
Dan Lambright
EMC

Dlambrig@emc.com

Abstract

We present our experiences in benchmarking the
reliability of the cache component of a storage system in a
development environment. The reliability metrics we
measured are availability from the standpoint of the host
and maintainability from the standpoint of the system
operator. We created errors using software fault injection,
and measured their impact using a combination of
performance measurement techniques and the rehearsal of
maintenance procedures. This paper gives three case
studies. The first two describe experiments that recreate
very specific breakdowns in the software logic, and the
third describes an experiment simulating a memory
hardware failure that creates unpredictable effects. We
found that, taken together, these various techniques gave
us a useful picture of how well our cache management
software tolerated faults.

1. Introduction

Measuring the reliability of software, a relatively
unexplored topic within the systems community, has
recently been dubbed one of the major challenges facing
computer scientists who come from that background [1].

From the standpoint of industry, the positive feeedback
that reliability measurements bring is clear. Doing so helps
determine whether one version of software is more reliable
then a different version on the same system. It can alert
developers to where attention should be focused, in
particular whether valuable time should be spent writing a
complex or simple solution. Creating errors also acts as a
trial run for the recovery process employed by the system
operator or customer service engineer, testing the
robustness and effectiveness of diagnosis utilities for
locating and fixing the problem.

In this paper, we discuss our experiences in measuring
the reliability of the cache component of a modern disk
array. We did not attempt to benchmark the entire system,
choosing instead to focus on the cache because it lies at
the heart of the architecture of the product. Errors
frequently appear in cache before they appear on the disk

[6]. The techniques we describe are by no means
revolutionary. However, our goal is to demonstrate the
usefulness of the techniques, and to give some insights
into where future research could be directed.

In the product we examined, the error detection and
recovery software of the cache subsystem is quite
sophisticated. The design has no single point of failure and
a great deal of resiliency in its structure. This work is
intended to work torwards developing techniques to check
if the hardware and software satisfies that design goal.
Additionally, we desire a more explicit mechanism for
determining how the software’s effectiveness improves as
it evolves. Presently, deriving that notion can be done by
studying a dispersed set of statistics ranging from the
binary results generated from regression testing, to reports
summarizing the errors generated at customer sites. The
desire for reliability benchmarks stems from a need to
have a more immediate, reproducible, source of
information.

The product we examined had software and hardware
specifications readily available and modifiable for the
purpose of our tests. This allowed us to employ software
fault injection, a widely used technique, to generate faults
[2][9][12].

The fault’s impact on availability was in part measured
with tools and techniques used by our performance
measurement group. The fault’s impact on maintainability
was assessed by rehearsing the formal procedures a system
operator would have taken in case of the fault, and noting
what happened. We created faults to test both narrow,
targeted points in the software logic (“targeted faults”) and
at broader problems (“untargeted faults”). The former
technique was useful for stressing important algorithms in
a very specific way. Realistically, such tests could not be
custom designed for all the algorithms on the machine,
and only provided reliability information on a small
portion of code. For the system in its entirety, we turned to
the later technique. Untargeted faults provide a reliability
metric at the granularity of the system rather then the
algorithm. By using both techniques selectively, we were
able to get a more complete picture of reliability.

Experiences in Measuring the Reliability of a Cache-Based Storage System

This paper is organized as follows: Section 2
characterizes the systems we benchmark. Section 3
discusses our methodology for generating faults and
measurements. Section 4 contains studies showing how
“targeted” faults test a narrow (but important) aspect of
the system’s reliability. We found faults that acted
randomly in a scattershot means provide better statistics
on overall system robustness. Section 5 discusses those
experiences. Section 6 explores some ideas relating to the
integration of reliability benchmarking into software labs
and future directions in research. Section 7 reviews related
research, and section 8 concludes.

2. The Storage Device and Cache Subsystem

In this section, we give a very high level description of
the architecture of the system we test and the role the
cache plays in the system. We then describe in more detail
how faults which appear in the cache are detected and
categorized.

The product is a large disk array. The storage may be
accessed over multiple I/O channels, which may be
connected to varying types of hosts (e.g. MVS, UNIX),
that consequently use varying protocols (e.g. ESCON,
SCSI). A set of processors that we collectively call the
“front-end” are devoted to interpreting the protocols and
communications from the host systems. Another set of
processors (the “back-end”) operates the disk drives. It
consists of a set of CPUs that are divided between the
disks according to configuration. The CPUs may
communicate with each other via one or more networks, or
a centralized memory, or both.

A large cache in the product serves as a holding place
for data between the front and back-end. The cache is
accessed from the CPUs over redundant, high-speed
backplanes. On write operations, the front end CPUs
transfer data from the channel to the cache, and the back
end CPUs that control the target disks transfer data onto
storage. On read operations, the path flows in reverse.
Data in cache that has not yet been written to disk is
“dirty”. Data is removed from cache using a variant of the
LRU algorithm.

The system cache size may change dynamically. For
example, if a given threshold of errors is detected, the
cache is dynamically fenced off so that it no longer can be
used. Additionally, the user may add, remove, or replace
units of memory with minimal impact on availability to
the user.

Errors in the cache are grouped into two categories:
hardware and software. A software fault is a “bug” that
resides in the code running on the front or back-end CPUs.
A hardware fault consists of a number of bits which no
longer function properly during read or write accesses
within a given cache line. To be categorized as a hardware
error, the number of faulty bits must exceed that which is
correctable by the hardware’s EDAC (error detection and
correction) logic. Hardware faults in the cache may also be
manifested in faulty components (e.g. the front end or
backplane malfunctions). There is redundancy at each
level of the hardware to mitigate the impact of such
problems.

Cache errors are further categorized by the impact they
have on the user. For example, availability faults hinder
performance but do not corrupt data. A hardware error that
corrupts meta-data related to the LRU algorithm might
affect optimal replacement strategy, but the user would
still be able to load data at some reduced rate or response
time.

Other metrics used to describe cache errors include
latency and burstiness. Latency quantifies how long ago
the fault occurred. Clearly, the shorter the latency, the
easier it is to detect root cause, especially if the amount of
space devoted to logs is limited. Burstiness describes what
errors cluster together. A cache error may propagate to
other errors on the disk or channel controller, or may be a
symptom of a problem originating in those subsystems.

The system tracks errors using logs that preserve the
context of the fault (e.g. stack trace, counters) for
debugging. Errors are detected in the cache by background
scrubbing tasks and during the I/O operations. The
frequency of running the scrubbing software (which
impacts error detection latency) must be balanced with
providing enough time for processing host requests.

The cache has a set of diagnostic and development
tools used to monitor aspects of the subsystem, including
the state of the LRU algorithm, host utilization, meta-data
associated with the cache (e.g. software locks), and error

Back-Front-
C
A
C
H
E ...

...ESCON

SCSI/F

High Level Block Diagram of System

detection and recovery. The proper functioning of these
diagnostic capabilities, even in the presense of severe
faults, is important.

In summary, we are verifying the reliability of one of
the components of a highly available system. We note that
the system is made up of many different redundant
subsystems, each of which could be analyzed separately. It
would be useful to analyze the entire system as a whole,
but the variety of hardware would make this a more
difficult project.

3. Methodology

In this section, we describe the test configuration for
our reliability measurements. Because of limited resources
we had to trade off accuracy in our measurements for
expediency. Nevertheless, the configuration was
successful in helping us reach conclusions. We then
discuss the metrics we use to measure availability and
maintainability. For maintainability, our measurements
were based in part on the subjective analysis of human
beings. This is because of the complexity involved in
developing automated measurement techniques.

To quantify availability, we adapted the general
methodology for availability benchmarking to our
environment [1]. Essentially, this procedure works by
injecting one or more faults into the system while
measuring a Quality of Service (QOS) metric. In our case,
we wished to know the fault’s impact on overall response
time and throughput. These metrics appealed to us because
they were already well-established in our vocabulary (for
describing performance), and we had mature techniques
and instruments, as well as seasoned in-house specialists,
to do the measurements. Additionally, we knew of several
applications (routinely used for our functionality tests),
that were sensitive to unexpected deviations in those
metrics.

Our workload generator consisted of a dedicated MVS
mainframe running scripts to generate I/O. The storage
system was connected to the host over 12 ESCON
channels. The storage system had 8 GB of cache. There
were 96 physical hard drives on the machine, each with a
capacity of 18GB. The drives were partitioned into 288
“logical volumes,” which were the “disks” visible to the
host. We performed no other I/O or special applications on
the storage subsystem.

For each test we ran a mix of 25% writes and 75%
reads on randomly chosen blocks on the disks. This was a

crude approximation of customer behavior, and ideally,
we would prefer an I/O stream that predicted the impact
on customers by mirroring actual user behavior. However,
the behavior of users varies greatly from application to
application. Creating a single profile representing the
“average user” is beyond the scope of this experiment. In
performance testing, different tests are run to test different
classes of common I/O profiles (e.g. online transactions,
sequential write). This will most likely be our course of
action for future work.

We generated I/O requests from the host at a single
rate, which was at a relatively low level compared to the
maximum the system could handle. We took this approach
in order to approximate the level of I/O of a typical
system, rather then the level of an “envelope test”, which
might never be seen outside of performance benchmarking
labs. Our measurement software, originally designed for
performance testing, recorded the response time and I/O
throughput once every minute. Our availability measuring
tools were not accurate, but this was acceptable, as we
were more interested in understanding the fault’s impact
then getting a high degree of precision.

The effect on maintainability was evaluated by
manually simulating the corrective actions that the
customer service engineer would take in the case of a
fault. Those actions were known by following the
instructions corresponding to the error in a knowledge
database used by customer engineers, as well as
interviewing them in person. When no solution in the
knowledge database matched a fault, we determined what
a customer engineer would do by conducting interviews
and following our own judgement.

We considered writing an automated script to perform
maintenance functions (derived by viewing logs of error
recovery situations that had occurred in the past), but
concluded this method was not helpful. A typical
“solution” to a problem, as carried out by the system
operator, involves a sequence of decisions, which are
manifested by entering different diagnostic commands
depending on the state of the machine at the time. A log
only contains a sequence of commands for one unique
situation. Simply “playing back” the same sequence of
commands during fault injection could be inappropriate
depending on the state of the machine at the time of the
fault.

For example, suppose a fault in the cache was the type
that propagated to another subsystem, such as the back-
end CPU. The technician’s first job would be to work on

those problems, which would include checking the
integrity of the disk. If the disk was a member of a RAID
group, the data may be in several intermediate states. A
script that accounted for the myriad possible states the
machine could be in would be extremely complex and
potentially error prone.

Maintainability was quantified using three parameters.
Each parameter was rated on a scale of increasing quality:
low, medium, and high. We call the first parameter
effectiveness of diagnosis tools. To obtain it we noted the
correct existence and operation of diagnosis utilities and
error information. For example, in some cases we found
that the faults we created did not have utilities to diagnose
the problem. To obtain information the technician would
be forced to have a relatively deep understanding of the
code and dump raw memory and interpret it. In such cases
the effectiveness of the tools would be judged to be of
lower quality.

The second parameter was simplicity of solution. For
example, a simple recovery would be to invoke a software
correction utility, and a more difficult recovery would be
to physically replace a component that failed, or upgrade
the code. It is almost always preferable to employ the
former solution.

Our third parameter, robustness of diagnosis tools,
quantifies the correct functionality of management
interface software in response to severe problems in the
storage system; severe problems in the latter should not
cascade into the former. Systems under intense stress
should still be capable of interpreting such utilities and
maintaining logs, otherwise the problem would persist,
and there would be no corrective option other than
shutting down the system.

Lastly, the degree of severity of the generated fault was
tunable. This allows the tester to gradually increase the
severity until the effect becomes noticeable, or the system
completely shuts down. This “point of no return” is a
useful data-point, even if it is completely unrealistic and
would never happen under real circumstances.

In addition to availability and maintainability metrics,
we recorded: (1) how long it took for the problem to be
detected by the system, (2) whether it was self correcting,
(3) whether it was streaming (i.e. recurring repeatedly).

To sumarize, we had little trouble finding existing
techniques to measure availability, but found that
obtaining measurements to measure maintainability had to

be invented. A criticism of our maintenance tests may be
that because our opinions on the “quality” of
maintainability are subjective, they are subject to
controversy. But there are inherent difficulties in
automating maintenance tests. Finding practical solutions
to those problems may be an interesting area of research.

4. Targeted Fault Injection

In this section, we describe the “targeted” tests we
performed to measure the resilience of particular code
modules and specific recovery paths. Our first case study
examines a situation where an important data structure is
not synchronized between the different CPU’s, and our
second describes the effect of a rogue CPU that holds a
shared software lock for unacceptably long periods.

4.1 Case Study 1: Unsynchronized Memory
Maps

The first fault was a synchronization error. We wanted
to test the behavior of the system when the different CPUs
in the front and back end did not see the identical map
representing which portions of the cache were available or
fenced. In effect, some number of CPUs would believe
that more memory existed than others. We believed such a
problem would manifest itself in transient cache errors,
but depending on the severity of the problem the number
of errors may impact the overall availability of the system.

We wrote fault injection software to purposely break
the synchronization of the memory maps. We adjusted the
severity by changing the number of out-of-sync CPUs, and
the size of cache (expressed in 32 MB chunks) disagreed
upon. We attempted to break synchronization between
both the front and back end CPUs to learn what difference
that made in availability. We hypothesized that if the
front-end CPU had more memory visible it would fill it
with data on write operations, and the backend CPUs
would then post an error when the dirty track was
detected. Conversely, if the backend CPU had more
memory, it would fill it on read operations, and the error
would be posted immediately as the front-end CPU
responded to the host.

For faults of low severity, we found no measurable
effect on performance no mater which CPUs were out of
sync. However, when we increased the number of out-of-
sync CPUs to half those in the system, performance was
noticeably impacted. Figures 1 and 2 illustrate the
difference in impact between low and high serverity tests
when backend CPUs were modified to have more memory
visable. The respecting figures show the system’s response

time over a 20 minute interval (displayed on the x and y
axi, respectively), in which a synchronization fault was
injected and repaired. In the low severity test, no effect on
response time was noticed. In the high severity test, the
fault was injected at minute 5 and corrected at minute 10.
At minute 12, the response time jumped as the system
apeared to catch up with requests that had been delayed.

The degredation in response time occurred because
one part of the system would attempt to access disabled
memory, generating an error. Each time this happened
there was a small delay to report the error. The greater the
severity the more the delays aggregated, hence this
recovery period grew longer as the severity increased. We
did not see cascading errors at low severity, but we did at
high severity.

We found that at high severity, after we fixed the
problem (by re-synchronizing the memory maps using
diagnostic utilities), there was a brief period of continued
performance degradation, the cause of which we are
investigating. We also found that when we repeated the
same high severity test on front-end CPUs, the impact on
throughput was somewhat greater, which was in accord
with our hypothposis that front-end CPUs are more
vulnerable to this type of problem.

Maintainability in the synchronization case was
attainable. The diagnostic procedure and problem
discovery process was to manually check the memory map
on each CPU, compare that with others, then disable the
memory banks until all CPUs saw the same memory map.
The transient errors did not affect management software
functionality even at the greatest severity. We therefore
rated robustness to be of high quality. However, the
diagnostic utilities only showed the memory maps for
individual CPUs, rather then all of them at a time, and

they did detect the problem (i.e. they did not verify
identical memory maps on each CPU). We therefore rated
the diagnostic effectiveness to be of medium quality.

One concern was that to resynchronize the memory
maps the CPU had to undergo a subset of the initialize
microcode load (IML) processes. While this was a
strightforward operation, it was time consuming enough to
delay a small number of I/O completions. Simplicity of
solution was therefore graded medium.

4.2 Case Study 2: Broken Locks

Our second test was to force improper functionality of
a cache software lock. The purpose of the lock is to protect
meta-data related to the LRU replacement algorithm. Our
fault injector simulated a rogue CPU that had gone into a
loop in which it repeatedly took and held the cache lock.
When this occurrs beyond an expected amount it prevents
other CPUs from accessing that meta-data and can delay
I/O completion. We tuned the severity of this fault by
increasing the frequency and length of time the lock was
taken over a 20 minute period (e.g. at low severity the lock
would be taken once and held for a period of 50
microseconds, and at high severity the lock would be
taken 10 times and each time held for a period of 5
seconds).

As we expected, availability was impacted by this
fault. The longer the lock was held the greater the host
impact. Beyond a particular point the host timed out on the
I/O, which we recorded as a cascading error. We also
found that, as in the first test, there was a recovery period
during which performance was still impacted. Figure 3
shows the results from one test of high severity. In the
graph, the lock was taken by the rogue CPU 3 times, and
held for a duration of one minute at each instance. The

Figure 2 : I / o Rat e for 4 Gig Ou t of Sync; a ll back end CPUs

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

0 5 1 0 1 5 2 0

M inut es

I/O
 r

at
e

Figure 1: I / O Rate for 1 Gig Out of Sync on 1 backend CPU

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

0 5 10 15 20

Minutes

I/O
 r

at
e

graphs shows a 30 minute period (represented on the x
axis) versus the system’s response time durring that
period. At minutes 6, 10, and 15 the rogue CPU took the
lock and held it for a period of 20 seconds.

At low severity (lock held for less then one second),
the response time was not impacted. In between the two
extremes of high and low severity, response time varied.
We were able to gradually increase the severity to find
where the effect began to become noticeable. Beyond a
certain point a CPU waiting for the lock would assume the
rogue CPU had malfunctioned and so would take the lock
by force, thus the problem was self correcting. However,
in our high severity tests the rogue CPU would continually
re-aquire the lock.

We discovered several management utilities used the
lock in order to function and their capabilities degraded
when the fault was severe. This led us to grade robustness
to be medium. We suggested a “force” option to these
utilities to bypass taking the lock. In doing so, the acuracy
of the utility would be impacted (because exclusive
control of the meta-data would not be held). This would
normally be an acceptable tradeoff, however, because in a
real-time debugging scenario obtaining timely information
is more important then perfect accuracy.

We found this problem difficult to diagnose. When we
presented it to a customer service engineer (without telling
him of our experiment), it took him a longer time to
determine the root cause of the problem, relative to the
first experiment. At the highest severity levels (an endless
loop repeatedly taking the lock), the only course of action
is to reset the CPU to terminate our fault injecting
program. We graded simplicity of the solution to be low.

Because the available management utilities were
relatively obscure and cryptic (they were used primarily
by developers as opposed to system operators), we graded
their effectiveness to be medium. We recommended
adding a new counter into the lock mechanism in a
prominent display utility. It would be displayed in a red if
the lock was taken more than some number of times
within an interval.

4.3 Conclusions from Case Studies 1 and 2

With the knowledge gained by these two tests we could
more easily determine whether devoting development time
towards early detection of these faults would be useful. In
the first case, a complex mechanism to ensure
synchronization between the CPUs could be designed. But
because the complexity would be high and the impact of
the bug was relatively low (and simple to detect were it to
actually occur), the arguments to stick with a simpler
recovery mechanism won out. The second problem
(greedy locking) was more severe, but because of the
unlikelyhood of its actual occurance we confined our
recommendations to improvements to management
utilities.

5. Case Study 3: Untargeted Fault Injection

In this section, we discuss our tests for simulating
hardware faults in the cache memory. The goal of these
“untargeted” tests was to verify that in the presence of
these conditions the system would generate a brief
sequence of transient errors before fencing off the
offending memory, switching to a write-through mode (if
not in one already), and alerting the operator.

A hardware fault manifests itself when the software
fails to perform a read or write operation to the cache.
Whenever this occurs, the software should follow a
recovery path rather than assume the operation succeeded.
Because the cache is accessed from many points in the
system, there are many recovery paths to test. Rather than
laboriously test each one (the targeted aproach), we
created faults randomly and attempted to get a statistical
sense of the correctness of the recovery paths.

The fault injection software works by inverting enough
bits in a cache word to defeat the error correction code
(ECC). On our system there is a mechanism to disable
ECC generation. We disabled ECC generation, wrote
random data into the cache word, then re-enabled ECC
generation. At that point the ECC no longer corresponds to
the data and so will flag an error when it is accessed. The
location affected in the cache was adjustable to be LRU

Fig u r e 3 : I m p a ct o n R e sp o n se T im e w it h M isu se d Lo ck
(H ig h Se v e r it y)

0

1 0

2 0

3 0

4 0

5 0

0 5 1 0 1 5 2 0 2 5 3 0

M in u t e s

R
es

p
o

n
se

 T
im

e(
m

s)

algorithm meta-data or overall system state. Although
certain regions of memory (such as system timers) are
more likely to be accessed quickly by a CPU (thereby
triggering the fault) than others, all memory errors will
eventually be found by background memory scrubbing
processes.

The fault injection software’s severity was adjusted by
increasing the number of faults created. In our
experiments, we increased the number of memory faults in
granularities of 2, 10, 100, 200, 400, 1000, and
250000000. We did not benchmark availability using the
performance techniques of the previous section because
the act of fencing memory directly affects performance
because the size of the cache shrinks. An availability
benchmark would have to distinguish that expected
degradation from the unexpected consequences of
software errors. We left the project of learning those
interrelations to future work.

At low severity (granularities of 1,2,10), our tests
showed some diagnostic utilities functioned marginally
slower, and a limited number of transient errors (affecting
neither availability nor data) were generated. When we
increased the severity to between 200 and 1000, the
number of transient errors grew slightly, and we
encountered errors in two out of 10 instances that did not
recover immediately.

At high severity, we found some diagnostic utilities
functioned very slowly when a large number of multi-bit
errors were inserted. For example, one utility scans the
cache to count the number of data blocks that are dirty,
and in so doing, accesses the cache many times. If those
accesses touched a “broken” cell in memory, the code
would try again, repeatedly, until a timeout occurred. This
is because accessing global memory was done through a
wrapper function, which checks for errors and optionally
retries the access some number of times if there was an
error. We found in the case of the utility in question, the
optional “retry mode” was enabled. That caused the utility
to run so slowly as to be practically unusable. Our

recommendation was to invoke the wrapper such that it
would only attempt accessing the cache once.

In another case, we found diagnosis utilities that swept
the cache would terminate after encountering the first
memory error. This slowed the recovery process faced by
customer service engineers. We recommended modifying
the utility to continue processing the entire cache. Overall
we graded robustness of tools to be of medium quality.

Diagnosis at each level of severity was straightforward:
replace the “faulty” memory component. We had no
difficulties executing that solution at any of the severity
levels, and therefore we graded simplicity and efficiency
of the solution to be of high quality.

An important lesson we learned was that correlating
faults generated in this experiment to a particular piece of
the software could be very difficult. For example, if 10000
faults are generated, and one of them causes a cascading
error that impacts some other functionality, the problem
becomes a tedious search for which of the faults has an
incorrect recovery path that produced the problem. An
important enhancement to the fault injector software will
be to improve logging of where the fault was generated. In
summary, we found that our diagnostic tools had several
areas of improvement in the area of robustness.

6. Discussion

We found that rehearsing the corrective action with a
customer service engineer was a useful technique. During
such “fire drills” we could observe firsthand whether the
system’s diagnosis utilities were effective and how soon it
would take to locate and fix the problem. We are skeptical
that automated scripts could be devised to simulate real-
time debugging, except under greatly simplified
conditions.

An organization’s QA department may be the logical
home for reliability “regression” tests. Such tests would
have to be carefully developed, because untargeted fault
injection can create bugs that are difficult to find and may
waste developer time. Conversely, targeted tests may be
too specific and numerous to be efficiently used by a QA
group already burdened with tracking ever-changing
software. In many cases it may be preferable for reliability
testing to be done according to the responsible developer’s
sense of the software’s sensitivity to a problem.

Maintenance Tests Results
Measurement Case Study 1 Case Study 2 Case Study 3
Coverage Targeted Targeted Untargeted
Diagnosis
Effectiveness

Medium Medium High

Diagnosis
Robustness

High Medium Medium

Solution
Simplicity

Medium Low High

We note there is another class of behavior that may
negatively effect system availability. An “upgrade event”
is some user-initiated modification of the system, such as
hot-swapping a drive or portion of memory. For a
continuously available system, such operations should
minimize availability degradation.

We consider these to be a separate class of problems
for three reasons: (1) these operations are normally part of
the manufacturers regression tests and significant losses of
availability should be detected at that time; (2)
maintenance upgrade events are rare (hot-swapping a
major component of the system typically happens on the
order of months or years); (3) Availability degredation is
expected as some upgrade events necessarily have some
effect (e.g. such as hot-swaping memory can lead to cache
misses), and many utilities (e.g. gathering exhaustive drive
or cache statistics) executed durring the maintenance
procedure will necessarily sidetrack the system from
completing I/O requests.

It would be desirable to quantify the entire system’s
reliability as a whole, rather than one component.
Conceivably, this could allow two competing products to
be compared against the same reliability benchmark.
However, as noted by Prasad [10], this may not be
possible. The range and variation of errors, and how they
affect systems such as the one we test, is large. Separating
a system such as ours into components (e.g. the cache)
greatly simplifies the problem of reliability analysis [9].

We believe the problem of testing reliability of closed
systems represents a fruitful area of research. It would be
useful to obtain a sense of a system’s reliability using
some agreed upon criteria or standard, as is possible with
performance tests.

Achieving this goal will be challenging. Measuring the
reliability of a closed system (e.g. comparing competing
products) is difficult [12]. Closed systems limit the scope
of fault injection because software fault injectors cannot
be written and hardware data-paths are unknown.
Additionally, because the system’s components (e.g. disk
drives, memory cards), may be customized hardware,
modifying them in a way to accurately generate a known
fault is difficult. Finally, the management path (how
system operators diagnose their systems in real-time) may
be unobtainable.

Comparing the reliability of different storage systems
is also complicated by the great variance of configuration
options. Comparing “apples to apples” is very hard. To
isolate testable similarities between competing machines,

it is helpful to draw from experiences in performance
testing. In such tests, certain subsystems play dominating
roles, and other components are ignored. For example, in
performance tests, the number and type of multiple input
streams (SCSI, fast SCSI, fiber, ESCON, etc.), the number
of drives, and the cache size are the most important
variables that impact performance. The myriad of other
potential configuration options provided (e.g. mirroring,
RAID, dynamically attached disks), impact performance
in a less obvious ways. We suggest evaluating two
systems with the same configuration of dominant
subsystems.

7. Related Research

Software fault injection (SFI) has frequently been used
to generate untargeted faults. For example, by mutating
code a programming error can be simulated [12]. Or, by
simulating processor failure, a random event is created [2].
By repeatedly generating errors in this way statistics can
be derived on reliability. Chen demonstrated that by using
SFI, a positive development loop can be created to
gradually improve the code [9].

The ISTORE project is studying reliability in storage
systems, and has developed methodologies for availability
benchmarking which we adapted for this paper. Their
work has focused on examaning closed systems (e.g.
Windows 2000) [1]. This work is directed torwards a
development environment, in which any software fault
instrument could be built for reliability measurement. Note
that in development environment portability concerns (a
frequent objection to SFI) are less of an issue.

Some work has been done to conceptually disassemble
the complex software architecture that makes up a large
storage system [6]. Kaaniche showed that once this is
done, the problem of reliability measurement is somewhat
simplified because lower “hierarchies” of software
functionality may be viewed as a black box. Taking this
useful perspective, our view in this paper was from the
middle of the system, and the front and back end CPUs
and devices were the “black boxes”.

8. Conclusion

In this report, we have described our experiences in
applying reliability benchmarks to the cache subsystem of
a large disk array. We successfully found deficiencies in
diagnostic utilities and located the fault severity levels at

which availability to the host became degraded. The work
had a positive effect on the product as all of the
deficiencies found were fed back to the designers who
then made appropriate corrections. Two important lessons
we learned are (1) testing techniques which focus both on
particular algorithms and the overall system gave us a
more complete picture of the system’s reliability; and (2)
maintainability is difficult to measure without human
participation.

References

[1] Brown, A. Patterson D. “Towards Availability Benchmarks:
A Case Study of Software RAID Systems.” Proceedings of
the 2000 USENIX Annual Technical Conference, San
Diego, CA, June 2000.

[2] Carreira, J. Silva, J. “Xception: A Technique for the
Experimental Evaluation of Dependability in Modern
Computers.” IEEE Transactions on Software Engineering.
Vol 24, No 2. February 1998.

[3] EMC² Corporate Home Page: http://www.emc.com
[4] Kropp, N., Koopman, P. Siewiorek, D. “Automated

Robstness Testing of Off-the-Shelf Software Components.”
Fault Tolerant Computing Symposium, pp. 230-239, June
23-25, 1998.

[5] Guedard, Y. Marneffe, L. Scheerens, F. Blanquart, H.
Boyer, T. “Functional and Faulty Analysis: Some
Experiments and Lessons Learned.” 29th International
Symposium on Fault-Tolerant Computing (FTCS-29)
Madison, Wisconsin, USA June 15-18, 1999.

[6] Kaaniche, M. Rmano, L. Kalbarczyk, Z. Iuer, R. Karcich,
R. “A Hierarchial Appraoch for Dependability Analysis of a
Commerical Cache-Based RAID Storage Architecture.” The
Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing. 3 - 25 June, 1998.

[7] Koopman, P. “Toward a Scalable Method for Quantifying
Aspects of Fault Tolerance, Software Assurance, and
Computer Security.” Post Proceedings of the Computer
Security, Dependability, and Assurance (CSDA’98), 11-13
Nobember 1998.

[8] Michael, C. “On the Uniformity of Error Propagation in
Software”. Proceedings of the 12th Annual Conference on
Computer Assurance (COMPASS ’97). Gaithersburg, MD.
1997.

[9] Ng, W. Chen, P. “The Systematic Improvement of Fault
Tolerance in the Rio File Cache.” Proceedings of the 1999
Symposium on Fault-Tolerant Computing (FTCS) , June
1999.

[10] Prasad, D. McDermid, J. “Dependability Evaluation using a
Multi-Criteria Decision Analysis Procedure.” Proceedings
of the Dependable Computing for Critical Applications.
January, 1999.

[11] Talagala, N. Patterson, D. “An Analysis of Error Behavior
in a Large Storage System.” The 1999 IPPS Workshop on
Fault Tolerance in Parallel and Distributed Systems.

[12] Voas, Jeffrey. McGraw, Gary. “Software Fault Injection”.
Wiley Computer Publishing, New York, 1998.

