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Abstract

Onewidely-usedtechniqueby which network attaclers
attain anorymity and complicatetheir apprehensiotis

by employing steppingstones they launchattacksnot
from their own computerbut from intermediaryhosts
thatthey previously compromisedWe develop an effi-

cientalgorithmfor detectingsteppingstonesy monitor

ing a site’s Internetaccesdink. Thealgorithmis based
onthedistinctive characteristicgpaclet size,timing) of

interactve traffic, and not on connectioncontents,and
hencecanbeusedto find steppingstonesevenwhenthe
traffic is encrypted.We evaluatethe algorithmon large
Internetaccessracesandfind thatit performsquitewell.

However, the succesof the algorithmis temperedby

the discovery thatlarge siteshave mary userswho rou-

tinely traversesteppingstonedor avarietyof legitimate
reasons.Hence,stepping-stoné&etectionalso requires
a significantpolicy componenfor separatingllowable
stepping-stoneairsfrom surreptitiousaccess.

1 Intr oduction

A major problemwith apprehendindnternetattaclers
is the easewith which attaclers can hide their iden-
tity. Consequentlyattaclersrun little risk of detection.
One widely-usedtechniquefor attaininganorymity is
for an attacler to use steppingstones launchingat-
tacksnot from their own computerbut from intermedi-
ary hoststhat they previously compromised.Intruders
oftenassemble collectionof account®oncompromised
hostsandthenwhenconductinganew attackthey log-in
througha seriesof thesehostsbeforefinally assaulting
thetarget. Sincesteppingstonesaregenerallyheteroge-
neousdiversely-administereldostsit is verydifficult to
traceanattackbackthroughthemto its actualorigin.
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There are a numberof benefitsto detectingstepping
stones:to flag suspiciousactiity; to maintainlogsin
casea break-inis subsequentlgetectedashaving come
from the local site; to detectinsideattaclerslaundering
theirconnectionshroughexternalhosts;to enforcepoli-
ciesregardingtransittraffic; andto detectinsecurecom-
binationsof legitimateconnectionssuchasa cleartext
Telnetsessiorthatexposesan SSHpassphrase.

The problemof detectingsteppingstoneswasfirst ad-
dressedn a ground-breakingpaperby Staniford-Chen
and Heberlein[SH9Y. To our knowledge, otherthan
that work, the topic hasgoneunaddresseth the liter-
ature. In this paper we endeaor to systematicallyan-
alyze the steppingstonedetectionproblemand devise
accurateand efficient detectionalgorithms. While, as
with mostformsof intrusiondetectionwith enoughdili-
genceattaclers can generallyevade detection[PN9g,
ouridealgoalis to makeit painfully difficult for themto
doso.

The restof the paperis organizedasfollows. We first

examinethe differenttradeofs that comeup whende-
signing a steppingstonealgorithm (§ 3). We thenin

§ 4 develop a timing-basedalgorithm that works sur

prisingly well, perthe evaluationin § 5, andalsoeval-

uatetwo cheapcontet-basedechniquesWe conclude
in § 6 with someof the remainingchallenges:in par

ticular, the needfor rich monitoringpolicies, givenour
discoverythatlegitimatesteppingstonesarein factvery
common;andthepossibilityof detectinghon-interactie
relaysandslaves

2 Terminology and Notation

We begin with terminology Whena person(or a pro-
gram)logsinto one computey from therelogsinto an-
other andperhapsa numberstill more,we referto the



sequencef loginsasa connectionchain [SH95. Any
intermediatéhoston a connectiorchainis calleda step-
ping stone We call apair of network connections step-
ping stoneconnectionpair if both connectionsare part
of aconnectiorchain.

Sometimesve will differentiatebetweernflow andcon-
nection A bidirectionalconnectiorconsistsof two uni-
directionalflows. We termtheseriesf flowsalongeach
directionof aconnectiorchaina flow chain.

We usethefollowing additionalnotation:

e hi < hs: abi-directionalnetwork connectiorbe-
tweenh, andh,. We alsouseC}, Cs,, ... to denote
network connections.

e hi — hs: aunidirectionalflow from A to hs.

® = epping IS abinaryrelationdefinedover all con-
nectionsasfollows: Cy =s¢epping C if andonly if
C, andC5 form a steppingstoneconnectiorpair.

3 DesignSpace

In this sectionwe discusghetradeofs of differenthigh-

level designconsiderationsvhendevising algorithmsto

detectsteppingstones. Someof the choicesrelateto

the following obsenation about stepping-stonealetec-
tion: intuitively, the differencebetweera steppingstone
connectionpair anda randomlypicked pair of connec-
tionsis thattheconnectionén thesteppingstonepairare
muchmorelik ely to have somecorrelatedraffic charac-
teristics. Hence,a generalapproacHor detectingstep-
ping stonesis to identify traffic characteristicshat are
invariant or at leasthighly correlatedacrossstepping
stoneconnectionpairs, but not sofor arbitrary pairs of

connection. Somepotentialcandidategor suchinvari-

antsare the connectioncontents,inter-paclet spacing,
ON/OFF patternsof actvity, traffic volume or rate, or

specificcombinationsof these. We examinetheseas
they arisein the subsequerdiscussion.

3.1 Whether to analyzeconnectioncontents

A naturalapproactor stepping-stondetections to ex-

aminethe contentsf differentconnectiongo find those
that are highly similar. Suchan approachis adopted
in [SH9Y andproveseffective. Considerablearemust

be taken, though, becausewe will not find a perfect
matchbetweentwo steppingstoneconnections. They
may differ dueto translationsof charactersuchases-
capesequencespr the varying presenceof Telnetop-
tions[PR834.

In addition, supposewe are monitoring connections
h1 < he andhy < hs, wherehs is the steppingstone
theattacler is usingto accessz from h; . If we adopta
notionof “binning” in orderto groupactuity into differ-
enttime regions(for exampleto computecharactefre-
guenciesaasdonein [SH9Y) thendueto thelag between
actiity on h; + ho andactvity on hy + hs, thecon-
tentsfalling into eachbin will matchimperfectly Fur
thermorejf theattacleris concurrentlyattackingh, via
ho, thenthetraffic on hy < ho Will beamixture of that
from hy < h3 andthatfrom hy < h4, and neitherof
thelatter connectionstcontentswill shov up exactly in
h1 < ho.

Theseconsiderationcomplicate content-basedietec-
tion techniques.A morefundamentalimitation is that
content-basedechniquescannot, unfortunately work
whenthe contentis encryptedsuchasdueto useof Se-
cureShel(SSH;[YKSRL99)).

The goal of our work wasto seehow far we could get
in detectingsteppingstoneswithout relying on paclet
contentspecausdy doing so we canpotentiallyattain
algorithmsthat are morerobust. Not relying on paclet
contentsalsoyieldsa potentiallymajorperformancead-
vantagewhichis thatwe thendo notneedto captureen-
tire packetcontentswith thepacletfilter, but only paclet
headersgonsiderablyeducingthe packet captureload.
However, we alsodevisedtwo cheapcontent-basetech-
niguesfor purposesof comparison(§ 5.3), neither of
which is robust, but both of which have the virtue of
beingvery simple.

3.2 Directvs.indir ectsteppingstones

Supposehy, ha, hs is a connectionchain. The direct
steppingstonedetectionproblemis to detectthath, is a
steppingstonef we areobservingnetwork traffic thatin-

cludesthe pacletsbelongingto hy < hs andhs < hs.

If, however, the connectionchainis hy, hs, ..., hs, hq,

thenthe indirect steppingstonedetectionproblemis to

detectthat connectionsh; <> hy and hs <+ hy form a
steppingstonepair, giventhatwe canobsene their traf-

fic but not the traffic belongingto ks . .. hs (andhence
thereis no obviousconnectiorbetweer, andhg).



Detectingdirectsteppingstonescanbe simplerthande-
tectingindirectoneshecauséor directoneswe canoften
greatlyreducethe numberof candidategor connection
pairs. On the otherhand,it is mucheasierfor attaclers
to eludedirect steppingstonedetectionby simply in-

troducinganadditionalhopin the steppingstonechain.
Furthermore jf we can detectindirect steppingstones
thenwe will have a considerablymoreflexible andro-

bustalgorithm,onewhich can,for example,be applied
to traffic tracesgatheredat differentplacegseebelaw).

In this paperwe focuson the moregeneralproblemof
detectingndirectsteppingstones.

3.3 Real-timedetectionvs. off-line analysis

We would like to be able to detectsteppingstonesin

real-time,sowe canrespondo theirdetectiorbeforethe
actiity completes.Anotheradvantageof real-timede-
tectionis thatwe don't haveto storethedatafor all of the
traffic, which canbe voluminous. For instancea day’s

worth of interactve traffic (Telnet/Rlogin)at the Uni-

versity of Californiain Berkeley on averagecomprises
aboutl GB of storagdor 20,000connections.

Algorithms that only work using off-line analysisare
still valuable however, for situationsn whichretrospec-
tive detectionis neededsuchaswhenan attacled site
contactghe site from which they wereimmediatelyat-
tacked. This latter site could thenconsultits traffic logs
andrun anoff-line steppingstonedetectioralgorithmto
determinefrom wherethe attacler cameinto their own
siteto launchthe attack.

Sincereal-timealgorithmsgenerallycanalsobe applied
to off-line analysiswe focushereon theformer.

3.4 Passie monitoring vs. active perturbation

Anotherdesignquestioris whetherthemonitorcanonly

perform passve monitoring or if it can actiely inject

perturbingtraffic to thenetwork. Passve monitoringhas
the advantagethatit doesnt generateadditionaltraffic,

andconsequentlyant disturbthe normal operationof

the network. On the otherhand,an active monitor can
be morepowerful in detectingsteppingstones:afterthe
monitor finds a stepping-stoneandidatejt could per

turboneconnectiorin thepairby inducinglossor delay

andthenlook to seewhetherthe perturbations echoed
in the otherconnection.If so,thenthe connectionsare
verylikely correlated.

Here we focuson passie monitoring, both becausef

its operationakimplicity, andbecausef we candetect
steppingstonesusingonly passve techniquesthenwe

will have amorebroadlyapplicablealgorithm,onethat
works without requiringthe ability to manipulateinci-

dentaltraffic.

3.5 Singlevs. multiple measuementpoints

Tracingtraffic at multiple points could potentially pro-
vide moreinformationabouttraffic characteristicsOn
the other hand, doing so complicatesthe problem of
comparinghetraffic tracesasnow we mustaccountor
varying network delaysand clock synchronization.In
this paper we confineoursehesto the single measure-
mentpoint case with our usualpresumptiorbeingthat
thatmeasuremenmntointis on theaccesdink betweera
siteandtherestof theInternet.

3.6 Filtering

An importantfactor for the succesf someforms of
real-timestepping-stondetectionis filtering. Themore
traffic that canbe discardedon a perpaclet basisdue
to patterngn the TCP/IPheadersthe better asthis can
greatlyreducethe processingoad onthe monitor.

However, thereis clearly a tradeof betweenreduced
systemoad andlostinformation. First, if a monitorde-
tectssuspiciousactiity in a filtered stream,often the
filtering hasremoved sufficient accompaying context

thatit becomegjuitedifficult determiningf the activity

is indeedan attack. In addition, the existenceof filter-

ing criteriamalkesit easierfor the attaclersto evadede-
tectionby manipulatingtheir traffic sothatit no longer
matcheghe filtering criteria. For example,an evasion
againstfiltering basedon paclet size (seebelaw) is to

usea Telnetclient modifiedto senda large numberof

do-nothingTelnetoptionsalongwith eachkeystroke or

line of input.

The main likely filtering criteriafor stepping-stonele-

tection is paclet size. Keystroke paclets are quite

small. Evenwhenentirelines of input aretransferred
using“line mode” [Bo90], paclet payloadstendto be

much smallerthan thoseusedfor bulk-transferproto-

cols. Therefore,by filtering pacletsto only capture
small paclets, the monitor can significantly reduceits

pacletcapturdoad (for example,by weedingout heary

bulk-transfer SSH sessionswhile keeping interactve

ones).



3.7 Minimizing statefor connectionpairs

Sincepotentiallytherecanbe a large numberof active

connectionsseenby the monitor, it is often infeasible
to keepstepping-stonstatefor all possiblepairsof con-
nectiongdueto the N2 memoryrequirementsTherefore
we needmechanismghatallow usto only keepstatefor

asmallsubsebf the possibleconnectiorpairs.

Oneapproachs to limit our analysisto only detecting
direct steppingstones but for the reasonsliscussedn

§ 3.2 above, this is unappealing. Thereare, however,

othermechanismsghatwork well:

¢ Remore connectiorpairssharingthe sameporton
the samehost. If h; < hy andhy < hz bothuse
port p on hosth,, then mostlikely the two con-
nectionsare merely using the samesener on hs,
ratherthan h; accessinga sener on hs andthen
from that sener runninga client on h, to access
a sener on hz. Remwing suchconnectionpairs
is particularlyhelpful whentherearea large num-
ber of connectiongonnectingo the samepopular
sener—withoutsuchfiltering, whenk connections
connectto the samesener, we needto keepstate
for @ connectiorpairs!
Note that this mechanisris worth applying even
if we alsotestfor directionality (seebelow), be-
causewhenthe monitor analyzesalready-e&isting
connectionstheir directionalityis not necessarily
apparent.

¢ Remore connectionpairs with inconsistentdirec-

tions. Dependingon the topology of the network

monitoring point, we may be ableto classifycon-

nectionsas “inbound” or “outbound’ If so, then
we caneliminateasconnectiorpair candidatesiny

pairs for which both connectionsare in the same
direction. While theseconnectionsmay in fact
form achain,if themonitoringlocationis a choke-

point, meaningthe solepathinto or out of the site,
thenin this casetherewill be anotherconnection
in the oppositedirectionwith which we can pair

either of thesetwo connections. However, if the
site hasmultiple ingress/gresspoints,thenwe can
only safelyapplysuchfiltering if all suchpointsare
monitoredandthemonitorscoordinatevith onean-
other

e Remore connectiorpairswith inconsistentiming.
If two connectionsare a steppingstonepair, then
the “upstream”(closerto the attacler) connection
shouldencompasthedownstreantonnectionthat

is, it shouldstartfirst and endlast. Accordingly,
we canremove from our analysisany connection
pairsfor which the connectionthat startedearlier
alsoterminatesarlier

Note that there are two risks with this filtering.

First,it maybethattheupstreantonnectiortermi-

natesslightly soonerthanthe downstreanconnec-
tion, becauseof detailsof how the different TCP
shutdavn handshaksoccur Secondthis filtering

may openup the monitorto evasionby anattacler

who canforce their upstreanconnectiorto termi-

natewhile leaving thedownstreantonnectiorrun-

ning.

3.8 Traffic patterns

We can coarselyclassify network traffic as either ex-

hibiting ON/OFF activity, or running fairly continu-
ously For the former, we can potentially exploit the
traffic’s timing structure(whetherthe ON/OFFpatterns
of two connectionsaresimilar). For the latter, we can
potentially exploit traffic volume information (whether
two connectionglow at similar rates).In addition,even
for continuoudraffic, if the communicatioris reliable,
ary delaysresultingfrom waiting to detectlossandre-

transmitmay imposeenoughof an ON/OFF patternon

thetraffic thatwe canagainlook for timing similarities
betweerconnections.

In this paper we focus on traffic exhibiting ON/OFF
patterns,as that is characteristioof interactve traffic,
which arguablyconstituteghe mostinterestingclassof
stepping-stonactiity.

3.9 Accuracy

As with intrusiondetectionin generalwe facetheprob-
lem of false positives(non-stepping-stoneonnections
erroneouslyflaggedassteppingstones)yndfalse nega-
tives (steppingstonesthe monitor fails to detect). The
former canmale the detectionalgorithmunusablepe-
causeit becomesmpossible(or at leasttoo tedious)to
examineall of thealertsmanually andattaclerscanex-
ploit thelatterto evadethe monitor.

In practice theproblemof comparingconnectiongook-
ing for similaritiescanbecomplicatedy clock synchro-
nization(if comparingmeasurementsadeby different
monitors), propagationdelays(the lag betweentraffic
shaving upononeconnectiorandthenappearingnthe



other),pacletlossandretransmissiorgandpacletization
variations. Moreover, an intruder canintentionallyin-

jectnoisein anattemptto evadethemonitor. Therefore,
thedetectiormechanisnmustbe highly robustif it is to

avoid excessve falsenegatives.

3.10 Responsieness

Anotherimportantdesignparameteis the responsie-
nessof thedetectioralgorithm. Thatis, aftera stepping-
stoneconnectionstarts,how long doesit take for the
monitor to detectit? Clearly, it is desirableto detect
steppingstonesas quickly as possible,to enabletak-
ing additionalactionssuchasrecordingrelatedtraffic or
shuttingdown the connection.However, in mary cases
waiting longerallows the monitor to gathermoreinfor-
mation and consequentlyt can detectsteppingstones
moreaccuratelyresultingin atradeof of responsieness
versusaccurag.

Another considerationrelatedto responsienesscon-
cernsthe systemresourcesonsumeddy the detection
algorithm. If we wantto detectsteppingstonesquickly,
then we musttake carenot to require more resources
than the monitor can devote to detectionover a short
time period. On the otherhand,if off-line analysisis
sufficient, then we can use potentially more resource-
intensive algorithms.

3.11 Openvs.evasive attackers

In generaljntrusiondetectionbecomesnuchmoredif-
ficult whentheattacleractively attemptdo evadedetec-
tion by the monitor [PN98 Pa9§. The differencebe-
tweenthe two cancomedown to the utility of relying
on heuristicsratherthan airtight algorithms: heuristics
mightwork well for “open” (non-evasive) attaclers,but
completelyfail in thefaceof anactively evasiveattacler.

While ideally any detection algorithms we develop
wouldberesistanto evasie attaclers,ensuringsuchro-
bustnesgansometimedeexceedinglydifficult, andwe
proceedhereon the assumptiorthat thereis utility in
“raising the bar” even when a detectionalgorithmcan
be defeatedy a sufficiently aggressaie attacler. In par
ticular, for timing-basedalgorithmssuchasthosewe de-
velop,we would like it to bethe casethatthe only way
to defeatthe algorithmis for an attacler to have to in-
troducelarge delaysin their interactve sessionssothat
their incorveniencds maximized. We asses®ur algo-
rithm’sresistanceo evasionin § 4.4.

4 A Timing-BasedAlgorithm

In this sectionwe developa stepping-stondetectioral-
gorithmthatworks by correlatingdifferentconnections
basedsolelyontiming information. As discussedn the
previous section,our designis motivatedin high-level
terms by the basicapproachof identifying invariants.
Moreover, thealgorithmleveragesheparticularsof how
interactve traffic behaes. This leadsto an algorithm
thatis very effective for detectingnteractve traffic (see
evaluationin § 5), and shouldwork well for detecting
otherformsof traffic thatexhibit clearON/OFFpatterns.

4.1 ON/OFF periods

We begin by definingON andOFF periods.Whenthere
is no datatraffic onaflow for morethanTjy|e seconds,
the connectionis consideredo be in an OFF period
We considera paclketascontainingdataonly if it carries
new (non-retransmittedyon-keepalve) datain its TCP
payload. Whena paclet with non-emptypayloadthen
appearstheflow endsits OFF periodandbeginsan ON
period,whichlastsuntil theflow againgoesdata-idlefor
Tigle S€conds.

The motivationfor consideringraffic asstructurednto
ON and OFF periodscomesfrom the strikingly dis-
tinct distribution of thespacingoetweeruserkeystrokes.
Studiesof Internettraffic have found thatkeystroke in-
terarrivals are very well describedby a Pareto distri-
bution with fixed parameter§DJCME92 PF93. The
parametersare suchthat the distribution exhibits infi-
nite variance which in practicalterms meansa very
wide rangeof values. In particular large valuesare
not uncommon:about25% of keystroke packetscome
500 msecor more apart,and 15% comel secor more
apart(1.6% come 10 secor more apart). Thus, inter-
active traffic will oftenhave significantOFFtimes. We
canthenexploit the tendeng of machine-dwen, non-
interactve traffic to sendpaclets back-to-backwith a
very shortinterval betweenthem, to discriminatenon-
interactve traffic from interactve.

4.2 Timing correlation when OFF periodsend

Thestratgyy underlyingthealgorithmis to correlatecon-
nectionsasedn coincidencef whenconnectiorOFF
periodsend,or, equivalently, whenON periodsbegin.

Intuitively, given two connectionsC; and Cs, if



C1 =stepping C2, it is very likely that C; and C; of-

tenleave OFFperiodsatsimilar times—theuserpresses
akeystroke andit is sentalongfirst C; andthenshortly

alongCy, or a programthey have executedinishesrun-

ning and producesoutput or they receve a new shell

prompt (in which casethe actvity ripplesfrom C; to

Cy).

Theinverses alsolikely to betrue. Thatis, if C; andCy

oftenleave OFF periodsat similartimes,thenit is likely
thatCy =siepping C2, becauseherearenotmary other
mechanismghatcanleadto suchcoincidences(Wedis-
cusstwo suchmechanism# § 5.7: periodictraffic with

slightly differentperiods,andbroadcasimessages.)

By quantifying similar and often we transformthe
above stratgyy into thefollowing detectiorcriteria:

1. We considertwo OFF periodscorrelatedif their
endingtimes differ by < 4, whereé is a control
parameter

2. Fortwo connectiong’; andCs, letOFF andOFFR,
bethenumberof OFF periodsin each,andOFF, »
be the numberof thesewhich are correlated. We
thenconsiderC; andC, a steppingstoneconnec-
tion pairif:

OFF 2
min(OFF , OFR,)

wherey is acontrolparametemwhichwe setto 0.3.

>,

A benefitof this approactis thatthe work is doneonly
aftersignificantidle periods For busy, non-idleconnec-
tions (far and away the bulk of traffic), we do nothing
otherthan note that they are still notidle. Relatedto
this, we needconsideronly a smallnumberof possible
connectionpairsat ary giventime, becauseve canig-
nore both thosethat are active and thosethat areidle;
we needonly look at thosethat have transitionedfrom
idle to active, andthatcant happervery oftenbecause
it first requiresghe connectiorto beinactive for asignif-
icant period of time. Consequentlythe algorithmdoes
not requiremuchstateto track stepping-stongair can-
didates.

Becaus®f theverywide rangeof keystroke interarrival

times, the algorithmis not very sensitve to the choice
of Tigje- In our currentimplementationye setTjyje =

0.5 sec. In § 5.6 we briefly discussthe effectsof using
othervalues.

Finally, becauseave only considercorrelationsof when
ON periodsbggin, ratherthanwhenthey end we are

morerobustto differencesn throughputcapacities For

two connectionsC =¢epping Co, if C1's throughput
capacityis significantlysmallerthanCs's, thenan ON

period on C; may end soonerthanon C; (wherethe
echo of the samedatatakes longer to finish transfer

ring); but regardlesf this effect, ON periodswill start

atnearlythesametime.

4.3 Refinements

The schemeoutlined above is appealingbecausef its
simplicity, but it requiressomerefinementgo improve
its accurag. Thefirst of theseis to exploit timing casu-
ality, basedon the following obsenation: if two flows
F; and F;, areon the sameflow chain, thentheir tim-
ing correlationshouldhave a consistenbrdering. If we
onceobsenethatF; endsits OFFperiodbeforeFs, then
it shouldbetruethat F; alwaysendsits OFF periodbe-
fore F». Confiningour analysisin this way weedsout
mary falsepairs.

To further improve the accurag of the algorithm, we
use the numberof consecutivecoincidencesn deter

mining the frequeng of coincidencesbecauseve ex-

pectconsecutre coincidenceso bemorelikely for true
steppingstoneghanfor accidentallycoincidingconnec-
tions. More specifically in additionto thetestin § 4.2,
to considetwo connection€; andC» a steppingstone
connectiorpairwe require:

OFF ,
min(OFF, OFR

OFF , > mincsc and ) >4,
where OFF , is the number of consecutie coinci-
dencesQFFR andOFF, areasbefore,andmincscand
~' arenew controlparametersWeinitially usedonly the
first of theserefinementsrequiringeithermincsc = 2
or mincsc = 4 consecutie coincidencesfor director
indirect steppingstones,respectiely. This in general
works very well, but we addedthe secondrequirement
whenwe found that very long-lived connectionould
sometimegventuallygenerate€onsecutiecoincidences
justby chance.Thesecanbe eliminatedby very low ~/
thresholdswe usey’ = 2% andy’ = 4% for directand
indirectsteppingstonesrespectiely.

4.4 Resistancdo evasion

Sincetheheartof thetiming algorithmis correlatingdle
periodsin two differentconnectionsan attacler canat-
temptto thwart the algorithm by avoiding introducing



ary idle timesto correlate; introducing spuriousidle
timesononeof theconnectionsiotreflectedn theother
connectionpr stretchingoutthelateng lag betweerthe
two connectiongo exceeds.

To avoid connectionidle times, it will likely not suf-
fice for the attacler to simply resole to type quickly.
GivenTjqle = 0.5 sec(§ 5.6),it justtakesaslightpause
to think, or delayby the senerin generatingesponses
to commandsto introduceanidle time.

A mechanicalmeanssuch as establishinga steady
streamof traffic on one of the connectionsbut not on

the other seemslike a bettertactic. If the intermedi-
ary and either upstreamor downstreamhostsrun cus-
tom software, thendoing so is easy thoughthis some-
whatcomplicateghe attacler’s useof the intermediary
asnow they mustinstall a customsener onit. Another
approachwould beto usea mechanisnalreadyexisting

in the protocolbetweerthe upstreanmhostandtheinter-

mediaryto exchangetraffic thatthe intermediarywon’t

propagateo the downstreamhost; for example,anon-

goingseriesof Telnetoption negotiations. However, as
particularinstancef suchtechniquedbecomeknown,

they maysene aseasily-recognizedignatuesfor step-
ping stoneconnectionsnstead.

Evengiventhetransmissiorf a steadystreanof traffic,
idle timesmight still appeareitheraccidentally dueto
pacletlossandretransmissiottulls, or purposefully by
a site introducingoccasionab00 msecdelaysinto its
interactve traffic to seewhethera delayshavs up in a
connectiorbesidegshe onedeliberatelyperturbed.Such
delaysmight prove difficult for anattaclerto mask.

The attacler might insteadattemptto introducea large
numberof idle timeson one connectionbut not on the
other so asto pushthe ratio of idle time coincidences
below . Thiswill alsorequirerunningcustomsoftware
on the intermediary and,indeed,this approachandthe
previousonearein somesensdhe sameaimingto un-
derminethe basisof the timing analysis. The natural
counterto this evasiontacticis to lower+y, thoughthis of
coursewill requirestepsto limit or toleratethe ensuing
additionalfalse positives. It might also be possibleto
detectunusuallylarge numbersof idle periods,though
we have not characterizedhe patternsof multiple idle
periodsto assesthefeasibility of doingso.

Anotherapproachan attacler might take is to pick an
intermediaryfor which the lateng lag betweerthe two
connectionds larger thané, which we setto 80 msec
in § 5.6. Doing so simply by exploiting the lateng be-
tweenthe monitoring point andthe intermediaryis not

likely to work well, asfor mostsitesthelateny between
aninternalhostandamonitoringpointwill generallybe
well belov 40 msec;however, if aninternalhostcon-
nectedvia a very slow link (suchasa modem)is avail-
able,thenthat may sene. Anotherapproachwould be
to run a customizedsener or client on the intermediary
thatexplicitly insertsthelag of 80 msec.This approach
appears significantconcerrfor thealgorithm,andmay
requireuseof muchlargervaluesof 4, soasto render
the delayhighly inconvenientfor the attacler (80 msec
is hardly noticeable muchlessincorvenient). Thisis a
naturalareafor futurework.

5 PerformanceEvaluation

In § 4 we developeda timing-basedalgorithmfor step-
ping stone detection. We have implementedthe al-

gorithmin Bro, a real-timeintrusion detectionsystem
[Pa9g. In this section,we evaluateits performancein

termsof false positives and false negatives) on traces
of wide-arealnternettraffic recordedat the DMZ ac-
cesslink betweerthe global Internetandtwo large in-

stitutions, the LawrenceBerkeley National Laboratory
(LBNL) and the University of California at Berkeley

(ucs).

5.1 Tracesused

We ranthetiming-basedlgorithmon numerousnternet
tracesto evaluateits performance Dueto spacdimita-
tions, herewe confineour discussiorto the resultsfor
two traces:

¢ |bnl-telnet.trace (120MB, 1.5M paclets,
3,831connections)oneday’s worth of Telnetand
Rlogin traffic collectedat LBNL. (The traffic is
morethan90% Telnet.)

e ucb-telnet.trace (390 MB, 5M paclets,
7,319connections)5.5 hours’worth of Telnetand
Rlogin traffic collectedat UCB during the after
noonbusy period.

Theperformancef thealgorithmon othertraceds com-
parable.



5.2 Brute forcecontent-basedalgorithm

To accuratelyevaluatethealgorithmswefirst devisedan
off-line algorithmusingbrute-forcecontentmatching.

The principle behindthe algorithmis that, for stepping
stoneseachline typedby theuseris oftenechoedrerba-
tim acrosghetwo connectiongwhenthe contentis not
encrypted). Therefore by looking at linesin common,
we canfind connectionavith similar content. With ad-
ditional manualinspectionwe canidentify the stepping
stones.

Thealgorithmworksasfollows:

1. Extract the aggrejate Telnet and Rlogin output
(computersideresponse)for all of the sessionsn
thetrace,into afile.

2. For eachdifferentline in the output, count how
mary timesit occurred(this is just sort| uniq-c
in Unix).

3. Throw away all lines exceptthoseappearingex-
actly twice. The ideais thattheseare good can-
didatesfor steppingstones,in that they are lines
unigueto eitheroneor at mosttwo connections.

4. Findthe connection(s)n which eachof thesdines
appearsThisis doneby first building a singlefile
listing every uniqueline in every connectioralong
with the nameof the connection,and then doing
a databasgoin operationbetweerthelinesin that
file andthosein thelist remainingaftertheprevious
step.

If aline appearsn just oneconnectionthrow the
line avay.

5. Countup how mary of the only-seen-twicdines
eachpair of connectiondiasin common(usingthe
Unix join utility).

6. Connectionpairswith 5 or more only-seen-twice
linesin commonarenow candidatesor beingstep-
ping stones.

7. Of thosediscardthe pairif bothconnectionsrein
thesamedirection(bothinto the site or both out of
thesite).

8. Of the remainder visually inspectthem to see
whetherthey areindeedsteppingstonesMost are;
afew arecorrelateddueto commonactiities such
asreadingthe samemail messager nens article.

Clearlythemethodologys notairtight, andit fails com-
pletelyfor encryptedraffic. Butit providesagoodbase-
line assessmemf the presenceof cleartext stepping
stonesanddetectsthemin a completelydifferentway
thanthetiming algorithmdoes,soit is suitablefor cali-
brationandperformancevaluation.

For large traces the requiremenbf 5 or morelines al-

lows usto significantlyreducehenumberof connection
pairsthat we needto visually inspectin the end. This

appeargo benecessarin orderto make the brute-force
contentmatchingfeasible.

For small-to medium-sizedraces,we alsoinspectthe
oneswith 2, 3, or 4 linesin common. Sometimeswve
did indeedfind steppingstonesthat were missedif we
required5 linesin common. But in mostcasesthese
steppingstonesvereexceedinglyshortin termsof bytes
transferred.

5.3 Simple content-basedalgorithms

For purposesof comparison,we devised two simple
content-basedlgorithms.Both arebasedon the notion
thatif we canfind text in aninteractve login C; unique
to thatlogin, thenif thattext alsooccursin Cs, thenwe
have strongevidencethat(C, andC, arerelated.

Theproblemthenis to find suchinstancesf uniquetext.
Clearly, virtually all login sessionsre uniguein some
fashion,but the difficulty is to cheaplydetectexactly
how.

Our first schemerelies on the fact that some Telnet
clients propagatethe X-Windows DISPLAY erviron-
mentvariable[Al94] sothatremoteX commandganlo-
catetheusers X displaysener. Thevalueof DISPLAY
shouldthereforebeunique becausé globallyidentifies
aparticularinstanceof hardware.

We modified Bro to associatevith eachactive Telnet
sessiorthe value of DISPLAY propagatedy the Tel-
netervironmentoption (if ary), andto flag any session
that propagateshe samevalue as an alreadyexisting
session. We find, however, that this methodhaslittle
power. It turnsout that DISPLAY is only rarely prop-
agatedin Telnetsessionsand,in addition,non-unique
values(suchashostnamesot fully qualified,or, worse,
stringslik e “localhost.localdomain:0.0 ") are
propagated.

IHowever, we have successfullyusedDISPLAY propagationto
backtraceattaclers,sorecordingit certainlyhassomeutility.



Our secondschemeworks considerablybetter The ob-
senationis thatoftenwhenanew interactve sessiorbe-
gins,thelogin dialogincludesa statudine lik e:

Last login: Fri. Jun 18 12:56:58

from hostx.y.z.com

The combinationof the timestamp(which of course
changesvith eachnew login sessionjandthe previous-
accesost(evenif truncatedasoccurswith somesys-
tems)leadsto this line beingfrequentlyunique.

We modifiedBro to searcHor thefollowing regularex-
pressiorin text sentfrom thesenerto theclient:

/"([LI]ast
["Last

+(successful)?
interactive login/

*login)/ |

We foundonefrequentinstanceof falsepositves.Some
instance®f theFingerservice[Zi91] reportsucha“last
login” aspartof the userinformationthey return. Thus,
wheneer two concurreninteractive sessiondappened
to fingerthe sameuser they would be markedasa step-
ping stonepair. We were ableto filter suchinstances
outwith a cheaptest,however: it turnsout thatthe Fin-
ger senersalsoterminatethe statusline with ASCII-1
(“control-A").

We referto this schemeas“login tag”, andcompareits
performancevith thatof thetiming algorithmbelow. It
works remarkablywell consideringits simplicity. Of
course,it is not very robust, andfails completelyfor a
large classof systemshat do not generatestatuslines
like the above, thoughperhapsfor thosea similar line
canbefound.

5.4 Accuracy

We first evaluate the accurag of the algorithmsin
termsof their falsenegative ratio andfalsepositive ra-
tio. For Ibnl-telnet.trace , weidentified23 step-
ping stoneconnectiorpairsamonga total of 3,831con-
nectionsusing the brute-forcecontentmatchingas de-
scribedabove. (We inspectedall connectionawith 2 or
morelinesin common,so 23 shouldbe a very accurate
estimationof the numberof steppingstones.)Onestep-
ping stoneis indirect(§ 3.2),theothersweredirect.

The timing-baseddetectionalgorithm reports21 step-
ping stoneswith nofalsepositvesand? falsenegatives.

Bothfalsenegativesarequiteshort: onelastsfor 15sec-
ondsandthe otherlastsfor 34 seconds.

For ucb-telnet.trace , dueto thelargevolumeof
thedata,for thebrute-forcetechniquawe only inspected
connectionsvith 5 or morelinesin common.Weidenti-
fied 47 steppingstoneslin contrastthetiming-basedl-
gorithmdetects/4 steppingstones5 out of the 47 step-
ping stoneswve identifiedusingbrute-forceweremissed
by the timing algorithm. Amongthe 5 falsenegaties,
3 arevery shorteitherin termsof duration(lessthan12
secondspr in termsof the bytestyped(in oneconnec-
tion, theuserlogsin andimmediatelyexits). We discuss
theadditional32 steppingstonedetectedy thetiming-
basedalgorithm, but not by the brute-forcetechnique,
below.

To further assessperformance, we ran both the
“display” and the “login tag” schemes(§ 5.3) on

ucb-telnet.trace . The“display” schemeeported
3 steppingstones jncluding one missedby the timing-

basedalgorithm.“login tag” reported?0 steppingstones
(plusonefalsepositive, not further discussedhere). Of

these20, the timing-basedalgorithmonly missedone,
whichwasexceedinglyshort—alltheuserdid duringthe
downstreanmsessiorwasto typeexit  to terminatethe
session. (This is also the steppingstonethat was de-

tectedby the “display” algorithmbut not by the timing

algorithm.)

In summarythetiming-basedilgorithmhasa low false
negative ratio. To make surethatthis doesnot comeat
the costof a high false positive ratio, we visually in-
spectedthe additional 32 steppingstonesreportedby
the timing-basedalgorithmfor ucb-telnet.trace

to seewhich werefalsepositives.

It turnsoutthatall of themwereactualsteppingstones.
For example therewereacoupleof steppingstoneghat
usedytalk, a chat program. Thesefooled the brute-
force contentmatchingalgorithm dueto a lot of cur

sormotions.Anothersteppingstonefooledthe content-
matchingapproachbecauseetransmittecdatashaved
upin oneof thetranscriptdut nottheother

Thus,we find thatthe timing-basedalgorithmis highly
accuratein termsof both false positive ratio and false
negative ratio, and works considerablybetterthan the
brute-forcealgorithmthat we initially expectedwould
behighly accurate.



5.5 Efficiency

Thetiming-basedlgorithmis fairly efficient. Underthe
currentparametesettingspna400MHzPentiumll ma-
chine running FreeBSD3.3, it takes 69 real-timesec-
ondsfor Ibnl-telnet.trace , and about24 min-
utes for ucb-telnet.trace The former clearly
sufficesfor real-timedetection.Thelatter, for a5.5hour
trace,reflectsabout10% of the CPU,andwould appear
likewise to suffice. Note that the relationshipbetween
the running time on the two tracesis not linear in the
numberof pacletsor connectionsn the trace,because
what insteadmattersis the numberof concurient con-
nectionsasthesearewhatleadto overlappingON/OFF
periodsthatrequirefurtherevaluation.

5.6 Impact of different control parameters

Theproperchoiceof thecontrolparameterss important
for boththeaccurag andtheefficiency of thealgorithm.

We basedhe currentchoiceof parametergn extensive

experimentswith varioustraffic traces,which we sum-
marizein this section.With thesesettingsthealgorithm

performsvery well in termsof bothaccurag andspeed
acrossawide rangeof network scenarios.

Parameter| Values
Tigle (sec)| 0.5
é (msec) | 20,40,80,120,160
5 15%,30%,45%
mincsc | 1,2,4,8,12,16
~' 2% for directsteppingstones;
4% for indirectsteppingstones

Tablel: Settingdor differentcontrol parameters.

To assesgheimpactof the differentcontrol parameters,
we systematicallyexploredtheportionsof theparameter
spaceon uch-telnet.trace . Tablel summarizes
thedifferentparametesettingsave consideredNotethat
we keepthe default settingsfor Tjqe andy’ whenex-
ploring the parametespace which we did to keepthe
size of the parametespacetractable. We choseto not
vary thesetwo parametersn particularbecausebased
on extensve experimentswith varioustraffic traceswe
have foundthat:

e Thealgorithmis fairly insensitve to the choiceof
Tigle- Thisis largelybecauseasnotedin § 4.1, hu-
man keystroke interarrivals are well describedby

a Pareto distribution with fixed parameters. The
Pareto distribution has a distinctive “heavy-tail”
propertyi.e., prettymuchno matterwhatvaluewe
choosdor Tq)e. We still have anappreciablewum-
berof keystrokesto work with. However, thelarger
the Tjyje, the morelikely that we will miss short
steppingstones. The currentchoiceof 0.5 secis
areasonableompromisebetweenexceedingmost
round-trip times (RTTs), yet maintainingrespon-
sivenesgo short-lvedconnections.

e Although the currentchoicesof ' thresholdsare
very low, they suffice to eliminatethosevery long-
livedconnectionshateventuallygenerateonsecu-
tive coincidencegust by chancewhichis the only
purposefor introducingy’.

Finally, animportantpoint is that the goal for this as-
sessmenis determiningthe bestparameterso usefor

anunawareattacler. If the attacler actively attemptso

evadedetectionthenasnotedin § 4.4alternatve param-
etersmayberequiredeventhoughthey work lesswell in

general.Theimportantproblemof assessingow to op-

timize the algorithmfor this latter ervironmentremains
for futurework.

We ran the detection  algorithm  on
ucb-telnet.trace for each of the 75 possible
combinationsof the control parametersand assessed
the number of false positives and false negatives.
For brevity, we only report the completeresults for
v = 30%, and briefly summarizethe results for
~v = 15% andy = 45%.

FP/FN(y=30%)

mincsc
6 (msec)| 1 2 4 8 12 16
20 1/8 | 0/8 | 0/10 | 0/17 | 0/21 | 0/26
40 1/6 | 0/7 | 0/10 | 0/17 | 0/21 | 0/25
80 4/5 | 0/7 | 0/9 | 0/16 | 0/20 | 0/24
120 12/5| 0/7 | 0/9 | 0/15| 0/19 | 0/24
160 20/5| 0/7 | 0/9 | 0/14 | 0/19 | 0/24

Table2: Numberof falsepositives(FP) andfalseneg-
atives (FN) for detectingdirect steppingstoneswhen
v = 30%.

Table 2 givesthe resultsfor detectingdirect stepping
stoneswheny = 30%. We make four obsenations.
First, the numberof falsepositivesis closeto 0 for all
combinationsof § andmincsc exceptfor mingse = 1,
which clearly is too lax. Secondthe numberof false
negativesis minimizedwhenmingsc = 2, which is the
default settingin the algorithm. Third, the choiceof §



haslittle impacton the accurayg of the algorithm. Fi-
nally, theresultsfor y = 15% andy = 45% (notshawn)
arehighly similar to thosefor v = 30%, which means
thealgorithmis insensitie to the choiceof .

We shouldalso note two additional considerationse-
gardingd. First, it is sometimesecessaryo usearela-
tively larged, especiallywhenthelateng is high (for ex-
ample,for connectionghat go throughtranscontinental
or satellitelinks). High latengy oftenmeandargevaria-
tion in the delay which candistortthe keystroke timing
characteristics.One possiblesolution to this problem
would beto choosedifferentd’s basedonthe RTT of a
connection. This would also help with the lateng-lag
evasiontechniquediscussedn § 4.4. But suchadapta-
tion complicateghealgorithm,becausestimatingRTT
basedn measuremenis the middle of a network path
canbesubtle,sowe have left it for future study

Second,large ¢’s also meanwe must maintain state
for moreconcurrentonnectiorpairs,which caneatup

memoryand CPU cycles. Similarly, having a smaller
Tigle Mmeansthat we needto updatestatefor connec-
tionsmorefrequently whichin turnincrease€PUcon-
sumption. To illustrate theseeffects, we increasedy

from 80 msecto 200 msecand reducedTjqje from

0.5secto 0.3sec.After thischangethetime requirecto

procesdbnl-telnet.trace increasego 155 sec,
more than doublethe 69 secrequiredwith the current
settings.

FP/FN(y=30%)

mincsc
d (msec) 1 2 4 8 | 12| 16
20 162/0 5/0 | 0/0 | 0/2 | O/5 | 0/6
40 683/0 | 19/0 | 0O/0 | O/2 | O/4 | 0/6
80 2,486/0 | 134/0| 0/0 | 0/1| 0/3 | O/5
120 5,633/0 | 431/0| 12/0 | 3/1| 3/3 | 2/5
160 10,131/0| 995/0| 28/0 | 7/1 | 4/3 | 2/5

Table3: Numberof falsepositives(FP) andfalseneg-
atives (FN) for detectingindirect steppingstoneswhen
v = 30%.

Table 3 summarizeghe resultsfor detectingindirect
steppingstonesvheny = 30%. Fromthetableit is evi-

dentthatboththenumberof falsepositivesandthenum-
ber of falsenegatvesareminimizedwhenmingsc = 4

andd < 80msec.A smallermingscoralargeré cansig-
nificantlyincreaseéhe numberof falsepositives,while a
larger mincsc canleadto morefalsenegatives. When
~v = 45%, the numberof falsepositivesis in general
smaller but the optimal combinationof mingcsc and

remainghe same.Wheny = 15%, the numberof false

positivesincrease450-300%andfor § = 80 msecand
mingcsc = 4, increase$rom O falsepositivesto 7.

These findings shaov that the current settings of
the parametersare fairly optimal, at least for the
ucb-telnet.trace , andthat thereis considerable
room for varying the parametersn responseo certain
evasionthreatq§ 4.4). We alsonotethatthereis no par
ticular needto usethe samevaluesof Tjjje, J, and~y
for both direct andindirect steppingstones,otherthan
simplicity, andtheremaybe roomfor somefurtherper
formanceimprovementby allowing themto be specific
to thetypeof steppingstone justasfor mincscandy’.

5.7 Failures

In this sectiorwe summarizeghecommonscenarioghat
can causethe timing-basedalgorithmto fail. Someof
thesefailures have alreadybeensolved in the current
algorithm, but it is beneficialto discussthem, because
they illustratesomeof thesubtletiesnvolvedin stepping
stonedetection.

o Excessiely shortsteppingstones.In mary cases,
thetiming-basedlgorithmmisseda steppingstone
simply becausehe connectionavere exceedingly
short. In somecasesthe “display” and“login tag”
schemesurestill ableto catchthesebecausdothof
themkey off of text sentvery early duringa login
session.

On the other hand, often attaclers cant do very
muchduring suchshortsteppingstonessofailing
to detectthemis not quite asseriousasfailing to
detectiongerlivedsteppingstones.

e Messagebroadcastpplicationssuchas the Unix
talk and wall utilities. Such utilities can cause
correlationsbetweenflows becausehey causethe
sametext to be transmittedon multiple connec-
tions. However, thesecorrelationswill be of the
form hy — hsa, hy — hg3; thatis, the connection
endpointhatbreakgheidle periodwill bethesame
for bothflows (h;, in this case)whereador atrue
steppingstoneh; — ha — hg theendpointbreak-
ing the idle periodwill differ (first k1, then hsy).
This obsenation led to the directionality criterion
in§ 3.7.

e Correlationsdueto phasedrift in periodictraffic.
Considertwo connectiong”; andCs thattransmit
datawith periodicitiesP; and P,. If the periodici-
tiesareexactly thesamethenthe ON/OFFperiods



of theconnectionsvill remainexactlythesamedis-
tanceapart(equalto the phaseoffsetfor theperiod-
icities). If, however, P; is slightly differentfrom

P,, thenthe offset betweenthe ON/OFF periods
of the two will drift in phaseandoccasionallythe
two will overlap. Suchoverlapsappearto be cor-

relations,but actuallyaredueto the periodsbeing
in fact uncorrelated and henceableto drift with

respecto oneanother

This phenomenotis not idle speculation(seealso
[FJ94 for discussionof how it canleadto self-
synchronizationin coupledsystems)For example,
one of our tracesincludestwo remoteTelnetses-
sionsto thesamemachineatthesametime (involv-
ing differentuserIDs, but clearly the sameuser).
The session$iada periodof overlapduringwhich
bothsessionsvererunningpineto checkmail. For
somereason,the pine display began periodically
sendingdatain smallchunks,with abouta second
betweereachchunk.Thesdransmissiong/ereini-
tially out of sync, but sometimessyncd up fairly
closely Beforewe addedthe rule on consecutie
coincidencegparametersincscandy’, discussed
in § 4.3),thesesessionsadbeernreportecasastep-
ping stone,becausehe ratio of coincidencesvas
high enough.After we refinedthe algorithm,such
spurioussteppingstonesventaway (therule on di-
rectionality discussedn the previous item would
have also happenedo succeedn eliminatingthis
particularcase).

e Large lateny and its variation. As mentioned
above,whenaconnectiorhasaveryhighlateng or
large delayvariation,we needto increasehevalue
of ¢ (and,accordingly~y, mingsg and+~') in order
to detectit. We have notyetmodifiedthealgorithm
to do sobecausef complicationdn efficiently es-
timatingaconnectiors RTT.

5.8 Experiencewith operational use

We initially expectedthat detectinga steppingstone
would meanthatwith high probabilitywe hadfoundan
intruderattemptingo disguisetheirlocation. As thefig-
uresabove onthefrequeng of detectingsteppingstones
indicate, this expectationwas woefully optimistic. In
fact,we find thatwide-arednternettraffic aboundswith
steppingstonesyirtually all of themlegitimate.

For example UCB’swideareatraffic includesmorethan
100 steppingstoneseachday Thesefall into a num-
ber of catgories. Someare external userswho wish

to accesgarticularmachineghatapparentlytrustinter

nal UCB hostsbut do not trust arbitrary externalhosts.
Someappeato reflecthabitualpatternsof use,suchas
“to getto anew host,typerlogin to the currenthost] in

whichit is notinfrequentio obsere a steppingstoneus-
ing a remotehostto access nearbylocal host,or even
the samelocal host? Somearesimply bizarre,suchas
oneuserwhoregularlylogsin from UCB to asitein Asia
andthenreturnsfrom the Asian site backto UCB, in-

curringhundred®f msecof lateny (andthwartingour
defaultchoiceof 4, pertheaborediscussion)Otherpos-
siblelegitimateuseshatwe haven't happenedo specif-
ically identify aregaininganorymity for purpose®ther
than attacks,or running particularclient software pro-
videdby theintermediarybut not by the upstreanhost.

Clearly, operationalisewill requiredevelopmentof re-
fined Bro policy scriptsto codify patternscorrespond-
ing to legitimate steppingstones allowing the monitor
to thenalertonly on thosesteppingstonesat oddswith
the policies. But even giventhesehurdles,we find the
utility of thealgorithmclearandcompelling.

Finally, we notethatthedetectioncapabilityhasalready
yieldedan unanticipatedecuritybonus. Sincethe tim-
ing algorithm is indifferentto connectioncontents,it
canreadilydetectsteppingstonesn whichtheupstream
connectionis madeusinga cleartext protocolsuchas
Telnetor Rlogin, but the downstreanconnectiorusesa
securegencryptedprotocolsuchas SSH. Wheneer we
detectsuchsteppingstonesit is highly probablehatthe
usertypedtheir SSHpassphraser passverdin theclear
over thefirst connectiorin the chain,thusundermining
the securityof the SSHconnectionIndeed afterbegin-
ning to run thetiming algorithmto look for this pattern,
we rapidly found instancef suchuse,andconfirmed
that for eachthe passphrasevas indeedtyped in the
clear At LBNL, runningthe timing algorithmlooking
for suchexposuress now partof the operationakecu-
rity policy, and,unfortunatelyit continuesto alert nu-
meroustimeseachday (andwe have tracedat leastone
break-into a passphrasexposedin this mannerat an-
othersite). Efforts arebeingmadeto educatethe users
aboutthe natureof thisrisk.

6 Concluding remarks

Internetattaclersoftenmasktheiridentity by launching
attacksnot from their own computey but from aninter-

2Inspectionof someof theseconnectionsonfirmsthat theseare
notinsideattaclersattemptingo hidetheirlocation.



mediaryhostthat they previously compromisedj.e., a

steppingstone. By leveragingthe distinct propertiesof

interactive network traffic (smallerpaclet sizes,longer
idle periodghanmachine-generatechffic), we havede-

viseda stepping-stondetectioralgorithmbasedn cor-

relatingthe timing of the ON/OFF periodsof different
connectionsThe algorithmrunson a site’s Internetac-
cesslink. It proveshighly accurateand hasthe ma-

jor advantageof ignoring the datacontentsof the con-

nectionswhich meanshoththatit works for encrypted
traffic suchas SSH, and that the paclet captureload

is greatly diminishedsincethe paclet filter needonly

recordpacletheaders.

While thealgorithmworksverywell, amajorstumbling
block we failed to anticipateis the large numberof le-
gitimatesteppingstoneghatusersoutinelytraversefor
a variety of reasons.One large site (the University of
Californiaat Berkeley) hasmorethan100suchstepping
stoneseachday. Accordingly, thenext stepfor ourwork
is to undertale operatinghe algorithmaspartof a site’s
productionsecuritymonitoring,whichwe anticipatewill
requirerefinedsecuritypoliciesaddressinghe mary le-
gitimatesteppingstones.But even giventhesehurdles,
wefind theutility of thealgorithmclearandcompelling.

Finally, a naturalextensionto this work is to attempt
to likewise detectnon-interactre steppingstones,such
asrelays in which traffic suchas InternetRelay Chat
[OR9] is loopedthroughasite,andslavesin whichin-

comingtraffic triggersoutgoingtraffic (whichis notre-

layed),suchasusedby someformsof distributeddenial-
of-servicetools[CE9Y. Theseformsof steppingstones
have differentcoincidencepatternsthanthe interactve

onesaddressedby our algorithm, but a preliminaryas-
sessmenindicatesthey may be amenableo detection
onthebasisof observingalocal hostthathaslong been
idle suddenlybecomingactive outboundjustafterit has
acceptecininboundconnection.
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