
Automatic Precompiled Headers: Speeding up C++ Application Build Times
Tara Krishnaswamy

Internet & IA-64 Foundations Lab, HP
tara@cup.hp.com

Abstract

This paper describes the crucial design and
implementation issues that arise in building a fully
automatic precompiled header mechanism for
compiling industrial-strength C and C++ applications.
The key challenges include designing the Makefile-
transparent automation, determining the precompile-
able region, capturing the compile environment and
verifying it and addressing the correctness issues
involved in using precompiled headers. The ensuing
discussion treats the internals of the actual dumping
and loading of precompiled headers as a black-box
beyond a brief high-level description. An automatic
precompiled header mechanism has been implemented
in aCC, the HP ANSI C++ compiler, and the results of
compiling real applications show that it achieves
significant speedup in compile-times of real
applications.

Introduction

C++ compilers are increasingly called upon to translate
large applications that implement formidable
computing tasks. These applications range from
enterprise level software for supply-chain planning and
database management to technical computing systems
for CAD, mechanical design and automation and
internet software for web browsing. These large
software systems are structured as various C++
programs and distributed between many directories in
the file-system. Each set of programs that constitutes
these applications is compiled and linked into shared or
archive libraries.

Also, such large systems often contain a mix of existing
C and C++ code with incremental additions of fresh
code for each new release of the product. As the size of
these applications increases with each release, the time
required to build them also increases, thereby impacting
the productivity of the developers. In order to minimize
this impact, many industrial systems initiate complete
builds at night and require such builds to finish
overnight, in spite of the applications' already large and
steadily increasing size. These end-to-end builds

include both the compile and the link phases, but are
dominated by the compile phase.

At the source level, these large programs are
modularized in traditional fashion as source-files and
header-files. Source files primarily contain code that
implements the behavior of the application, while
header files mostly contain declarations that describe
various complex types and data-structures used in the
application. Such applications use both system headers
that advertise the underlying operating-system API and
application-specific headers that describe user-defined
types and data-structures.

These header files are then programmatically
internalized into one or more source files, exposing the
types and data-structure interfaces to the source-files
that need them. This header-file inclusion mechanism
also allows the compiler to perform any static type
checking mandated by the C/C++ languages. This
paradigm of modularizing programs attempts to
separate the interface to various data-structures and
types in the application from the code that uses and
manipulates it.

However, neither the C nor C++ language definitions
enforce this paradigm strictly, allowing practically any
legal C/C++ construct to reside in header-files. This
complicates the structure of the application since C
header files often contain not only type declarations but
also macro definitions. Macro definitions associate
symbol names, possibly with arguments, with
replacement text which can contain conditional
statements, loops, function calls and other executable
code. C++ header files add further complexity since
they contain both the interfaces to various classes and
the definitions of the inline member functions of those
classes.

In essence, the C++ promise of software reuse with
libraries is delivered to a large extent via static header
files that contain a lot of code that needs to be
recompiled each time the importing translation unit is
compiled. This proliferation of header files with
complex code demands huge compiler effort to digest
and thereby negatively impacts the compile-times of the
applications. Table 1 contrasts the volume of code
imported by a C++ "Hello World!" program against one

written in C. Table 2 compares the volume of code
between source files and header files for some
applications. The table shows that on average about
87% of the application's code resides in header files.

From Table 2 it is apparent that in order to achieve fast
and efficient compiles, a compiler must seek to
minimize header-processing time. Note that although
about 87% of lines in the applications stem from header
files, it does not imply that an equivalent portion of
compile-time will be dedicated to header processing.
This is partly because header files predominantly
contain declarations that don't trigger machine code
generation, although debug-mode compiles may cause
debug information to be emitted for these declarations.
Table 3 reports the compile-time division between
actual source line processing and header processing.

Note that the processing times for the header files serve
only as a lower bound although they represent actual
compile-times due to the fact that these numbers were
gathered only for headers continuously #include-ed at
the head of the source files. Since C and C++ allow
header files to be #include-ed anywhere in the source
file, an arbitrary sequence of header files culled by
separating the interrupting source lines, may not
compile successfully due to dependencies on the
lexically preceding source. This is addressed in greater
detail in the next section.

Table 3 clearly demonstrates that a large part of the
compile times of these applications is spent in
processing the #include header files. This argues for a
compilation technique that minimizes the overhead of
processing headers.

Table 1

APPLICATION PREPROCESSED LINES
Pl = wc -l *.i

SOURCE LINES
Sl = wc -l *.C

HEADER LINES
Hl = Pl - Sl

Hw.c 341 6 335
Hw.C 679 6 673

Table 2

APPLICATION PREPROCESSED LINES
Pl = wc -l *.i

SOURCE LINES
Sl = wc -l *.C

HEADER LINES
Hl = Pl - Sl

% HEADER LINES

Perl 69958 23,214 46744 66
Class Library 177164 8372 168792 95
Ray Tracer 425717 18323 407394 95
CAD 443358 9114 434244 97
Web Browser 48920 1002 47918 97
Linker 1060368 36832 1023536 96
Optimizer 2979219 222367 2756852 92
Business Planner 279107 102597 176510 63
Average 87

Table 3

APPLICATION COMPILE TIME OF
PREPROCESSED LINES (SECS)

COMPILE TIME OF
HEADER LINES (SECS)

% TIME SPENT
COMPILING HEADERS

Perl 7.3 3.9 53
Class Library 17.2 17.1 72
Ray Tracer 44.7 38.1 85
CAD 38.7 31.3 80
Web Browser 14.6 14 95
Linker 85.8 77.6 90
Optimizer 194.2 146.5 75
Business Planner 70.5 34.6 49
Average 74

Precompiled headers (PCH) are a mechanism to cache a
partially compiled version of one or more headers
during a compile and then, reuse the cached version
during subsequent compatible compiles. To elaborate,
when the compiler is invoked on a source file a.c for
the first time, the PCH mechanism snapshots the
#include headers in a partially compiled state and
preserves that intermediate form in a disk cache. Later,
when a.c is edited and recompiled, the precompiled
contents of the cache are simply ingested instead of
recompiling the same headers again. This results in
reducing a portion of compile time spent in processing
the headers during the second and subsequent compiles.

There is, of course, the overhead of dumping the
precompiled headers during the initial compile and the
expense of ingesting them and reconstructing the
compilation such that it mimics the actual reprocessing
of the headers during the later compiles. In spite of this,
in applications with large existing source bases that
change incrementally, significant portions of the code
remain dormant and are therefore prime candidates for
PCH. In these cases the PCH scheme yields noticeable
compile-time savings.

Several commercial compilers support some form of
precompiled headers including Borland C/C++ [5] and
IBM OS/390 C/C++ [3]. IBM C Set ++ [4] caches
tokenized versions of headers while aCC's
implementation caches headers in a partially compiled
form that results after parsing and semantic analysis.
KAI C++ [2] dumps and reads its raw symbol table
contents while aCC serializes the symbol table and the
intermediate form of the headers into the cache.
Microsoft VC++ [6] offers automatic precompiled
headers with a cache that is shared across a project and
causes debug information to be emitted into every
object file that uses the cache. This creates
dependencies between the object files that share a cache
and causes the compiler to rebuild all object files that
use that cache if one changes. aCC's implementation
does not share the PCH across source files. Other
research directions for faster compiles include
incremental compilation at a function level [7] and a
compile server approach that retains internal data
structures across compile requests [8]. Note that our
paper is the only description of details that an
implementation has to take care of.

Design Issues with Precompiled Headers

The basic idea of precompiled headers is simple: avoid
reprocessing the #include headers each time a file is
compiled by reusing a partially compiled version of the

same headers from a cache. In the code sequence
below, the compiler could simply cache the partially
compiled contents of a.h and b.h in Example 1 into a
single PCH cache for later use.

Example 1

// Start a.c
#include "b.h"
// Other C/C++ code …
#include "a.h"
// Other C/C++ code …

int main () {
// More code…
}
// End a.c

However, complications arise due to language and
compilation system features that impose constraints on
the save and reuse mechanisms. Such constraints
impact the extent and contents of the region that can be
precompiled and control the conditions under which the
precompiled cache can be reused. The main design
constraints are due to the:

• scope of the macro language in C/C++
• effect of external compile environment
• flexibility of header files

The C [11] and C++ [10] languages support a globally
scoped macro preprocessor language that can penetrate
any lexically succeeding header file boundary. This
means that the contents of header files can be
manipulated through macro symbols external to them.
For instance, given the following contents of a.h,

Example 2

// Start a.h
#ifdef HPUX11
typedef size_t unsigned long
#else
typedef size_t unsigned int
#endif

struct List {
// More code…
};

#ifdef VER2
// More code…
#endif
// End a.h

and a source file a.c, that #include-s a.h as follows,

// Start a.c
#include "b.h" ßMay change a.h!
#define HPUX11 ßChanges a.h!
#include "a.h"
#define VER2 ßNo effect on a.h

int main () {
// More code …
}
// End a.c

if the macro HPUX11 is defined or undefined in
Example 1, the contents of a.h as visible to a.c is
affected. Therefore, in order for a.h to be cached and
reused correctly, either its partially compiled state
should reflect the presence of the macro conditional in
it, or the cached version should be sensitive to the
lexically preceding macro settings in the source file that
influence its contents. If not, the cached version of the
header file is inapplicable in contexts with different
macro settings.

Further, although macros that lexically succeed the
#include statement do not exert any influence on its
contents, C/C++ compilation systems do allow for
macros to be set and unset through command-line
options to the compiler. For instance, the HPUX11
macro in a.h above could be set or unset through:

aCC -c -DHPUX11 a.c
or

aCC -c -UHPUX11 a.c

Such macro settings affect the contents of all dependent
header files and hence the contents of the precompiled
cache. For a rigorous quantification of the incidences of
macros, analysis of their usage patterns and their impact
on development tools see [1].

In addition to the compiler options that flag macros,
options that control optimization levels and debug-
information generation affect the generated code and
hence impact the precompiled cache contents. For
instance, in a non-debug-mode compile, the partially
processed state for a.h may not have debug-information
annotations for the List data-type and hence, neither
will its precompiled cache. In a later compile, if the
debug option is set and this cache is reused, no debug-
information will be emitted for List. This is both
unexpected and inconsistent with the current invocation
of the compiler. Similar incompatibilities arise with
options that control 32/64-bit code generation,
exception-handling etc. So, for the correct reuse of the

cache, the PCH mechanism must be aware of any
compiler option settings that violate its consistency.

 The above discussion shows that the PCH cache is
affected by more than merely the headers' contents
themselves. In fact, since macros preceding the
#include statements can affect the contents of those
header files, other lexically preceding header files can
also toggle these macro values and hence alter header
file contents. For instance, in Example 1, b.h is
included before a.h and hence can affect the contents of
a.h by changing the settings of macros that a.h depends
on. This implies that if the user edits a.c to include b.h
after a.h instead of before, the existing precompiled
headers cache is rendered useless! In essence, the order
of inclusion of header files important to the reuse of the
header cache.

Also, many C/C++ language implementations support a
variety of pragmas that control object layout,
alignment, optimizations, inlining and code-generation.
These, of course, apply to lexically following code,
perhaps including header files. Furthermore, since
header files in C/C++ are not required to be insular
entities whose contents are complete, correct and
guaranteed to compile in a stand-alone fashion, header
files that compile in one context may fail in others. For
instance,

Example 3

// Start b.c
static
#include "c.h"

extern void foo (int);
int main () {
foo (I);
}
// End b.c

// Start c.h
int I;
// End c.h

the code in Example 3 may be stylistically deplorable
but it is perfectly legal. This implies that #inlude-d
header files contents are highly context sensitive and
impacted substantially by preceding text.

Implementation Issues with Precompiled
Headers

Based on the previous discussion, in order to correctly
capture the header files included in a given source file

in a partially compiled state, an implementation must
identify two things. First, it must demarcate the region
to precompile, called the passive region, and then it
must identify the parameters that influence the contents
of this region, called the configuration.

Once these two entities are identified, they can be
recorded in the cache when the source file is compiled.
When a recompile is initiated by the user or the build
system due to say, source-file changes or compile
environment changes, the PCH mechanism must check
to see if the passive region is untouched in the source
file. It must also verify the compatibility of the
configuration that controls the contents of the passive
region. If these two attributes are intact, the cache can
be reused for a faster compile.

The passive region is loosely described as a set of
header file includes and it's preceding code, which
impacts their contents. In identifying the start of this
region, recall from the previous discussion that any
source statements that precede the header files impacts
their contents. Given that C/C++ source files are
typically laid out with a series of header file include
statements at the top, the passive region could simply
begin at the head of the source file. In finding the end
of this region, recall from the previous discussion that
header file include statements can occur anywhere in
the source file.

This implies that the end of the passive region could
potentially coincide with the end of the source file
causing the cache to contain the whole contents of the
source file. Ostensibly, such a cache would derive
maximal compile-time savings from reuse. In reality,
such a cache would result in no savings at all! If the
source file source is edited and recompiled, a cache that
encompasses the gamut of the source file is
automatically rendered void since no matter what part
of the source file or its headers are altered, the cache is
affected and cannot be reused.

So, the key to identifying the end of the passive region
is to recognize that the overriding objective of the PCH
mechanism is to reduce compile-times not by enlarging
the volume of the PCH cache but by increasing the
chances of its reuse. For existing programs with a
largely frozen interface, the application header files
seldom change and the system header files are
immutable by the user.

Given this, a passive region that terminates with the
first non-preprocessor non-comment statement in the
source file is likely to cover any introductory
comments, initial macro defines and conditional
compile statements abetting the header file includes, but

little else. This ensures that the passive region is not too
trivial to yield benefits from precompiling. It also
ensures that the passive region is limited and does not
overrun the implementation in the source file that is
prone to change more frequently. Example 4 illustrates
the passive region boundaries in sample code.

Example 4

// Start foo.c
/* … */

 ß Start passive-region
#include <iostream.h>
#include <new.h>

#ifndef __GNU__
#define MIN(a,b) ((a<b)?a:b);
#endif

#ifdef __HPUX__
#include "hp_stack.h"
#else
#include "stack.h"
#endif
#include "foo.h"
 ß End passive-region

extern void foo (void);
int lookup () {
foo ();
// More code…
}
// End foo.c

A source file needs to be recompiled either because its
contents changed or the contents of one or more of the
directly or indirectly included headers changed or
because the compile environment (e.g. command-line
options, compiler version) changed. This threefold
collection of parameters that impacts the contents of the
passive region is called its configuration and the PCH
mechanism must predicate the reuse of the header cache
upon the compatibility of the configuration including
that of the passive region.

The first configuration parameter is the contents of the
source file. A change to the source-file contents could
either lie within the passive region or outside it. Since
the passive region begins at the top of the file, any
alteration outside that region of code must be lexically
beyond its scope and influence. This means that a
source file change either directly touches the passive
region, by say, adding or removing header file include
statements or macro settings in it, hence violating the
validity of the cache, or is extraneous to the passive

region and does not prevents cache reuse. By recording
the passive region itself, in addition to saving its
precompiled form, the PCH mechanism can compare it
against the version in the source file as a deciding factor
for cache reuse during a later compile.

The second configuration parameter is the contents of
all the direct and indirect header file dependencies of
the source file. If the user edits one or more of the
application headers to augment or alter its contents and
one or more of these headers are included in the passive
region, this nullifies the contents of the header cache.
Therefore, in addition to a copy of the passive region,
the header cache must contain the time-stamps of all
dependent header files for the source file. This can then
be checked by the PCH mechanism during a recompile
to decide if the cache is worthy of reuse.

The third configuration parameter is the environment of
the initial compile of the source file. This includes
compilation command-line options, the compiler and/or
PCH version and perhaps the OS versions and the
compile location. Note that some compiler options like
say, the verbose option, may be benign even if flipped
and the partially compiled forms of the parse trees of
various compiler versions may be in fact be compatible.
However, for the sake of simplicity, the PCH
mechanism can safely record all these parameters
during the initial compile and check their consistency
during a recompile.

The process that automates the decision making for
creating and reusing the PCH can be implemented as
follows. When the compiler is invoked on a source-file
it checks to see if the corresponding PCH exists. If not,
it proceeds to create one along with a record of its
configuration parameters. If the PCH exists but its
configuration is mismatched with the current
invocation, then the compiler pretends that the PCH is
absent and generates one. If a valid PCH exists, the
compiler simply absorbs it, skips past the passive
region and continues the compile.

In aCC's implementation, when it is first invoked on a
source-file, it checks for the presence of a matching
header cache. If no such exists, it slips into the create
mode, in which it prepares to dump a PCH file with its
associated configuration. First, it assembles a
configuration-record (CR) that encapsulates the entire
compile environment of the source file and its
dependencies. The CR contains the following,

• the source filename
• the aCC version number
• the aCC command-line with all options

• header-file dependencies
• the time-stamps of the dependencies.

The OS version is not needed since aCC's version
number uniquely identifies the major OS streams. In
fact, the compiler version number serves to version the
PCH, ensuring that the internal structure and format of
the header cache are consistent with the expectations of
the compiler i.e. what is written into the cache is what
is read. In addition, it also captures a representation of
the source in the passive region.

Note that the compile directory is not deemed necessary
since the chances of erroneous cache reuse with
eponymous files in two distinct locations are minimal.
This is because aCC's implementation stores and
verifies the passive region and the names and time-
stamps of the dependencies before the reuse anyway.

aCC starts the passive region at the first token in the
source file past any comments and white-space
characters. In its search for the end of the passive
region, it then skips past the preprocessing directives
until it reaches the first declaration in the source file.
aCC then pre-compiles the portion of the program
within the passive region and dumps it into an
eponymous header cache with its CR. It also stores a
copy of the actual source code from the passive region
in the CR.

In determining the end of the passive region, if the
sentinel declaration occurs inside a conditional compile
block, aCC raises the end of the passive region above
the conditional compile block. Similarly, if aCC spots a
header-file include statement inside a nested scope like
a class or function, it stops the passive region in the
file-scope prior to the start of the nested scope. This is
shown in the code fragments below in Examples 5 and
6.

This is because, during subsequent recompiles of the
source-file when the header cache is reused, aCC
pretends that the source-file begins after the passive
region. In this mode, called the use mode, aCC skips
past the passive region to start the compile and the
contents of the header cache are paged in only as
needed. Tokenizing and parsing of the source-file begin
immediately following the passive region and this
requires the aCC scanner and parser to encounter legal
start tokens in an outermost scope just beyond the
passive region. In effect, the source-file without the
passive region is expected to be a syntactically correct
entity.

Example 5

// Start foo.c

 ß Start passive-region
#include <iostream.h>
#ifdef __HPUX__
#include "hp_stack.h"
#else
#include "stack.h"
#endif
#include "foo.h"
 ß End passive-region

#ifndef VERSION10
extern void bar ();
#endif
// End foo.c

Example 6

// Start foo.c
 ß Start passive-region

#include <iostream.h>
#include "foo.h"
 ß End passive-region

struct Tree {
#include "bar.h"
// More code…
};
// End foo.c

In addition, aCC supports a pragma that can be inserted
by the user to define the end of the passive region. Such
fine-grained control is convenient, for instance, when
the user knows that a specific header file is currently in
flux and therefore not amenable to precompile and
wants to assert this to the compiler. In the absence of
such a manual control, the automatic stop-point of the
passive region may fall beyond the header in flux and
hence negate any benefits that accrue due to the rest of
the passive region preceding it.

Clearly, the manual stop-point must lexically precede
the automatic stop-point to have effect. Of course, for
reasons already discussed, the start of the passive
region must always fall at the top of the file and hence
is not open to user manipulation. Comments at the
head of the source-file are not included in the passive
region since they are semantically immaterial.

In create mode, once the passive region is identified
and the CR assembled, the next step is to dump a

partially compiled version of the headers into the cache.
In aCC, partially analyzed parse-trees decorated with
their symbol and type attributes are serialized to
populate the precompiled header database during the
create mode.

 In use mode, once the configuration parameters
mentioned above have been validated, the linearized
parse-trees are read back from the disk cache on
demand with only the cache preamble read in at start of
the compile. As the compile progresses in use mode, if
a required symbol or type is missing, the lookup fails
and thereby triggers the PCH load mechanism for that
symbol or type. Then, the symbol and its attributes are
read in from the cache to fill in the in-core symbol
table.

Results and Correctness

Table 4 presents the results of the automatic
precompiled header implementation in aCC for
complete end-to-end builds. The Web Browser, CAD
and Business Planner are application subsets while the
rest are complete applications. This implementation is
entirely Makefile transparent and can be enabled and
disabled through options or an environment variable.

As shown below, the average compile-time speed-up
for these applications is over 2x. Perl has the least
compile-time gains and the Web-Browser subset, the
most. This matches the expectations set by Tables 2 and
3. Perl has the smallest ratio of header contents to
source-file contents and the least time spent in
compiling its headers while the Web Browser subset
has a substantial portion of its code in its headers and it
consumes a major fraction of its compile-time. Note
that the cache is managed by aCC and not Make; it is
therefore reused based on its validity or recreated by
aCC. If the user chooses to explicitly delete the whole
cache before the build, there are obviously no compile-
time gains.

Table 5 juxtaposes the compile-time gains due to
precompiled headers against the cost of the initially
warming the cache via the Use Factor. The Use Factor
is calculated using the equation:

nt1 = t2 + (n – 1)t3

where t1 is the compile-time without using pre-compiled
headers, t2 is the time to create the header cache and t3
is the time to compile using the header cache. The Use
Factor (n) then estimates the minimum number of times
a file must be recompiled using its PCH to recover the
cost of creating the cache.

Table 4

APPLICATION COMPILE TIME OF PRE-
PROCESSED SOURCE (t1) (SECS)

COMPILE TIME FOR PCH
USE MODE (t2) (SECS)

SPEED-UP
(t1 / t2)

% SPEED-UP

Perl 7.3 5.7 1.2 21
Class Library 17.2 7.4 2.3 56
Ray Tracer 44.7 19.1 2.3 57
CAD 38.7 18 2.1 53
Web Browser 14.6 3 4.8 79
Linker 85.8 21.1 4.0 75
Optimizer 194.2 76.9 2.5 60
Business Planner 70.5 43.8 1.6 37
Average 2.6 54

Table 5

APPLICATION COMPILE TIME OF PRE-
PROCESSED SOURCE (t1)
(SECS)

COMPILE TIME FOR PCH
CREATE MODE (t2)
(SECS)

COMPILE TIME FOR
PCH USE MODE (t3)
(SECS)

USE FACTOR
(n)

Perl 7.3 11.3 5.7 3.5
Class Library 17.2 22.8 7.4 1.5
Ray Tracer 44.7 66.7 19.1 1.8
CAD 38.7 56.1 18 1.8
Web Browser 14.6 16.2 3 1.1
Linker 85.8 124.9 21.1 1.6
Optimizer 194.2 263.7 76.9 1.5
Business Planner 70.5 78.5 43.8 1.2
Average 1.5

Table 6

APPLICATION SIZE OF OBJECT
FILES (KB)

SIZE OF HEADER
CACHE (KB)

RATIO OF CACHE SIZE
TO OBJECTS SIZE

Perl 508.1 4699.9 9
Class Library 644.2 10324.8 16
Ray Tracer 1338.8 30714.2 22
CAD 1440.0 21490.6 14
Web Browser 392.4 3424.9 8
Linker 2346.9 61472.5 26
Optimizer 9644.9 107103.5 11
Business Planner 4855.6 12900.8 2
Average 13.5

Table 6 displays the size of the object files versus the
size of the precompiled header cache for each of these
applications. Since the cache occupies a significant
amount of disk space, aCC provides an option to
redirect it to a different disk or directory other than the
default source file directory. This option can also be
used to maintain multiple precompiled header caches,
each for a different build target like say, debug build or
optimized build.

In compiling these real applications, some correctness
related issues surfaced due to:

• synthesized header files
• __DATE__ and __TIME__ macros
• revision control systems

One application recreated a set header files afresh for
each build. This dynamic generation of header files at
build-time effectively thwarted aCC's precompiled
header mechanism. The generated header file time-
stamps were always more recent than those recorded in
the cache CR and hence would negate the cache on each
build! This problem caused aCC to perpetually stagnate
in the create mode, thus penalizing the application
compile time further through the cost of creating the
cache.

 On examining this closely, it emerged that in actuality
the generated header files were materially unaltered
each time. That is, the contents of these header files did
not change each time they were synthesized although
their time-stamps did. Hence, it was clear that the
header cache was in essence reusable since its contents
were valid. In order to establish that, the cache CR was
augmented to contain the checksum of the header
dependency in addition to its name and time-stamp.
aCC would now compute the checksum based on the
contents of each header and include it in the CR along
its names and time-stamps.

This technique also addressed the problem of time-
stamp comparisons in the presence of multiple
machines with possibly non-synchronous clocks.
Further, in environments that upgrade to new system
releases, the system and library headers' time-stamps
are changed even when there are no material changes to
them. Capturing the checksum in addition to the
dependency time-stamp handles this situation as well.

Another application used the __DATE__ and
__TIME__ macros in header files that were deemed
potential hazards in using precompiled headers. While
the C/C++ languages promise that the __DATE__ and
__TIME__ macros will reflect the date and time during
the translation of the source file, they do not dictate
when that particular instance of translation must
terminate. To elaborate, a compiler could start
translating a source file with an occurrence of the
__TIME__ macro at 5.00 AM while compiling another
such occurrence in the same file at 5.05 AM. Similarly,
precompiled headers with occurrences of such macros
could reflect the date and time during their translation,
which may be different from when the rest of the source
file is compiled or recompiled.

This behavior should be noted and clearly understood
that when previously compiled components are
integrated into a more recent set of compiles there may
exist discrepancies in temporally sensitive code. One
way to deflect the problem is to have the compiler abort
the creation of the header cache for the current source
file if it encounters these macros. This will result in a

normal and correct compile but without the benefits of
PCH. Another alternative is to accord special treatment
to these macros. Typically, in aCC, the definitions of
macros are stored in the header cache verbatim but their
uses in the headers being precompiled are recorded
after the macro is substituted. These two macros could
be saved in their original form and hence recalled and
replaced when the actual recompile happens, thus
reflecting a more current date and time. aCC simply
acknowledges this but does not yet implement this
alternative in its precompiled header mechanism.

Some precompiled header implementations are based
on the premise that source files in an application share a
common set of headers that incur repeated processing in
the course of building the application. Therefore, by
factoring out the commonality into a precompiled form,
the compiler saves on redundant processing between
source files in addition to repeated processing within
them. This scheme may also result in smaller header
cache sizes but may require the user to reorganize the
sources to #include a common set of headers in a
specific order that can then be precompiled into a
shared database. However, aCC's scheme does not
share precompiled headers between source files and this
quality in turn, enhances its usability in common
application build environments.

User applications often rely on source code control and
versioning software to select, build and maintain correct
versions of their source files. One such commonly used
system is Clearcase [9]. Clearcase maintains clear
correspondences between source file elements, their
dependencies and the object files that derive from them.
By creating a header cache that is common to several
source files, a new constraint is introduced on all the
object files that are derived from each of those sources.

For example, say that the source file a.c containing
header files a.h and foo.h produces a header cache that
is shared by b.c since it also included the same headers.
Clearcase then records this cache as a dependency for
both a.o and b.o. Later, say a.c is edited to remove a.h
and recompiled, then the cache is deemed invalid for
reuse with a.c and the compiler enters the create mode.
It rewrites the cache and creates a new object file, a.o.
Since that cache has been marked as a dependency for
b.o, it triggers a rebuild of b.c. This renders the same
cache unusable for b.c since it now contains different
headers and recreates it! This cross dependency can
confuse Clearcase and lead to a deadly cycle of
rebuilds that immobilizes productivity.

aCC's implementation of the header caching scheme
attaches a unique PCH to every source file, thus
eliminating any dependency between the cache and

multiple object files. Note that the overriding goal in
this of PCH is to favor the correctness of results over
maximizing the reuse of the PCH. This implementation
thus trades-off any savings in disk space that may
accrue from sharing the PCH cache across many source
files for improved usability with real application
development environments. This may be considered a
cost-effective trade-off since the effects of increased
disk consumption may be mitigated to some extent
through cache compression.

Not including the compile directory in the CR also
allows various users compiling the same file from
different directories to reuse the object file and cache.
This does not compromise the correctness of this
scheme since over and above the CR, the passive region
must also match.

Other applications mimic source-code control systems
in a limited fashion through view-pathing. View-pathing
is a feature that delineates a set of paths for the master-
copies of certain header files while reserving another
set for holding the user-modified versions. Through the
flip of a switch the user can select the preferred version
over the original version.

For example, let a.c include a.h and a.h reside in the
directory sysinc during an initial compile. Let the user
now copy a.h to another directory, say userinc, and edit
it. If the user now recompiles the file, the passive
region, the CR and the originally recorded set of
dependencies are proven valid and the cache is reused.
However, the desired alternate header file is not
selected!

#Create cache
aCC -c -Isysinc -I- -Iuserinc +hdr_cache a.c

#User copies a.h and modifies it. Use cache!
aCC -c -Isysinc -I- -Iuserinc +hdr_cache a.c

aCC's implementation of precompiled headers is
insensitive to view-pathing and hence is blind to the
additions of header file to alternate locations in the list
of -I directories. One possible remedy may be to
augment the CR with the -I directories' contents and
detect any changes in these prior to using the header
cache.

Conclusion

An automatic header caching mechanism has been
implemented in aCC and is available in its currently
shipping versions. The full implementation including
the load-dump mechanism (not discussed in this paper)

consists of about 14,000 lines of commented C++ code.
This exercise helped identify several key design and
implementation issues due to the language definition
and existing compile environments in providing a
usable and fully automatic precompiled header
mechanism. This paper discusses many of these issues,
describes aCC's implementation choices and trade-offs
and suggests remedies to open issues. The advantages
of this scheme are:

• Ease of use. It requires no manual intervention.
Source files need not be tailored to contain
#include-s in any specific order. Header files need
not be altered to have include guards around them.

• It is transparent to the Make process and friendly to
revision control systems

The biggest limitation is that the header cache
consumes a significant amount of disk space. Finally,
this paper presents the results of using aCC's PCH
mechanism on a set of applications. It improves
compile-times by over 50%.

References

[1] Michael Ernst, Greg Badros, David Notkin. An
Empirical Analysis of C Preprocessor Use. Technical
Report UW-CSE-97-04-06, Department of Computer
Science and Engineering, University of Washington,
Seattle.
[2] KAI C++ ™ User's Guide, Precompiled Headers.
http://www.kai.com/C_plus_plus/v3.4/doc/UserGuide/p
recompiled-headers.html
[3] IBM OS/390 V2R6.0 C/C++ User's Guide, Chapter
10 Using Precompiled Headers.
http://www.s390.ibm.com:80/bookmgr-
cgi/bookmgr.cmd/BOOKS/CBCOUG03
[4] IBM C Set ++ for AIX. http://www-
4.ibm.com/software/ad/caix/
[5] C. Horstmann. An in-depth look as Borland C++.
C++ Report, 3(10), pp. 17-20, Nov-Dec 1991.
[6] Microsoft VC++ Language Help, Automatic Use of
Precompiled Headers.
[7] Fyfe, Soleimanipour, Tatkar. Compiling from Saved
State: Fast Incremental Compilation with Traditional;
Unix Compilers. Usenix, Winter 1991.
[8] T Onodera. Reducing Compilation time by a
Compilation Server. Software Practice and Experience.
Vol 23(5), May 1993.
[9] Rational Software Corporation, Clearcase
http://www.rational.com/products/clearcase/
[10] ANSI/ISO C++ Final Draft International Standard
[11] ANSI C Standard, ANSI ISO/IEC 9899:1990
[12] aCC : The HP ANSI C++ Compiler.
http://www.hp.com/go/hpc++

