterns

We can coarselyclassify network traffic as either ex-
hibiting ON/OFF activity, or running fairly continu-
ously. For the former, we can potentially exploit the
traffic’s timing structure(whethertheON/OFFpatterns
of two connectionsaresimilar). For the latter, we can
potentiallyexploit traffic volumeinformation(whether
two connectionsflow atsimilar rates).In addition,even
for continuoustraffic, if the communicationis reliable,
any delaysresultingfrom waiting to detectlossandre-
transmitmay imposeenoughof anON/OFFpatternon
thetraffic thatwe canagainlook for timing similarities
betweenconnections.

In this paper, we focus on traffic exhibiting ON/OFF
patterns,as that is characteristicof interactive traffic,
which arguablyconstitutesthemostinterestingclassof
stepping-stoneactivity.

3.9 Accuracy

As with intrusiondetectionin general,wefacetheprob-
lem of false positives(non-stepping-stoneconnections
erroneouslyflaggedassteppingstones)andfalsenega-
tives (steppingstonesthe monitor fails to detect). The
former canmake the detectionalgorithmunusable,be-
causeit becomesimpossible(or at leasttoo tedious)to
examineall of thealertsmanually, andattackerscanex-
ploit thelatterto evadethemonitor.

In practice,theproblemof comparingconnectionslook-
ing for similaritiescanbecomplicatedby clocksynchro-
nization(if comparingmeasurementsmadeby different
monitors),propagationdelays(the lag betweentraffic
showing upononeconnectionandthenappearingonthe



other),packetlossandretransmission,andpacketization
variations. Moreover, an intrudercan intentionally in-
jectnoisein anattemptto evadethemonitor. Therefore,
thedetectionmechanismmustbehighly robustif it is to
avoid excessive falsenegatives.

3.10 Responsiveness

Another importantdesignparameteris the responsive-
nessof thedetectionalgorithm.Thatis, afterastepping-
stoneconnectionstarts,how long doesit take for the
monitor to detectit? Clearly, it is desirableto detect
steppingstonesas quickly as possible,to enabletak-
ing additionalactionssuchasrecordingrelatedtraffic or
shuttingdown theconnection.However, in many cases
waiting longerallows themonitor to gathermoreinfor-
mation and consequentlyit can detectsteppingstones
moreaccurately, resultingin atradeoff of responsiveness
versusaccuracy.

Another considerationrelated to responsivenesscon-
cernsthe systemresourcesconsumedby the detection
algorithm.If we wantto detectsteppingstonesquickly,
then we must take carenot to requiremore resources
than the monitor can devote to detectionover a short
time period. On the otherhand,if off-line analysisis
sufficient, then we can usepotentially more resource-
intensivealgorithms.

3.11 Openvs.evasive attackers

In general,intrusiondetectionbecomesmuchmoredif-
ficult whentheattackeractively attemptsto evadedetec-
tion by the monitor [PN98, Pa98]. The differencebe-
tweenthe two cancomedown to the utility of relying
on heuristicsratherthanairtight algorithms: heuristics
might work well for “open” (non-evasive)attackers,but
completelyfail in thefaceof anactivelyevasiveattacker.

While ideally any detection algorithms we develop
wouldberesistantto evasiveattackers,ensuringsuchro-
bustnesscansometimesbeexceedinglydifficult, andwe
proceedhereon the assumptionthat thereis utility in
“raising the bar” even whena detectionalgorithmcan
bedefeatedby a sufficiently aggressiveattacker. In par-
ticular, for timing-basedalgorithmssuchasthosewede-
velop,we would like it to bethecasethat theonly way
to defeatthe algorithmis for an attacker to have to in-
troducelargedelaysin their interactive sessions,sothat
their inconvenienceis maximized.We assessour algo-
rithm’s resistanceto evasionin

�
4.4.

4 A Timing-BasedAlgorithm

In thissectionwedevelopastepping-stonedetectional-
gorithmthatworksby correlatingdifferentconnections
basedsolelyon timing information.As discussedin the
previous section,our designis motivatedin high-level
termsby the basicapproachof identifying invariants.
Moreover, thealgorithmleveragestheparticularsof how
interactive traffic behaves. This leadsto an algorithm
thatis veryeffective for detectinginteractive traffic (see
evaluationin

�
5), andshouldwork well for detecting

otherformsof traffic thatexhibit clearON/OFFpatterns.

4.1 ON/OFF periods

We begin by definingON andOFFperiods.Whenthere
is no datatraffic on a flow for morethan = idle seconds,
the connectionis consideredto be in an OFF period.
Weconsiderapacketascontainingdataonly if it carries
new (non-retransmitted,non-keepalive) datain its TCP
payload. Whena packet with non-emptypayloadthen
appears,theflow endsits OFFperiodandbeginsanON
period,whichlastsuntil theflow againgoesdata-idlefor= idle seconds.

Themotivationfor consideringtraffic asstructuredinto
ON and OFF periodscomesfrom the strikingly dis-
tinct distributionof thespacingbetweenuserkeystrokes.
Studiesof Internettraffic have found that keystroke in-
terarrivals are very well describedby a Pareto distri-
bution with fixed parameters[DJCME92, PF95]. The
parametersare suchthat the distribution exhibits infi-
nite variance, which in practical terms meansa very
wide rangeof values. In particular, large valuesare
not uncommon:about25% of keystroke packetscome
500 msecor moreapart,and15% come1 secor more
apart(1.6% come10 secor moreapart). Thus, inter-
active traffic will oftenhave significantOFFtimes. We
can thenexploit the tendency of machine-driven, non-
interactive traffic to sendpacketsback-to-back,with a
very short interval betweenthem, to discriminatenon-
interactive traffic from interactive.

4.2 Timing correlation whenOFF periodsend

Thestrategyunderlyingthealgorithmis tocorrelatecon-
nectionsbasedoncoincidencesin whenconnectionOFF
periodsend,or, equivalently, whenON periodsbegin.

Intuitively, given two connections 
 � and 
 � , if




 � ���!���"�#�$��� � 
 � , it is very likely that 
 � and 
 � of-
tenleaveOFFperiodsatsimilar times—theuserpresses
a keystrokeandit is sentalongfirst 
 � andthenshortly
along 
 � , or a programthey haveexecutedfinishesrun-
ning and producesoutput or they receive a new shell
prompt (in which casethe activity ripples from 
 � to
 � ).
Theinverseis alsolikely to betrue.Thatis, if 
 � and 
 �
oftenleaveOFFperiodsatsimilar times,thenit is likely
that 
 � �������"�#���>�?� 
 � , becausetherearenot many other
mechanismsthatcanleadto suchcoincidences.(Wedis-
cusstwo suchmechanismsin

�
5.7: periodictraffic with

slightly differentperiods,andbroadcastmessages.)

By quantifying similar and often, we transform the
abovestrategy into thefollowing detectioncriteria:

1. We considertwo OFF periodscorrelated if their
endingtimes differ by @BA , where A is a control
parameter.

2. For two connections
 � and
 � , letOFF� andOFF�
bethenumberof OFFperiodsin each,andOFF�DC �
be the numberof thesewhich arecorrelated.We
thenconsider
 � and 
 � a steppingstoneconnec-
tion pair if:

OFF�#C �EGF�HJI OFF� - OFF�9KMLON -
whereN is acontrolparameter, whichwesetto 0.3.

A benefitof this approachis that thework is doneonly
aftersignificantidle periods. For busy, non-idleconnec-
tions (far andaway the bulk of traffic), we do nothing
other than note that they are still not idle. Relatedto
this, we needconsideronly a smallnumberof possible
connectionpairsat any given time, becausewe canig-
noreboth thosethat areactive and thosethat are idle;
we needonly look at thosethat have transitionedfrom
idle to active, andthatcan’t happenvery oftenbecause
it first requirestheconnectionto beinactive for asignif-
icant periodof time. Consequently, the algorithmdoes
not requiremuchstateto trackstepping-stonepair can-
didates.

Becauseof theverywiderangeof keystrokeinterarrival
times, the algorithmis not very sensitive to the choice
of = idle. In ourcurrentimplementation,we set = idle PQ 1SR sec. In

�
5.6 we briefly discusstheeffectsof using

othervalues.

Finally, becausewe only considercorrelationsof when
ON periodsbegin, ratherthan when they end, we are

morerobustto differencesin throughputcapacities.For
two connections
 � �������"�#���>� � 
 � , if 
 � ’s throughput
capacityis significantlysmallerthan 
 � ’s, thenan ON
period on 
 � may end soonerthan on 
 � (wherethe
echoof the samedata takes longer to finish transfer-
ring); but regardlessof this effect,ON periodswill start
atnearlythesametime.

4.3 Refinements

The schemeoutlinedabove is appealingbecauseof its
simplicity, but it requiressomerefinementsto improve
its accuracy. Thefirst of theseis to exploit timing casu-
ality, basedon the following observation: if two flowsT � and

T � areon the sameflow chain, then their tim-
ing correlationshouldhave a consistentordering.If we
onceobservethat

T � endsits OFFperiodbefore
T � , then

it shouldbetruethat
T � alwaysendsits OFFperiodbe-

fore
T � . Confiningour analysisin this way weedsout

many falsepairs.

To further improve the accuracy of the algorithm, we
use the numberof consecutivecoincidencesin deter-
mining the frequency of coincidences,becausewe ex-
pectconsecutivecoincidencesto bemorelikely for true
steppingstonesthanfor accidentallycoincidingconnec-
tions. More specifically, in additionto the testin

�
4.2,

to considertwo connections
 � and 
 � a steppingstone
connectionpairwerequire:

OFFU�#C � L mincsc and
OFFU�DC �EMF>HVI OFF�.- OFF�2KML�N�W -

where OFFU�DC � is the number of consecutive coinci-
dences,OFF� andOFF� areasbefore,and EMF�H

cscand

N W arenew controlparameters.Weinitially usedonly the
first of theserefinements,requiringeither EMF>H

csc PYX
or EMF�H

csc P[Z consecutive coincidences,for direct or
indirect steppingstones,respectively. This in general
works very well, but we addedthe secondrequirement
whenwe found that very long-livedconnectionscould
sometimeseventuallygenerateconsecutivecoincidences
just by chance.Thesecanbeeliminatedby very low N W
thresholds;we useN W P\X^] and N W P_Z`] for directand
indirectsteppingstones,respectively.

4.4 Resistanceto evasion

Sincetheheartof thetiming algorithmis correlatingidle
periodsin two differentconnections,anattacker canat-
tempt to thwart the algorithmby avoiding introducing



any idle times to correlate; introducing spuriousidle
timesononeof theconnectionsnotreflectedin theother
connection;or stretchingout thelatency lagbetweenthe
two connectionsto exceedA .
To avoid connectionidle times, it will likely not suf-
fice for the attacker to simply resolve to type quickly.
Given = idle P Q 1 R sec(

�
5.6),it just takesaslightpause

to think, or delayby theserver in generatingresponses
to commands,to introduceanidle time.

A mechanicalmeanssuch as establishinga steady
streamof traffic on oneof the connectionsbut not on
the other seemslike a better tactic. If the intermedi-
ary and eitherupstreamor downstreamhostsrun cus-
tom software,thendoing so is easy, thoughthis some-
whatcomplicatestheattacker’s useof theintermediary,
asnow they mustinstall a customserver on it. Another
approachwould beto usea mechanismalreadyexisting
in theprotocolbetweentheupstreamhostandtheinter-
mediaryto exchangetraffic that the intermediarywon’t
propagateto the downstreamhost; for example,anon-
goingseriesof Telnetoptionnegotiations.However, as
particularinstancesof suchtechniquesbecomeknown,
they mayserveaseasily-recognizedsignaturesfor step-
pingstoneconnectionsinstead.

Evengiventhetransmissionof asteadystreamof traffic,
idle timesmight still appear, eitheraccidentally, dueto
packet lossandretransmissionlulls, or purposefully, by
a site introducingoccasional500 msecdelaysinto its
interactive traffic to seewhethera delayshows up in a
connectionbesidestheonedeliberatelyperturbed.Such
delaysmightprovedifficult for anattacker to mask.

The attacker might insteadattemptto introducea large
numberof idle timeson oneconnectionbut not on the
other, so asto pushthe ratio of idle time coincidences
below N . Thiswill alsorequirerunningcustomsoftware
on the intermediary, and,indeed,this approachandthe
previousonearein somesensethesame,aimingto un-
derminethe basisof the timing analysis. The natural
counterto thisevasiontacticis to lower N , thoughthisof
coursewill requirestepsto limit or toleratetheensuing
additionalfalsepositives. It might alsobe possibleto
detectunusuallylarge numbersof idle periods,though
we have not characterizedthe patternsof multiple idle
periodsto assessthefeasibilityof doingso.

Anotherapproachan attacker might take is to pick an
intermediaryfor which the latency lag betweenthetwo
connectionsis larger than A , which we set to 80 msec
in

�
5.6. Doing sosimply by exploiting the latency be-

tweenthe monitoringpoint andthe intermediaryis not

likely to work well, asfor mostsitesthelatency between
aninternalhostandamonitoringpointwill generallybe
well below 40 msec;however, if an internalhostcon-
nectedvia a very slow link (suchasa modem)is avail-
able,thenthat may serve. Anotherapproachwould be
to run a customizedserver or client on theintermediary
thatexplicitly insertsthelag of 80 msec.This approach
appearsasignificantconcernfor thealgorithm,andmay
requireuseof muchlarger valuesof A , so asto render
thedelayhighly inconvenientfor theattacker (80 msec
is hardlynoticeable,muchlessinconvenient).This is a
naturalareafor futurework.

5 PerformanceEvaluation

In
�

4 we developeda timing-basedalgorithmfor step-
ping stone detection. We have implementedthe al-
gorithm in Bro, a real-timeintrusiondetectionsystem
[Pa98]. In this section,we evaluateits performance(in
termsof falsepositives and falsenegatives) on traces
of wide-areaInternet traffic recordedat the DMZ ac-
cesslink betweenthe global Internetandtwo large in-
stitutions,the LawrenceBerkeley NationalLaboratory
(LBNL) and the University of California at Berkeley
(UCB).

5.1 Tracesused

Weranthetiming-basedalgorithmonnumerousInternet
tracesto evaluateits performance.Dueto spacelimita-
tions, herewe confineour discussionto the resultsfor
two traces:

� lbnl-telnet.trace (120MB, 1.5M packets,
3,831connections):oneday’s worth of Telnetand
Rlogin traffic collectedat LBNL. (The traffic is
morethan90%Telnet.)

� ucb-telnet.trace (390 MB, 5M packets,
7,319connections):5.5hours’worth of Telnetand
Rlogin traffic collectedat UCB during the after-
noonbusyperiod.

Theperformanceof thealgorithmonothertracesiscom-
parable.



5.2 Brute forcecontent-basedalgorithm

Toaccuratelyevaluatethealgorithms,wefirstdevisedan
off-line algorithmusingbrute-forcecontentmatching.

Theprinciplebehindthealgorithmis that, for stepping
stones,eachline typedby theuseris oftenechoedverba-
tim acrossthetwo connections(whenthecontentis not
encrypted).Therefore,by looking at lines in common,
we canfind connectionswith similar content.With ad-
ditionalmanualinspection,wecanidentify thestepping
stones.

Thealgorithmworksasfollows:

1. Extract the aggregate Telnet and Rlogin output
(computer-sideresponse),for all of thesessionsin
thetrace,into a file.

2. For eachdifferent line in the output, count how
many timesit occurred(this is just sort | uniq -c
in Unix).

3. Throw away all lines except thoseappearingex-
actly twice. The idea is that thesearegood can-
didatesfor steppingstones,in that they are lines
uniqueto eitheroneor atmosttwo connections.

4. Find theconnection(s)in which eachof theselines
appears.This is doneby first building a singlefile
listing every uniqueline in every connectionalong
with the nameof the connection,and then doing
a databasejoin operationbetweenthe lines in that
file andthosein thelist remainingaftertheprevious
step.

If a line appearsin just oneconnection,throw the
line away.

5. Count up how many of the only-seen-twicelines
eachpairof connectionshasin common(usingthe
Unix join utility).

6. Connectionpairs with 5 or more only-seen-twice
linesin commonarenow candidatesfor beingstep-
pingstones.

7. Of those,discardthepair if bothconnectionsarein
thesamedirection(bothinto thesiteor bothout of
thesite).

8. Of the remainder, visually inspect them to see
whetherthey areindeedsteppingstones.Most are;
a few arecorrelateddueto commonactivities such
asreadingthesamemail messageor newsarticle.

Clearlythemethodologyis notairtight,andit failscom-
pletelyfor encryptedtraffic. But it providesagoodbase-
line assessmentof the presenceof clear-text stepping
stones,anddetectsthemin a completelydifferentway
thanthetiming algorithmdoes,soit is suitablefor cali-
brationandperformanceevaluation.

For large traces,the requirementof 5 or morelines al-
lowsusto significantlyreducethenumberof connection
pairs that we needto visually inspectin the end. This
appearsto benecessaryin orderto make thebrute-force
contentmatchingfeasible.

For small- to medium-sizedtraces,we alsoinspectthe
oneswith 2, 3, or 4 lines in common. Sometimeswe
did indeedfind steppingstonesthat weremissedif we
required5 lines in common. But in mostcases,these
steppingstoneswereexceedinglyshortin termsof bytes
transferred.

5.3 Simplecontent-basedalgorithms

For purposesof comparison,we devised two simple
content-basedalgorithms.Both arebasedon thenotion
thatif we canfind text in aninteractive login 
 � unique
to thatlogin, thenif thattext alsooccursin 
 � , thenwe
havestrongevidencethat 
 � and 
 � arerelated.

Theproblemthenis tofind suchinstancesof uniquetext.
Clearly, virtually all login sessionsareuniquein some
fashion,but the difficulty is to cheaplydetectexactly
how.

Our first schemerelies on the fact that someTelnet
clients propagatethe X-Windows DISPLAY environ-
mentvariable[Al94] sothatremoteX commandscanlo-
catetheuser’sX displayserver. Thevalueof DISPLAY
shouldthereforebeunique,becauseit globally identifies
a particularinstanceof hardware.

We modified Bro to associatewith eachactive Telnet
sessionthe valueof DISPLAY propagatedby the Tel-
netenvironmentoption(if any), andto flag any session
that propagatesthe samevalue as an alreadyexisting
session. We find, however, that this methodhaslittle
power. It turnsout that DISPLAY is only rarely prop-
agatedin Telnetsessions,and, in addition,non-unique
values(suchashostnamesnot fully qualified,or, worse,
stringslike “ localhost.localdomain:0.0 ”) are
propagated.1

1However, we havesuccessfullyusedDISPLAY propagationto
backtraceattackers,sorecordingit certainlyhassomeutility.



Our secondschemeworksconsiderablybetter. Theob-
servationis thatoftenwhenanew interactivesessionbe-
gins,thelogin dialogincludesa statusline like:

Last login: Fri Jun 18 12:56:58
from hostx.y.z.com

The combinationof the timestamp(which of course
changeswith eachnew login session)andtheprevious-
accesshost(evenif truncated,asoccurswith somesys-
tems)leadsto this line beingfrequentlyunique.

We modifiedBro to searchfor thefollowing regularex-
pressionin text sentfrom theserver to theclient:

/ˆ([Ll]ast +(successful)? *login)/ |
/ˆLast interactive login/

Wefoundonefrequentinstanceof falsepositives.Some
instancesof theFingerservice[Zi91] reportsucha“last
login” aspartof theuserinformationthey return.Thus,
whenever two concurrentinteractive sessionshappened
to fingerthesameuser, they wouldbemarkedasa step-
ping stonepair. We wereable to filter suchinstances
out with a cheaptest,however: it turnsout thattheFin-
ger serversalsoterminatethe statusline with ASCII-1
(“control-A”).

We refer to this schemeas“login tag”, andcompareits
performancewith thatof thetiming algorithmbelow. It
works remarkablywell consideringits simplicity. Of
course,it is not very robust, andfails completelyfor a
large classof systemsthat do not generatestatuslines
like the above, thoughperhapsfor thosea similar line
canbefound.

5.4 Accuracy

We first evaluate the accuracy of the algorithms in
termsof their falsenegative ratio andfalsepositive ra-
tio. For lbnl-telnet.trace , weidentified23step-
ping stoneconnectionpairsamonga total of 3,831con-
nectionsusingthe brute-forcecontentmatchingasde-
scribedabove. (We inspectedall connectionswith 2 or
morelinesin common,so23 shouldbea very accurate
estimationof thenumberof steppingstones.)Onestep-
pingstoneis indirect(

�
3.2),theothersweredirect.

The timing-baseddetectionalgorithm reports21 step-
pingstones,with nofalsepositivesand2 falsenegatives.

Both falsenegativesarequiteshort:onelastsfor 15sec-
ondsandtheotherlastsfor 34seconds.

For ucb-telnet.trace , dueto thelargevolumeof
thedata,for thebrute-forcetechniqueweonly inspected
connectionswith 5 or morelinesin common.Weidenti-
fied47steppingstones.In contrast,thetiming-basedal-
gorithmdetects74steppingstones.5 outof the47step-
ping stoneswe identifiedusingbrute-forceweremissed
by the timing algorithm. Among the 5 falsenegatives,
3 areveryshorteitherin termsof duration(lessthan12
seconds)or in termsof thebytestyped(in oneconnec-
tion, theuserlogsin andimmediatelyexits). Wediscuss
theadditional32steppingstonesdetectedby thetiming-
basedalgorithm,but not by the brute-forcetechnique,
below.

To further assessperformance, we ran both the
“display” and the “login tag” schemes(

�
5.3) on

ucb-telnet.trace . The“display” schemereported
3 steppingstones,includingonemissedby the timing-
basedalgorithm.“login tag” reported20steppingstones
(plusonefalsepositive, not furtherdiscussedhere).Of
these20, the timing-basedalgorithmonly missedone,
whichwasexceedinglyshort—alltheuserdid duringthe
downstreamsessionwasto typeexit to terminatethe
session. (This is also the steppingstonethat was de-
tectedby the “display” algorithmbut not by the timing
algorithm.)

In summary, thetiming-basedalgorithmhasa low false
negative ratio. To make surethat this doesnot comeat
the cost of a high falsepositive ratio, we visually in-
spectedthe additional32 steppingstonesreportedby
the timing-basedalgorithmfor ucb-telnet.trace
to seewhichwerefalsepositives.

It turnsout thatall of themwereactualsteppingstones.
For example,therewereacoupleof steppingstonesthat
usedytalk, a chat program. Thesefooled the brute-
force contentmatchingalgorithm due to a lot of cur-
sormotions.Anothersteppingstonefooledthecontent-
matchingapproachbecauseretransmitteddatashowed
up in oneof thetranscriptsbut not theother.

Thus,we find that the timing-basedalgorithmis highly
accuratein termsof both falsepositive ratio and false
negative ratio, and works considerablybetter than the
brute-forcealgorithmthat we initially expectedwould
behighly accurate.



5.5 Efficiency

Thetiming-basedalgorithmis fairly efficient. Underthe
currentparametersettings,ona400MHzPentiumII ma-
chine running FreeBSD3.3, it takes 69 real-timesec-
ondsfor lbnl-telnet.trace , and about24 min-
utes for ucb-telnet.trace . The former clearly
sufficesfor real-timedetection.Thelatter, for a5.5hour
trace,reflectsabout10%of theCPU,andwould appear
likewise to suffice. Note that the relationshipbetween
the running time on the two tracesis not linear in the
numberof packetsor connectionsin the trace,because
what insteadmattersis the numberof concurrent con-
nections,asthesearewhatleadto overlappingON/OFF
periodsthatrequirefurtherevaluation.

5.6 Impact of different control parameters

Theproperchoiceof thecontrolparametersis important
for boththeaccuracy andtheefficiency of thealgorithm.
We basedthecurrentchoiceof parameterson extensive
experimentswith varioustraffic traces,which we sum-
marizein thissection.With thesesettings,thealgorithm
performsvery well in termsof bothaccuracy andspeed
acrossa widerangeof network scenarios.

Parameter Values
= idle (sec) 0.5
A (msec) 20,40,80,120,160

N 15%,30%,45%EMF>H
csc 1, 2, 4, 8, 12,16

N W 2%for directsteppingstones;
4%for indirectsteppingstones

Table1: Settingsfor differentcontrolparameters.

To assesstheimpactof thedifferentcontrolparameters,
wesystematicallyexploredtheportionsof theparameter
spaceon ucb-telnet.trace . Table1 summarizes
thedifferentparametersettingsweconsidered.Notethat
we keepthe default settingsfor = idle and N W whenex-
ploring the parameterspace,which we did to keepthe
sizeof the parameterspacetractable.We choseto not
vary thesetwo parametersin particularbecausebased
on extensive experimentswith varioustraffic traces,we
have foundthat:

� Thealgorithmis fairly insensitive to thechoiceof= idle. This is largelybecause,asnotedin
�

4.1,hu-
man keystroke interarrivals are well describedby

a Paretodistribution with fixed parameters.The
Pareto distribution has a distinctive “heavy-tail”
property, i.e.,prettymuchnomatterwhatvaluewe
choosefor = idle, westill haveanappreciablenum-
berof keystrokesto work with. However, thelarger
the = idle, the more likely that we will missshort
steppingstones. The currentchoiceof 0.5 secis
a reasonablecompromisebetweenexceedingmost
round-trip times (RTTs), yet maintainingrespon-
sivenessto short-livedconnections.

� Although the currentchoicesof N W thresholdsare
very low, they suffice to eliminatethosevery long-
livedconnectionsthateventuallygenerateconsecu-
tive coincidencesjust by chance,which is theonly
purposefor introducingN W .

Finally, an importantpoint is that the goal for this as-
sessmentis determiningthe bestparametersto usefor
anunawareattacker. If theattacker actively attemptsto
evadedetection,thenasnotedin

�
4.4alternativeparam-

etersmayberequiredeventhoughthey work lesswell in
general.Theimportantproblemof assessinghow to op-
timize thealgorithmfor this latterenvironmentremains
for futurework.

We ran the detection algorithm on
ucb-telnet.trace for each of the 75 possible
combinationsof the control parametersand assessed
the number of false positives and false negatives.
For brevity, we only report the completeresults for

N P a Q ] , and briefly summarizethe results for

N Pcb R ] and N PdZ R ] .

FP/FN( N =30%)EMF>H
cscA (msec) 1 2 4 8 12 16

20 1/8 0/8 0/10 0/17 0/21 0/26
40 1/6 0/7 0/10 0/17 0/21 0/25
80 4/5 0/7 0/9 0/16 0/20 0/24
120 12/5 0/7 0/9 0/15 0/19 0/24
160 20/5 0/7 0/9 0/14 0/19 0/24

Table2: Numberof falsepositives(FP) andfalseneg-
atives (FN) for detectingdirect steppingstoneswhen

N Pea Q ] .

Table 2 gives the resultsfor detectingdirect stepping
stoneswhen N Pfa Q ] . We make four observations.
First, the numberof falsepositivesis closeto 0 for all
combinationsof A and EMF>H

cscexceptfor EMF>H
csc Pgb ,

which clearly is too lax. Second,the numberof false
negativesis minimizedwhen EMF>H

csc PhX , which is the
default settingin the algorithm. Third, the choiceof A



haslittle impacton the accuracy of the algorithm. Fi-
nally, theresultsfor N Pcb R ] andN PdZ R ] (notshown)
arehighly similar to thosefor N Pia Q ] , which means
thealgorithmis insensitive to thechoiceof N .

We shouldalso note two additionalconsiderationsre-
gardingA . First, it is sometimesnecessaryto usea rela-
tively large A , especiallywhenthelatency ishigh(for ex-
ample,for connectionsthatgo throughtranscontinental
or satellitelinks). High latency oftenmeanslargevaria-
tion in thedelay, which candistortthekeystroke timing
characteristics.One possiblesolution to this problem
would be to choosedifferent A ’s basedon theRTT of a
connection.This would alsohelp with the latency-lag
evasiontechniquediscussedin

�
4.4. But suchadapta-

tion complicatesthealgorithm,becauseestimatingRTT
basedon measurementsin themiddleof a network path
canbesubtle,sowehave left it for futurestudy.

Second,large A ’s also meanwe must maintain state
for moreconcurrentconnectionpairs,which caneatup
memoryand CPU cycles. Similarly, having a smaller= idle meansthat we needto updatestatefor connec-
tionsmorefrequently, whichin turn increasesCPUcon-
sumption. To illustrate theseeffects, we increasedA
from 80 msec to 200 msec and reduced = idle from
0.5secto 0.3sec.After thischange,thetimerequiredto
processlbnl-telnet.trace increasesto 155 sec,
more thandoublethe 69 secrequiredwith the current
settings.

FP/FN( N =30%)EMF>H
cscA (msec) 1 2 4 8 12 16

20 162/0 5/0 0/0 0/2 0/5 0/6
40 683/0 19/0 0/0 0/2 0/4 0/6
80 2,486/0 134/0 0/0 0/1 0/3 0/5
120 5,633/0 431/0 12/0 3/1 3/3 2/5
160 10,131/0 995/0 28/0 7/1 4/3 2/5

Table3: Numberof falsepositives(FP) andfalseneg-
atives(FN) for detectingindirect steppingstoneswhen

N Pea Q ] .

Table 3 summarizesthe results for detectingindirect
steppingstoneswhen N Pea Q ] . Fromthetableit is evi-
dentthatboththenumberof falsepositivesandthenum-
berof falsenegativesareminimizedwhen EMF�H

csc PjZ
and Ak@ 80msec.A smallerEMF>H

cscor alarger A cansig-
nificantly increasethenumberof falsepositives,while a
larger EMF>H

csc can leadto morefalsenegatives. When

N PlZ R ] , the numberof falsepositives is in general
smaller, but the optimal combinationof EMF�H

csc and A
remainsthesame.When N Pmb R ] , thenumberof false

positivesincreases150–300%,andfor A Pen Q msecandEMF>H
csc PoZ , increasesfrom 0 falsepositivesto 7.

These findings show that the current settings of
the parametersare fairly optimal, at least for the
ucb-telnet.trace , and that thereis considerable
room for varying the parametersin responseto certain
evasionthreats(

�
4.4).We alsonotethatthereis nopar-

ticular needto usethe samevaluesof = idle, A , and N
for both direct andindirect steppingstones,other than
simplicity, andtheremayberoomfor somefurtherper-
formanceimprovementby allowing themto bespecific
to thetypeof steppingstone,justasfor EGF�H

cscand N W .

5.7 Failures

In thissectionwesummarizethecommonscenariosthat
cancausethe timing-basedalgorithmto fail. Someof
thesefailureshave alreadybeensolved in the current
algorithm,but it is beneficialto discussthem,because
they illustratesomeof thesubtletiesinvolvedin stepping
stonedetection.

� Excessively shortsteppingstones.In many cases,
thetiming-basedalgorithmmissedasteppingstone
simply becausethe connectionswereexceedingly
short. In somecases,the“display” and“login tag”
schemesarestill ableto catchthesebecausebothof
themkey off of text sentvery earlyduringa login
session.

On the other hand,often attackers can’t do very
muchduringsuchshortsteppingstones,so failing
to detectthemis not quite asseriousasfailing to
detectlonger-livedsteppingstones.

� Messagebroadcastapplicationssuchas the Unix
talk and wall utilities. Such utilities can cause
correlationsbetweenflows becausethey causethe
sametext to be transmittedon multiple connec-
tions. However, thesecorrelationswill be of the
form � �p� � � , � �p� �(' ; that is, the connection
endpointthatbreakstheidleperiodwill bethesame
for bothflows ( � � , in this case),whereasfor a true
steppingstone� �+� � �q� �(' theendpointbreak-
ing the idle period will differ (first � � , then � � ).
This observation led to the directionalitycriterion
in

�
3.7.

� Correlationsdue to phasedrift in periodic traffic.
Considertwo connections
 � and 
 � that transmit
datawith periodicitiesr � and r � . If theperiodici-
tiesareexactly thesame,thentheON/OFFperiods



of theconnectionswill remainexactlythesamedis-
tanceapart(equalto thephaseoffsetfor theperiod-
icities). If, however, r � is slightly different fromr � , then the offset betweenthe ON/OFF periods
of the two will drift in phase,andoccasionallythe
two will overlap. Suchoverlapsappearto be cor-
relations,but actuallyaredueto theperiodsbeing
in fact uncorrelated, and henceable to drift with
respectto oneanother.

This phenomenonis not idle speculation(seealso
[FJ94] for discussionof how it can lead to self-
synchronizationin coupledsystems).For example,
oneof our tracesincludestwo remoteTelnetses-
sionsto thesamemachineatthesametime(involv-
ing differentuserIDs, but clearly the sameuser).
Thesessionshada periodof overlapduringwhich
bothsessionswererunningpineto checkmail. For
somereason,the pine display began periodically
sendingdatain smallchunks,with abouta second
betweeneachchunk.Thesetransmissionswereini-
tially out of sync,but sometimessync’d up fairly
closely. Beforewe addedthe rule on consecutive
coincidences(parametersEMF>H

cscand N W , discussed
in

�
4.3),thesesessionshadbeenreportedasastep-

ping stone,becausethe ratio of coincidenceswas
high enough.After we refinedthealgorithm,such
spurioussteppingstoneswentaway(theruleondi-
rectionality discussedin the previous item would
have alsohappenedto succeedin eliminatingthis
particularcase).

� Large latency and its variation. As mentioned
above,whenaconnectionhasaveryhighlatency or
largedelayvariation,weneedto increasethevalue
of A (and,accordingly, N , EGF�H

csc, and N W ) in order
to detectit. Wehavenotyetmodifiedthealgorithm
to do sobecauseof complicationsin efficiently es-
timatingaconnection’sRTT.

5.8 Experiencewith operational use

We initially expectedthat detectinga steppingstone
would meanthatwith high probabilitywe hadfoundan
intruderattemptingto disguisetheir location.As thefig-
uresaboveonthefrequency of detectingsteppingstones
indicate, this expectationwas woefully optimistic. In
fact,wefind thatwide-areaInternettraffic aboundswith
steppingstones,virtually all of themlegitimate.

For example,UCB’swideareatraffic includesmorethan
100 steppingstoneseachday. Thesefall into a num-
ber of categories. Someare external userswho wish

to accessparticularmachinesthatapparentlytrustinter-
nal UCB hostsbut do not trust arbitraryexternalhosts.
Someappearto reflecthabitualpatternsof use,suchas
“to getto a new host,typerlogin to thecurrenthost,” in
whichit is not infrequentto observeasteppingstoneus-
ing a remotehostto accessa nearbylocal host,or even
thesamelocal host.2 Somearesimply bizarre,suchas
oneuserwhoregularlylogsin fromUCBtoasitein Asia
andthenreturnsfrom the Asian site back to UCB, in-
curringhundredsof msecsof latency (andthwartingour
defaultchoiceof A , pertheabovediscussion).Otherpos-
siblelegitimateusesthatwehaven’t happenedto specif-
ically identify aregaininganonymity for purposesother
thanattacks,or runningparticularclient softwarepro-
videdby theintermediarybut notby theupstreamhost.

Clearly, operationalusewill requiredevelopmentof re-
fined Bro policy scriptsto codify patternscorrespond-
ing to legitimatesteppingstones,allowing the monitor
to thenalertonly on thosesteppingstonesat oddswith
the policies. But evengiven thesehurdles,we find the
utility of thealgorithmclearandcompelling.

Finally, wenotethatthedetectioncapabilityhasalready
yieldedanunanticipatedsecuritybonus.Sincethe tim-
ing algorithm is indifferent to connectioncontents,it
canreadilydetectsteppingstonesin whichtheupstream
connectionis madeusinga clear-text protocolsuchas
Telnetor Rlogin, but thedownstreamconnectionusesa
secure,encryptedprotocolsuchasSSH.Whenever we
detectsuchsteppingstones,it is highly probablethatthe
usertypedtheirSSHpassphraseor passwordin theclear
over thefirst connectionin thechain,thusundermining
thesecurityof theSSHconnection.Indeed,afterbegin-
ning to run thetiming algorithmto look for this pattern,
we rapidly found instancesof suchuse,andconfirmed
that for eachthe passphrasewas indeedtyped in the
clear. At LBNL, runningthe timing algorithmlooking
for suchexposuresis now partof theoperationalsecu-
rity policy, and,unfortunately, it continuesto alert nu-
meroustimeseachday(andwe have tracedat leastone
break-into a passphraseexposedin this mannerat an-
othersite). Efforts arebeingmadeto educatetheusers
aboutthenatureof this risk.

6 Concluding remarks

Internetattackersoftenmasktheir identityby launching
attacksnot from their own computer, but from aninter-

2Inspectionof someof theseconnectionsconfirmsthat theseare
not insideattackersattemptingto hidetheir location.



mediaryhost that they previously compromised,i.e., a
steppingstone.By leveragingthedistinctpropertiesof
interactive network traffic (smallerpacket sizes,longer
idleperiodsthanmachine-generatedtraffic), wehavede-
visedastepping-stonedetectionalgorithmbasedoncor-
relatingthe timing of the ON/OFFperiodsof different
connections.Thealgorithmrunson a site’s Internetac-
cesslink. It proves highly accurate,and hasthe ma-
jor advantageof ignoring the datacontentsof the con-
nections,which meansboth that it works for encrypted
traffic such as SSH, and that the packet captureload
is greatly diminishedsincethe packet filter needonly
recordpacketheaders.

While thealgorithmworksverywell, amajorstumbling
block we failed to anticipateis the largenumberof le-
gitimatesteppingstonesthatusersroutinelytraversefor
a variety of reasons.One large site (the University of
CaliforniaatBerkeley) hasmorethan100suchstepping
stoneseachday. Accordingly, thenext stepfor ourwork
is to undertakeoperatingthealgorithmaspartof asite’s
productionsecuritymonitoring,whichweanticipatewill
requirerefinedsecuritypoliciesaddressingthemany le-
gitimatesteppingstones.But evengiventhesehurdles,
wefind theutility of thealgorithmclearandcompelling.

Finally, a naturalextensionto this work is to attempt
to likewise detectnon-interactive steppingstones,such
as relays, in which traffic suchas InternetRelayChat
[OR93] is loopedthroughasite,andslaves, in whichin-
comingtraffic triggersoutgoingtraffic (which is not re-
layed),suchasusedby someformsof distributeddenial-
of-servicetools[CE99]. Theseformsof steppingstones
have differentcoincidencepatternsthanthe interactive
onesaddressedby our algorithm,but a preliminaryas-
sessmentindicatesthey may be amenableto detection
on thebasisof observinga local hostthathaslongbeen
idle suddenlybecomingactiveoutbound,justafterit has
acceptedaninboundconnection.
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