USENIX Association

Proceedings of the
Oth USENIX Security Symposium

Denver, Colorado, USA
August 14-17, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Secure Java™ Virtual Machine

Leendert van Doorn
leendert@watson.ibm.com
Global Security Analysis Laboratory
IBM T.J. Watson Research Center
Yorktown, NY

Abstract All of Java’s security mechanisms depend on the
The Java™ Virtual Machine is viewed by many correct implementation of the byte code verifier. In our

as inherently insecure despite all the efforts to improvePPinion this is a flawed assumption and past experience
its security. In this paper we take a different approach@S shown a number of security problems with this
to Java security and describe the design and implemer@PProach [11,17, 35]. More fundamental is that from

tation of a system that provides operating system Sty|éoftware engineering research it is known that every

protection for Java code. We use hardware protectiort000 linés of code contain 35-80 bugs [7]. Even very

domains to separate Java classes, provide access contfgProughly tested programs still contain on average
bout 0.5-3 bugs per 1000 lines of code [30]. Given

on cross domain method invocations, efficient data® i X o
sharing between protection domains, and memory an{’@t JDK 2 containgll.6M lines of code it is reason-
CPU resource control. These security measures, whefi?/€ t0 expect 56K to 128K bugs. Granted, not all of
they do not violate the policy, are all transparent to thet€S€ bugs are in security critical code but all code is
Java programs, even when a subclass is in one domafifcurity sensitive since it runs within a single protec-
and its superclass is in another. To reduce the perforion domain.
mance impact we group classes and share them Other unsolved security problems with current
between protection domains and map data on demandvVM designs are its vulnerability to denial of service
as it is being shared. attacks and its discretionary access control mecha-
nisms. Denial of service attacks are possible because
the JVM lacks proper support to bound the amount of
: memory and CPU cycles used by an application. The
1. Introduction discretionary access control model is not always the
Java™ [21] is a general-purpose programmingmost appropriate one for executing untrusted mobile
language that has gained popularity as the programeode.
ming language of choice for mobile computing. The Interestingly, exactly the same security problems

language is used for World Wide Web programming .. in operating systems. There they are solved by

[2], smart_card programming [22], em_bedded OleVlceintroducing hardware separation between different pro-
programming [16], and even for providing executable

, - tection domains and controlled access between them.
content for active networks [42]. Three reasons for thIST . oo .

.) L : . his hardware separation is provided by the memory
popularity are Java’s portability, its security propertles,management unit (MMU), an independent hardware
and its lack of explicit memory deallocation. ' .

o . ~ component that controls all accesses to main memory.
Java programs are compiled into an Intermedlatqo control the resources used by a process an operating
representation called byte codes and run on a Java Viystem limits the amount of memory it can use, assigns
tual Machine (JVM). This JVM contains a byte code priorities to bias its scheduling, and can enforce manda-
ver|f|er_ that is essentlal_ _for Java's security. Beforetory access control. However, unlike programming lan-
execution begins the verifier asserts that the byte codeguage elements, processes are coarse grained and have
do not interfere with the execution of other programsprimitive sharing and communication mechanisms.
by assuring it uses valid references and control trans- . . , .
) e An obvious solution to Java’s security problems
fers. Byte codes that successfully pass this verification . : . .
. . Is to integrate the JVM with the operating system'’s pro-
are executed but still subject to number of other secu- ; .
cess protection mechanisms. How to adapt the JVM

rity measures implemented in the Java runtime SySteméfficiently and transparentlyi.é., such that multiple

Java applets can run on the same JVM while protected
by the MMU) is a non-obvious problem. It requires a
number of hard operating system problems to be

resolved. These problems include: uniform object
Executahle

naming, object sharing, remote method invocation, Servlet Web Server | Mail Serve
thread migration, and protection domain and memory context
management.

The central goal of our work was the efficient
integration of operating system protection mechanisms
with a Java runtime system to provide stronger security
guarantees. A subgoal was to be transparent WithTCB§
respect to Java programs. Where security and trans- | Paramecium kernel
parency conflicted they were resolved by a separate !
security policy. Using the techniques described in this
paper we have build a prototype JVM that contains the Figure 1. Secure JVM overview.
following features:

. The transparent hardware assisted separation dJuntime data relocation, sharing and revocation of data
Java classes, provided that they do not violate £lements, protection, and the reclaiming of unused

Java Nucleus

Hardware

preset security policy. memory cells over multiple protection domains.
. The control over memory and CPU resources In the ne_xt sect|or_1 of this paper we will d(_escnbe
used by a Java class. the problems involved in language and operating sys-

tem integration. Section 3 discusses the separation of
» The enforcement of mandatory access control forcqncems when designing a JVM architecture with a
Java method invocations, class inheritance, andninimal TCB. It focuses on the security guarantees
System resources. offered at run time and the corresponding threat model.
. The employment of théeast privilegeconcept Since our system relies on Paramecium it is described
and the introduction of aninimal trusted com- separately in section 4. Section 5 describes some of the
puting bas€TCB). key implementation details of our JVM. It discusses
the memory model used by our JVM, its IPC mecha-
nism, its data sharing techniques, and its garbage col-
lector. Section 6 discusses some early experiences with
our JVM, including a performance analysis and some

In our opinion, a JVM using these techniques is gxample applications. Section 7 discusses related work
much more amenable to an ITSEC or a Common Critez 4 is followed by our conclusions in section 8.

ria evaluation than a pure software protection based
system.

« The JVM does not depend on the correctness o
the Java byte code verifier for inter-domain pro-
tection.

Our JVM consists of a small trusted component, 2. Operating and Run Time System

called theJava Nucleuswhich acts as a reference mon- Integration

itor and manages and mediates access between different Integration of an operating system and a lan-
protection domains (see figure 1). These protectiorguage runtime system has a long histom.g{(
domains contain one of more Java classes and theMesa/Cedar [39], Lisp Machines [29], Oberon [43],
object instances. References to objects are capabilitie3avaOS [32]etc), but none of these systems use hard-
[12] which are managed by the Java Nucleus. ware protection to supplement the protection provided
by the programming language. In fact, most of these

depend on low-level operating system the functionalitySYSteMs provide no protection or depend on a trusted
provided byParamecium{41], an extensible operating code generator. _For example, the Burrough§ B5000 .[9]
system. The Java Nucleus uses its low-level protectiorfnforced protection through a trusted compiler. It did
domain and memory management facilities and its IPC10t Provide an assembler since it could be used to cir-
for cross domain method invocations. The data iscCUmvent this protection.

shared on demand using virtual memory remapping. Over the years these integrated systems have lost
When the data contains pointers to other data elementgopularity in favor of time-shared systems with a pro-
they are transparently shared as well. The garbage cokess protection model. These systems provide better
lector, which is a part of the Java Nucleus, handlessecurity and fault isolation by using hardware

For an efficient implementation of our JVM we

separation between untrusted processes and controlling, 24, 28, 33]. This makes the tight integration of mul-

the communication between them. A side effect of thistiple protection domains feasible. Another advantage
separation is that sharing is much harder and more ineff using an extensible kernel is that they tend to be sev-
ficient. eral orders smaller than traditional kernels. This is a

The primary reasons why the transparent imegra_desirable property since the kernel is part of the TCB.

tion of a process protection model and a programming For a programming language to benefit from
language are difficult are summarized in table 1. Thehardware separation it has to exhibit a number of
key problem is their lack of a common naming schemerequirements. The first one is that the language must
In a process model each process has its own virtuatontain a notion of a unit of protection. These units
address space, requiring techniques like pointer swizform the basis of the protection system. Examples of
zling to translate addresses between different domainghese units are classes, objects, and modules. Each of
Aside from the naming issues, the sharing granularity igshese units must have one or more interfaces to commu-
different. Processes can share coarse grained pagescate with other units. Furthermore there needs to be
while programs share many small variables. Reconcil-non-language reasons to separate these units, like run-
ing the two as in distributed shared memory systemsning multiple untrusted applets simultaneously on the
[27] leads to the undesirable effects of false sharing osame system. The last requirement is that the language
fragmentation. Another distinction is the unit of pro- needs to use a typed garbage collection system rather
tection. For a process this is an protection domain, fothan programmer managed dynamic memory. This
programs it is a module, class, objeetc. Finally, requirement allows a third party to manage, share and
processes use rudimentary IPC facilities to communi+elocate the memory used by a program.

cate that can send and receive blocks of data. Programs |, this paper we concentrate on the integration of

on the other hand use procedure calls and memory repramecium and Java. While both fulfill the require-

erences. ments listed above, the techniques are applicable to
In order to integrate a process protection modelother operating systems and programming languages.
and a programming language we need to adapt some of
:jhe _key process abstractpns. Adapting them is hard t%_ Separation of Concerns
0 in a traditional operating system because they are
hardwired into the system. Extensible operating sys- The goal of our secure JVM is to minimize the
tems on the other hand provide much more flexibility trusted computing base (TCB) for a Java run-time sys-
(e.g.,Paramecium, OSKit [19], L4/LavaOS [28], ExOS tem. For this it is important to separate security con-
[15], and SPIN [6]). For example, in our system the cerns from language protection concerns and establish
Java Nucleus acts as a special purpose kernel for Javghat type of security enforcement has to be done at
programs. It controls the protection domains that con-compile time, loading time, and run time.

tain Java programs, creates memory mappings, handles At compile time the language syntax and seman-
all protection faults for these domains and controlstic rules are enforced by a compiler. This enforcement
cross protection domain invocations. These functionsensures valid input for the transformation process of
are hard to implement on a traditional system butsoyrce code into byte codes. Since the compiler is not
straightforward on an extensible operating system. Atrysted the resulting byte codes cannot be trusted and

second enabling feature of extensible operating systemgerefore we can not depend on the compiler for secu-
is the dramatic improvement in cross domain transfefity enforcement.

cost b eliminatin unnecessar abstractions . .
y 9 y At load time a traditional JVM loads the byte

codes and relies on the byte code verifier and various

Process Protection | Programming run-time checks to enforce the Java security guarantees.

Model Language As discussed in the introduction, we do not rely on the
Name space disjoint single Java byte code verifier for security for its size, com-
Granularity pages variables plexity, and track record. Instead we aim at minimizing
Unit protection domain | class/object the TCB and use hardware fault isolation between
Communication| 1PC callimemory groups of classes and their object instances and control

access to methods and state shared between them. A
Table 1. Process protection modes.programming language. Separate security policy defines which classes are
grouped together in a single protection domain and
which methods they may invoke on different protection
domains. It is important to realize that all classes

within a single protection domain have the same trusbe obtained by dereferencing the pointers that are con-
level. Our system provides strong protection guarantained in the cell of which the reference is passed.
tees between different protection domains, inter- Capabilities can be used to implement the notion of
domain protection. It does not enforce intra-domainleast privilege but suffer from the classical confinement
protection, this is left to the run-time system if desir- and revocation problem. Solving these is straightfor-
able. This does not constitute a breakdown of securityvard since the Java Nucleus acts as a reference moni-
of the system. It is the policy that defines the security.tor. However, this violates the Java language trans-
If two classes that are in the same domiain,have the parency requirement (see section 8).

same trust level, misbehave with respect to one another Our system does not depend on the Java security

this clearly constitutes a failure in the policy specifica- foa1res such as byte code verification, discretionary
tion. These two classes should not have been in thg.casq control through the security manager, and its
same protection domain. type system. We view these as language security mea-

The run-time security provided by our JVM con- sures that assist the programmer during program devel-
sists of hardware fault isolation among groups ofopment and they should not be confused or combined
classes and their object instances by isolating them intavith system security measures. The latter isolates and
multiple protection domains and controlling access tomediates access between protection domains and
methods and state shared between them. Each securitgsources; these measures are independent of the lan-
policy, a collection of permissions and accessible sysguage. However, integrating an operating system style
tem resources, defines a protection domain. All classeprotection with the semantic information provided by
with the same security policy are grouped into the samehe language runtime system does allow finer grained
domain and have unrestricted access to the methodsrotection and sharing than is possible in contemporary
and state within it. Invocations of methods in other systems.

domains pass through the Java Nucleus. The Java The security provided by our JVM is defined in a

Nucleus is a trusted component of the sys_tem ar‘%ecurity policy. The elements that comprise this policy
enforges acqess control based on the se_curlty pOIIC)€\re listed in table 2. They consist of a set of system
associated with the source and target domain. resources available to each protection domain, classes
The Java Nucleus consists of four components: avhose implementation is shared between multiple
class loader, a garbage collector, a thread system, andomains, object instance state that is shared, and access
an IPC component. The class loader loads a new classpntrol for each cross domain method invocation.
translates the byte codes into native machine codes, and 114 first policy element is a per method access

deposits them into a specified protection domain. Th&onio| for cross protection domain invocations. Each

garbage collector allocates and collects memory Ovep,athod has associated with it a list of domains that can
multiple protection domains, assists in sharing memory,oke jt. If the invocation target is not in this set,

among them, and implements memory resource control,..oss s denied. Protection is between domains, not

The thread system provides the Java threads of contrgliihin domains, hence there is no access control for
and maps them directly onto Paramecium threads. Th@&,othod invocations within the same domain

IPC component implements cross protection domain

invocations, access control, and CPU resource usage |0 reduce the number of cross protection domain
control. calls (XMlIs) the class text (instructions) can be shared

between multiple domains. This is analogous to text

Th_e JVM's trust modelli(e., what is included in sharing inUNIX, where the instructions are loaded into
the minimal trusted computing base) depends on the

correct functioning of the garbage collector, IPC com- : _
ponent, and thread system. We do not depend on the | Granularity | Mechanism

correctness of the byte code translator. When the byte | Method Invocation access control
code translator is trusted to separate executable content | cjass Instruction text sharing between domains
from data certain optimizations are possible. These are [cjass Object sharing between domains
described in section 5.2. Reference Opaque object handle

References to memory cells (primitive types or System Paramecium name space per domain
objects) act as capabilities [12] and can be passed to
other protection domains as part of a cross domain Table 2. Security policy elements.

method invocation (XMI) or object instance state shar-
ing. Passing an object reference results in passing the
full closure of the reference. That is, all cells that can

memory only once and mapped into each domain thaare considered policy errors. The offending applet
uses it. This reduces memory requirements. In ourshould not have been given access to the mutex.

case it eliminates the need for expensive XMIs. The

object instance state is still private to each domain. A. Paramecium

Object instance state is transparently shared

. ; Paramecium [41] is an extensible object-based
between domains when references to it are passed OVEI - rating svstemn for building application-specific oper-
XMls or when an object inherits from a class in a dif- b g sy g app P P

ferent protection domain. Which objects can be passeéltlng systems._ It _conS|st of a protected anq trusted
L nanokernel which implements only those services that
between domains is controlled by the Java programs

and not by the JVM. Specifying this as part of the cannot be moved into the application protection domain

security policy would break the Java language trans_Wlthout jeopardizing the system’s integrity. All other

; . ~system components, like thread packages, device
parency requirement. Per-method access control 9V€erivers, and virtual memory implementations reside
the JVM the opportunity to indirectly control which '

outside this nucleus.
references are passed.

. . . The kernel provides three basic services which
In circumstances where object instance state

L . all use a protection domain as their unit of granularity.
sharing is not desirable a class can be marked as nogs P 9 Y

" ; : hese services are: event management, memory man-
sharable for a specified domain. Object references o
. : . a{gement, and name space management. Each resource
this class can still be passed to the domain but canng

be dereferenced by it. This situation is similar to managed by these services is identified by a capability.
client/server mechanisms where the reference acts as an The first basic service provided by the kernel is

opaque object handle. Since Java is not a real objecevent management. Paramecium uses preemptive
oriented language, it allows clients to directly accessevents for handling interrupts, traps, and interprocess
object state, this mechanism is not transparent for somgommunication. Associated with each event is a han-
Java programs. dler which is executed when the event is raised. A han-

. . dler consists of a protection domain identifier, the
Fine grained access control over the system

resources is provided by the Paramecium name s aaddress of a call-back function, and a stack pointer.
b y P (ﬁaising an event causes control to be transfered to the

mechanism. Ifa service name is notin the name SPaCRandler specified by the protection domain identifier

of a protection domain, that domain cannot get access : . o
. .—and call-back function using the specified handler
to the service. The name space for each protection

- stack. The event service also has provisions for the
domain is constructed and controlled by our Javah .) .
Nucleus. andler to determine the caller's domain.

To reduce the number of XMls the classes with. The second basic service provided by the kernel

the same security policy are grouped into the same pro'-S memory management. This service manages physi-

tection domain. The number of XMIs can be further cal and wrtual_memory. Th? physical memory service
. . . . allocates physical pages which are then mapped onto a
reduced by sharing the instruction text of class imple-. . .
) . . virtual memory address using the virtual memory ser-
mentations between different domains. . . o o :
_ . vice. Each physical page is identified by a generic sys-
Table 3 summarizes the potential threats ourtem-wide resource identifier. Shared memory is imple-
JVM can handle, together with their primary protection mented by passing this physical page resource identifier
mechanism. Some threats, such as covert channels, agg another protection domain and having it map it into
not handled in our system. Other threats, such as denigs virtual address space.

of service attacks caused by improper locking behavior
Paramecium implements multiple protection

domains. Each protection domain is a mapping of vir-

Threat Protection mechanism tual to physical pages together with a set of domain
Fault isolation Protection domains specific events. These domain events are raised on, for
Denial of service Resource control example, division by zero traps when this particular

Forged object references Garbage collector domain is in control.

lllegal object invocations| XMl access control The protection domain’s virtual memory space is
managed by the virtual memory service. This service
Table 3. Threat model. implements functions to map physical pages onto vir-

tual addresses, set virtual page attributeg,(read-
only, read-write, execute-only), and unmap them. Each

virtual page has associated with it a fault event that igprotection domain the name service automatically
raised, if set, when a fault occurs on an address withifnstantiates proxy interfaces.

that page. These faults include among others: an \yhen a protection domain is created it is passed
instruction access fault when a page is marked as NONka root of its name space. Depending on the names in
executable or a data access fault when a write 0CCUrs i@ shace it can contact external services. For example,
a read-only page. A generic fall back event is raisede file server is known asiservices/fs”. Binding to
when no event is associated with a virtual page. this name and obtaining a file system interface enables
Event handlers for a virtual page fault do not the process to create and delete files by invoking the
need to reside in the same protection domain as the ormaethods from the interface. When the name is not pre-
where the fault occurs. These can be handled by asent in the name space no file system operations are
external process that might, for example, implementpossible. By default protection domains are created
demand paging or, as in our secure JVM, maintain fullwith an empty name space.
control over the protection domains that are executing

Applications that use this kernel are implemented
Java programs.

as and constructed from separate components. One
The last basic service provided by the kernel isexample of a component is Paramecium’s thread pack-
name space management. Paramecium organizes igge. This package provides a priority scheduler and
components into objects and interface references tgupport for migratory threads [18]. Migratory threads
instantiated objects. These are stored in a hierarchicatan migrate from one protection domain to another
name space. Each protection domain has a view of itsvithout actually switching threads or changing the
own subtree of the name space, the kernel addregbiread identifier. This saves a number of context
space has a view of the entire tree including all the subswitches which are required by systems that hand off
trees of different protection domains (see figure 2). work from a thread in one domain to a thread in

Standard operations exist to bind to an existing¬her domain.

object reference, to load an object from the repository,

and to obtain an interface from a given object reference5. Secure Java Virtual M achine
Binding to an object happens at runtime. One would

reconfigure a particular service by overriding its name.

A search path mechanism exists to control groups ofi
overrides. When an object is owned by a different

The Java Nucleus forms the minimal trusted
omputing base (TCB) of our secure JVM. This sec-
on describes the key techniques and algorithms used
by the Java Nucleus.

In short, the Java Nucleus provides a uniform
naming scheme for all protection domains, including

1 Nucleus I

3 T f the Java Nucleus. It provides a single virtual address
| nuckeus o space where each protection domain can have a differ-
3 /[\ /\ : ent protection view. All cross protection domain
Devenss vitual .. monitor nucleus method invocations (XMIs) pass through our Java

[R ' Nucleus which controls access, CPU and memory
' resources. Data is shared on demand between multiple
R je B R [rTmm s . protection domaind,e. whenever a reference to shared
EM‘)% 1 Jnucleus } data is dereferenced. Our Java Nucleus uses shared
3 nucleus devices progran‘ﬁ 3 nucleus services devices programcontexts i memory and runtime reallocation techniques to accom-
o \ IR AY | 1 plish this. Only references passed over an XMl or
[ty monitor + 1 .. thread fs counter fifo mail exec_context
T co T T T PR) object instances whose inherited classes are in different
o e protection domains can be accessed, others will cause
PR S - e i security violations. These protection mechanisms
¢ mai } 1 exec._content ‘ ! depend on our garbage collector to allocate and deallo-
| servces program } pmgrar}] cate typed memory, relocate memory, control memory
b | } | usage, and keep track of ownership and sharing status.
R R e 4 It is possible to use the techniques described
Figure 2. Paramecium name spaces. below to build a secure JVM using an interpreter rather
than a compiler. Each protection domain would then
have a shared copy of the interpreter interpreting the
Java byte codes for that protection domain. We have

not explored such an implementation because of the
obvious performance benefits of executing generated
machine code. 4GB

Mail context

\I

The next subsections describe the key techniques

Run Time Nucleus context

and algorithms in greater detail. 4GB i},/////% gx
RW

5.1. Memory Organization e

The Java Virtual Machine assumes a single gy 0
address space in which references can be passed |~~~
between method invocations. This and Java’s depen- wa;«;"
dence of garbage collection dictated our memory \ * ' Executable content context
organization. RW | 4GB

Inspired by single address space operating sys- .

. . . X Run Time Nucleus

tems [10], we organized memory into a single virtual X | implementation = R
address space. Each protection domain has, depending o \\\\§ RW
on its privileges, a view onto this address space. This &\\\ X
view includes a set of physical memory pages to virtual o | P

mappings together with their corresponding access
rights. A small portion of the virtual address space is

reserved by each protection domain to store per domain - .
specific data. executable code and has the execute privilege associ-

_)) ated with it. Another part contains the stack and data
Central to the protection domain scheme is theang has the read/write privilege. Region 0 is only visi-
Java Nucleus (see figure 3). The Java Nucleus is anal@sie to theexecutable content context and not to theail
gous to an operating system kernel. It manages a Numsontext. Likewise, region 2 is not visible to the
ber of protection domains and has full access to alkyecytable content context. Because of the hardware

memory mapped into these domains and their corrémemory mappings these two contexts are physically
sponding access permissions. The protection domaingeparated.

themselves cannot manipulate the memory mappings or) .
the access rights of their virtual memory pages. The Region 1 is used to transfer data between the two
Java Nucleus handles both data and instruction acceSQNteXts and is set up by the Java Nucleus. Both con-
(i.e, page) faults for these domains. Page faults ard€Xts have access to the data, althoughetieeutable

turned into appropriate Java exceptions when they argontent co'nf[ext has only read access. Violating this
not used by the system. access privilege causes a page (data access) fault to be

i] generated which is handled by the Java Nucleus. It will
For convenience all the memory available to all ty,rp the fault into a Java exception.

protection domains is mapped into the Java Nucleus

with read/write permission. This allows it to quickly) .

access the data in different protection domains5-2. Cross Domain Method Invocations

Because memory addresses are unique and the memory A cross domain method invocation (XMI) mim-

pages are mapped into the Java Nucleus protectiolts a local method invocation except that it crosses a

domain, the Java Nucleus does not have to map or copyrotection domain boundary. A vast amount of litera-

memory as an ordinary operating system kernel. ture exists on low latency cross domain control transfer
The view different protection domains have of [5,24,28]. Our XMI mechanism is loosely based on

the address space depends on the mappings created Bgramecium's system call mechanism which uses

the Java Nucleus. Consider figure 3. A mail reader?VG”tS- .The following example illustrates the steps

application resides in the context nanmeall. For effi- involved in an XMI.

ciency reasons, all classes constituting this application Consider the protection domains A and B and a

reside in the same protection domain; all executablenethod M which resides in domain B. When A calls

content embedded in an e-mail message is executed inraethod M an instruction fault will occur since M is not

separate domain, sayecutable content. In this exam- mapped into context A. The fault causes an event to be

ple memory region O is mapped into thentext raised in the Java Nucleus. The event handler for this

executable content. Part of this memory contains fault is passed two arguments: the fault address (

Figure 3. Java nucleus memory map.

method address) and the fault locatibe.(call instruc- the method, the Java Nucleus adjusts the thread priority
tion). Using the method address, the Java Nucleusccording to the priority of the destination protection
determines the method information which contains thedomain. The original thread priority is restored on the
destination domain and the access control informationmethod return. Setting the thread priority enables the
Paramecium’s event interface is used to determine thdava Nucleus to control the CPU resources used by the
caller domain. Based on this information, an accesgestination protection domain.

decision is made. If access is denied, a security excep-
tion is raised in the caller domain.

Local method invocations use the same method
call trampoline as the one outlined above, except that
Using the fact that method information is static the Java Nucleus does not intervene. This is because
and that domain information is static for code that isthe method address is available locally and does not
not shared, we can impre the access control check generate a fault. The uniform trampoline allows the
process. Rather than looking up this information, theJava Nucleus to share class implementations among
Java Nucleus stores a pointer to it in the native codenultiple protection domains by mapping them in. For
segment of the calling domain. The information canexample, simple classes like thava.lang.String or
then be accessed quickly using a fixed offset and faulfava.lang.Long can be shared by all protection domains
location parameter. Method calls are achieved througtwithout security implications. Sharing class implemen-
special trampoline code that embeds these two valuesations reduces memory use and improves performance
More precisely, the call trampoline code fragment inby eliminating XMls. XMIs made from a shared class
context A for calling method M appears as (in SPARCdo not have their caller domain set, since there can be
[38] assembly): many caller domains, and require the Java Nucleus to
call M call method M use the system authentication interface to determine the

mv %0, %0 nil object caller.
b, a next _instr branch over

.long <caller donain> JNucl eus data .
.long <nethod info> JNucl eus data 5.3. Data Sharing

next _instr: . .
- Passing parameters, as part of a cross domain

The information stored in the caller domain must méthod invocation (XMI), requires little more than
be protected from tampering. This is achieved by map-copying them by value and marking the reference vari-

ping all executable native code as execute only; 0n|yables as exported roots. Subsequent accesses to these
the Java Nucleus has full access to it. references will cause a protection fault unless the refer-
h . df ._ence is already mapped in. The Java Nucleus, which
When access is granted for an XMI, an event 'Shandles the access fault, will determine whether the

associated with the method if one is not already pre'faulting domain is allowed access to the variable refer-

sent. Then the arguments are COp'Ed. into the register nced. If allowed, it will share the page on which the
and onto the event handler stack as dictated by the call-

. . I . ariable is located.

ing frame convention. No additional marshalling of the

parameters is required. Both value and reference Sharing memory on a page basis traditionally
parameters are passed unchanged. Using the method&ads to false sharing or fragmentation. Both are
type signature to identify reference parameters, weclearly undesirable. False sharing occurs when a vari-
mark data references as exported roats, garbage able on a page is mapped into two address spaces and
collection roots). Instance data is mapped on demandéhe same page contains other unrelated variables. This
as described in the next section. Invoking a method or¢learly violates the confinement guarantee of the pro-
an object reference causes an XMI to the methodection domain. Allocating each variable on a separate

implementation in the object owner's protection Page results in fragmentation with large amounts of
domain. unused physical memory. To share data efficiently

between different address spaces, we use the garbage
collector to reallocate the data at runtime. This pre-
vents false sharing and fragmentation.

Virtual method invocations, where a set of spe-
cific targets is known at compile-time but the actual tar-
get only at runtime, require a lookup in a switch table.
The destinations in this table refer to call trampolines Consider figure 4 which shows the remapping
rather than the actual method address. Each call tranfrocess to share a varialdebetween themail context

po"ne consists of the code fragment described above. and theexecutable content context. In order to relocate
this variable we use the garbage collector to update all

: U_smg m!gratory threads,_ an XMl e_xtends the the references. To prevent race conditions the threads
invocation chain of the executing thread into another

. : - . within or entering the contexts that hold a reference to
protection domain. Before raising the event to invoke

a are suspended (step 1). Then the datas copied This placeholder is registered with the garbage collec-
onto a new memory page (or pages depending on itsor as a reference location.

size) and referred to a@. The other data on the page Data remapping is not only used to share refer-

is not copied, so there is no risk of false sharing. They,qq passed as parameters over an XMI, but also to
garbage collector is then used to update all referenceg,are ghject instance data between sub and superclasses
that point toa into references that point @ (step 2). j, gifferent protection domains. Normally, object
The page holding’ is then mapped into the other con- jnsiances reside in the protection domain in which their

text (step 3) Finally, the threads are resumed, and NeWjas5 was loaded. Method invocations on that object
threads are allowed to enter the unblocked protectio,, . different protection domains are turned into

domains (step 4). The garbage collector will eventuaIIyXMls_ In the case of an extendeice(inherited) class

deletea since it does not have any references to it. the object instance state is shared between the two pro-
Other variables that are shared between the samiection domains. This allows the sub and superclass

protection domains are tagged onto the already shareghethods to directly access the instance state rather than

pages to reduce memory fragmentation. The processapturing all these accesses and turning them into

outlined alove can be applied recursively. That is, XMls. To accomplish this our JVM uses the memory

when a third protection domain needs access to @emapping technique outlined above.

shared variable the variable is reallocated on a page that

) 5 The decision to share object instance state is
is shared between the three domains.

made at the construction time of the object. Construc-
In order for the garbage collector (see sectiontion involves calling the constructor for the class fol-
5.4) to update the cell references it has to be exactowed by the constructors for its parent classes. When
That is, it must keep track of the cell types and of referthe parent class is in a different protection domain the
ences to each cell to distinguish valid pointers fromconstructor invocation is turned into an XMI. The Java
random integer values. The updating itself can eitheMNucleus performs the normal access control checks as
be done by a full walk over all the in-use memory cellsfor any other XMI from a different protection domain.
or by arranging each cell to keep track of the objectsThe object instance state, that is passed implicitly as the
that reference it. The overhead of the relocation isfirst argument to the constructor call, is marked as an
amortized over subsequent uses. exportable root. The mechanisms involved in marking

Besides remapping dynamic memory, the mechaMeMOry as an exportable root are discussed in the next

nism can also be used to remap static (or class) datg€Ction-

Absolute data memory references can occur within the Java uses visibility rulesi.¢., public and pro-

native code generated by the just-in-time compiler.tected to control access to parts of the object instance

Rather than updating the native code on each relocastate. Enforcing these rules through memory protection

tion, the just-in-time compiler generates an extra indi-is straightforward. Each object’s instance state is parti-

rection to a placeholder holding the actual referencetioned into a shared and non-shared part. Only the
shared state can be mapped.

Mail Context Executable content context An example of state sharing between super and
4GB 468 subclass is shown in figure 5. Here the clasklap
and all its instances reside in protection domain A.

Protection domain B contains all the instances of the
b|c classDraw. This class is an extension of tB&Map
class which resides in a different protection domain.
When a new instance @fraw is created thé®raw con-

1:suspen hreads 7ot structor is called to initialize the class. In this case the
3: map n other context constructor forbraw is empty and the constructor for
O y the superclassitMap is invoked. Invoking this con-
structor will cause a transfer into the Java Nucleus.
o 0 The Java Nucleus first checks the access permis-
sion for domain B to invoke theitMap constructor in

4 esume teads domain A. If granted, the object pointer is marked as

Figure 4. Data remapping between address spaces. an exportable root and passed as the first implicit
parameter. Possible other arguments are copied as part
of the XMI mechanism and the remote invocation is

The implementation has to be conservative with
respect to references passed as arguments to cross
domain method invocations and has to unmap them
whenever possible to restrict their shared access.
protected BitMp() { Rather than unmapping at the invocation return time,

bitmap = new byte[N 8][M; which would incur a high call overhead, we defer this
} until garbage collection time. The garbage collector is
aware of shared pages and determines whether they are

class BitMap { // Domain A
private static int N=8, M= 8;
protected byte bitmap[][];

Pret Ef: ing/gi/ g] [55; (i| Zt 1):<(;%) ?') t reachable in the context they are mapped in. If they are
} ' unreachable, rather than removing all the bookkeeping
} information the page is marked invalid so it can be

remapped quickly when it is used again. This does not
_ _ o _ work very well if the page contains two variables of
public void point(int x, int y) { . .
super . set (X, y): which only one is passed by reference. In that case a
} new remapping is required. To reduce the amount of
remapping, separate pages are used for shared instance

class Draw extends BitMap { // Domain B

public void box(int x1, int yi, state and state passed as a reference to a cross domain
int x2, int y2) { invocation.
for (int x = x1; x < X2; X++)

for (int y =yl y <y2 y++)

bi tmap[x/ 8] [y] | = 1<<(x%); 5.4. Garbage Collection

} Java uses garbage collection [25] to reclaim
unused dynamic memory. In our design we use a non-
collecting incremental traced garbage collector which is
part of the Java Nucleus. The garbage collector is
performed. TheBitMap constructor then assigns a new responsible for collecting memory in all the address
array to thebitmap field in theDraw object. Since the SPaces it manages. A centralized garbage collector has
assignment is the first dereference for the object it willthe advantage that it is easier to share memory between
be remapped into domain A. When the creator of thedifferent protection domains and to enforce central
Draw object callsbox and dereferencestmap it will be access and resource control. An incremental garbage
remapped into domain B (because the array is reacH:ollector has better real time properties than non-incre-
able from an exported root cell to domain A; see nextmental collectors.

section). Further calls taox do not require this remap- More precisely, the garbage collector for our
ping. A call topoint results in an XMl to domain A secure Java machine must have the following proper-
where the superclass implementation resides. Since thges:

Draw object was already remapped by the constructor it (1) Collect memory over multiple protection

is does not require any remapping. domains and protect the bookkeeping informa-
tion from the potentially hostile domains.

Figure5. Simple box drawing class.

Whenever a reference is shared among address
spaces all references that are reachable from it are als?z)
shared and will be mapped on demand when referred
to. This provides full transparency for Java programs
which assume that a reference can be passed among all
its classes. A potential problem with on-demand
remapping is that it dilutes the programmers’ notion of (3)

Relocate data items at runtime. This property
is necessary for sharing data across protection
domains. Hence, we use an exact garbage col-
lector rather than a conservative collector [8].

Determine whether a reference is reachable

what is being shared over the life-time of a reference.
This might obscure the security of the system. To
strengthen the security, an implementation might
decide not to support remapping of objects at all or pro- (4)
vide a proactive form of instance state sharing. Not
supporting instance state sharing prevents programs
that use the object oriented programming model from
being separated into multiple protection domains. For
example, it precludes the isolation and sharing of the
AWT package in a separate protection domain.

from an exported root. Only those variables
that can be obtained via a reference passed as
an XMI argument or instance state are shared.

Maintain, per protection domain, multiple
memory pools with different access attributes.
These are execute only, read-only, and read-
write pools that contain native code, read-only
and read-write data segments respectively.

(5) Enforce resource control limitations per protec-
tion domain.

As discussed in the previous section all protec-
tion domains share the same virtual address map albeit
with different protection views of it. The Java Nucleus
protection domain, which contains the garbage collec-

tor, has full read-write access to all available memory.

Hence the ability to collect memory over different
domains is confined to the Java Nucleus.

A key feature of our garbage collector is that it
integrates collection and protection. Classical tracing
garbage collection algorithms assume a single address
space in which all memory cells have the same access
rights. In our system cells have different access rights
depending on the protection domain accessing it and
cells can be shared among multiple domains. Although
access control is enforced through the memaory protec-
tion hardware, it is the garbage collector that has to cre-
ate and destroy the memory mappings.

The algorithm we use (see the pseudo-code in

COLLECT():

for (5;5) {
for (d in Donains)
MARK(d)
SVEEP() ;
}

(d: Dommin): // marker phase
color[d, (exported) root set] = grey
do {
dirty = fal se
for (c in Cells) {
if (color[d, c] == grey) {
color[d, c] = black
for (h in children[c]) {
color[d, h] = grey
i f (EXPORTABLE(c, h))
export[d, h] |= export[d,c]
}
dirty = true
}

}
} while (dirty)

figure 6) is an extension of a classic mark-sweep algoSVEEP(): // sweeper phase

rithm which runs concurrently with the mutators [13].
The original algorithm uses a tricolor abstraction in

for (c in Cells) {
used = fal se
for (d in Domains) {

which all cells are painted with one of the following if (color[d, c] == white) {
colors: black indicates that the cell and its immediate export[d, c] = nil
descendents have been visited and are inguegindi- UNMAP(d, ¢)
cates that the cell has been visited but not all of its boelse
. . used = true
descendents, or that its connectivity to the graph has color[d, ¢] = white
changed; andvhite indicates untraced.¢., free) cells. }
The garbage collection phase starts with all cells col- if (used == fal se)
ored white and terminates when all traceable cells have DELETE(c)
been painted black. The remaining white cells are free }
and can be reclaimed. ASSIG\(a, c): // pointer assignment
*a =¢

To extend this algorithm to multiple protection
domains we associate with each cell its owner domain
and an export set. An export set denotes to which
domains the cell has been properly exported. Garbage
collection is performed on one protection domain at a

time, each keeping its own color status to assist théXPORT(d: Domain, c:

marking phase. The marking phase starts by coloring
all the root and exported root cells for that domain as
grey. It then continues to examine all cells within that
domain. If one of them is grey it is painted black an
all its children are marked grey until there are no grey
cells left. After the marking phase, all cells that are
used by that domain are painted black. The virtua

d = current domain

export[d,c] |= export[d,a]

if (color[d, c] == white)
color[d, c] = grey

Cell):
color[d,c] = grey

export[d,c] |= owner(c)
export[owner(c),c] |=d

d Figure 6. Multiple protection domain garbage collection.

Cells are shared between other

idomains by using the remapping technique described in

/] export object

pages belonging to all the unused white cells ardhe previous section. In order to determine whether a

unmapped for that domain. When the cell is no |Ongerprotection domaind h_as access to_ a cetl the Java
used in any domain it is marked free and its storagditCleus has to examine the following three cases: The
space is reclaimed. Note that the algorithm in figure 6l1vial case is where the owner ofis d. In this case

is a simplification of the actual implementation, many the cell is already mapped intp _dom_ain In the sec-
improvements (such as [14,26,36]) are possible. pond case the owner ofhas explicitly given access tb

correctness proof of the algorithm follows from [13]. as part of an XMI parameter or instance state sharing or

is directly reachable from such an exported root. Thispage contains one or more cells where for each cell the
is reflected in the export information kept by the ownercontent is preceded by a header pointing to the public
of c. Domaind has also access to celif there exists information. The private information is obtained by
a transitive closure from some exported roatwned hashing the page frame number to get the per page
by the owner ot to some domaiz. From this domain information which contains the private cell data. The
z there must exist an explicit assignment which resultedprivate cell data contains pointers to the public data for
in ¢ being inserted into a data structure ownedilyr all protection domains that share this cell. When a cell
an XMI from the domaingz to d passing celc as an is shared between two or more protection domains the
argument. In the case of an assignment the data strupointer in the header of the cell refers to public cell
ture is reachable from some other previously exportednformation stored in the private domain specific por-
root passed by to z. To maintain this export relation- tion of the virtual address space. The underlying physi-
ship each protection domain maintains a private copy otal pages in this space are different and private for each
the cell export set. This set, usually nil and only protection domain.

needed for shared memory cells, reflects the protection
domain’s view of who can access the cell. A cell's
export set is updated on each XMle(export) or
assignment as shown in figure 6.

To amortize the cost of garbage collection, our
implementation stores one or more cells per physical
memory page. When all the cells are free the page is
added to the free list. As stated earlier, each protection
Some data structures exist prior to, for example,domain has three memory pools: an execute-only pool,
an XMI passing a reference to it. The export set infor-a read-only pool, and a read-write pool. Cells are allo-
mation for these data structures is updated by theated from these pools depending on whether they con-
marker phase of the garbage collector. It advances th&ain executable code, constant data, or volatile data.
export set information from a parent to all its siblings When memory becomes really tight, pages are taken
taking the previously mentioned export constraints intofrom their free lists, their virtual pages are unmapped,
account. and their physical pages returned to the system physical
Maintaining an export set per domain is neces-Page pool. This allows them to be re-used for other

sary to prevent forgeries. Consider a simpler design irflomains and pools.

which the marker phase advances the export set infor- Exposing the color and export set fields requires
mation to all siblings of a cell. This allows the follow- the garbage collector to be very conservative in han-
ing attack where an adversary forges a reference to adling these user accessible data items. It does not,
object in domaird and then invokes an XMI td pass-

ing one of its data structures which embeds the forged

pointer. The marker phase would then eventually mark /
the cell pointed to by the forged reference as exported /
to d. By maintaining for each cell a per protection 4KB page hash(cell /// cell holder

domain export set forged pointers are impossible. ‘ o T oumer

Another reason for keeping a per protection g header —— ;‘ cell
domain export set is to reduce the cost of a pointer
assignment operation. Storing the export set in the Java
Nucleus would require an expensive cross protection ; ‘ |
domain call for each pointer assignment, by keeping it ‘ j o
in user space this can be eliminated. Besides, the ‘ I o !
export set is not the only field that needs to be updated. P L \
In the classic Dijkstra algorithm the cell’s color infor- ' Java Nucleus data
mation needs to be changedgiey on an assignment B \\
(see figure 6). Both these fields are therefore kept in color \

user space. B export set \

The cell bookkeeping information consists of Shareduserdata. cel \

three parts (see figure 7). The public part contains the : Private user data N
cell contents and its per domain color and export infor-
mation. These parts are mapped into the user address
space, where the color and export information is stored
in the per domain private memory segment (see 5.1).
The nucleus part is only visible to the Java Nucleus. A

Figure 7. Garbage collection cell structure.

however, reduce the security of our system. The user The trusted computing base (TCB) of our system

application can, at most, cause the marker phase to loog formed by the Paramecium kernel and the Java
forever, cause its own cells that are still in use to beNucleus. The size of our Paramecium kernel is about
deallocated, or hang on to shared pages. These prod1000 lines of commented header files, and

lems can be addressed by bounding the marker loog++/assembler code. The current Java Nucleus is
phase by the number of in-use cells. Deleting cells thaabout 22000 lines of commented header files and C++
are in use will cause the program to fail eventually, andcode. This includes the JIT component, threads, and
hanging on to shared pages is not different from thenuch of the Java run-time support. In a system that
program holding on to the reference. supports text sharing the Java Nucleus can be reduced

When access to a cell is revoked, for example agonsiderably.

a result of an XMl return, its color is marked grey and A typical application of our JVM is that of a web

it is removed from the receiving domain’s export set. server written in Java that supports servlets, like W3C's

This will cause the garbage collector to reexamine theligSaw. Servlets are Java applets that run on the web
cell and unmap it during the sweep phase when therserver and extend the functionality of the server. They

are no references to it from that particular domain. are activated in response to requests from a web

To relocate a reference the Java Nucleus forcegro_Wser and act mainly as a replacement for cal
the garbage collector to start a mark phase and updat%:”pts' Servlets run on behalf of a _remote client and
the appropriate references. Since the garbage collectd@ Pe loaded from a remote location. They should

is exact it only updates actual object references. Antherefore be kept isolated from the rest of the web

alternative design for relocation is to add an extra indj-S€"Ver:

rection for all data accesses. This indirection elimi- Our test servlet is thenoopServlet that is part of
nates the need for explicit pointer updates. Relocatinghe Sun’s Java servlet development kit [37]. This
a pointer consists of updating its entry in the table.servlet inherits from a superclastpServiet which
This design, however, has the disadvantage that iprovides a framework for handling HTTP requests and
imposes an additional cost on every data access rathémrning them into servlet method calls. The
than the less frequent pointer assignment operation anginoopServlet implements the GET method and returns
prohibits aggressive pointer optimizations by smarta web page containing a description of the browser
compilers. capabilities. This page is served to the client by a sim-

The amount of memory per protection domain is ple web server which is implemented by HtgServiet

constrained. When the amount of assigned memory iSUPerclass. For our test the web server and all class
exhausted an appropriate exception is generated. Thiraries are loaded in protection domaws, the
prevents protection domains from starving otherS€rvietimplementation is confinedserviet.
domains of memory. The WS domain makes 2 calls into thgerviet
domain, one to the constructor fBmnoopServiet object
: and one to thedoGet method implementing HTTP
6. Experience GET. This method has two arguments, the serviet
Our prototype implementation is based on Kaffe, request and reply objects. Invoking methods on these
a freely available JVM implementation [40]. We used causes XMIs back into th&S domain. In this test a
its class library implementation and JIT compiler andtotal of 217 XMIs occurred. Many of these calls are to
we reimplemented the IPC, garbage collector, andruntime classes such gavafio/Printwriter (62) and
thread subsystems. Our prototype implements multiplgaya.lang.StringBuffer (101). In an implementation that
protection domains and data sharing. For conveniencesupports text sharing these calls would be local proce-
the Java Nucleus contains the JIT compiler and all thejyre calls and only 33 calls would require an actual
native class implementations. It does not yet providexm| to the web server. Many of these XMls are the
support for text sharing of class implementations andresult of queries from the servlet to the browser.
has a simplified security policy description language. The number of objects that are shared and there-

dC(l)JrrT:Zir:]tlsy, b theex Sli?:(i:tllmt)énuprglef;tindeflﬂzs Clgngscnt?:;tfore relocated between theS andServlet domains are
Y explcitly 9 47. Most of the relocated objects are static strings (45)

comprise it and the access permissions for each individ- hich are used as arguments to print the browser infor-
ual method. The current garbage collector is not exaC¥r¥1ation These too can be eliminated b . s
for the evaluation stack and uses a weaker form to - T oy using text shar
propagate export set information. ing since the underlying |mplemen'Fat|on of print uses a

single buffer. In that case only a single buffer needs to

be relocated. The remaining relocated objects are the

result of the theHttpServlet class keeping state infor- system level. For their work they trust the byte code
mation. verifier.

The cost of an XMI from th&/S domain to the
Servlet domain is about 1isec This high cost can be 8. Conclusions
purely attributed to the cost of a Paramecium’s IPC on
a 50 MHz SPARC, which is wsec The overhead for
Java XMls is negligible.

The security provided by our JVM consists of
separate hardware protection domains, controlled
access between them, and system resource usage con-
trol. An important goal of our work was to maintain

7. Related Work transparency with respect to Java programs. Our sys-
tem does not, however, eliminate covert channels or

Our system is the first to use hardware fault isola -) ¢
solve the capability confinement and revocation prob-

tion on commodity components to supplement lan-
guage protection by tightly integrating the operating em.

system and language runtime system. In our design we The confinement and revocation problem are
concentrated on Java, but our techniques are applicableherent to the Java language. A reference can be
to other languages as wek.g, SmallTalk [20] and passed from one domain to another and revocation is
Modula3 [31]) provided they use garbage collection, entirely voluntary. These problems can be solved in a
have well defined interfaces, and distinguishable unitgather straightforward manner, but they do violate the
of protection. A number of systems provide hardwaretransparency requirement. For example, confinement
fault isolation by dividing the program into multiple can be enforced by having the Java Nucleus prohibit
processes and use a proxy based system like RMI dhe passing of references to cells for which the calling
CORBA, or a shared memory segment for communica-domain is not the owner. This could be further refined
tion between them. Examples of these systems are thigy requiring that the cell owner should have permission
J-Kernel [23] and cJVM [1]. This approach has a num-to call the remote method directly when its data is
ber of drawbacks that are not found in our system: passed over it by another domain. Alternatively, the
owner could mark the cells it is willing to share or
maintain exception lists for specific domains. Revoca-
tion is nothing more that unmapping the cell at hand.

(1) Most proxy mechanisms use marshalling to
copy the data. Marshalling provides copy
semantics which are incompatible with the
shared memory semantics required by the Java In the design of our JVM we have been very
language. careful to delay expensive operations until they are

in marshalling and needed. An example of this is the on-demand remap-

gping of reference values, since most of the time refer-
ence variables are never dereferenced. Another goal

.] was to avoid cross-protection domain switches to the

(3) Proxy techniques are based on interfaces anqaya Nucleus. The most prominent example of this is
are not suited for other communication mecha- yinter assignment which is a tradeoff between mem-
nisms such as instance state sharing. The lattefy space and security. By maintaining extra, per pro-
is important for object oriented languages. tection domain, garbage collector state we perform

(4) Proxy mechanisms usually require stub generapointer assignments within the same context, thereby
tors to generate proxy stubs and marshallingeliminating a large number of cross domain calls due to
code. These stub generators use interface deficommon pointer assignment operations. The amount of
nitions that are defined outside the language oistate required can be reduced by having the compiler
require language modifications to accommodateproduce hints about the potential sharing opportunities
them. of a variable.

(5) Itis harder to enforce centralized resource con- In our current JVM design, resources are allo-
trol within the system because proxy mecha-cated and controlled on a per protection domain basis,
nisms encourage many independent instancesis in an operating system. While we think this is an
of the virtual machine. adequate protection model, it mightope to be too

The work by Baclet. al.[3] and Bernadaét. al coarse grained for some applications and might require

[4] focuses on the resource control aspects of competI-eChanueS as suggested by Batkal. [3].

ing Java applets on a single virtual machine. Their The current prototype implementation shows that
work is integrated into a JVM implementation while it is feasible to build a JVM with hardware separation
our method of resource control is at an operatingwhose Java XMI overhead is small. Many more

(2) The overhead involved
unmarshalling the data is significant compare
to on demand sharing of data.

optimizations, as described in this paper, are possiblée.g.,Paramecium, OSKit [19], L4/LavaOS [28], ExOS
but have not been implemented yet. Most notable is th¢15], and SPIN [6]). Implementing the Java Nucleus on

lack of instruction sharing which can ingwe the per-

a conventional operating system would be considerably

formance considerably since it eliminates the need foharder since the functionality listed ale is inter-
XMls. When these additional optimizations are fac- twined in hard coded abstractions that are not easily
tored in, we believe that a hardware assisted JVM comadapted.

pares quite well to JVM’s using software fault isolation.

The security of our system depends on the cor9. Acknowledgments

rectness of the shared garbage collector. Traditional

JVMs rely on the byte code verifier to ensure heapv\/a”a

integrity and a single protection domain garbage collec-
tor. Our garbage collector allocates memory over mul-
tiple protection domains and cannot depend on th
integrity of the heap. Especially the latter requires
careful analysis of all the attack scenarios. In our
design the garbage collector is very conservative with
respect to addresses it is given. Each address is

We would like to thank Paul Karger and Dan
ch for many helpful discussions; and Charles

Palmer, David Safford, Trent Jaeger, Andy Tanenbaum,
Rajesh Bordewaker, Matthias Kaiserswerth, Wietse
enema, Jonathan Shapiro, Peter Gutmann, Larry
Koved, and the anonymous referees for helpful com-
ments on the paper.

checked against tables kept by the garbage collectdrReferences

itself and the protection domain owning the object toq.
prevent masquerading. The instance state splitting
according to the Java visibility rules prevents adver-

saries from rewriting the contents of a shared object.

Security sensitive instance state that is shared, ané
therefore mutable, is considered a policy error or a pro-
gramming error. 3.

Separating the security policy from the mecha-
nisms allows the enforcement of many different secu-4.
rity policies. Even though we restricted ourself to
maintaining transparency with respect to Java pro-
grams, stricter policies can be enforced. These will
break transparency, but provide higher security. An®>
example of this is the opaque object reference sharing.
Rather than passing a reference to shared object state,
an opaque reference is passed. This opaque referenge
can only be used to invoke methods on, the object state
is not shared and can therefore not be inspected.

The garbage collector, and consequently runtime
relocation, have a number of interesting research quesr
tions associated with them that are not yet explored.
For example, the Java Nucleus is in a perfect position t@,
make global cache optimization decisions because it
has an overall view of the data being shared and the
XMls passed between domains. Assigning a direction®.
to the data being shared would allow fine grained con-
trol of the traversal of data. For example, a client can
pass a list pointer to a server applet which the servet®
can dereference and traverse but the server can never
insert one of its own data structures into the list. This is
reminiscent of Shapiro’sdiminish-grant model for 11
which confinement has been proven [34].

The Java Nucleus depends on user accessible
low-level operating system functionality that is cur- L
rently only provided by extensible operating systems

Y. Aridor, M. Factor and A. Teperman, “cJVM: a Single
System Image of a JVM on a ClustePyoc. of the 1999
IEEE International Conference on Parallel Processing
(ICPP’99), Aizu-Wakamatsu City, Japan, Sep. 1999, 4-11.

K. Arnold and J. GoslingThe Java Programming Language
Second EditionAddison Wesley, Reading, MA, 1997.

G. Back, P. Tullman, L. Stoller, W. C. Hsieh and J. Lepreau,
“Java Operating Systems: Design and Implementation”, Tech.
Rep. UUCS-98-015, Aug. 1998.

P. Bernadat, D. Lambright and F. Travostino, “Towards a
Resource-safe Java for Service Guarantees in Uncooperative
Environments”, Proc. of the 19th IEEE Real-time Systems
Symposium (RTSS'98)ladrid, Spain, Dec. 1998.

B. N. Bershad, T. E. Anderson, E. D. Lazowska and H. M.
Levy, “Lightweight Remote Procedure CalPyoc. of the 12th
Symposium on Operating System Principles, ACM SIGOPS 23
5 (Dec. 1989), 102-113.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker and C. Chambers, “Extensibility, Safety
and Performance in the SPIN Operating SystéPndc. of the
15th Symposium on Operating System Principles, ACM
SIGOPS 295 (Dec. 1995), 267-284.

B. W. Boehm,Software Engineering Economjd3rentice Hall,
Englewood Cliffs, NJ, 1981.

H. Boehm and M. Weiser, “Garbage Collection in an
Uncooperative Environment”, Software—Practice &
Experience 189 (1988), 807-820.

Burroughs, The Descriptor — a Definition of the B5000
Information Processing SystemBurroughs Corporation,
Detroit, MI, 1961.

J. S. Chase, H. M. Levy, M. J. Feeley and E. D. Lazowska,
“Sharing and Protection in a Single-address-space Operating
System”,ACM Transactions on Computer Systems4L@\ov.
1994), 271-307.

D. Dean, E. W. Felten and D. S. Wallach, “Java Security: From
HotJava to Netscape and BeyonBtpc. of the IEEE Security
& Privacy ConferenceOakland, CA, May 1996, 190-200.

J. B. Dennis and E. C. Van Horn, “Programming Semantics for
Multiprogrammed Computations'Comm. of the ACM ,93

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

(Mar. 1966), 143-155. 31.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten and E.

F. Steffens, “On-the-fly Garbage Collection: An Excercise in 32.

Cooperation”Comm. of the ACM 211 (Nov. 1978), 965-975.

D. Doligez and G. Gonthier, “Portable Unobtrusive Garbage 33.

Collection for Multiprocessor SystemsRroc. of the 21st
Annual ACM SIGPLAN Notices Symposium on Principles of
Programming Languagesdan. 1994, 70-83.

D. R. Engler, M. F. Kaashoek and J. O'Toole Jr., “Exokernel: 34.

An Operating System Architecture for Application-Level
Resource ManagementRroc. of the 15th Symposium on
Operating System Principles, ACM SIGOPS2®ec. 1995),
251-266.

Esmertec, “Jbed Whitepaper: Component Software and Real-
Time Computing”, White paper, Esmertec, 1998. (available as
http://www.jbed.com/).

E. Felten, Java’s Security History,
http://www.cs.princeton.edu/sip/history.html), 1999.

37.

(available as

38.

B. Ford and J. Lepreau, “Evolving Mach 3.0 to a Migrating
Thread Model”,Proc. of the Usenix Winter '94 Conference

San Francisco, CA, Jan. 1994, 97-114. 39.

B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin and O.
Shivers,

Language Research”Proc. of the 16th Symposium on

Operating System Principles, ACM SIGOPS 81{Oct. 1997), 41

38-51.

A. Goldberg and D. Robsosmalltalk-80: The Language and
its ImplementationAddison Wesley, Reading, MA, 1983.

J. Gosling,
SpecificationAddison Wesley, Reading, MA, 1996.

S. B. Guthery and T. M. Jurgense®mart Card Developer’s

Kit, Macmillian Technical Publishing, Indianapolis, IN, 1998. 43.

C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu and T.
Von Eicken, “Implementing Multiple Protection Domains in
Java”, Proc. of the 1998 USENIX Annual Technical
ConferenceNew Orleans, LA, June 1998, 259-270.

W. C. Hsieh, M. F. Kaashoek and W. E. Weihl, “The Persistent
Relevance of IPC Performance: New techniques for Reducing
the IPC Penalty”,Proc. Fourth Workshop on Workstation
Operating System$lapa, California, Oct. 1993, 186-190.

R. Jones and R. LinsGarbage Collection, Algorithms for
Automatic Dynamic Memory Managemeidhn Wiley & sons,
New York, 1996.

H. T. Kung and S. W. Song, “An efficient parallel garbage
collection system and its correctness prodEEE Symp. on
Foundations of Computer Sciend®77, 120-131.

K. Li and P. Hudak, “Memory coherence in shared virtual
memory systems’ACM Transactions on Computer Systems 7
4 (Nov. 1989), 321-359.

J. Liedtke, K. Elphinstone, S. Schénberg, H. Hartig, G. Heiser,
N. Islam and T. Jaeger, “Achieved IPC Performance (Still The
Foundation For Extensibility)Proc. of the Sixth Workshop on
Hot Topics in Operating Systems (HotQ&hatham (Cape
Cod), MA, May 1997, 28-31.

D. A. Moon, “Genera RetrospectivePyoc. of the International
Workshop on Object Orientation in Operating Systems, |IEEE
CS Palo Alto, CA., Oct. 1991, 2-8.

G. J. Myers, “Can Software for SDI Ever be Error-fre¢2EE
computer 1910 (1986), 61-67.

35.

“The Flux OSKit: A Substrate for Kernel and 40.

B. Joy and G. Steel@he Java Language 42.

G. Nelson, Systems Programming with Modula-Brentice
Hall, Englewood Cliffs, NJ, 1991.

T. Saulpaugh and C. A. Mirh@he Inside JavaOS Operating
SystemAddison Wesley, Reading, MA, 1999.

J. S. Shapiro, D. J. Farber and J. M. Smith, “The Measured
Performance of a Fast Local IPCRroc. of the Fifth
International Workshop on Object Orientation in Operating
SystemsSeattle, WA, Oct. 1996, 89-94.

J. S. Shapiro and S. Weber, “Verifying Operating System
Security”, MS-CIS-97-26, University of Pennsylvania,
Philadelphia, PA, July 1997.

E. G. Sirer, Security Flaws in Java Implementations, (available
ashttp://kimera.cs.washington.edu/flaws/index.html), 1997.

G. L. Steele, “Multiprocessing compactifying garbage
collection”, Comm. of the ACM 18 (Sep. 1975), 495-508.

SunSoft, Java Servlet Development Kit,
http://java.sun.com/products/servlet/index.html), 1999.

(available as

Sun Microsystems Inc.,The SPARC Architecture Manual
Prentice Hall, Englewood Cliffs, NJ, 1992.

W. Teitelman, “A tour through CedarlEEE Software 12
(1984), 44-73.

Transvirtual Technologies Inc., Kaffe OpenVM, (available as
http://www.transvirtual.com/), 1998.

L. VanDoorn, P. Homburg and A. S. Tanenbaum,
“Paramecium: An extensible object-based kerrietc. of the
Fifth Hot Topics in Operating Systems (HotOS) Workshop,
Orcas Island, WA, May 1995, 86-89.

D. Wetherall and D. L. Tennenhouse, “The ACTIVE IP
Option”, Proc. of the Seventh SIGOPS European Workshop,
ACM SIGOPSConnemara, Ireland, Sep. 1996.

N. Wirth and J. GltknechBroject Oberon, The Design of an
Operating System and Compil&«CM Press, 1992.

