
HP Scalable Computing Architecture

Randy Wright
Arun Kumar

HP Platform Software Architecture Lab

Abstract

The HP V-Class server family provides up to 32 processors and 32 GB of memory in a single cabinet. Scalable Com-
puting Architecture technology allows multiple V-Class cabinets to be interconnected, forming a single cache coher-
ent non-uniform memory architecture (ccNUMA) system providing up to 128 CPUs and 128 GB of memory. This
paper discusses some interesting aspects of the Scalable Computing Architecture and the changes made to the HP-
UX kernel to operate in this environment.

1. Introduction
The Scalable Computing Architecture (SCA) was pro-
posed to extend the scalability of Hewlett-Packard's
high end V-Class machine. The V-Class is a crossbar
based symmetric multiprocessor (SMP) machine. The
SCA machine connects up to four V-Class nodes using
a high-speed high bandwidth interconnect to conform to
the ccNUMA architecture.

Normally, Hewlett-Packard's UNIX machines conform
to a well-defined architecture as specified in [1] and [2].
The V-Class machine [3, 4] did not fully conform to
this architecture. However, by emulating the PA-RISC
architecture in the firmware layer, the HP-UX operating
system could be supported on the V-Class. The archi-
tectural anomalies of the V-Class platform created
unique challenges in supporting HP-UX on the SCA
platform. This paper describes the modifications made
to the HP-UX kernel to address some of these anoma-
lies in the hardware and to extend the capabilities of the
V-Class to meet the requirements of the ccNUMA ar-
chitecture.

At the time we began the SCA operating system work,
the V-Class hardware platform was already running HP-
UX in a single node configuration. In addition, the
SPP-UX operating system, based on the Mach [15] mi-
cro-kernel, was running on essentially the same plat-
form (referred to as X-Class) in a multi-node configura-
tion. Leveraging the technology used on the X-Class
architecture to expand HP-UX server product line to
128 processors was viewed at that time as a cost effec-
tive way to expand HP’s UNIX server line.

2. V-Class Hardware Architecture
Figure 1 is a high-level block diagram of a single cabi-
net V-Class HP computer system.

Figure 1: V-2500 Node

The V-Class system is a crossbar-based machine. On
the V-2500, four processors are attached via dedicated
busses (termed Runway busses) to a processor agent
chip (SPAC). From each SPAC there is attached a PCI

Y Ring

Node 0

Node 2

Two Node Configuration

X Ring

X Ring

Y Ring

Node 4

Node 6

Y Ring

Node 0

Node 2

Four Node Configuration

interface chip (SAGA) and bus. Memory is interleaved
across banks that are managed via memory access con-
trollers (SMAC). A single node V-2500 system is com-
pliant to the PA-RISC platform architecture, implement-
ing a coherent I/O SMP platform. A maximum configu-
ration V-2500 consists of 32 CPUs, 8 SPACs, 8 PCI
busses (with 3 slots each), and 8 memory boards
(SMACs) providing 4 to 32 GB of memory. Not shown
in the diagram is the utilities board. It contains re-
sources used in bootstrapping, reset, configuration, and
diagnostic functions. This board contains an RS-232C
port used to connect to the system console, an Ethernet
connection used for manufacturing and system diagnos-
tic purposes, an LCD display, non-volatile and flash
RAM used to hold system firmware and configuration
settings, and static RAM used by the system firmware.
Each SPAC has access to the utilities board of its
containing node.

At the bottom of Figure 1, we see that a Toroidal Ac-
cess Controller chip (STAC) is attached to each SMAC.
This chip implements a variation of the Scalable Coher-
ent Interconnect (SCI) protocol over one to two rings.
The STACs and rings are sometimes referred to as the
Coherent Toroidal Interconnect (CTI). This intercon-
nect allows V-Class systems to be scaled to multiple
nodes (where each node is a cabinet of up to 32 CPUs).
Most processor or I/O transactions are conducted
through a SPAC, through the crossbar and to a SMAC.
If the transaction refers to a component not on the local
node, the SMAC forwards the request to its correspond-
ing STAC that in turn traverses the correct ring to a
remote node STAC. On the remote node, the STAC
sends the transaction to its associated SMAC where it is
resolved or forwarded through the remote crossbar port
to the appropriate component. Inter-node requests are
interleaved across multiple SCI rings in the appropriate
ring set (each STAC resides on two rings labeled X and
Y). Inter-node memory coherency is managed on a 32-
byte line basis. Sample V-Class SCA system configura-
tions are shown in Figure 2. The node numbering con-
tains hardware topological and routing information; this
is the reason that nodes in a 4-node system are num-
bered 0, 2, 4, and 6.

The multi-node V-Class architecture includes a second
level inter-node cache, referred to as the CTI cache or
the network cache. This is a region of local node mem-
ory that is interleaved across memory controllers and is
used to cache remote node accesses. The processors
cannot access memory used in the CTI cache. Each
node typically has 16M to 512M of its local memory
used in the CTI network cache. The CTI cache size is
configured at boot and is not dynamically configurable;
a reset is required to change it.

The
upon
DIM
conf
is en
ory
node
192

All
the
node
tecte
som
ized
acce
This
loca
32 b
pecu
regi
loca

Figu
spac

Figure 2: Sample SCA Configurations
 precise layout of coherent memory space depends
 the number of memory boards present, size of the
Ms used on the boards and the amount of memory
igured as CTI cache. However, as the node number
coded into the high order bits of the physical mem-
address, the memory space of node 0 starts at 0,
 2 starts at 64G, node 4 at 128G, and node 6 at

G.

of coherent memory is globally accessible except
memory that is referred to as node private or force
 id memory. When the V-Class system was archi-
d, it was anticipated that each node would need
e local memory below 4G for firmware and special-
 software. To address this need, a special memory
ss mode known as force node id was introduced.
 feature causes the first 128M of each node to be
lly mapped, providing firmware with desired local
it-accessible memory on all nodes but resulted in a
liar physical aliasing property. Consequently, these

ons of memory are only accessible by CPUs on the
l node.

re 3 shows the SCA coherent memory address
e.

3. SCA Software Architecture
The software development work to support HP-UX on
the SCA platform was determined by asking the simple
question, “How is a Multi-Node V-Class complex not
like a symmetric multi-processor (SMP) system?” and
addressing the anomalies so identified. The following
discussion summarizes these anomalies and the steps
taken to address them.

3.1. Device Management and I/O
One software design goal is to maintain kernel inde-
pendence from the details of the underlying NUMA
system. However, for scalability reasons, it is some-
times necessary to be able to know about the NUMA
aspects of the system. To reconcile these conflicting
goals, we used an abstraction termed a locality domain
to provide a rough gauge of “local” versus “remote.” A
locality domain is a collection of resources including
processors, memory, and possibly I/O devices. Equal
latency to memory is the characteristic relating re-
sources grouped into a locality domain. On a V-Class
SCA system, locality domain boundaries always corre-
spond exactly to the boundaries of a physical node, but
the abstraction allows future architectures to define
these boundaries more flexibly.

So that this locality domain abstraction could have long-
term applicability to other hardware products, it is de-
sirable to prevent exposing hardware-independent code
to hardware specific concepts such as the non-
sequential node numbers of the V-2500. Therefore, a
logical mapping was instituted to insulate high-level
software from the hardware-dependent node numbering
of V-Class.

The design resulting from these considerations com-
partmentalizes the hardware node numbering in a low-
level hardware-dependent layer, exporting a sequential
locality domain or “logical node” numbering to higher-
level software when such knowledge is required. This
logical node numbering results in a four-node system
with logical nodes 0, 1, 2, and 3.

In the following discussion of I/O we will discuss two
different methods of identifying I/O devices: Hard
Physical Address (HPA) and hardware path. A device’s
HPA is a unique 64-bit address used internally by sys-
tem software to identify a device and (in most cases) to
actually map it into the processors’ address space. We
will also discuss hardware paths, which identify devices
by their relative location in the system hierarchy of
adapters, controllers, and device instances. The hard-
ware path identifies each element in the system with a
hardware address that is unique with respect to its supe-
rior hardware element; it is not constrained to fit
uniquely in a 64-bit address.

Software normally performs I/O on PA-RISC systems
by manipulating Control and Status Registers (CSRs),
which map into the processors’ address space. On a
Multi-Node SCA complex, many of the CSRs are not
globally accessible across nodes. PCI I/O controller

Unpopulated/Reserved Space

Node 2 Contribution to
Global Shared Memory

Physical Space Unpopulated
(Memory mapped to Node 2’s

Node Private Memory)

Node 2 CTI Cache

Node 0 Contribution to
Global Shared Memory

(May be Partially Populated)

Node Local Memory
Uniquely Instantiated on all Nodes

Node 0 CTI Cache

32Gb

128Gb

64G+128M

64Gb

128Mb

 0Mb

Figure 3: SCA Physical Memory Space

CSRs are accessible only by CPUs on the node contain-
ing that PCI controller. Utilities board functions are
accessible only from the node containing that utilities
board. Most other non-CPU system Core Electronics
Complex (CEC) registers are globally accessible. The
CPU and most system gate arrays may be addressed
globally with unique addresses, as the node number is
encoded within the physical address. However, PCI
CSRs are mapped node private only; they are not
unique complex-wide. For example, all PCI card CSRs
for slot 0 of the first PCI bus of each node will have
identical physical addresses.

For I/O devices accessed through HP-UX drivers deal-
ing with this aspect of the architecture requires driver
software to use process management primitives to mi-
grate its execution to a CPU on the node containing the
device to be accessed.

For block devices as accessed via the file system, the
solution for binding to the correct node took advantage
of existing code that preferred (for cache efficiency
reasons) to run the base level code of a device driver on
the processor that is designated to handle interrupts for
that device. The preference, previously implemented as
optional by this I/O forwarding code, simply was made
mandatory for the SCA system.

Two sub-cases must be considered to provide direct
access to block and character devices, as the kernel
supports both legacy uniprocessor drivers as well as
multiprocessor-safe drivers. For multiprocessor safe
drivers, the I/O system was modified to assure that the
interrupt delivery is targeted to a processor on the cor-
rect node (that is, the node containing the device) when
initializing the device. Base level processing for a mul-
tiprocessor-safe driver is bound to a processor on the
correct node at the time a request is made; this binding
lasts only for the duration of a specific request but has
the tendency (unless the requesting process has other-
wise specified a processor binding) to migrate processes
to the node containing I/O devices they use most heav-
ily.

For uniprocessor drivers, HP-UX provides an emulation
wrapper that binds all such drivers to the first processor
booted (termed the monarch processor). By so doing,
this wrapper technique forces traditional uniprocessor
serialization when executing base level requests, and by
forcing the interrupt handlers to run on the monarch
processor as well, provides a very simple paradigm to
protect against reentrancy. For the SCA architecture,
however, this model had to be improved or uniproces-
sor driver support could not be provided.

The existing uniprocessor binding mechanism could not
simply select the monarch as the emulated uniprocessor
target on an SCA system due to the restriction that I/O
CSR access is usually not possible across nodes. We
attempted to create a generic mechanism that by using a
semaphore per device manipulated in a generic wrapper
could provide the serialized semantic required by uni-
processor drivers. After providing the serialization re-
quired, we could use the process management primi-
tives to bind the executing thread to the appropriate
processor. This seems at first to be a simple task, but
when a driver sleeps (for instance, awaiting input from a
serial port), the generic semaphore is still held by the
driver and as a result, no other process can enter the
device driver. A semaphore type that is automatically
released when the holder sleeps can solve this problem,
but an efficient implementation of such a semaphore
type could not be provided in the time available. As a
result, support for uniprocessor device drivers could not
be maintained for SCA systems.

There are restrictions on access to the utilities board
functionality that are closely related to those described
on CSR accesses. The utilities board resides in non-
coherent system CSR space and is accessible only by
CPUs on the local node. Therefore, CPUs on one node
cannot access the console, NVRAM, or firmware stor-
age areas on another node.

The NVRAM and firmware storage restrictions do not
greatly impact the kernel. The kernel retrieves data from
firmware only through architected firmware interfaces.
The SCA system design calls for all significant firm-
ware configuration data to be stored on node 0 only. By
using appropriate scheduling primitives, software as-
sures that the firmware interfaces are invoked from
node 0 only, and so this restriction is made a non-issue.

The utilities board also contains the serial port used as
the console. Just as is done for other HP-UX device
drivers, the console driver uses scheduling primitives to
bind to a CPU on the correct node, which for the HP-
UX system console is always node 0. (There are serial
ports on each node’s utilities board, but those on nodes
other than 0 are normally unused).

A reliable global reset is required to reboot the system;
without a reliable reset, one or more processor may not
participate correctly in the next system boot. The V-
Class hardware reset mechanism is implemented by
writing to a specific CSR on the system utilities board,
and it resets only the local node. But hardware does not
provide a system-wide atomic reset on a Multi-Node
SCA system. No HP-UX kernel change was required to

address this anomaly. Instead, the V-Class Processor
Dependent Code (PDC) firmware was modified so that
a firmware-initiated reset request would reset the entire
complex, rather than a single node. The firmware ac-
complished this by using a diagnostic communication
interface between nodes of which the kernel is totally
unaware.

The V-Class hardware implements two distinct methods
of addressing non-I/O device CSRs, referred to as node-
local and global modes. When HP-UX was initially
ported to the single-node V-Class platform, a decision
was made to use the simple node-local addressing mode
for processor HPA (Hard Physical Address) access, as
well as other ASIC CSR accesses. This addressing for-
mat is useful for accessing CSRs on the current node of
execution, but cannot access CSRs on remote nodes.

Inter-node access requires a more general global ad-
dress format for CSRs. This uses a wide-mode (64-bit)
address format that the underlying single-node firmware
does not supply.

In addition to correct CSR hardware addressing, each
module must be uniquely identified by its HPA. The
HPA returned for a memory module is a Coherent
Memory address. The HPA returned by firmware for
CPU modules during device discovery is the physical
address of the CPU’s CSR block. These CSRs are lo-
cated in the non-I/O CSR space. The path through the
crossbars is included in the address. Since the kernel
does not know how to route an address to a remote node
through the crossbars, it relies on the firmware to pro-
vide it with an HPA that will work for the platform con-
figuration. Because the path can be different from one
node to another, it is required that all nodes of a Multi-
Node V-Class platform are fully populated with SPACs,
SMACs, and STACs for this to work correctly.

The address space used to access PCI I/O cards and
core device I/O CSRs is termed Local I/O Space (core
devices are those built into the system, not attached via
a peripheral card). Access to this space is available only
to CPUs on the same node as the PCI bus adapter or
core I/O device. The method used to generate addresses
for the local I/O space does not permit the node number
to be embedded into a 64-bit or 40-bit physical address.
However, the HPA returned by PDC firmware during
device discovery for these modules is not a valid CSR
address. Therefore, the HPA is used only to identify the
module and not to access CSRs. This allows us to treat
the address as if it were a coherent memory address for
the purposes of generating a unique 64-bit HPA.

To support V-Class SCA I/O, a hardware path must
uniquely identify each I/O device. The hardware path is
generated from the device path supplied by PDC firm-
ware in response to a PDC_SYSTEM_MAP command
during module discovery. On a single-node system, the
device path returned by PDC does not contain an indi-
cation of the node number containing the module. It is
possible - in fact, quite likely - that when two or more
nodes are combined to form an SCA system, two or
more devices will have the same path, making it impos-
sible to distinguish between them. Therefore, an indica-
tion of the physical number of the node containing the
I/O module has been encoded in the first component of
each device in an SCA system.

For example, the hardware paths for single node V-
Class devices have the I/O adapter number - the com-
ponent called the SAGA on V-2500 systems - as the
first component of the hardware path. There may be up
to 8 adapters per node, numbered from 0 to 7. Each
SAGA controls up to 3 PCI slots, numbered 0 to 2. For
instance, 2/1/0.4.0 would refer to a SCSI disk attached
to SAGA 2, PCI slot 1, SCSI id 4. If this same
SAGA/slot/SCSI-id occurs on node 2, adding the node
number times 32 to the I/O adapter number uniquely
identifies that adapter within the complex. Extending
the previous example, 66/1/0.4.0 would represent
SAGA 2 of node 1, slot 1, and SCSI target 4.

The HP-UX kernel typically derives system timing in-
formation from an internal control register that imple-
ments an interval timer (termed the itmr). Each proces-
sor contains such an itmr, and in almost all HP PA-
RISC systems, these itmrs are synchronized. On an SCA
V-Class system, the interval timers (itmrs) within a node
are all generated from a single crystal clock source and
so are synchronized within that single node. However,
the clocks are separate for each node. This means that
the itmrs cannot be used to generate synchronized tim-
ing information across nodes of the complex, as they
can drift with respect to one another over time.

Some code needing timing of events precisely across
the system that previously used the processor itmr regis-
ters was modified to use a V-Class specific feature. The
V-Class hardware provides a 1 microsecond period
counter known as the Time of Century counter. This
counter is 64 bits wide and globally synchronized in
hardware. The maximum inter-node skew is 1 micro-
second. This provides system software with a globally
consistent view of time without requiring synchronized
processor clocks across nodes.

For generic time accounting purposes, we did not want
to introduce V-Class specific code throughout the ker-
nel. To support a few other systems with asynchronous
clocks, the kernel already had the ability to compensate
for itmr drift by maintaining a synchronized per-
processor bias tracking the drift of each processor’s itmr
against the master (or monarch) processor. We were
able to take advantage of this existing mechanism and
extend the synchronization code to use the Time of
Century hardware as a global reference to precisely
compensate for the clock drift between nodes.

The PDC firmware of each node had no visibility of the
other nodes’ resources; each node’s PDC initially oper-
ated totally independently. It was immediately obvious
when starting the SCA kernel design that compensating
for this major “non-SMP-ness” explicitly in the kernel
would become very intrusive if handled with ad hoc
methods. Consequently, a “front-end” or facade layer
was designed to produce PDC firmware functionality
supporting multi-node SCA in a transparent manner.
This component is called Multi-Node PDC layer. It is
linked into the HP-UX kernel and mapped specially into
the shared memory region. The Multi-Node PDC Front-
End provides the following functionality:

a. A unified module table, with some limited excep-
tions: only node 0 core I/O modules are included;
as a result the kernel has no access to console or di-
agnostic LAN ports of non-zero nodes, and non-
zero node memory modules do not include node
private memory.

b. The node local CSR address format used by under-
lying PDC firmware is modified to use the com-
plex-wide global addressing format containing an
explicit node number

c. Device paths encoded to include the module’s node
number.

d. Runtime support for PDC requests that require a
remote call to another node.

e. Ability to perform inter-node memory copies from
one node’s local memory to another node’s local
memory for specialized initialization and crash
dump requirements.

The resulting layer of software should be considered
logically as a part of the system’s firmware. Whereas it
is linked into the kernel image, after an initialization
call, it is never directly called again. Instead, it replaces
the contents of the location used to vector into the PDC

firmware, directing firmware requests to its own entry
and then chaining, where appropriate, to the underlying
PDC firmware. This design allows the Multi-Node PDC
layer to be updated when the kernel is updated. This
design choice was made to simplify both development
of the firmware layer and field upgrades of existing
single-node systems to SCA configuration in the field,
and its design succeeded in so doing. However, it re-
quires a logical separation of responsibility so that the
Multi-Node PDC layer cannot make calls back into the
kernel; if this is violated (for instance, by inadvertent
use of a compiler-generated runtime library support
function call), the firmware layer may fail during system
boot of non-zero nodes. Maintaining this separation has
proven to be difficult over time, and since the conse-
quences of violating the required layering are both pro-
found and difficult to diagnose, the design choice is
questionable in hindsight as a permanent part of the
kernel.

3.2. System Characteristics
One very significant way in which a V-Class SCA sys-
tem differs from a traditional SMP system is that there
exists a special memory region on each node termed
force node-id or node private memory (as discussed
above in Section 2) This memory consists of the first
128M of each node, and is accessible only by CPUs on
the containing node. The node private memory is
unique in its combination of attributes:

a. Spatial locality: In a NUMA sense, access is guar-
anteed to be efficient because this memory is by
definition local to the accessing node.

b. Limited accessibility: only processors on the node
may access this memory. This is enforced by the
hardware.

c. Uniquely instantiated per node: this refers to the
fact that a given address of memory may contain
different values on different nodes. This can be
very useful for variables that are location depend-
ent; an obvious example is a single location con-
taining the node number for each node. It allows
the use of a single variable in the code to be used
differently depending upon the node context of the
accessing CPU.

The kernel text segment is replicated, one copy per
node, in an effort to reduce instruction fetches between
nodes. This lowers latency and at the same time does
not pollute the CTI caches with kernel text. The node

private memory of each node is used to contain that
node’s copy of the kernel text. (The obvious but much
less efficient alternative to this replication would have
required loading the kernel at or above the 128Mb
boundary, in globally shared memory.)

To accomplish the replication, a new function
rm_ktext_replicate() is called during system boot. If
running on a platform other than Multi-Node V-Class,
rm_ktext_replicate() performs no action and returns
immediately. On Multi-Node V-Class, the function cop-
ies the kernel text segment from the node private mem-
ory area on node zero to the node private memory area
of all other nodes in the system.

The actual replication of kernel text is done near the
very end of the initial phase of the boot sequence. The
replication is done after the point at which the kernel
has performed all platform dependent optimization de-
cisions. In addition to copying the kernel text itself,
page zero (which contains data shared between the ker-
nel and PDC firmware) also is replicated to all other
nodes. The memory copy operation is done via a firm-
ware interface added specifically for V-Class SCA sys-
tems.

The layout of text and data within the SCA kernel is
different than that of a traditional HP-UX kernel. As
part of exploiting the node private memory architecture
to replicate the kernel text, the SCA kernel is linked
specially, specifying an alternate memory map to the
linker. A mapfile specifies that the text segment remains
at a low address in physical memory, and so is in node
private memory, but the data segment is placed just
above 128M, and so is in global shared memory.

The HP PA-RISC processor performs translations from
virtual to absolute addresses using a hardware structure
called the Translation Lookaside Buffer (TLB). The
purge instruction TLB (pitlb) and purge data TLB
(pdtlb) instructions are used to manage processor TLB
entries. On the SCA V-Class platform, these transac-
tions are not broadcast between nodes. Another limita-
tion is that there can only be one outstanding purge per
node.

To address these architectural limitations, the kernel
implemented an inter-node RPC (Remote Procedure
Call) interface that is initiated by a software interrupt
when a TLB modification is performed. The interrupt is
serviced by dedicated kernel handler code to perform
the needed purge operation on each node. Challenges
addressed in the design include the need to make the
service code very efficient and responsive, yet minimize

intrusion of the software on architecturally conforming
HP systems.

Processor caches in all multiprocessor systems must be
managed with care. For PA-RISC based systems, the
flush instruction, flush data, and purge data cache in-
structions (fic, fdc, and pdc) are used to maintain con-
sistent cache state among CPUs. In the SCA V-Class
platform, these flush instructions are not broadcast be-
tween nodes. The instruction cache is a particular prob-
lem, as there does exist a method to cause a global data
cache flush of a line of memory. There is a special host
op instruction supported by the PA-8x00 processors that
is passed nearly transparently to the system gate arrays.
This instruction will globally flush a line of memory
from all data and network caches. It is referred to as the
NCFG instruction (Network Cache Flush Global). The
host op instruction is not precisely interchangeable with
the existing architected flush instructions, so special
software handling was required.

The instruction cache anomaly required handling user
space pages via what we called write-execute demotion;
a page of user accessible memory could not simultane-
ously be granted both write and execute permission.
Such pages are internally recorded in the virtual mem-
ory system as allowing write and execute, but set up in
the hardware as only write or execute. The permissions
are switched from one to the other in the kernel’s trap
handler upon an attempt to write an executable page or
to execute a writable page. There was concern that this
mechanism might be too inefficient for applications that
engage in lots of runtime patching. This has not been
found to be a problem based on our limited experience,
as most such instruction patching or generation occurs
only once during a process’s lifetime. However, the
implementation does produce an inconsistency that the
application can detect via the probe instruction, which
sees the “real” hardware permission – only write or
execute - rather than the emulated write and execute
permission. Consequently, we created library function
interface for use by any application that needed to get
the correct result on all architectures. This interface is
written so as to query the virtual memory system for the
permissions on the SCA V-Class system, rather than
trusting the probe instruction.

Kernel pages can be handled more simply, as the kernel
functions used to flush caches and purge the TLB could
be modified and/or patched as required. The modifica-
tions to use the RPC mechanism alluded to above were
in fact implemented using a single paradigm, sharing
data structure definitions and software strategies. When
a cross node purge or flush operation is required, the

processor generates a pre-designated interrupt type
(which differs for purge and flush) to a pre-designated
partner processor. The data structure involved records
the address range and operation to be affected. The
interrupt is serviced at a high priority level; the re-
questor, in order to maintain the required architectural
semantics of the flush or purge operation, must busy
wait until the partner completes the requested operation.

There are rare - but quite possible – cases wherein
matched pairs of processors on two different notes, each
the pre-designated RPC partner of the other, could en-
counter a deadlock. If one processor holds a spinlock
while requesting a flush operation (as sometimes occurs
in the page directory manipulation) and its RPC partner
processor is in fact waiting for the same spinlock, the
result would be a deadlock, since the waiting processor
has disabled interrupts in the spinlock acquisition code.
To avoid this potential deadlock, we modified the ker-
nel’s spinlock routines so that threads waiting for
spinlocks periodically check for outstanding remote
TLB purge or cache flush requests and service any so
detected, thereby avoiding deadlock.

Finally, the virtual memory system was modified to
reflect the ccNUMA memory system attributes.
Roughly stated, the latency to lines of memory within a
node is 500 nanoseconds. This can blossom 2 to 4 times
for remote accesses (2.2 microseconds). In addition,
access time is not strictly bounded; it can be dependent
upon SCI ring contention. The actual coherency state of
a line (home, dirty, read shared) and the operation being
performed (read, write, flush) on the line also impact
the latency.

As more NUMA architectures are anticipated in the
future, the virtual memory system was enhanced with
knowledge of the locality domain abstraction to allocate
memory as efficiently as possible. A first-fault strategy
was chosen to instantiate pages for a process from the
memory pool of the first locality domain (node in this
case) to generate a fault on the process’s address space.

The HP-UX process management system was enhanced
to efficiently employ the NUMA characteristics of the
V-Class SCA architecture. The scheduler was given
knowledge of the system’s locality domains so that it
could effectively place newly created threads as well as
appropriately avoid migrating threads across locality
domains.

The primitives available for locating threads and proc-
esses on specific locality domains and CPUs within the
system were enhanced. Particular attention was paid to

needs by the I/O system, which may need to migrate
threads onto processors appropriate to the node contain-
ing a particular physical device.

A new utility mpsched was provided to explicitly con-
trol thread and process placement within the complex.
The policies provided are

a. Round robin launch policy, in which launches
of child threads or processes alternate among
all localities until all localities have been se-
lected once, then starts over as needed.

b. Least loaded launch policy, under which child
threads or processes are launched on the least
loaded node in the system at the time of crea-
tion.

c. Fill first launch policy, wherein successive
processes or threads are launched on the same
locality domain as their parent until one has
been launched on each processor in the locality
domain; at that point, new threads are created
on the next locality domain.

d. Packed launch, under which successive threads
or processes are launched on the same locality
domain as their parent; a different locality do-
main is never selected.

The default scheduling decisions, at a coarse level, at-
tempt to start new processes on the least loaded node
and new threads of an existing process on the node con-
taining the creating thread. In addition, the load is
periodically balanced among nodes when the imbalance
exceeds some threshold or some node becomes idle.

4. Related Work

One finds a consensus in published literature that ap-
proaches beyond traditional SMP are necessary to
achieve cost effective scaling of parallel computer sys-
tems. The approaches to implement such scaling alter-
natives vary greatly. Descriptions of hardware imple-
mentations in the literature include the directory-based
ccNUMA hardware designs of DASH [5] and Alewife
[6] as well as Cache Only Memory Architecture (or
COMA), exemplified by Kendall Square’s KSR-1 and
analyzed in [7] and [8]. A hybrid of ccNUMA and
COMA, termed Reactive NUMA, is described in [9].
An approach using a Cache Coherent Network of
Workstations (ccNOW) is described in [10]. Yet an-

other approach is to omit caches altogether, compensat-
ing for the resultant latency by instruction-level parallel-
ism, exemplified by TERA [16]. Studies of memory
and process placement in NUMA systems have been
extensively described and analyzed in [11], [12], [13],
and [14].

Operating systems for NUMA architectures may be
monolithic SMP systems modified for NUMA such as
our HP-UX port, or micro-kernel based. Micro-kernel
based solutions have included Mach [15]. The SPP-UX
Mach-based operating system from the HP Convex Di-
vision used a message-passing paradigm to communi-
cate between distinct micro-kernel instances running on
each node. Other proprietary operating systems are de-
scribed in many of the above hardware references.

5. Conclusions
In this paper we described the issues encountered and
the solutions used for the SCA V-Class project. Some
of the areas addressed are platform-specific and unique
to the V-Class architecture. However, other areas re-
lated to NUMA memory management techniques and
process and thread management in a NUMA environ-
ment can be leveraged on future HP platforms.

Internally, the V-Class SCA platform is being used to
study and improve the performance and the scalability
of the HP-UX Operating System. We expect that our
experience and learning from the V-Class SCA platform
will enable the HP-UX operating system to scale to
even larger configurations in future.

6. References
[1] PA-RISC 2.0 Architecture, Jerry Kane, ISBN
0-13-182734-0, Prentice Hall; also available online at
http://devresource.hp.com/devresource/Docs/Refs/PA2_0/index.html

[2] PA-RISC 2.0 Firmware Architecture,
http://devresource.hp.com/devresource/Docs/DocLibrary.html

[3] HP V-2500 Reference Guide, online at
http://docs.hp.com/HP-UX/systems

[4] The Evolution of the HP/Convex Exemplar; Brewer,
T., Astfalk, G. Convex Div., Hewlett-Packard Co.,
Richardson, TX, USA, Proceedings of Compcon 1997.

[5] The DASH Prototype: Implementation and Per-
formance; Daniel Lenoski, James Laudon, Truman Joe,
David Nakahira, Luis Stevens, Anoop Gupta and John

Hennessy; Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, 1992,
Pages 92 – 103.

[6] The MIT Alewife Machine: Architecture and Per-
formance; Anant Agarwal, Ricardo Bianchini, David
Chaiken, Kirk L. Johnson, David Kranz, John Kubia-
towicz, Beng-Hong Lim, Kenneth Mackenzie and Don-
ald Yeung; Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, 1995,
Pages 2 – 13.

[7] Comparative Performance Evaluation of Cache-
coherent NUMA and COMA Architectures; Per Sten-
strom, Truman Joe and Anoop Gupta; Proceedings of
the 19th Annual International Symposium on Computer
Architecture, 1992, Pages 80-91.

[8] An Empirical Comparison of the Kendall Square
Research KSR-1 and Stanford DASH Multiprocessors;
J. P. Singh, T. Joe, J. L. Hennessy and A. Gupta; Pro-
ceedings of the Conference on Supercomputing '93,
1993, Pages 214-225.

[9] Reactive NUMA: A Design for Unifying S-COMA
and CC-NUMA; Babak Falsafi and David A. Wood;
Proceedings of the 24th International Symposium on
Computer Architecture, 1997, Pages 229-240.

[10] The S3.mp Architecture: A Local Area Multiproc-
essor; A. Nowatzyk, M. Monger, M. Parkin, E. Kelly,
M. Browne, G. Aybay and D. Lee; Proceedings of the
5th Annual ACM Symposium on Parallel Algorithms
and Architectures, 1993, Pages 140-141.

[11] NUMA Policies and Their Relation to Memory
Architecture; William J. Bolosky, Michael L. Scott,
Robert P. Fitzgerald, Robert J. Fowler and Alan L. Cox;
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1991, Pages 212-221.

[12] Exploiting Operating System Support for Dynamic
Page Placement on a NUMA Shared Memory Multi-
processor; Richard P. LaRowe, James T. Wilkes and
Carla S. Ellis; Proceedings of the Third ACM SIGPLAN
Symposium on Principles & Practice of Parallel Pro-
gramming, 1991, Pages 122-132.

[13] An Analysis of Dynamic Page Placement on a
NUMA Multiprocessor; Richard P. LaRowe, Mark A.
Holliday and Carla Schlatter Ellis; Proceedings of the
1992 ACM SIGMETRICS and PERFORMANCE '92
International Conference on Measurement and Model-
ing of Computer Systems, 1992, Pages 23-34.

http://devresource.hp.com/devresource/Docs/Refs/PA2_0/index.html
http://devresource.hp.com/devresource/Docs/DocLibrary.html
http://docs.hp.com/hpux/systems

[14] Dynamic and Static Load Scheduling Performance
on a NUMA Shared Memory Multiprocessor; Xiaodong
Zhang; Proceedings of the 1991 International Confer-
ence on Supercomputing, 1991, Pages 128- 135.

[15] An extensive archive of published and unpublished
papers on Mach is found at:
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/ma
ch.html

[16] Exploiting Heterogeneous Parallelism on a Multi-
threaded Multiprocessor; Gail Alverson, Robert Alver-
son, David Callahan, Brian Koblenz, Allan Porterfield
and Burton Smith; Proceedings of the 1992 Interna-
tional Conference on Supercomputing, 1992, Pages
188-197.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html

	Introduction
	V-Class Hardware Architecture
	SCA Software Architecture
	Device Management and I/O
	System Characteristics

	Related Work
	Conclusions
	References

