
Meeting Performance Goals with the HP-UX Workload Manager
(an extended abstract)

Indira Subramanian
Hewlett Packard Co.

Cupertino, CA

indira@cup.hp.com

Cliff McCarthy
Hewlett Packard Co.

Richardson, TX

mccarthy@rsn.hp.com

Michael Murphy
Hewlett Packard Co.

Richardson, TX

mmurphy@rsn.hp.com

The HP-UX Workload Manager helps workloads meet
user-specified performance goals by dynamically adjusting
their access to resources such as CPU. We implemented this
workload manager as a part of a feedback control system,
using existing resource control and performance instrumen-
tation infrastructure.

1. Introduction

Successful consolidation of multiple workloads on to a
single server demands that users be guaranteed consistent
levels of workload performance. Users should be able to
define Service Level Objectives (SLO), specifying the per-
formance goals they seek and their relative importance. To
achieve target performance consistently, applications’ access
to resources such as CPU and memory must be adjusted au-
tomatically.

Workload managers can be classified in to two categories.
An entitlement-based manager allocates resources based on
a specification of resource entitlements. Goal-based work-
load managers adjust the resources allocated to a workload,
based on a specification of performance goals.

Entitlement-based and goal-based workload managers
have been supported in some commercial and experimental
systems. Several UNIX OS vendors implement entitlement-
based resource managers[9, 5, 4], which do not use any feed-
back mechanism to meet performance goals. IBM’s OS/390
goal-based workload manager (WLM) employs extensive in-
strumentation to gather detailed information about an appli-
cation’s resource needs, and adjusts resource allocations[1].
Adjusting the use of system resources to meet response
time goals has been in wide use in Transaction Processing
(TP)[2]. Several experimental transaction processing sys-
tems have exploited feedback mechanisms to meet response
time goals[7, 8].

The HP-UX Workload Manager is distinct from the sys-
tems discussed above that also use feedback control to ad-
just resources. First, the workload manager does not monitor
workload performance directly. Instead, it receives a work-
load’s performance data through an API from a performance
monitor created by the application provider (or system ad-
ministrator). Second, the workload manager uses a simple

proportional controller to determine the resources that must
be allocated to a workload. Third, the workload manager has
been designed to take advantage of the existing infrastruc-
ture of tools that includes Process Resource Manager (PRM),
and the Event Monitoring Service (EMS, which raises an
alarm when a performance goal is not being met). Fourth,
unlike TP monitors, which handle workload management
exclusively for transaction processing systems, the HP-UX
Workload Manager can handle a wide variety of application
workloads.

2. Background

The HP PRM (Process Resource Manager), enables a sys-
tem administrator or the workload manager to control the
resources allocated to a workload[3, 4]. PRM is tightly inte-
grated with the HP-UX kernel, and is supported through en-
hancements to certain HP-UX system calls and commands.
PRM monitors resource usage, and it can guarantee a min-
imum entitlement of CPU, memory, and disk bandwidth
available to a group of processes (a PRM group, or a re-
source group). PRM can also enforce capping (upper bound)
of CPU and memory allocated to a resource group. The PRM
scheduler selects (to run) a group with larger CPU entitle-
ment, more frequently than other groups. The PRM inter-
face allows an administrator to specify the group to which a
user belongs. All processes in a group share the resources
assigned to that group. Within a group, standard HP-UX re-
source management policies are applied.

The HP-UX Workload Manager enhances PRM in two
ways. First, by giving each workload only the resources that
are needed to meet its goal, excess capacity is shared effi-
ciently across workloads. Second, a higher priority work-
load gets the resources it needs, before the needs for lower
priority workloads are met. This priority is distinct from
the UNIX process priority. WLM uses this priority to re-
solve resource entitlement conflicts, when the resource needs
of all the workloads cannot be met. A PRM group with
higher CPU entitlement is selected to run more frequently
than other groups. The standard HP-UX scheduler employs
the UNIX process priority to schedule processes from the
selected PRM group.



3. System Overview

The key to developing a successful workload manager
is recognizing the fact that it is part of a closed feedback
loop control system [6]. The output of the control system
is the new set of resources (entitlement value) that must
be allocated for the workload. To set the new entitlement
value, the workload manager enlists PRM. Inputs to the
WLM controller are the SLO, priority, and the measured
performance. The system administrator specifies the goals
and priorities for the workloads on the system, in a simple
text file (the WLM configuration file). To obtain perfor-
mance measurements, the system administrator specifies a
performance monitor program. Each workload with a SLO
goal, must have a performance monitor associated with it.
The WLM daemon starts up this performance monitor pro-
cess, which communicates subsequently with WLM through
a simple API. The WLM controller wakes up periodically,
subtracts the goal value from the most recent performance
number, multiplies this result by a proportionality constant
(cntl_kp), and adjusts the entitlement by this amount.

For the workload’s performance to converge towards the
goal, we require that the relationship between entitlement
and performance be monotonic. We choose to ignore a vari-
ety of other factors that might influence performance. How-
ever, this oversimplification allows us to analyze the charac-
teristics of the workload in useful ways by focusing on the
average behavior.

4. Tuning the System

To achieve effective automatic control of workload per-
formance with WLM, three tunable parameters are sup-
ported: wlm_interval, cntl_kp, and cntl_margin.
Wlm_interval controls how often WLM wakes up,
checks performance data, and makes entitlement adjust-
ments. WLM makes the change request based only on the
latest value reported by the performance monitor. Cntl_kp
controls how big an adjustment is made (to the entitle-
ment) in response to a deviation from the service level goal.
This tunable is discussed in detail in the next paragraph.
Cntl_margin is used to specify a safety margin around
the service level. A safety margin is used to decide when
operators are to be notified.

Eight factors help determine a suitable starting value for
cntl_kp. These factors and their values represent the
workload characteristics and the desirable rate of conver-
gence to the workload’s performance goal. For this discus-
sion, we consider a transaction processing workload, where
the performance goal is that the average completion time for
a transaction be under t seconds. Four of the factors that de-
termine cntl_kp are upper bound (U seconds) and lower
bound (L seconds) on service levels, and the corresponding

resource entitlements Eu (% CPU) and El (% CPU) respec-
tively. The fifth factor is G (seconds) , the goal value for
SLO. We also need to consider the rate of convergence, that
is, how long we are willing to wait to get within a certain
range of the goal. The range A is expressed as a fraction
of G, and T (seconds) specifies the time to get within this
range. The eighth factor is J – the average number of sec-
onds between entitlement changes for the workload. Given
these parameters, a reasonable initial estimate for cntl_kp
can be obtained. The expression for calculating cntl_kp
written using the natural logarithm (base e):

cntl_kp = �ln(
AG

kU � Lk
)k
J(Eu�El)

T (U � L)
k

Because of the assumptions made in the calculations that led
to this formula, this initial value of cntl_kpmay need fine-
tuning to produce the desired behavior. However, it serves
as a reasonable starting point. This initial value must be ad-
justed based on actual measurements of the time it takes to
converge to the response time goal.

5. Summary

The HP-UX Workload Manager employs a feedback con-
trol system to dynamically adjust CPU resources allocated
to a workload. A future version will handle other resources
including memory and I/O. The workload manager uses the
existing infrastructure of resource control, performance in-
strumentation, and event monitoring tools.

References

[1] J. Aman, C. Eilbert, D. Emmes, B. Yocom, and D. Dillen-
berger. Adaptive algorithms for managing distributed data pro-
cessing workload. IBM Systems Journal, 36(2), 1997.

[2] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Number ISBN 1-55860-190-2. Morgan Kaufmann
Publishers, San Francisco, CA, 1993.

[3] Hewlett-Packard Company. HP-UX Process Resource Man-
ager, May 1999. Technical White Paper.

[4] Hewlett-Packard Company. HP-UX Process Resource Man-
ager User’s Guide, December 1999.

[5] International Business Machines Corporation. AIX 4.3.3 Work-
load Manager, February 2000. Technical White Paper.

[6] B. C. Kuo. Automatic Control Systems. Number ISBN 0-13-
304759-8. Prentice Hall, Upper Saddle River, NJ, 1995.

[7] Markus-Sinnwell and A. C. Konig. Managing distributed
memory to meet multiclass workload response time goals. In
15th. International Conference on Data Engineering, March
1999.

[8] E. Rahm. Goal-oriented performance control for transaction
processing. In 9th. ITG/GI MMB97 Conference. VDE-Verlag,
1997.

[9] Sun Microsystems. Solaris Resource Manager [tm]
1.0: Controlling System Resources Effectively, 2000.
http://www.sun.com/software/white-papers/wp-srm.


