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Abstract
The Java™ Virtual Machine is viewed by many

as inherently insecure despite all the efforts to improve
its security. In this paper we take a different approach
to Java security and describe the design and implemen-
tation of a system that provides operating system style
protection for Java code. We use hardware protection
domains to separate Java classes, provide access control
on cross domain method invocations, efficient data
sharing between protection domains, and memory and
CPU resource control. These security measures, when
they do not violate the policy, are all transparent to the
Java programs, even when a subclass is in one domain
and its superclass is in another. To reduce the perfor-
mance impact we group classes and share them
between protection domains and map data on demand
as it is being shared.

1. Introduction
Java™ [21] is a general-purpose programming

language that has gained popularity as the program-
ming language of choice for mobile computing. The
language is used for World Wide Web programming
[2], smart card programming [22], embedded device
programming [16], and even for providing executable
content for active networks [42]. Three reasons for this
popularity are Java’s portability, its security properties,
and its lack of explicit memory deallocation.

Java programs are compiled into an intermediate
representation called byte codes and run on a Java Vir-
tual Machine (JVM). This JVM contains a byte code
verifier that is essential for Java’s security. Before
execution begins the verifier asserts that the byte codes
do not interfere with the execution of other programs
by assuring it uses valid references and control trans-
fers. Byte codes that successfully pass this verification
are executed but still subject to number of other secu-
rity measures implemented in the Java runtime system.

All of Java’s security mechanisms depend on the
correct implementation of the byte code verifier. In our
opinion this is a flawed assumption and past experience
has shown a number of security problems with this
approach [11, 17, 35]. More fundamental is that from
software engineering research it is known that every
1000 lines of code contain 35-80 bugs [7]. Even very
thoroughly tested programs still contain on average
about 0.5-3 bugs per 1000 lines of code [30]. Given
that JDK 2 contains∼ 1.6M lines of code it is reason-
able to expect 56K to 128K bugs. Granted, not all of
these bugs are in security critical code but all code is
security sensitive since it runs within a single protec-
tion domain.

Other unsolved security problems with current
JVM designs are its vulnerability to denial of service
attacks and its discretionary access control mecha-
nisms. Denial of service attacks are possible because
the JVM lacks proper support to bound the amount of
memory and CPU cycles used by an application. The
discretionary access control model is not always the
most appropriate one for executing untrusted mobile
code.

Interestingly, exactly the same security problems
occur in operating systems. There they are solved by
introducing hardware separation between different pro-
tection domains and controlled access between them.
This hardware separation is provided by the memory
management unit (MMU), an independent hardware
component that controls all accesses to main memory.
To control the resources used by a process an operating
system limits the amount of memory it can use, assigns
priorities to bias its scheduling, and can enforce manda-
tory access control. However, unlike programming lan-
guage elements, processes are coarse grained and have
primitive sharing and communication mechanisms.

An obvious solution to Java’s security problems
is to integrate the JVM with the operating system’s pro-
cess protection mechanisms. How to adapt the JVM
efficiently and transparently (i.e., such that multiple



Java applets can run on the same JVM while protected
by the MMU) is a non-obvious problem. It requires a
number of hard operating system problems to be
resolved. These problems include: uniform object
naming, object sharing, remote method invocation,
thread migration, and protection domain and memory
management.

The central goal of our work was the efficient
integration of operating system protection mechanisms
with a Java runtime system to provide stronger security
guarantees. A subgoal was to be transparent with
respect to Java programs. Where security and trans-
parency conflicted they were resolved by a separate
security policy. Using the techniques described in this
paper we have build a prototype JVM that contains the
following features:

• The transparent hardware assisted separation of
Java classes, provided that they do not violate a
preset security policy.

• The control over memory and CPU resources
used by a Java class.

• The enforcement of mandatory access control for
Java method invocations, class inheritance, and
system resources.

• The employment of theleast privilegeconcept
and the introduction of aminimal trusted com-
puting base(TCB).

• The JVM does not depend on the correctness of
the Java byte code verifier for inter-domain pro-
tection.

In our opinion, a JVM using these techniques is
much more amenable to an ITSEC or a Common Crite-
ria evaluation than a pure software protection based
system.

Our JVM consists of a small trusted component,
called theJava Nucleus, which acts as a reference mon-
itor and manages and mediates access between different
protection domains (see figure 1). These protection
domains contain one of more Java classes and their
object instances. References to objects are capabilities
[12] which are managed by the Java Nucleus.

For an efficient implementation of our JVM we
depend on low-level operating system the functionality
provided byParamecium[41], an extensible operating
system. The Java Nucleus uses its low-level protection
domain and memory management facilities and its IPC
for cross domain method invocations. The data is
shared on demand using virtual memory remapping.
When the data contains pointers to other data elements
they are transparently shared as well. The garbage col-
lector, which is a part of the Java Nucleus, handles

Java Nucleus

Paramecium kernel

Web Server Mail Server

Hardware

TCB
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Executable
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Figure 1. Secure JVM overview.

runtime data relocation, sharing and revocation of data
elements, protection, and the reclaiming of unused
memory cells over multiple protection domains.

In the next section of this paper we will describe
the problems involved in language and operating sys-
tem integration. Section 3 discusses the separation of
concerns when designing a JVM architecture with a
minimal TCB. It focuses on the security guarantees
offered at run time and the corresponding threat model.
Since our system relies on Paramecium it is described
separately in section 4. Section 5 describes some of the
key implementation details of our JVM. It discusses
the memory model used by our JVM, its IPC mecha-
nism, its data sharing techniques, and its garbage col-
lector. Section 6 discusses some early experiences with
our JVM, including a performance analysis and some
example applications. Section 7 discusses related work
and is followed by our conclusions in section 8.

2. Operating and Run Time System
Integration

Integration of an operating system and a lan-
guage runtime system has a long history (e.g.,
Mesa/Cedar [39], Lisp Machines [29], Oberon [43],
JavaOS [32],etc.), but none of these systems use hard-
ware protection to supplement the protection provided
by the programming language. In fact, most of these
systems provide no protection or depend on a trusted
code generator. For example, the Burroughs B5000 [9]
enforced protection through a trusted compiler. It did
not provide an assembler since it could be used to cir-
cumvent this protection.

Over the years these integrated systems have lost
popularity in favor of time-shared systems with a pro-
cess protection model. These systems provide better
security and fault isolation by using hardware



separation between untrusted processes and controlling
the communication between them. A side effect of this
separation is that sharing is much harder and more inef-
ficient.

The primary reasons why the transparent integra-
tion of a process protection model and a programming
language are difficult are summarized in table 1. The
key problem is their lack of a common naming scheme.
In a process model each process has its own virtual
address space, requiring techniques like pointer swiz-
zling to translate addresses between different domains.
Aside from the naming issues, the sharing granularity is
different. Processes can share coarse grained pages
while programs share many small variables. Reconcil-
ing the two as in distributed shared memory systems
[27] leads to the undesirable effects of false sharing or
fragmentation. Another distinction is the unit of pro-
tection. For a process this is an protection domain, for
programs it is a module, class, object,etc. Finally,
processes use rudimentary IPC facilities to communi-
cate that can send and receive blocks of data. Programs
on the other hand use procedure calls and memory ref-
erences.

In order to integrate a process protection model
and a programming language we need to adapt some of
the key process abstractions. Adapting them is hard to
do in a traditional operating system because they are
hardwired into the system. Extensible operating sys-
tems on the other hand provide much more flexibility
(e.g.,Paramecium, OSKit [19], L4/LavaOS [28], ExOS
[15], and SPIN [6]). For example, in our system the
Java Nucleus acts as a special purpose kernel for Java
programs. It controls the protection domains that con-
tain Java programs, creates memory mappings, handles
all protection faults for these domains and controls
cross protection domain invocations. These functions
are hard to implement on a traditional system but
straightforward on an extensible operating system. A
second enabling feature of extensible operating systems
is the dramatic improvement in cross domain transfer
cost by eliminating unnecessary abstractions

Process Protection
Model

Programming
Language

Name space disjoint single

Granularity pages variables

Unit protection domain class/object

Communication IPC call/memory

Table 1. Process protection modelvs.programming language.

[5, 24, 28, 33]. This makes the tight integration of mul-
tiple protection domains feasible. Another advantage
of using an extensible kernel is that they tend to be sev-
eral orders smaller than traditional kernels. This is a
desirable property since the kernel is part of the TCB.

For a programming language to benefit from
hardware separation it has to exhibit a number of
requirements. The first one is that the language must
contain a notion of a unit of protection. These units
form the basis of the protection system. Examples of
these units are classes, objects, and modules. Each of
these units must have one or more interfaces to commu-
nicate with other units. Furthermore there needs to be
non-language reasons to separate these units, like run-
ning multiple untrusted applets simultaneously on the
same system. The last requirement is that the language
needs to use a typed garbage collection system rather
than programmer managed dynamic memory. This
requirement allows a third party to manage, share and
relocate the memory used by a program.

In this paper we concentrate on the integration of
Paramecium and Java. While both fulfill the require-
ments listed above, the techniques are applicable to
other operating systems and programming languages.

3. Separation of Concerns
The goal of our secure JVM is to minimize the

trusted computing base (TCB) for a Java run-time sys-
tem. For this it is important to separate security con-
cerns from language protection concerns and establish
what type of security enforcement has to be done at
compile time, loading time, and run time.

At compile time the language syntax and seman-
tic rules are enforced by a compiler. This enforcement
ensures valid input for the transformation process of
source code into byte codes. Since the compiler is not
trusted the resulting byte codes cannot be trusted and
therefore we can not depend on the compiler for secu-
rity enforcement.

At load time a traditional JVM loads the byte
codes and relies on the byte code verifier and various
run-time checks to enforce the Java security guarantees.
As discussed in the introduction, we do not rely on the
Java byte code verifier for security for its size, com-
plexity, and track record. Instead we aim at minimizing
the TCB and use hardware fault isolation between
groups of classes and their object instances and control
access to methods and state shared between them. A
separate security policy defines which classes are
grouped together in a single protection domain and
which methods they may invoke on different protection
domains. It is important to realize that all classes



within a single protection domain have the same trust
level. Our system provides strong protection guaran-
tees between different protection domains,i.e., inter-
domain protection. It does not enforce intra-domain
protection, this is left to the run-time system if desir-
able. This does not constitute a breakdown of security
of the system. It is the policy that defines the security.
If two classes that are in the same domain,i.e., hav e the
same trust level, misbehave with respect to one another
this clearly constitutes a failure in the policy specifica-
tion. These two classes should not have been in the
same protection domain.

The run-time security provided by our JVM con-
sists of hardware fault isolation among groups of
classes and their object instances by isolating them into
multiple protection domains and controlling access to
methods and state shared between them. Each security
policy, a collection of permissions and accessible sys-
tem resources, defines a protection domain. All classes
with the same security policy are grouped into the same
domain and have unrestricted access to the methods
and state within it. Invocations of methods in other
domains pass through the Java Nucleus. The Java
Nucleus is a trusted component of the system and
enforces access control based on the security policy
associated with the source and target domain.

The Java Nucleus consists of four components: a
class loader, a garbage collector, a thread system, and
an IPC component. The class loader loads a new class,
translates the byte codes into native machine codes, and
deposits them into a specified protection domain. The
garbage collector allocates and collects memory over
multiple protection domains, assists in sharing memory
among them, and implements memory resource control.
The thread system provides the Java threads of control
and maps them directly onto Paramecium threads. The
IPC component implements cross protection domain
invocations, access control, and CPU resource usage
control.

The JVM’s trust model (i.e., what is included in
the minimal trusted computing base) depends on the
correct functioning of the garbage collector, IPC com-
ponent, and thread system. We do not depend on the
correctness of the byte code translator. When the byte
code translator is trusted to separate executable content
from data certain optimizations are possible. These are
described in section 5.2.

References to memory cells (primitive types or
objects) act as capabilities [12] and can be passed to
other protection domains as part of a cross domain
method invocation (XMI) or object instance state shar-
ing. Passing an object reference results in passing the
full closure of the reference. That is, all cells that can

be obtained by dereferencing the pointers that are con-
tained in the cell of which the reference is passed.
Capabilities can be used to implement the notion of
least privilege but suffer from the classical confinement
and revocation problem. Solving these is straightfor-
ward since the Java Nucleus acts as a reference moni-
tor. Howev er, this violates the Java language trans-
parency requirement (see section 8).

Our system does not depend on the Java security
features such as byte code verification, discretionary
access control through the security manager, and its
type system. We view these as language security mea-
sures that assist the programmer during program devel-
opment and they should not be confused or combined
with system security measures. The latter isolates and
mediates access between protection domains and
resources; these measures are independent of the lan-
guage. However, integrating an operating system style
protection with the semantic information provided by
the language runtime system does allow finer grained
protection and sharing than is possible in contemporary
systems.

The security provided by our JVM is defined in a
security policy. The elements that comprise this policy
are listed in table 2. They consist of a set of system
resources available to each protection domain, classes
whose implementation is shared between multiple
domains, object instance state that is shared, and access
control for each cross domain method invocation.

The first policy element is a per method access
control for cross protection domain invocations. Each
method has associated with it a list of domains that can
invoke it. If the invocation target is not in this set,
access is denied. Protection is between domains, not
within domains, hence there is no access control for
method invocations within the same domain.

To reduce the number of cross protection domain
calls (XMIs) the class text (instructions) can be shared
between multiple domains. This is analogous to text
sharing inUNIX, where the instructions are loaded into

Granularity Mechanism

Method Invocation access control

Class Instruction text sharing between domains

Class Object sharing between domains

Reference Opaque object handle

System Paramecium name space per domain

Table 2. Security policy elements.



memory only once and mapped into each domain that
uses it. This reduces memory requirements. In our
case it eliminates the need for expensive XMIs. The
object instance state is still private to each domain.

Object instance state is transparently shared
between domains when references to it are passed over
XMIs or when an object inherits from a class in a dif-
ferent protection domain. Which objects can be passed
between domains is controlled by the Java programs
and not by the JVM. Specifying this as part of the
security policy would break the Java language trans-
parency requirement. Per-method access control gives
the JVM the opportunity to indirectly control which
references are passed.

In circumstances where object instance state
sharing is not desirable a class can be marked as non-
sharable for a specified domain. Object references of
this class can still be passed to the domain but cannot
be dereferenced by it. This situation is similar to
client/server mechanisms where the reference acts as an
opaque object handle. Since Java is not a real object-
oriented language, it allows clients to directly access
object state, this mechanism is not transparent for some
Java programs.

Fine grained access control over the system
resources is provided by the Paramecium name space
mechanism. If a service name is not in the name space
of a protection domain, that domain cannot get access
to the service. The name space for each protection
domain is constructed and controlled by our Java
Nucleus.

To reduce the number of XMIs the classes with
the same security policy are grouped into the same pro-
tection domain. The number of XMIs can be further
reduced by sharing the instruction text of class imple-
mentations between different domains.

Table 3 summarizes the potential threats our
JVM can handle, together with their primary protection
mechanism. Some threats, such as covert channels, are
not handled in our system. Other threats, such as denial
of service attacks caused by improper locking behavior

Threat Protection mechanism

Fault isolation Protection domains

Denial of service Resource control

Forged object references Garbage collector

Illegal object invocations XMI access control

Table 3. Threat model.

are considered policy errors. The offending applet
should not have been given access to the mutex.

4. Paramecium
Paramecium [41] is an extensible object-based

operating system for building application-specific oper-
ating systems. It consist of a protected and trusted
nanokernel which implements only those services that
cannot be moved into the application protection domain
without jeopardizing the system’s integrity. All other
system components, like thread packages, device
drivers, and virtual memory implementations reside
outside this nucleus.

The kernel provides three basic services which
all use a protection domain as their unit of granularity.
These services are: event management, memory man-
agement, and name space management. Each resource
managed by these services is identified by a capability.

The first basic service provided by the kernel is
ev ent management. Paramecium uses preemptive
ev ents for handling interrupts, traps, and interprocess
communication. Associated with each event is a han-
dler which is executed when the event is raised. A han-
dler consists of a protection domain identifier, the
address of a call-back function, and a stack pointer.
Raising an event causes control to be transfered to the
handler specified by the protection domain identifier
and call-back function using the specified handler
stack. The ev ent service also has provisions for the
handler to determine the caller’s domain.

The second basic service provided by the kernel
is memory management. This service manages physi-
cal and virtual memory. The physical memory service
allocates physical pages which are then mapped onto a
virtual memory address using the virtual memory ser-
vice. Each physical page is identified by a generic sys-
tem-wide resource identifier. Shared memory is imple-
mented by passing this physical page resource identifier
to another protection domain and having it map it into
its virtual address space.

Paramecium implements multiple protection
domains. Each protection domain is a mapping of vir-
tual to physical pages together with a set of domain
specific events. These domain events are raised on, for
example, division by zero traps when this particular
domain is in control.

The protection domain’s virtual memory space is
managed by the virtual memory service. This service
implements functions to map physical pages onto vir-
tual addresses, set virtual page attributes (e.g., read-
only, read-write, execute-only), and unmap them. Each



virtual page has associated with it a fault event that is
raised, if set, when a fault occurs on an address within
that page. These faults include among others: an
instruction access fault when a page is marked as non-
executable or a data access fault when a write occurs to
a read-only page. A generic fall back event is raised
when no event is associated with a virtual page.

Event handlers for a virtual page fault do not
need to reside in the same protection domain as the one
where the fault occurs. These can be handled by an
external process that might, for example, implement
demand paging or, as in our secure JVM, maintain full
control over the protection domains that are executing
Java programs.

The last basic service provided by the kernel is
name space management. Paramecium organizes its
components into objects and interface references to
instantiated objects. These are stored in a hierarchical
name space. Each protection domain has a view of its
own subtree of the name space, the kernel address
space has a view of the entire tree including all the sub-
trees of different protection domains (see figure 2).

Standard operations exist to bind to an existing
object reference, to load an object from the repository,
and to obtain an interface from a given object reference.
Binding to an object happens at runtime. One would
reconfigure a particular service by overriding its name.
A search path mechanism exists to control groups of
overrides. When an object is owned by a different
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Figure 2. Paramecium name spaces.

protection domain the name service automatically
instantiates proxy interfaces.

When a protection domain is created it is passed
the root of its name space. Depending on the names in
its space, it can contact external services. For example,
the file server is known as ‘‘/ser vices/fs’’. Binding to
this name and obtaining a file system interface enables
the process to create and delete files by invoking the
methods from the interface. When the name is not pre-
sent in the name space no file system operations are
possible. By default protection domains are created
with an empty name space.

Applications that use this kernel are implemented
as and constructed from separate components. One
example of a component is Paramecium’s thread pack-
age. This package provides a priority scheduler and
support for migratory threads [18]. Migratory threads
can migrate from one protection domain to another
without actually switching threads or changing the
thread identifier. This saves a number of context
switches which are required by systems that hand off
work from a thread in one domain to a thread in
another domain.

5. Secure Jav a Virtual Machine
The Java Nucleus forms the minimal trusted

computing base (TCB) of our secure JVM. This sec-
tion describes the key techniques and algorithms used
by the Java Nucleus.

In short, the Java Nucleus provides a uniform
naming scheme for all protection domains, including
the Java Nucleus. It provides a single virtual address
space where each protection domain can have a differ-
ent protection view. All cross protection domain
method invocations (XMIs) pass through our Java
Nucleus which controls access, CPU and memory
resources. Data is shared on demand between multiple
protection domains,i.e. whenever a  reference to shared
data is dereferenced. Our Java Nucleus uses shared
memory and runtime reallocation techniques to accom-
plish this. Only references passed over an XMI or
object instances whose inherited classes are in different
protection domains can be accessed, others will cause
security violations. These protection mechanisms
depend on our garbage collector to allocate and deallo-
cate typed memory, relocate memory, control memory
usage, and keep track of ownership and sharing status.

It is possible to use the techniques described
below to build a secure JVM using an interpreter rather
than a compiler. Each protection domain would then
have a shared copy of the interpreter interpreting the
Java byte codes for that protection domain. We hav e



not explored such an implementation because of the
obvious performance benefits of executing generated
machine code.

The next subsections describe the key techniques
and algorithms in greater detail.

5.1. Memory Organization
The Java Virtual Machine assumes a single

address space in which references can be passed
between method invocations. This and Java’s depen-
dence of garbage collection dictated our memory
organization.

Inspired by single address space operating sys-
tems [10], we organized memory into a single virtual
address space. Each protection domain has, depending
on its privileges, a view onto this address space. This
view includes a set of physical memory pages to virtual
mappings together with their corresponding access
rights. A small portion of the virtual address space is
reserved by each protection domain to store per domain
specific data.

Central to the protection domain scheme is the
Java Nucleus (see figure 3). The Java Nucleus is analo-
gous to an operating system kernel. It manages a num-
ber of protection domains and has full access to all
memory mapped into these domains and their corre-
sponding access permissions. The protection domains
themselves cannot manipulate the memory mappings or
the access rights of their virtual memory pages. The
Java Nucleus handles both data and instruction access
(i.e., page) faults for these domains. Page faults are
turned into appropriate Java exceptions when they are
not used by the system.

For convenience all the memory available to all
protection domains is mapped into the Java Nucleus
with read/write permission. This allows it to quickly
access the data in different protection domains.
Because memory addresses are unique and the memory
pages are mapped into the Java Nucleus protection
domain, the Java Nucleus does not have to map or copy
memory as an ordinary operating system kernel.

The view different protection domains have of
the address space depends on the mappings created by
the Java Nucleus. Consider figure 3. A mail reader
application resides in the context namedmail. For effi-
ciency reasons, all classes constituting this application
reside in the same protection domain; all executable
content embedded in an e-mail message is executed in a
separate domain, sayexecutable content. In this exam-
ple memory region 0 is mapped into thecontext
executable content. Part of this memory contains
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Figure 3. Java nucleus memory map.

executable code and has the execute privilege associ-
ated with it. Another part contains the stack and data
and has the read/write privilege. Region 0 is only visi-
ble to theexecutable content context and not to themail
context. Likewise, region 2 is not visible to the
executable content context. Because of the hardware
memory mappings these two contexts are physically
separated.

Region 1 is used to transfer data between the two
contexts and is set up by the Java Nucleus. Both con-
texts have access to the data, although theexecutable
content context has only read access. Violating this
access privilege causes a page (data access) fault to be
generated which is handled by the Java Nucleus. It will
turn the fault into a Java exception.

5.2. Cross Domain Method Invocations
A cross domain method invocation (XMI) mim-

ics a local method invocation except that it crosses a
protection domain boundary. A vast amount of litera-
ture exists on low latency cross domain control transfer
[5, 24, 28]. Our XMI mechanism is loosely based on
Paramecium’s system call mechanism which uses
ev ents. The following example illustrates the steps
involved in an XMI.

Consider the protection domains A and B and a
method M which resides in domain B. When A calls
method M an instruction fault will occur since M is not
mapped into context A. The fault causes an event to be
raised in the Java Nucleus. The ev ent handler for this
fault is passed two arguments: the fault address (i.e.,



method address) and the fault location (i.e., call instruc-
tion). Using the method address, the Java Nucleus
determines the method information which contains the
destination domain and the access control information.
Paramecium’s event interface is used to determine the
caller domain. Based on this information, an access
decision is made. If access is denied, a security excep-
tion is raised in the caller domain.

Using the fact that method information is static
and that domain information is static for code that is
not shared, we can improve the access control check
process. Rather than looking up this information, the
Java Nucleus stores a pointer to it in the native code
segment of the calling domain. The information can
then be accessed quickly using a fixed offset and fault
location parameter. Method calls are achieved through
special trampoline code that embeds these two values.
More precisely, the call trampoline code fragment in
context A for calling method M appears as (in SPARC
[38] assembly):

call M ! call method M
mov %g0, %i0 ! nil object

b,a next_instr ! branch over
.long <caller domain> ! JNucleus data
.long <method info> ! JNucleus data

next_instr:

The information stored in the caller domain must
be protected from tampering. This is achieved by map-
ping all executable native code as execute only; only
the Java Nucleus has full access to it.

When access is granted for an XMI, an event is
associated with the method if one is not already pre-
sent. Then the arguments are copied into the registers
and onto the event handler stack as dictated by the call-
ing frame convention. No additional marshalling of the
parameters is required. Both value and reference
parameters are passed unchanged. Using the method’s
type signature to identify reference parameters, we
mark data references as exported roots (i.e., garbage
collection roots). Instance data is mapped on demand
as described in the next section. Invoking a method on
an object reference causes an XMI to the method
implementation in the object owner’s protection
domain.

Virtual method invocations, where a set of spe-
cific targets is known at compile-time but the actual tar-
get only at runtime, require a lookup in a switch table.
The destinations in this table refer to call trampolines
rather than the actual method address. Each call tram-
poline consists of the code fragment described above.

Using migratory threads, an XMI extends the
invocation chain of the executing thread into another
protection domain. Before raising the event to invoke

the method, the Java Nucleus adjusts the thread priority
according to the priority of the destination protection
domain. The original thread priority is restored on the
method return. Setting the thread priority enables the
Java Nucleus to control the CPU resources used by the
destination protection domain.

Local method invocations use the same method
call trampoline as the one outlined above, except that
the Java Nucleus does not intervene. This is because
the method address is available locally and does not
generate a fault. The uniform trampoline allows the
Java Nucleus to share class implementations among
multiple protection domains by mapping them in. For
example, simple classes like thejava.lang.Str ing or
java.lang.Long can be shared by all protection domains
without security implications. Sharing class implemen-
tations reduces memory use and improves performance
by eliminating XMIs. XMIs made from a shared class
do not have their caller domain set, since there can be
many caller domains, and require the Java Nucleus to
use the system authentication interface to determine the
caller.

5.3. Data Sharing
Passing parameters, as part of a cross domain

method invocation (XMI), requires little more than
copying them by value and marking the reference vari-
ables as exported roots. Subsequent accesses to these
references will cause a protection fault unless the refer-
ence is already mapped in. The Java Nucleus, which
handles the access fault, will determine whether the
faulting domain is allowed access to the variable refer-
enced. If allowed, it will share the page on which the
variable is located.

Sharing memory on a page basis traditionally
leads to false sharing or fragmentation. Both are
clearly undesirable. False sharing occurs when a vari-
able on a page is mapped into two address spaces and
the same page contains other unrelated variables. This
clearly violates the confinement guarantee of the pro-
tection domain. Allocating each variable on a separate
page results in fragmentation with large amounts of
unused physical memory. To share data efficiently
between different address spaces, we use the garbage
collector to reallocate the data at runtime. This pre-
vents false sharing and fragmentation.

Consider figure 4 which shows the remapping
process to share a variablea between themail context
and theexecutable content context. In order to relocate
this variable we use the garbage collector to update all
the references. To prevent race conditions the threads
within or entering the contexts that hold a reference to



a are suspended (step 1). Then the data,a, is copied
onto a new memory page (or pages depending on its
size) and referred to asa′. The other data on the page
is not copied, so there is no risk of false sharing. The
garbage collector is then used to update all references
that point toa into references that point toa′ (step 2).
The page holdinga′ is then mapped into the other con-
text (step 3) Finally, the threads are resumed, and new
threads are allowed to enter the unblocked protection
domains (step 4). The garbage collector will eventually
deletea since it does not have any references to it.

Other variables that are shared between the same
protection domains are tagged onto the already shared
pages to reduce memory fragmentation. The process
outlined above can be applied recursively. That is,
when a third protection domain needs access to a
shared variable the variable is reallocated on a page that
is shared between the three domains.

In order for the garbage collector (see section
5.4) to update the cell references it has to be exact.
That is, it must keep track of the cell types and of refer-
ences to each cell to distinguish valid pointers from
random integer values. The updating itself can either
be done by a full walk over all the in-use memory cells
or by arranging each cell to keep track of the objects
that reference it. The overhead of the relocation is
amortized over subsequent uses.

Besides remapping dynamic memory, the mecha-
nism can also be used to remap static (or class) data.
Absolute data memory references can occur within the
native code generated by the just-in-time compiler.
Rather than updating the native code on each reloca-
tion, the just-in-time compiler generates an extra indi-
rection to a placeholder holding the actual reference.
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Figure 4. Data remapping between address spaces.

This placeholder is registered with the garbage collec-
tor as a reference location.

Data remapping is not only used to share refer-
ences passed as parameters over an XMI, but also to
share object instance data between sub and superclasses
in different protection domains. Normally, object
instances reside in the protection domain in which their
class was loaded. Method invocations on that object
from different protection domains are turned into
XMIs. In the case of an extended (i.e., inherited) class
the object instance state is shared between the two pro-
tection domains. This allows the sub and superclass
methods to directly access the instance state rather than
capturing all these accesses and turning them into
XMIs. To accomplish this our JVM uses the memory
remapping technique outlined above.

The decision to share object instance state is
made at the construction time of the object. Construc-
tion involves calling the constructor for the class fol-
lowed by the constructors for its parent classes. When
the parent class is in a different protection domain the
constructor invocation is turned into an XMI. The Java
Nucleus performs the normal access control checks as
for any other XMI from a different protection domain.
The object instance state, that is passed implicitly as the
first argument to the constructor call, is marked as an
exportable root. The mechanisms involved in marking
memory as an exportable root are discussed in the next
section.

Java uses visibility rules (i.e., public and pro-
tected) to control access to parts of the object instance
state. Enforcing these rules through memory protection
is straightforward. Each object’s instance state is parti-
tioned into a shared and non-shared part. Only the
shared state can be mapped.

An example of state sharing between super and
subclass is shown in figure 5. Here the classBitMap
and all its instances reside in protection domain A.
Protection domain B contains all the instances of the
classDraw. This class is an extension of theBitMap
class which resides in a different protection domain.
When a new instance ofDraw is created theDraw con-
structor is called to initialize the class. In this case the
constructor forDraw is empty and the constructor for
the superclassBitMap is invoked. Invoking this con-
structor will cause a transfer into the Java Nucleus.

The Java Nucleus first checks the access permis-
sion for domain B to invoke theBitMap constructor in
domain A. If granted, the object pointer is marked as
an exportable root and passed as the first implicit
parameter. Possible other arguments are copied as part
of the XMI mechanism and the remote invocation is



class BitMap { // Domain A
private static int N = 8, M = 8;
protected byte bitmap[][];

protected BitMap() {
bitmap = new byte[N/8][M];

}

protected void set(int x, int y) {
bitmap[x/8][y] |= 1<<(x%8);

}
}

class Draw extends BitMap { // Domain B
public void point(int x, int y) {

super.set(x, y);
}

public void box(int x1, int y1,
int x2, int y2) {

for (int x = x1; x < x2; x++)
for (int y = y1; y < y2; y++)

bitmap[x/8][y] |= 1<<(x%8);
}

}

Figure 5. Simple box drawing class.

performed. TheBitMap constructor then assigns a new
array to thebitmap field in theDraw object. Since the
assignment is the first dereference for the object it will
be remapped into domain A. When the creator of the
Draw object callsbox and dereferencesbitmap it will be
remapped into domain B (because the array is reach-
able from an exported root cell to domain A; see next
section). Further calls tobox do not require this remap-
ping. A call to point results in an XMI to domain A
where the superclass implementation resides. Since the
Draw object was already remapped by the constructor it
is does not require any remapping.

Whenever a reference is shared among address
spaces all references that are reachable from it are also
shared and will be mapped on demand when referred
to. This provides full transparency for Java programs
which assume that a reference can be passed among all
its classes. A potential problem with on-demand
remapping is that it dilutes the programmers’ notion of
what is being shared over the life-time of a reference.
This might obscure the security of the system. To
strengthen the security, an implementation might
decide not to support remapping of objects at all or pro-
vide a proactive form of instance state sharing. Not
supporting instance state sharing prevents programs
that use the object oriented programming model from
being separated into multiple protection domains. For
example, it precludes the isolation and sharing of the
AWT package in a separate protection domain.

The implementation has to be conservative with
respect to references passed as arguments to cross
domain method invocations and has to unmap them
whenever possible to restrict their shared access.
Rather than unmapping at the invocation return time,
which would incur a high call overhead, we defer this
until garbage collection time. The garbage collector is
aw are of shared pages and determines whether they are
reachable in the context they are mapped in. If they are
unreachable, rather than removing all the bookkeeping
information the page is marked invalid so it can be
remapped quickly when it is used again. This does not
work very well if the page contains two variables of
which only one is passed by reference. In that case a
new remapping is required. To reduce the amount of
remapping, separate pages are used for shared instance
state and state passed as a reference to a cross domain
invocation.

5.4. Garbage Collection
Java uses garbage collection [25] to reclaim

unused dynamic memory. In our design we use a non-
collecting incremental traced garbage collector which is
part of the Java Nucleus. The garbage collector is
responsible for collecting memory in all the address
spaces it manages. A centralized garbage collector has
the advantage that it is easier to share memory between
different protection domains and to enforce central
access and resource control. An incremental garbage
collector has better real time properties than non-incre-
mental collectors.

More precisely, the garbage collector for our
secure Java machine must have the following proper-
ties:

(1) Collect memory over multiple protection
domains and protect the bookkeeping informa-
tion from the potentially hostile domains.

(2) Relocate data items at runtime. This property
is necessary for sharing data across protection
domains. Hence, we use an exact garbage col-
lector rather than a conservative collector [8].

(3) Determine whether a reference is reachable
from an exported root. Only those variables
that can be obtained via a reference passed as
an XMI argument or instance state are shared.

(4) Maintain, per protection domain, multiple
memory pools with different access attributes.
These are execute only, read-only, and read-
write pools that contain native code, read-only
and read-write data segments respectively.



(5) Enforce resource control limitations per protec-
tion domain.

As discussed in the previous section all protec-
tion domains share the same virtual address map albeit
with different protection views of it. The Java Nucleus
protection domain, which contains the garbage collec-
tor, has full read-write access to all available memory.
Hence the ability to collect memory over different
domains is confined to the Java Nucleus.

A key feature of our garbage collector is that it
integrates collection and protection. Classical tracing
garbage collection algorithms assume a single address
space in which all memory cells have the same access
rights. In our system cells have different access rights
depending on the protection domain accessing it and
cells can be shared among multiple domains. Although
access control is enforced through the memory protec-
tion hardware, it is the garbage collector that has to cre-
ate and destroy the memory mappings.

The algorithm we use (see the pseudo-code in
figure 6) is an extension of a classic mark-sweep algo-
rithm which runs concurrently with the mutators [13].
The original algorithm uses a tricolor abstraction in
which all cells are painted with one of the following
colors: black indicates that the cell and its immediate
descendents have been visited and are in use;grey indi-
cates that the cell has been visited but not all of its
descendents, or that its connectivity to the graph has
changed; andwhite indicates untraced (i.e., free) cells.
The garbage collection phase starts with all cells col-
ored white and terminates when all traceable cells have
been painted black. The remaining white cells are free
and can be reclaimed.

To extend this algorithm to multiple protection
domains we associate with each cell its owner domain
and an export set. An export set denotes to which
domains the cell has been properly exported. Garbage
collection is performed on one protection domain at a
time, each keeping its own color status to assist the
marking phase. The marking phase starts by coloring
all the root and exported root cells for that domain as
grey. It then continues to examine all cells within that
domain. If one of them is grey it is painted black and
all its children are marked grey until there are no grey
cells left. After the marking phase, all cells that are
used by that domain are painted black. The virtual
pages belonging to all the unused white cells are
unmapped for that domain. When the cell is no longer
used in any domain it is marked free and its storage
space is reclaimed. Note that the algorithm in figure 6
is a simplification of the actual implementation, many
improvements (such as [14, 26, 36]) are possible. A
correctness proof of the algorithm follows from [13].

COLLECT():
for (;;) {

for (d in Domains)
MARK(d)

SWEEP();
}

MARK(d: Domain): // marker phase
color[d, (exported) root set] = grey
do {

dirty = false
for (c in Cells) {

if (color[d, c] == grey) {
color[d, c] = black
for (h in children[c]) {

color[d,h] = grey
if (EXPORTABLE(c, h))

export[d,h] |= export[d,c]
}
dirty = true

}
}

} while (dirty)

SWEEP(): // sweeper phase
for (c in Cells) {

used = false
for (d in Domains) {

if (color[d, c] == white) {
export[d, c] = nil
UNMAP(d, c)

} else
used = true

color[d, c] = white
}
if (used == false)
DELETE(c)

}

ASSIGN(a, c): // pointer assignment
*a = c
d = current domain
export[d,c] |= export[d,a]
if (color[d, c] == white)

color[d, c] = grey

EXPORT(d: Domain, c: Cell): // export object
color[d,c] = grey
export[d,c] |= owner(c)
export[owner(c),c] |= d

Figure 6. Multiple protection domain garbage collection.

Cells are shared between other protection
domains by using the remapping technique described in
the previous section. In order to determine whether a
protection domaind has access to a cellc the Java
Nucleus has to examine the following three cases: The
trivial case is where the owner ofc is d. In this case
the cell is already mapped into domaind. In the sec-
ond case the owner ofc has explicitly given access tod
as part of an XMI parameter or instance state sharing or



is directly reachable from such an exported root. This
is reflected in the export information kept by the owner
of c. Domaind has also access to cellc if there exists
a transitive closure from some exported rootr owned
by the owner ofc to some domainz. From this domain
z there must exist an explicit assignment which resulted
in c being inserted into a data structure owned byd or
an XMI from the domainsz to d passing cellc as an
argument. In the case of an assignment the data struc-
ture is reachable from some other previously exported
root passed byd to z. To maintain this export relation-
ship each protection domain maintains a private copy of
the cell export set. This set, usually nil and only
needed for shared memory cells, reflects the protection
domain’s view of who can access the cell. A cell’s
export set is updated on each XMI (i.e.,export) or
assignment as shown in figure 6.

Some data structures exist prior to, for example,
an XMI passing a reference to it. The export set infor-
mation for these data structures is updated by the
marker phase of the garbage collector. It advances the
export set information from a parent to all its siblings
taking the previously mentioned export constraints into
account.

Maintaining an export set per domain is neces-
sary to prevent forgeries. Consider a simpler design in
which the marker phase advances the export set infor-
mation to all siblings of a cell. This allows the follow-
ing attack where an adversary forges a reference to an
object in domaind and then invokes an XMI tod pass-
ing one of its data structures which embeds the forged
pointer. The marker phase would then eventually mark
the cell pointed to by the forged reference as exported
to d. By maintaining for each cell a per protection
domain export set forged pointers are impossible.

Another reason for keeping a per protection
domain export set is to reduce the cost of a pointer
assignment operation. Storing the export set in the Java
Nucleus would require an expensive cross protection
domain call for each pointer assignment, by keeping it
in user space this can be eliminated. Besides, the
export set is not the only field that needs to be updated.
In the classic Dijkstra algorithm the cell’s color infor-
mation needs to be changed togrey on an assignment
(see figure 6). Both these fields are therefore kept in
user space.

The cell bookkeeping information consists of
three parts (see figure 7). The public part contains the
cell contents and its per domain color and export infor-
mation. These parts are mapped into the user address
space, where the color and export information is stored
in the per domain private memory segment (see 5.1).
The nucleus part is only visible to the Java Nucleus. A

page contains one or more cells where for each cell the
content is preceded by a header pointing to the public
information. The private information is obtained by
hashing the page frame number to get the per page
information which contains the private cell data. The
private cell data contains pointers to the public data for
all protection domains that share this cell. When a cell
is shared between two or more protection domains the
pointer in the header of the cell refers to public cell
information stored in the private domain specific por-
tion of the virtual address space. The underlying physi-
cal pages in this space are different and private for each
protection domain.

To amortize the cost of garbage collection, our
implementation stores one or more cells per physical
memory page. When all the cells are free the page is
added to the free list. As stated earlier, each protection
domain has three memory pools: an execute-only pool,
a read-only pool, and a read-write pool. Cells are allo-
cated from these pools depending on whether they con-
tain executable code, constant data, or volatile data.
When memory becomes really tight, pages are taken
from their free lists, their virtual pages are unmapped,
and their physical pages returned to the system physical
page pool. This allows them to be re-used for other
domains and pools.

Exposing the color and export set fields requires
the garbage collector to be very conservative in han-
dling these user accessible data items. It does not,
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however, reduce the security of our system. The user
application can, at most, cause the marker phase to loop
forever, cause its own cells that are still in use to be
deallocated, or hang on to shared pages. These prob-
lems can be addressed by bounding the marker loop
phase by the number of in-use cells. Deleting cells that
are in use will cause the program to fail eventually, and
hanging on to shared pages is not different from the
program holding on to the reference.

When access to a cell is revoked, for example as
a result of an XMI return, its color is marked grey and
it is removed from the receiving domain’s export set.
This will cause the garbage collector to reexamine the
cell and unmap it during the sweep phase when there
are no references to it from that particular domain.

To relocate a reference the Java Nucleus forces
the garbage collector to start a mark phase and update
the appropriate references. Since the garbage collector
is exact it only updates actual object references. An
alternative design for relocation is to add an extra indi-
rection for all data accesses. This indirection elimi-
nates the need for explicit pointer updates. Relocating
a pointer consists of updating its entry in the table.
This design, however, has the disadvantage that it
imposes an additional cost on every data access rather
than the less frequent pointer assignment operation and
prohibits aggressive pointer optimizations by smart
compilers.

The amount of memory per protection domain is
constrained. When the amount of assigned memory is
exhausted an appropriate exception is generated. This
prevents protection domains from starving other
domains of memory.

6. Experience
Our prototype implementation is based on Kaffe,

a freely available JVM implementation [40]. We used
its class library implementation and JIT compiler and
we reimplemented the IPC, garbage collector, and
thread subsystems. Our prototype implements multiple
protection domains and data sharing. For convenience,
the Java Nucleus contains the JIT compiler and all the
native class implementations. It does not yet provide
support for text sharing of class implementations and
has a simplified security policy description language.
Currently, the security policy defines protection
domains by explicitly enumerating the classes that
comprise it and the access permissions for each individ-
ual method. The current garbage collector is not exact
for the evaluation stack and uses a weaker form to
propagate export set information.

The trusted computing base (TCB) of our system
is formed by the Paramecium kernel and the Java
Nucleus. The size of our Paramecium kernel is about
11000 lines of commented header files, and
C++/assembler code. The current Java Nucleus is
about 22000 lines of commented header files and C++
code. This includes the JIT component, threads, and
much of the Java run-time support. In a system that
supports text sharing the Java Nucleus can be reduced
considerably.

A typical application of our JVM is that of a web
server written in Java that supports servlets, like W3C’s
JigSaw. Servlets are Java applets that run on the web
server and extend the functionality of the server. They
are activated in response to requests from a web
browser and act mainly as a replacement for CGI
scripts. Servlets run on behalf of a remote client and
can be loaded from a remote location. They should
therefore be kept isolated from the rest of the web
server.

Our test servlet is theSnoopSer vlet that is part of
the Sun’s Java servlet development kit [37]. This
servlet inherits from a superclassHttpSer vlet which
provides a framework for handling HTTP requests and
turning them into servlet method calls. The
SnoopSer vlet implements the GET method and returns
a web page containing a description of the browser
capabilities. This page is served to the client by a sim-
ple web server which is implemented by theHttpSer vlet
superclass. For our test the web server and all class
libraries are loaded in protection domainWS, the
servlet implementation is confined toSer vlet.

The WS domain makes 2 calls into theSer vlet
domain, one to the constructor forSnoopSer vlet object
and one to thedoGet method implementing HTTP
GET. This method has two arguments, the servlet
request and reply objects. Invoking methods on these
causes XMIs back into theWS domain. In this test a
total of 217 XMIs occurred. Many of these calls are to
runtime classes such asjava/io/Pr intWr iter (62) and
java.lang.Str ingBuffer (101). In an implementation that
supports text sharing these calls would be local proce-
dure calls and only 33 calls would require an actual
XMI to the web server. Many of these XMIs are the
result of queries from the servlet to the browser.

The number of objects that are shared and there-
fore relocated between theWS andSer vlet domains are
47. Most of the relocated objects are static strings (45)
which are used as arguments to print the browser infor-
mation. These too can be eliminated by using text shar-
ing since the underlying implementation of print uses a
single buffer. In that case only a single buffer needs to
be relocated. The remaining relocated objects are the



result of the theHttpSer vlet class keeping state infor-
mation.

The cost of an XMI from theWS domain to the
Ser vlet domain is about 11µsec. This high cost can be
purely attributed to the cost of a Paramecium’s IPC on
a 50 MHz SPARC, which is 5µsec. The overhead for
Java XMIs is negligible.

7. Related Work
Our system is the first to use hardware fault isola-

tion on commodity components to supplement lan-
guage protection by tightly integrating the operating
system and language runtime system. In our design we
concentrated on Java, but our techniques are applicable
to other languages as well (e.g., SmallTalk [20] and
Modula3 [31]) provided they use garbage collection,
have well defined interfaces, and distinguishable units
of protection. A number of systems provide hardware
fault isolation by dividing the program into multiple
processes and use a proxy based system like RMI or
CORBA, or a shared memory segment for communica-
tion between them. Examples of these systems are the
J-Kernel [23] and cJVM [1]. This approach has a num-
ber of drawbacks that are not found in our system:

(1) Most proxy mechanisms use marshalling to
copy the data. Marshalling provides copy
semantics which are incompatible with the
shared memory semantics required by the Java
language.

(2) The overhead involved in marshalling and
unmarshalling the data is significant compared
to on demand sharing of data.

(3) Proxy techniques are based on interfaces and
are not suited for other communication mecha-
nisms such as instance state sharing. The latter
is important for object oriented languages.

(4) Proxy mechanisms usually require stub genera-
tors to generate proxy stubs and marshalling
code. These stub generators use interface defi-
nitions that are defined outside the language or
require language modifications to accommodate
them.

(5) It is harder to enforce centralized resource con-
trol within the system because proxy mecha-
nisms encourage many independent instances
of the virtual machine.

The work by Backet. al. [3] and Bernadatet. al.
[4] focuses on the resource control aspects of compet-
ing Java applets on a single virtual machine. Their
work is integrated into a JVM implementation while
our method of resource control is at an operating

system level. For their work they trust the byte code
verifier.

8. Conclusions
The security provided by our JVM consists of

separate hardware protection domains, controlled
access between them, and system resource usage con-
trol. An important goal of our work was to maintain
transparency with respect to Java programs. Our sys-
tem does not, however, eliminate covert channels or
solve the capability confinement and revocation prob-
lem.

The confinement and revocation problem are
inherent to the Java language. A reference can be
passed from one domain to another and revocation is
entirely voluntary. These problems can be solved in a
rather straightforward manner, but they do violate the
transparency requirement. For example, confinement
can be enforced by having the Java Nucleus prohibit
the passing of references to cells for which the calling
domain is not the owner. This could be further refined
by requiring that the cell owner should have permission
to call the remote method directly when its data is
passed over it by another domain. Alternatively, the
owner could mark the cells it is willing to share or
maintain exception lists for specific domains. Revoca-
tion is nothing more that unmapping the cell at hand.

In the design of our JVM we have been very
careful to delay expensive operations until they are
needed. An example of this is the on-demand remap-
ping of reference values, since most of the time refer-
ence variables are never dereferenced. Another goal
was to avoid cross-protection domain switches to the
Java Nucleus. The most prominent example of this is
pointer assignment which is a tradeoff between mem-
ory space and security. By maintaining extra, per pro-
tection domain, garbage collector state we perform
pointer assignments within the same context, thereby
eliminating a large number of cross domain calls due to
common pointer assignment operations. The amount of
state required can be reduced by having the compiler
produce hints about the potential sharing opportunities
of a variable.

In our current JVM design, resources are allo-
cated and controlled on a per protection domain basis,
as in an operating system. While we think this is an
adequate protection model, it might prove to be too
coarse grained for some applications and might require
techniques as suggested by Backet. al. [3].

The current prototype implementation shows that
it is feasible to build a JVM with hardware separation
whose Java XMI overhead is small. Many more



optimizations, as described in this paper, are possible
but hav e not been implemented yet. Most notable is the
lack of instruction sharing which can improve the per-
formance considerably since it eliminates the need for
XMIs. When these additional optimizations are fac-
tored in, we believe that a hardware assisted JVM com-
pares quite well to JVM’s using software fault isolation.

The security of our system depends on the cor-
rectness of the shared garbage collector. Traditional
JVMs rely on the byte code verifier to ensure heap
integrity and a single protection domain garbage collec-
tor. Our garbage collector allocates memory over mul-
tiple protection domains and cannot depend on the
integrity of the heap. Especially the latter requires
careful analysis of all the attack scenarios. In our
design the garbage collector is very conservative with
respect to addresses it is given. Each address is
checked against tables kept by the garbage collector
itself and the protection domain owning the object to
prevent masquerading. The instance state splitting
according to the Java visibility rules prevents adver-
saries from rewriting the contents of a shared object.
Security sensitive instance state that is shared, and
therefore mutable, is considered a policy error or a pro-
gramming error.

Separating the security policy from the mecha-
nisms allows the enforcement of many different secu-
rity policies. Even though we restricted ourself to
maintaining transparency with respect to Java pro-
grams, stricter policies can be enforced. These will
break transparency, but provide higher security. An
example of this is the opaque object reference sharing.
Rather than passing a reference to shared object state,
an opaque reference is passed. This opaque reference
can only be used to invoke methods on, the object state
is not shared and can therefore not be inspected.

The garbage collector, and consequently runtime
relocation, have a number of interesting research ques-
tions associated with them that are not yet explored.
For example, the Java Nucleus is in a perfect position to
make global cache optimization decisions because it
has an overall view of the data being shared and the
XMIs passed between domains. Assigning a direction
to the data being shared would allow fine grained con-
trol of the traversal of data. For example, a client can
pass a list pointer to a server applet which the server
can dereference and traverse but the server can never
insert one of its own data structures into the list. This is
reminiscent of Shapiro’sdiminish-grant model for
which confinement has been proven [34].

The Java Nucleus depends on user accessible
low-level operating system functionality that is cur-
rently only provided by extensible operating systems

(e.g.,Paramecium, OSKit [19], L4/LavaOS [28], ExOS
[15], and SPIN [6]). Implementing the Java Nucleus on
a conventional operating system would be considerably
harder since the functionality listed above is inter-
twined in hard coded abstractions that are not easily
adapted.
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