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Abstract 
 
The HP V-Class server family provides up to 32 processors and 32 GB of memory in a single cabinet. Scalable Com-
puting Architecture technology allows multiple V-Class cabinets to be interconnected, forming a single cache coher-
ent non-uniform memory architecture (ccNUMA) system providing up to 128 CPUs and 128 GB of memory. This 
paper discusses some interesting aspects of the Scalable Computing Architecture and the changes made to the HP-
UX kernel to operate in this environment.  

 

1. Introduction 
The Scalable Computing Architecture (SCA) was pro-
posed to extend the scalability of Hewlett-Packard's 
high end V-Class machine.  The V-Class is a crossbar 
based symmetric multiprocessor (SMP) machine.  The 
SCA machine connects up to four V-Class nodes using 
a high-speed high bandwidth interconnect to conform to 
the ccNUMA architecture.  
 
Normally, Hewlett-Packard's UNIX machines conform 
to a well-defined architecture as specified in [1] and [2].  
The V-Class machine [3, 4] did not fully conform to 
this architecture.  However, by emulating the PA-RISC 
architecture in the firmware layer, the HP-UX operating 
system could be supported on the V-Class. The archi-
tectural anomalies of the V-Class platform created 
unique challenges in supporting HP-UX on the SCA 
platform. This paper describes the modifications made 
to the HP-UX kernel to address some of these anoma-
lies in the hardware and to extend the capabilities of the 
V-Class to meet the requirements of the ccNUMA ar-
chitecture. 
 
At the time we began the SCA operating system work, 
the V-Class hardware platform was already running HP-
UX in a single node configuration.  In addition, the 
SPP-UX operating system, based on the Mach [15] mi-
cro-kernel, was running on essentially the same plat-
form (referred to as X-Class) in a multi-node configura-
tion.  Leveraging the technology used on the X-Class 
architecture to expand HP-UX server product line to 
128 processors was viewed at that time as a cost effec-
tive way to expand HP’s UNIX server line.  

2. V-Class Hardware Architecture 
Figure 1 is a high-level block diagram of a single cabi-
net V-Class HP computer system. 
 

Figure 1: V-2500 Node 

 
The V-Class system is a crossbar-based machine. On 
the V-2500, four processors are attached via dedicated 
busses (termed Runway busses) to a processor agent 
chip (SPAC). From each SPAC there is attached a PCI 
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interface chip (SAGA) and bus. Memory is interleaved 
across banks that are managed via memory access con-
trollers (SMAC). A single node V-2500 system is com-
pliant to the PA-RISC platform architecture, implement-
ing a coherent I/O SMP platform. A maximum configu-
ration V-2500 consists of 32 CPUs, 8 SPACs, 8 PCI 
busses (with 3 slots each), and 8 memory boards 
(SMACs) providing 4 to 32 GB of memory. Not shown 
in the diagram is the utilities board. It contains re-
sources used in bootstrapping, reset, configuration, and 
diagnostic functions. This board contains an RS-232C 
port used to connect to the system console, an Ethernet 
connection used for manufacturing and system diagnos-
tic purposes, an LCD display, non-volatile and flash 
RAM used to hold system firmware and configuration 
settings, and static RAM used by the system firmware. 
Each SPAC has access to the utilities board of its 
containing node. 
 
At the bottom of Figure 1, we see that a Toroidal Ac-
cess Controller chip (STAC) is attached to each SMAC. 
This chip implements a variation of the Scalable Coher-
ent Interconnect (SCI) protocol over one to two rings. 
The STACs and rings are sometimes referred to as the 
Coherent Toroidal Interconnect (CTI). This intercon-
nect allows V-Class systems to be scaled to multiple 
nodes (where each node is a cabinet of up to 32 CPUs). 
Most processor or I/O transactions are conducted 
through a SPAC, through the crossbar and to a SMAC. 
If the transaction refers to a component not on the local 
node, the SMAC forwards the request to its correspond-
ing STAC that in turn traverses the correct ring to a 
remote node STAC. On the remote node, the STAC 
sends the transaction to its associated SMAC where it is 
resolved or forwarded through the remote crossbar port 
to the appropriate component. Inter-node requests are 
interleaved across multiple SCI rings in the appropriate 
ring set (each STAC resides on two rings labeled X and 
Y). Inter-node memory coherency is managed on a 32-
byte line basis. Sample V-Class SCA system configura-
tions are shown in Figure 2. The node numbering con-
tains hardware topological and routing information; this 
is the reason that nodes in a 4-node system are num-
bered 0, 2, 4, and 6. 
 
The multi-node V-Class architecture includes a second 
level inter-node cache, referred to as the CTI cache or 
the network cache. This is a region of local node mem-
ory that is interleaved across memory controllers and is 
used to cache remote node accesses. The processors 
cannot access memory used in the CTI cache. Each 
node typically has 16M to 512M of its local memory 
used in the CTI network cache. The CTI cache size is 
configured at boot and is not dynamically configurable; 
a reset is required to change it. 
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Figure 2: Sample SCA Configurations
 precise layout of coherent memory space depends 
 the number of memory boards present, size of the 
Ms used on the boards and the amount of memory 
igured as CTI cache. However, as the node number 
coded into the high order bits of the physical mem-
address, the memory space of node 0 starts at 0, 
 2 starts at 64G, node 4 at 128G, and node 6 at 

G.  

of coherent memory is globally accessible except 
memory that is referred to as node private or force 
 id memory. When the V-Class system was archi-
d, it was anticipated that each node would need 
e local memory below 4G for firmware and special-
 software. To address this need, a special memory 
ss mode known as force node id was introduced. 
 feature causes the first 128M of each node to be 
lly mapped, providing firmware with desired local 
it-accessible memory on all nodes but resulted in a 
liar physical aliasing property. Consequently, these 

ons of memory are only accessible by CPUs on the 
l node. 

re 3 shows the SCA coherent memory address 
e. 



3. SCA Software Architecture 
The software development work to support HP-UX on 
the SCA platform was determined by asking the simple 
question, “How is a Multi-Node V-Class complex not 
like a symmetric multi-processor (SMP) system?” and 
addressing the anomalies so identified. The following 
discussion summarizes these anomalies and the steps 
taken to address them. 

 

3.1. Device Management and I/O 
One software design goal is to maintain kernel inde-
pendence from the details of the underlying NUMA 
system. However, for scalability reasons, it is some-
times necessary to be able to know about the NUMA 
aspects of the system. To reconcile these conflicting 
goals, we used an abstraction termed a locality domain 
to provide a rough gauge of “local” versus “remote.”  A 
locality domain is a collection of resources including 
processors, memory, and possibly I/O devices. Equal 
latency to memory is the characteristic relating re-
sources grouped into a locality domain. On a V-Class 
SCA system, locality domain boundaries always corre-
spond exactly to the boundaries of a physical node, but 
the abstraction allows future architectures to define 
these boundaries more flexibly.  

So that this locality domain abstraction could have long-
term applicability to other hardware products, it is de-
sirable to prevent exposing hardware-independent code 
to hardware specific concepts such as the non-
sequential node numbers of the V-2500. Therefore, a 
logical mapping was instituted to insulate high-level 
software from the hardware-dependent node numbering 
of V-Class. 

The design resulting from these considerations com-
partmentalizes the hardware node numbering in a low- 
level hardware-dependent layer, exporting a sequential 
locality domain or “logical node” numbering to higher-
level software when such knowledge is required. This 
logical node numbering results in a four-node system 
with logical nodes 0, 1, 2, and 3. 

In the following discussion of I/O we will discuss two 
different methods of identifying I/O devices: Hard 
Physical Address (HPA) and hardware path.  A device’s 
HPA is a unique 64-bit address used internally by sys-
tem software to identify a device and (in most cases) to 
actually map it into the processors’ address space.  We 
will also discuss hardware paths, which identify devices 
by their relative location in the system hierarchy of 
adapters, controllers, and device instances. The hard-
ware path identifies each element in the system with a 
hardware address that is unique with respect to its supe-
rior hardware element; it is not constrained to fit 
uniquely in a 64-bit address.  

Software normally performs I/O on PA-RISC systems 
by manipulating Control and Status Registers (CSRs), 
which map into the processors’ address space. On a 
Multi-Node SCA complex, many of the CSRs are not 
globally accessible across nodes. PCI I/O controller 
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CSRs are accessible only by CPUs on the node contain-
ing that PCI controller. Utilities board functions are 
accessible only from the node containing that utilities 
board. Most other non-CPU system Core Electronics 
Complex (CEC) registers are globally accessible. The 
CPU and most system gate arrays may be addressed 
globally with unique addresses, as the node number is 
encoded within the physical address. However, PCI 
CSRs are mapped node private only; they are not 
unique complex-wide. For example, all PCI card CSRs 
for slot 0 of the first PCI bus of each node will have 
identical physical addresses. 

For I/O devices accessed through HP-UX drivers deal-
ing with this aspect of the architecture requires driver 
software to use process management primitives to mi-
grate its execution to a CPU on the node containing the 
device to be accessed. 

For block devices as accessed via the file system, the 
solution for binding to the correct node took advantage 
of existing code that preferred (for cache efficiency 
reasons) to run the base level code of a device driver on 
the processor that is designated to handle interrupts for 
that device. The preference, previously implemented as 
optional by this I/O forwarding code, simply was made 
mandatory for the SCA system. 

Two sub-cases must be considered to provide direct 
access to block and character devices, as the kernel 
supports both legacy uniprocessor drivers as well as 
multiprocessor-safe drivers. For multiprocessor safe 
drivers, the I/O system was modified to assure that the 
interrupt delivery is targeted to a processor on the cor-
rect node (that is, the node containing the device) when 
initializing the device. Base level processing for a mul-
tiprocessor-safe driver is bound to a processor on the 
correct node at the time a request is made; this binding 
lasts only for the duration of a specific request but has 
the tendency (unless the requesting process has other-
wise specified a processor binding) to migrate processes 
to the node containing I/O devices they use most heav-
ily. 

For uniprocessor drivers, HP-UX provides an emulation 
wrapper that binds all such drivers to the first processor 
booted (termed the monarch processor).  By so doing, 
this wrapper technique forces traditional uniprocessor 
serialization when executing base level requests, and by 
forcing the interrupt handlers to run on the monarch 
processor as well, provides a very simple paradigm to 
protect against reentrancy. For the SCA architecture, 
however, this model had to be improved or uniproces-
sor driver support could not be provided. 

The existing uniprocessor binding mechanism could not 
simply select the monarch as the emulated uniprocessor 
target on an SCA system due to the restriction that I/O 
CSR access is usually not possible across nodes.  We 
attempted to create a generic mechanism that by using a 
semaphore per device manipulated in a generic wrapper 
could provide the serialized semantic required by uni-
processor drivers. After providing the serialization re-
quired, we could use the process management primi-
tives to bind the executing thread to the appropriate 
processor. This seems at first to be a simple task, but 
when a driver sleeps (for instance, awaiting input from a 
serial port), the generic semaphore is still held by the 
driver and as a result, no other process can enter the 
device driver.  A semaphore type that is automatically 
released when the holder sleeps can solve this problem, 
but an efficient implementation of such a semaphore 
type could not be provided in the time available. As a 
result, support for uniprocessor device drivers could not 
be maintained for SCA systems. 

There are restrictions on access to the utilities board 
functionality that are closely related to those described 
on CSR accesses. The utilities board resides in non-
coherent system CSR space and is accessible only by 
CPUs on the local node.  Therefore, CPUs on one node 
cannot access the console, NVRAM, or firmware stor-
age areas on another node. 

The NVRAM and firmware storage restrictions do not 
greatly impact the kernel. The kernel retrieves data from 
firmware only through architected firmware interfaces. 
The SCA system design calls for all significant firm-
ware configuration data to be stored on node 0 only. By 
using appropriate scheduling primitives, software as-
sures that the firmware interfaces are invoked from 
node 0 only, and so this restriction is made a non-issue. 

The utilities board also contains the serial port used as 
the console. Just as is done for other HP-UX device 
drivers, the console driver uses scheduling primitives to 
bind to a CPU on the correct node, which for the HP-
UX system console is always node 0. (There are serial 
ports on each node’s utilities board, but those on nodes 
other than 0 are normally unused). 

A reliable global reset is required to reboot the system; 
without a reliable reset, one or more processor may not 
participate correctly in the next system boot. The V-
Class hardware reset mechanism is implemented by 
writing to a specific CSR on the system utilities board, 
and it resets only the local node. But hardware does not 
provide a system-wide atomic reset on a Multi-Node 
SCA system.  No HP-UX kernel change was required to 



address this anomaly. Instead, the V-Class Processor 
Dependent Code (PDC) firmware was modified so that 
a firmware-initiated reset request would reset the entire 
complex, rather than a single node. The firmware ac-
complished this by using a diagnostic communication 
interface between nodes of which the kernel is totally 
unaware. 

The V-Class hardware implements two distinct methods 
of addressing non-I/O device CSRs, referred to as node-
local and global modes.  When HP-UX was initially 
ported to the single-node V-Class platform, a decision 
was made to use the simple node-local addressing mode 
for processor HPA (Hard Physical Address) access, as 
well as other ASIC CSR accesses. This addressing for-
mat is useful for accessing CSRs on the current node of 
execution, but cannot access CSRs on remote nodes. 

Inter-node access requires a more general global ad-
dress format for CSRs. This uses a wide-mode (64-bit) 
address format that the underlying single-node firmware 
does not supply. 

In addition to correct CSR hardware addressing, each 
module must be uniquely identified by its HPA.  The 
HPA returned for a memory module is a Coherent 
Memory address.  The HPA returned by firmware for 
CPU modules during device discovery is the physical 
address of the CPU’s CSR block. These CSRs are lo-
cated in the non-I/O CSR space. The path through the 
crossbars is included in the address. Since the kernel 
does not know how to route an address to a remote node 
through the crossbars, it relies on the firmware to pro-
vide it with an HPA that will work for the platform con-
figuration. Because the path can be different from one 
node to another, it is required that all nodes of a Multi-
Node V-Class platform are fully populated with SPACs, 
SMACs, and STACs for this to work correctly. 

The address space used to access PCI I/O cards and 
core device I/O CSRs is termed Local I/O Space (core 
devices are those built into the system, not attached via 
a peripheral card). Access to this space is available only 
to CPUs on the same node as the PCI bus adapter or 
core I/O device. The method used to generate addresses 
for the local I/O space does not permit the node number 
to be embedded into a 64-bit or 40-bit physical address. 
However, the HPA returned by PDC firmware during 
device discovery for these modules is not a valid CSR 
address. Therefore, the HPA is used only to identify the 
module and not to access CSRs. This allows us to treat 
the address as if it were a coherent memory address for 
the purposes of generating a unique 64-bit HPA. 

To support V-Class SCA I/O, a hardware path must 
uniquely identify each I/O device. The hardware path is 
generated from the device path supplied by PDC firm-
ware in response to a PDC_SYSTEM_MAP command 
during module discovery. On a single-node system, the 
device path returned by PDC does not contain an indi-
cation of the node number containing the module. It is 
possible - in fact, quite likely - that when two or more 
nodes are combined to form an SCA system, two or 
more devices will have the same path, making it impos-
sible to distinguish between them. Therefore, an indica-
tion of the physical number of the node containing the 
I/O module has been encoded in the first component of 
each device in an SCA system. 

For example, the hardware paths for single node V-
Class devices have the I/O adapter number - the com-
ponent called the SAGA on V-2500 systems - as the 
first component of the hardware path. There may be up 
to 8 adapters per node, numbered from 0 to 7. Each 
SAGA controls up to 3 PCI slots, numbered 0 to 2. For 
instance, 2/1/0.4.0 would refer to a SCSI disk attached 
to SAGA 2, PCI slot 1, SCSI id 4. If this same 
SAGA/slot/SCSI-id occurs on node 2, adding the node 
number times 32 to the I/O adapter number uniquely 
identifies that adapter within the complex.  Extending 
the previous example, 66/1/0.4.0 would represent 
SAGA 2 of node 1, slot 1, and SCSI target 4. 

The HP-UX kernel typically derives system timing in-
formation from an internal control register that imple-
ments an interval timer (termed the itmr). Each proces-
sor contains such an itmr, and in almost all HP PA-
RISC systems, these itmrs are synchronized. On an SCA 
V-Class system, the interval timers (itmrs) within a node 
are all generated from a single crystal clock source and 
so are synchronized within that single node. However, 
the clocks are separate for each node. This means that 
the itmrs cannot be used to generate synchronized tim-
ing information across nodes of the complex, as they 
can drift with respect to one another over time. 

Some code needing timing of events precisely across 
the system that previously used the processor itmr regis-
ters was modified to use a V-Class specific feature. The 
V-Class hardware provides a 1 microsecond period 
counter known as the Time of Century counter. This 
counter is 64 bits wide and globally synchronized in 
hardware. The maximum inter-node skew is 1 micro-
second.  This provides system software with a globally 
consistent view of time without requiring synchronized 
processor clocks across nodes. 



For generic time accounting purposes, we did not want 
to introduce V-Class specific code throughout the ker-
nel. To support a few other systems with asynchronous 
clocks, the kernel already had the ability to compensate 
for itmr drift by maintaining a synchronized per-
processor bias tracking the drift of each processor’s itmr 
against the master (or monarch) processor. We were 
able to take advantage of this existing mechanism and 
extend the synchronization code to use the Time of 
Century hardware as a global reference to precisely 
compensate for the clock drift between nodes. 

The PDC firmware of each node had no visibility of the 
other nodes’ resources; each node’s PDC initially oper-
ated totally independently. It was immediately obvious 
when starting the SCA kernel design that compensating 
for this major “non-SMP-ness” explicitly in the kernel 
would become very intrusive if handled with ad hoc 
methods. Consequently, a “front-end” or facade layer 
was designed to produce PDC firmware functionality 
supporting multi-node SCA in a transparent manner. 
This component is called Multi-Node PDC layer. It is 
linked into the HP-UX kernel and mapped specially into 
the shared memory region. The Multi-Node PDC Front-
End provides the following functionality: 

a. A unified module table, with some limited excep-
tions: only node 0 core I/O modules are included; 
as a result the kernel has no access to console or di-
agnostic LAN ports of non-zero nodes, and non-
zero node memory modules do not include node 
private memory. 

b. The node local CSR address format used by under-
lying PDC firmware is modified to use the com-
plex-wide global addressing format containing an 
explicit node number 

c. Device paths encoded to include the module’s node 
number. 

d. Runtime support for PDC requests that require a 
remote call to another node. 

e. Ability to perform inter-node memory copies from 
one node’s local memory to another node’s local 
memory for specialized initialization and crash 
dump requirements. 

The resulting layer of software should be considered 
logically as a part of the system’s firmware. Whereas it 
is linked into the kernel image, after an initialization 
call, it is never directly called again. Instead, it replaces 
the contents of the location used to vector into the PDC 

firmware, directing firmware requests to its own entry 
and then chaining, where appropriate, to the underlying 
PDC firmware. This design allows the Multi-Node PDC 
layer to be updated when the kernel is updated. This 
design choice was made to simplify both development 
of the firmware layer and field upgrades of existing 
single-node systems to SCA configuration in the field, 
and its design succeeded in so doing.  However, it re-
quires a logical separation of responsibility so that the 
Multi-Node PDC layer cannot make calls back into the 
kernel; if this is violated (for instance, by inadvertent 
use of a compiler-generated runtime library support 
function call), the firmware layer may fail during system 
boot of non-zero nodes. Maintaining this separation has 
proven to be difficult over time, and since the conse-
quences of violating the required layering are both pro-
found and difficult to diagnose, the design choice is 
questionable in hindsight as a permanent part of the 
kernel. 

3.2. System Characteristics 
One very significant way in which a V-Class SCA sys-
tem differs from a traditional SMP system is that there 
exists a special memory region on each node termed 
force node-id or node private memory (as discussed 
above in Section 2) This memory consists of the first 
128M of each node, and is accessible only by CPUs on 
the containing node. The node private memory is 
unique in its combination of attributes: 

a. Spatial locality: In a NUMA sense, access is guar-
anteed to be efficient because this memory is by 
definition local to the accessing node. 

b. Limited accessibility: only processors on the node 
may access this memory. This is enforced by the 
hardware. 

c. Uniquely instantiated per node: this refers to the 
fact that a given address of memory may contain 
different values on different nodes. This can be 
very useful for variables that are location depend-
ent; an obvious example is a single location con-
taining the node number for each node. It allows 
the use of a single variable in the code to be used 
differently depending upon the node context of the 
accessing CPU. 

The kernel text segment is replicated, one copy per 
node, in an effort to reduce instruction fetches between 
nodes. This lowers latency and at the same time does 
not pollute the CTI caches with kernel text. The node 



private memory of each node is used to contain that 
node’s copy of the kernel text.  (The obvious but much 
less efficient alternative to this replication would have 
required loading the kernel at or above the 128Mb 
boundary, in globally shared memory.) 

To accomplish the replication, a new function 
rm_ktext_replicate() is called during system boot. If 
running on a platform other than Multi-Node V-Class, 
rm_ktext_replicate() performs no action and returns 
immediately. On Multi-Node V-Class, the function cop-
ies the kernel text segment from the node private mem-
ory area on node zero to the node private memory area 
of all other nodes in the system. 

The actual replication of kernel text is done near the 
very end of the initial phase of the boot sequence. The 
replication is done after the point at which the kernel 
has performed all platform dependent optimization de-
cisions. In addition to copying the kernel text itself, 
page zero (which contains data shared between the ker-
nel and PDC firmware) also is replicated to all other 
nodes. The memory copy operation is done via a firm-
ware interface added specifically for V-Class SCA sys-
tems. 

The layout of text and data within the SCA kernel is 
different than that of a traditional HP-UX kernel.  As 
part of exploiting the node private memory architecture 
to replicate the kernel text, the SCA kernel is linked 
specially, specifying an alternate memory map to the 
linker. A mapfile specifies that the text segment remains 
at a low address in physical memory, and so is in node 
private memory, but the data segment is placed just 
above 128M, and so is in global shared memory. 

The HP PA-RISC processor performs translations from 
virtual to absolute addresses using a hardware structure 
called the Translation Lookaside Buffer (TLB). The 
purge instruction TLB (pitlb) and purge data TLB 
(pdtlb) instructions are used to manage processor TLB 
entries. On the SCA V-Class platform, these transac-
tions are not broadcast between nodes. Another limita-
tion is that there can only be one outstanding purge per 
node. 

To address these architectural limitations, the kernel 
implemented an inter-node RPC (Remote Procedure 
Call) interface that is initiated by a software interrupt 
when a TLB modification is performed. The interrupt is 
serviced by dedicated kernel handler code to perform 
the needed purge operation on each node. Challenges 
addressed in the design include the need to make the 
service code very efficient and responsive, yet minimize 

intrusion of the software on architecturally conforming 
HP systems. 

Processor caches in all multiprocessor systems must be 
managed with care. For PA-RISC based systems, the 
flush instruction, flush data, and purge data cache in-
structions (fic, fdc, and pdc) are used to maintain con-
sistent cache state among CPUs.  In the SCA V-Class 
platform, these flush instructions are not broadcast be-
tween nodes. The instruction cache is a particular prob-
lem, as there does exist a method to cause a global data 
cache flush of a line of memory. There is a special host 
op instruction supported by the PA-8x00 processors that 
is passed nearly transparently to the system gate arrays. 
This instruction will globally flush a line of memory 
from all data and network caches. It is referred to as the 
NCFG instruction (Network Cache Flush Global). The 
host op instruction is not precisely interchangeable with 
the existing architected flush instructions, so special 
software handling was required.  

The instruction cache anomaly required handling user 
space pages via what we called write-execute demotion; 
a page of user accessible memory could not simultane-
ously be granted both write and execute permission. 
Such pages are internally recorded in the virtual mem-
ory system as allowing write and execute, but set up in 
the hardware as only write or execute. The permissions 
are switched from one to the other in the kernel’s trap 
handler upon an attempt to write an executable page or 
to execute a writable page. There was concern that this 
mechanism might be too inefficient for applications that 
engage in lots of runtime patching. This has not been 
found to be a problem based on our limited experience, 
as most such instruction patching or generation occurs 
only once during a process’s lifetime.  However, the 
implementation does produce an inconsistency that the 
application can detect via the probe instruction, which 
sees the “real” hardware permission – only write or 
execute - rather than the emulated write and execute 
permission. Consequently, we created library function 
interface for use by any application that needed to get 
the correct result on all architectures. This interface is 
written so as to query the virtual memory system for the 
permissions on the SCA V-Class system, rather than 
trusting the probe instruction. 

Kernel pages can be handled more simply, as the kernel 
functions used to flush caches and purge the TLB could 
be modified and/or patched as required. The modifica-
tions to use the RPC mechanism alluded to above were 
in fact implemented using a single paradigm, sharing 
data structure definitions and software strategies.  When 
a cross node purge or flush operation is required, the 



processor generates a pre-designated interrupt type 
(which differs for purge and flush) to a pre-designated 
partner processor.  The data structure involved records 
the address range and operation to be affected.  The 
interrupt is serviced at a high priority level; the re-
questor, in order to maintain the required architectural 
semantics of the flush or purge operation, must busy 
wait until the partner completes the requested operation. 

There are rare - but quite possible – cases wherein 
matched pairs of processors on two different notes, each 
the pre-designated RPC partner of the other, could en-
counter a deadlock. If one processor holds a spinlock 
while requesting a flush operation (as sometimes occurs 
in the page directory manipulation) and its RPC partner 
processor is in fact waiting for the same spinlock, the 
result would be a deadlock, since the waiting processor 
has disabled interrupts in the spinlock acquisition code.  
To avoid this potential deadlock, we modified the ker-
nel’s spinlock routines so that threads waiting for 
spinlocks periodically check for outstanding remote 
TLB purge or cache flush requests and service any so 
detected, thereby avoiding deadlock. 

Finally, the virtual memory system was modified to 
reflect the ccNUMA memory system attributes. 
Roughly stated, the latency to lines of memory within a 
node is 500 nanoseconds. This can blossom 2 to 4 times 
for remote accesses (2.2 microseconds). In addition, 
access time is not strictly bounded; it can be dependent 
upon SCI ring contention. The actual coherency state of 
a line (home, dirty, read shared) and the operation being 
performed (read, write, flush) on the line also impact 
the latency. 

As more NUMA architectures are anticipated in the 
future, the virtual memory system was enhanced with 
knowledge of the locality domain abstraction to allocate 
memory as efficiently as possible. A first-fault strategy 
was chosen to instantiate pages for a process from the 
memory pool of the first locality domain (node in this 
case) to generate a fault on the process’s address space. 

The HP-UX process management system was enhanced 
to efficiently employ the NUMA characteristics of the 
V-Class SCA architecture. The scheduler was given 
knowledge of the system’s locality domains so that it 
could effectively place newly created threads as well as 
appropriately avoid migrating threads across locality 
domains. 

The primitives available for locating threads and proc-
esses on specific locality domains and CPUs within the 
system were enhanced. Particular attention was paid to 

needs by the I/O system, which may need to migrate 
threads onto processors appropriate to the node contain-
ing a particular physical device. 

A new utility mpsched was provided to explicitly con-
trol thread and process placement within the complex. 
The policies provided are 

a. Round robin launch policy, in which launches 
of child threads or processes alternate among 
all localities until all localities have been se-
lected once, then starts over as needed. 

b. Least loaded launch policy, under which child 
threads or processes are launched on the least 
loaded node in the system at the time of crea-
tion. 

c. Fill first launch policy, wherein successive 
processes or threads are launched on the same 
locality domain as their parent until one has 
been launched on each processor in the locality 
domain; at that point, new threads are created 
on the next locality domain. 

d. Packed launch, under which successive threads 
or processes are launched on the same locality 
domain as their parent; a different locality do-
main is never selected. 

The default scheduling decisions, at a coarse level, at-
tempt to start new processes on the least loaded node 
and new threads of an existing process on the node con-
taining the creating thread.  In addition, the load is    
periodically balanced among nodes when the imbalance 
exceeds some threshold or some node becomes idle. 

4. Related Work 
 
One finds a consensus in published literature that ap-
proaches beyond traditional SMP are necessary to 
achieve cost effective scaling of parallel computer sys-
tems. The approaches to implement such scaling alter-
natives vary greatly. Descriptions of hardware imple-
mentations in the literature include the directory-based 
ccNUMA hardware designs of DASH [5] and Alewife 
[6] as well as Cache Only Memory Architecture (or 
COMA), exemplified by Kendall Square’s KSR-1 and 
analyzed in [7] and [8]. A hybrid of ccNUMA and 
COMA, termed Reactive NUMA, is described in [9].  
An approach using a Cache Coherent Network of 
Workstations (ccNOW) is described in [10]. Yet an-



other approach is to omit caches altogether, compensat-
ing for the resultant latency by instruction-level parallel-
ism, exemplified by TERA [16].  Studies of memory 
and process placement in NUMA systems have been 
extensively described and analyzed in [11], [12], [13], 
and [14].   
 
Operating systems for NUMA architectures may be 
monolithic SMP systems modified for NUMA such as 
our HP-UX port, or micro-kernel based.  Micro-kernel 
based solutions have included Mach [15].  The SPP-UX 
Mach-based operating system from the HP Convex Di-
vision used a message-passing paradigm to communi-
cate between distinct micro-kernel instances running on 
each node. Other proprietary operating systems are de-
scribed in many of the above hardware references.  

5. Conclusions 
In this paper we described the issues encountered and 
the solutions used for the SCA V-Class project. Some 
of the areas addressed are platform-specific and unique 
to the V-Class architecture. However, other areas re-
lated to NUMA memory management techniques and 
process and thread management in a NUMA environ-
ment can be leveraged on future HP platforms. 

Internally, the V-Class SCA platform is being used to 
study and improve the performance and the scalability 
of the HP-UX Operating System. We expect that our 
experience and learning from the V-Class SCA platform 
will enable the HP-UX operating system to scale to 
even larger configurations in future. 
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