C++ Exception Handling for IA-64

Christophe de Dinechin
Hewlett-Packard IA-64 Foundation Lab
ddd@cup.hp.com

Abstract

The C++ programming language offers a feature
known as exception handling, which is used, for instance,
to report error conditions. This technique can result in
more robust software. On the other hand, it generally has a
highly negative performance impact, even when exceptions
are not actually thrown. This impact is especially
important on an architecture such as the HP/Intel IA-64
processor, which is very sensitive to compiler
optimizations. Hewlett-Packard implemented exception
handling for I1A-64 in a way that leaves the door open for
optimizations, even in the presence of exceptions.

1. Overview of C++ Exception Handling

Most software has to deal with exceptional conditions,
such as insufficient resources, missing file or invalid user
input. In C, such a condition is typically reported using
special return codes from functions. For instance, the
ubiquitous malloc function indicates an out-of-memory
situation by returning a NULL pointer. Typical C code
would test this situation as follows:

void *ptr = malloc(1000000);
if (ptr == NULL)
fprintf(stderr, “Sorry, out of memory\n”);

C++ exceptions are a better way to report such a
condition. A C++ function that detects an exceptional
situation can throw an exception, which can be caught by
any of the calling functions using an exception handler. For
instance, the previous code could be written in a C++

program as follows (the error test is in bold):
struct OutOfMemory {};
struct Resource {
Resource();
~Resource();

// Ctor allocates resource
// Dtor frees resource

}i

int foo(int size) {
void *ptr = malloc(size);
if (ptr == 0)

throw OutOfMemory();
/* Do something else */

int bar(int elements) {
Resource object;
int result = foo(2 * elements);
/* Do something else */

}
int main() {
int 1i;
try |
for (i = 0; i < 100; i++)
bar(i);

} catch (OutOfMemory) {
/* Report out-of-memory condition*/
cerr << “Out of memory for i="

<< i << endl;

} catch (...) {
/* Report other problems. */

}

}

If the anomalous situation is detected (in this case,
malloc () returning zero), the function can report it by
throwing an exception. Note that this would not even be
necessary had the memory allocation been done the C++
way, since the C++ allocation operators normally report an
out-of-memory condition by throwing a standard exception
(std::bad alloc). Compared to the C error reporting
method, the benefits are multiple:

* The exceptional situation is identified by a specific
entity, an exception, rather than by a special return
code.

* There is no need for intermediate functions, such as
bar, to do anything to deal with the exceptions.

* In particular, objects with destructors such as object
are properly destroyed when the block containing them
is exited, whether normally or because of an exception.
This makes resource management safer.

* The exception handling code (in main) is easily
identified as such, and separate from normal
processing. A catch block catching the exception
type OutOfMemory is called an exception handler for
OutOfMemory exceptions.

Throwing an exception involves unwinding the call
stack until an exception handler is found. This process is
made more complex in the presence of C++ automatic

objects, since these objects may have destructors. In that
case, destructors have to be called as the stack is being
unwound.

2. Performance Impact of Various Solutions

Since exceptions occur infrequently, the performance of
exception handling code is normally not critical. In
addition, developers can easly control how their application
uses exceptions, and avoid exceptions in performance-
critical code.

On the other hand, implementations of exception
handling generally have a negative performance impact on
the code that may throw an exception (the code inside a
try block), whether this code actually ever throws an
exception or not. Ideally, the code inside the try block
should not be different than the same code outside a try
block. In practice, however, the presence of a try block, or
even the presence of an “exceptions are enabled” option in
general slows down the code and increases its size. The
reasons are multiple and complex. We try to address some
of them below.

The performance of an exception-handling solution is
therefore measured by its impact on the non-exceptional
code when no exception is thrown; it should try to
minimize the degradation of code speed and size for this
“normal” code.

2.1 Portable Exception Handling with setjmp

The first implementations of C++ exception handling
used a mechanism based on the standard C setjmp and
longjmp functions. The setmp function saves an
execution context in a jmp_buf structure. The lonjmp
function can later be used to perform a “non-local goto”,
transferring control to the place where setjmp was
originally called, as long as the function containing the
setjmp never returned.

In “portable” exception handling, a try block is replaced
with a set jmp call, and throwing an exception is replaced
by a longjmp. A linked list of jmp_ buf buffers will
represent the dynamic list of enclosing try blocks. This
same technique had been used routinely in C and C++ to
simulate exceptions before exceptions became available as
a standard language feature.

The major difficulty with this approach is to correctly
destroy automatic objects (such as the Resource object
in our example). This is typically solved by creating a
linked list of the objects to be destroyed as you create them.
This approach is relatively simple, and it works with a C++
compiler that generates C code, such as the original Cfront
from AT&T — this is the reason it is called “portable”.

This scheme has been used quite widely, in particular by
the Cfront-based C++ compiler from Hewlett-Packard [1].

Enclosing try block setjmp buffer
in calling function
Y
[]
[try { | | setjmp buffer
£(1);
Object X;
g9(2); _\; Y }
} catch (...){ | [|] local objects
// Handler v to destroy
' []
int g(int) { j
Thing Y;
throw 1; *
}

Figure 1. Setjmp based exception handling

On the other hand, the performance drawbacks are
significant.

* The setjmp function must be called at the beginning
of every try block, and the list of jmp_ buf must be
maintained.

* A linked list of objects on the stack must be maintained
at all times, and kept in a consistent state with respect to
the list of jmp buf.

* All variables that are stored in registers and that are
declared outside the try block have to be restored to
their initial value when longjmp is invoked!. For
instance, the value of i in the catch block in main
must be the same value as when bar was called. This
can be achieved either by spilling all variables to
memory before calling setjmp, or by having set jmp
itself save all registers. Both options are expensive on
architectures with large register files such as RISC
processors.

This impact exists even if no exception is ever thrown,
since the calls to setjmp and the management of the

1. Typically, setjmp will not save all registers in the
jmp_buf it is given as an argument. This is why the
documentation for these routines generally states
something like: “Upon the return from a setjmp()
call caused by a longjmp(), the values of any non-
static local variables belonging to the routine from
which setjmp() was called are undefined. Code
which depends on such values is not guaranteed to
be portable.” (from the HP-UX 10.20 man page for
setjmp).

object stack have to be done each time a try block is
entered or exited.

2.2 Table-Driven Exception Handling

Another implementation of C++ exception handling
uses tables generated by the compiler along with the
machine code. When an exception is thrown, the C++
runtime library uses the tables to perform the appropriate
actions. Conceptually, this process works as follows:

* A first table is used to map the value of the program
counter (PC) at the point where the exception is thrown
to an action table.

* The action table is used to perform the various
operations required for exception processing, such as
invoking the destructors, adjusting the stack, or
matching the exception type to the address of an
exception handler. For example, there will be an action
kind to indicate “call the destructor for object on the
stack at stack offset N,” which will be used to invoke
the destructor of the Resource object.

* Once an exception handler (a catch block
corresponding to the type of the exception being
thrown) is found, a new PC value is computed from the
tables that corresponds to this handler, and control is
transferred to the handler.

Go to Handler A
try {
| £1); |
Object X;
[39(2); | Destroy X
} catch (Exc){ Go To Handler A
[// Handler |
}
Handler A: -
Catches type “Exc” -

Figure 2: Table Based Exception Handling

This approach is significantly more efficient than the
previous one. There is no longer the systematic cost of a
setjmp function call for every try block. Similarly, the
cost of maintaining linked lists even when exceptions are
not thrown is also eliminated. Therefore, many C++
compilers switched to a table-driven exception-handling
mechanism. The Hewlett-Packard aC++ compiler for PA-
RISC uses this technique.

On the other hand, there are still negative effects from a
performance point of view:

* The runtime needs to be able to restore all variables that
are declared outside the try block to their correct value

before entering a catch block (for instance i in the
catch block of main in the example above.) The
impact of this on performance is quite subtle and has
multiple aspects, which are discussed below.

* All objects that have destructors must have their
address stored in a table. Therefore, they must reside in
memory, and their address is implicitly exposed.

* All automatic objects that have their address exposed
have to be committed to memory before any call. In
practice, this is not often a significant constraint, since a
C++ object’s address is exposed through the this
pointer after any member function call (including the
constructor.) On the other hand, this may impact the
most performance-critical objects, whose member
functions are all inlined. These objects could otherwise
be promoted to registers.

* The tables themselves have to encode a lot of possible
actions, including call to destructors. Therefore, they
use a significant amount of space.

* Since tables refer to code, reorganizing the code implies
reorganizing the tables accordingly. While this does not
preclude optimizations on a theoretical ground, it
practically disqualifies any existing optimizer that does
not specifically know about C++ and the exception-
handling tables.

2.3 Extension of Variable Lifetime

The following code illustrates one problem related to
preserving the value of local variables in the presence of
exception handling:

void f() {
int x = 0;
x = fl(x);
£2(x);

}

A smart compiler can discover that the only use of the
initial value of x is for calling £1, at which point it is
known to the compiler that the value is zero. Then, x gets
immediately overwritten with a new unknown value.
Therefore, the compiler can legally rewrite the code as
follows:

void f() {
int x = £1(0);
f2(x);

}

However, if the above code were to be placed in a try
block, this transformation would no longer be valid. For
instance, the value of x could be used in the catch block:

void f() {
int x = 0;

try {
x = fl(x);
f2(x);

} catch (...) {
cout << “The value of x is *“ << x;

}
}

This phenomenon extends the lifetime of a variable, and
therefore puts additional pressure on the register allocator.
It also makes the control flow much more complex, by
creating additional potential control-flow arcs between any
call and each of the catch clauses. As a result, register
usage will tend to be much more conservative within a try
block than outside of it. On the other hand, these effects
occurs only in the presence of a try block: destructors, for
instance, cannot access local variables whose addresses
have not been exposed.

2.4 Register Selection Constraints

Another slightly different problem can be shown in the
following code:
int f(int x) {
x = fl(x);
return f£2(x);

}

A smart compiler can notice that the initial value of x
becomes “dead” right after the call to £1, since the result
overwrites the previous value of x. The same thing happens
with the second value of x, which lives only until the call to
£2. So the compiler can rewrite the code as follows:

int f(int x) {
int x2 = fl(x);
int x3 = £f2(x2);
return x3;

// and discard x
// and discard x2

}

This alternative leaves much more freedom in terms of
register allocation, since now different registers (or
memory locations) can be allocated for x, x2 and x3. In
particular, this means that the value of the register used
needs not be preserved accross the function calls. But this
freedom does not exist if the above code is enclosed within
a try block. In that case, the catch clause may access
variable x, and therefore all x values have to live in the
same register. Again, this problem occurs only in the
presence of a try block.

2.5 Control-Flow Complexity

In the presence of a try block, the control flow becomes
much more complex, since an implicit “goto” exists
between any function call or throw statement in the try
block and each catch block. Another implicit “goto”
exists between the end of each catch block and the end of
the function. This can impact optimizations on the

following code:
for (i = 0; i < 1000; i++)
x = f(i) * 3 + 1;

Outside of a try block, the code in question has a rather
well known behavior, so if x is not address exposed and
can therefore not be visible inside £, the compiler can
predict that the value of x on exit from the loop will be the
value computed at the last iteration. In other words, it can
postpone the multiplication and addition until after the
loop. In real code, the computation would probably be
implicit, for instance taking the address of a struct element
(an addition), or of an array element (multiplication by the
element size).

Optimizing away the computation can’t be done if there
is a try block surrounding the code, since in that case any of
the catch blocks can read the value of x.

2.6 Memory Access Order

Memory accesses are more strictly ordered in the
presence of exceptions. This effect is quite significant,
because it occurs even without the presence of a try
block. Consider the following code:

struct Object { float x, y; ~Object(); };

Object object;

for (int i = 1; i < 1000; i++) {

object.x += £f(1i);
object.y += g(i);

}

In this code, the compiler can identify that for a normal
iteration of the loop, memory accesses can be avoided, and
replace the loop code with something like:

register float tmp x = object.x;
register float tmp y = object.y;
for (int i = 0; i < 1000; i++) {

tmp x += £(i);
tmp_y += g(i);
}
object.x tmp_ x;
object.y = tmp_y;

Of course, if £ or g can throw exceptions, then the
destructor has to see the correct value of the object, and the
invocation of the destructor can occur at any time. So the
compiler must generate code that writes the value of the
object to memory in the original source order with respect
to function calls.

In practice, this last effect and its variants tends to be the
most significant, since it affects memory accesses, which
are expensive on today’s microprocessors, and it occurs
whenever exceptions are enabled, regardless of whether
there are exception-related constructs in the code.

3. 1A-64 Exception Handling

The various problems listed previously can be classified
in one of the two following categories:

+ Cost of saving and restoring registers

* Ordering constraints due to additional arcs in the
control graph

The first problem is addressed in a rather original way
by a feature of the IA-64 architecture called the “Register
Stack Engine” (RSE) [3]. The RSE defines a standard way
to save and restore registers when entering and exiting
functions which is not directly under program control. As a
result there is no real need to explicitly save registers, yet
there is a way for the runtime to restore them to their
original value.

The second problem is addressed in our implementation
of C++ exception handling by allowing the non-
exceptional path to be optimized, as long as compensation
code is placed along the exceptional paths to restore
program state before executing the exception handlers to
what it would have been if the optimization had not taken
place. The place where such compensation code is added is
called a landing pad, and serves as an alternate return path
for each call.

3.1 Register Stack Engine and Unwind Table

The [A-64 architecture features numerous registers [2].
The integer register set is partitioned into 32 fixed registers
and 96 “stacked” registers. The stacked registers are
automatically saved on a special stack, using free cycles in
the load-store unit whenever possible.

Registers are typically not stored to memory
immediately on function entry. Instead, stacked registers
are renamed so that the first stacked register for the current
procedure is always called r32. Dirty (non-saved) registers
are pushed on the stack when calls are made, while
previously saved registers are popped from the stack and
restored when calls return. The processor tries to save as
many registers for future calls and restore as many registers
for future returns as free memory bandwidth and free
registers allow. This technique maximizes the chances that
a function call or function return can be performed without
memory accesses to save or restore registers.

The Register Stack Engine which performs these
operations is itself a very complex topic that would require
an article in its own right [3]. For C++ exception handling,
however, the key feature of the RSE is the way it
transparently saves and restores stacked registers “in the
background”, and does so at locations on the stack that the
runtime can compute.

Registers Memory
A
\ \
E| 32 -
5 function f -
Restore
r32] registers for
function g fast returns
r32 >
function h o
@ Save
§ registers for
fast calls.
\ \
\J

Figure 3: 1A-64 Register Stack Engine

When an exception is thrown, the runtime forces the
RSE to flush all stacked registers onto the stack. It can then
manipulate them as needed, and later let the RSE restore
them as the stack is unwound.

Only stacked registers are saved this way. The TA-64
runtime architecture [4] indicates that non-stacked registers
are saved in stacked registers. Floating-point registers are
saved using more traditional mechanism. The information
indicating where each particular register is being saved is
stored in separate tables, called unwind tables [5].

Together, the unwind tables, stack unwinding routines
[6] and the RSE help restore register values to the exact
same state they were in any given function, without the
runtime cost of saving them “manually” in each function.

3.2 Exception Handling Tables

Restoring registers to their previous state is necessary,
but not sufficient for throwing a C++ exception. The C++
runtime also needs to call the destructors, to find the
appropriate exception handler, and to transfer control to
this exception handler.

The information required to do this is found in exception
handling tables. These tables are C++ specific. They
contain information to map call sites to the landing pads.
Each landing pad will process any exception thrown from
the corresponding call site, and serve as an alternate return
point for this call. The table also contains information
regarding which exceptions the landing pad can process
and catch, and records exception specifications if any.

The reason the table maps call sites is that our C++
implementation only throws from a call site. The throw
keyword itself is implemented by calling a runtime routine.
Errors such as division by zero or invalid memory accesses
do not need to throw exceptions in C++ [7] (they are

“undefined behavior™). Practically all implementations use
alternative mechanisms such as Unix signalsl.

Therefore, from a machine language point of view, the
only places that can throw are call instructions. If the
program counter is within the range of a given subroutine
but no call site matches, the runtime will call the
terminate () function, as specified in C++.

An interesting implication: this mechanism does not
allow C++ exceptions to be thrown out of a Unix signal
handler, something that the ISO C++ Standard specifically
discourages [7] (Clause 18.7, paragraph 5, restricts signal
handlers to what can also be written in plain C). For
instance, if a memory access instruction causes a signal,
and if the signal handler throws an exception, the program
counter of the function containing the memory access will
not be on a call instruction, and terminate () will be
called.

3.3 Landing Pads

The runtime transfers control to a landing pad whenever
an exception is thrown from a given call site. The landing
pad will contain code in the following order:

Compensation code, restoring program state to what it
would be if optimizations had not been done in the
main control flow.

Destructor invocation to destroy any local object that
needs to be destroyed.

Exception switch to select which catch handler, if any,
to jump to. An appropriate switch value is computed by
the runtime from the C++ exceptions table, and placed
in a temporary register.

A landing pad exit, which either returns to a catch
block, and from there to the main control flow, or
resumes unwinding if no appropriate exception handler
is found in this subroutine.

The same mechanism can deal with all kind of
destructors (inlined or not, array destructors, ...), which all
had to be special table entries in a table-driven exception
handling runtime. A catch-all exception handler
(catch(...)) is simply a default exit in the exception
switch.

Together, the landing pads form a funnel where the
compensation code can be somewhat different for each call
site, while destructor code is shared for sections of code
between declarations, and the exception switch and landing
pad exit are shared for all code within the same try block.

1. One notable exception is the Win32 platform, where
system exceptions and C++ exceptions interact.

3.4 Compensation Code

It is relatively easy for the compiler to generate
compensation code for any of the operations listed in
previous sections:

If the variable is allocated to a different register in
different sections of code, the landing pad can simply
copy that register to the target register which represents
the variable in the exception handler.

A value known to be constant which has been replaced
with the constant value can be loaded into the
appropriate register by the landing pad, for use by the
user code in the exception handler.

Pending memory operations that have been delayed in
the main flow of control can simply be executed in the
landing pad should an exception be thrown.

Compensation code therefore allows the compiler to
utilize any of the optimizations that were prevented by
simpler table-driven techniques.

Since the IA-64 architecture is very sensitive to
optimizations, the ability to insert compensation code alone
is a compelling reason for selecting a landing pad based
approach. On other architectures, the benefit of landing
pads may not be high enough to compensate for the code
size penalty compared to other table-driven techniques.

3.5 Placing Landing Pad in “Cold” Code

Landing pad code is not used except when an exception
is thrown. If the landing pad code is simply placed at the
end of the code for each function, the useful code becomes
interspersed with blocks of little-used code. This can affect
paging and caching performance, since the exception
handler code will occupy space in the various memory
caches and in the virtual memory active set.

For this reason, landing pad code can be placed in a
different code section. This code can be placed at link time
arbitrarily far from normal “hot” code. The hot code can
then be kept contiguous and makes better use of the cache
and virtual memory pages.

Even when it does not actually use cache lines or virtual
memory active pages, landing pad wastes space on disk
when it is not used. Since it is in general infrequently used,
landing pad code can therefore be space optimized rather
than speed optimized.

3.6 Compressing Tables

The overhead of exception handling includes the
exception handling tables. These tables are not used except
when an exception is thrown. Just like landing pad code,
they can be placed arbitrarily far from the code so as to

function A

function A
function B
function C

function B
Paging function A
function C unit function B
function C

[] Exception-handlingcode [] Normal code

Figure 4: Separating Hot and Cold Code

minimize impact on caching and virtual memory. On the
other hand, they still use valuable disk space in the
executable image.

The exception handling tables in the Hewlett-Packard
aC++ compiler use a compression scheme known as
“LEB128”. This encoding uses less space for small values:
1 byte for any value less than 128, 2 bytes for any value
less than 16384 and so on. So the tables contain relative
offsets that are often small. For instance, the first call site
address is encoded as the number of 16-byte instruction
bundles from the start of the function, and later call sites
are relative to the previous call site in the table. This helps
keep the offsets small enough to fit in one or (rarely) two
bytes.

Compressing the tables has a slight negative effect when
an exception is actually thrown, since the table contents
need to be decoded. In that infrequently executed case, we
traded speed for space.

3.7 Known Functions That Can’t Throw

When exceptions are enabled, there is a landing pad and
table space overhead for each call site. This overhead can
be avoided for specific functions that are known not to
throw. These functions typically include:

* C++ runtime library functions called implicitly by the
compiler.

* Functions of the C library, since they are known not to
throw exceptions.

+ Functions that are marked as not throwing exceptions
through an empty exception specification. Exception
specifications are verified inside the function, not at the
call site.

If such a call ever throws, the C++ runtime will call
terminate().

3.8 Remaining Negative Effects

Even with landing pads, exception handling still has a
cost. The space overhead of enabling exception handling
includes the code for the landing pads, exception switches,
destructor calls and catch handlers, as well as the space for
all the exception handling tables. This remains significant
in terms of memory usage, even though the performance
impact of this additional memory can be kept low by
carefully segregating hot and cold memory.

However, performance itself can remain affected by a
variety of factors:

*+ Additional control flow arcs between the main code call
sites and the various exception handlers and destructor
calls make the control flow graph much more complex.

* One result is to prevent some otherwise valid code
motion, when the code motion cannot be correctly
compensated for in the landing pad, or when the cost of
compensating would be too high.

* Another effect is to effectively lower the amount of
optimization that can be done on a given piece of code
in a given amount of time. Since compilers also have a
compile-time performance constraint, they may ‘“bail
out” if optimization would take too long. This will
happen earlier in the presence of exception handling.

* Another instance of resource limitation occurs on
optimizations that copy or duplicate code, such as
inlining. These optimizations typically have a “budget”,
and this budget gets exhausted much more rapidly in
the presence of exceptions, since duplicating the main
body of code generally means duplicating the
exception-handling data and code as well.

* A final problem evoked above remains unsolved: any
optimizer that performs on the code has to know about
exception handling tables and how to reorder them.
With limited engineering resources, some specific
optimizations may purposedly be disabled in the
presence of exceptions.

4. Results

The following tables records timing and size
measurements done on various benchmarks. These have
been run on a performance simulator for the next
generation [A-64 processor, and remain to be validated on
real hardware. For comparison purposes, similar
meaurements have been done on current generation PA-
RISC processors. Only relative results are shown, since
absolute SPEC results for IA-64 have not been published
yet.

The values measure the performance penalty when
enabling exception handling. For speed, the penalty is the
additional number of cycles in the simulator. For memory,
it is the additional size of text and initialized data, as
reported by the size command.

These benchmarks contain a mix of C and C++
application code, but they often do not rely very much on
C++ local objects or exception handling. Therefore, they
represent a worst case but not very uncommon scenario
where exception handling is not used and therefore you
don’t want to pay for it. Some of the benchmarks were
originally written in C and have been modified to be
compilable with a C++ compiler. Table 1 records size and
speed penalties. In general, measurements were taken at the
maximum optimization level, except for the last two rows
where the optimization level was +O1.

Table 1. Speed and Size Penalty

IA speed | IAsize |PAspeed| PAsize

penalty penalty penalty penalty

099.go 3.73% -9.58% 15.6% 0.21%

129.compress -5.66% | <0.01% 2.00% | <0.01%
130.1i -6.56% | -14.19% | 11.15% 1.24%
132.ijpeg -0.21% -0.48% | -0.49% 0.06%
134.perl -1.43% | -18.49% 0.81% 1.02%

147 .vortex N/A -8.08% 0.66% -0.04%
Raytracer (+O1) -1.6% 16.8% 0.3% 6.13%
C++ Library (+O1) N/A 0.2% N/A 0.2%

Suprisingly, in some benchmarks, enabling exception
handling actually yields better performance. This has to be
taken with a grain of salt. At this point, it is quite difficult to
do accurate IA-64 measurements, whether on real
hardware or on a simulator. For instance, simulator results
are sampled, and the sampling noise alone can account for
a few percents of variation either way. Similarly, optimizer
“luck” in scheduling instructions can also introduce
unpredictable variations. Therefore, the “noise level” of
these measurements is quite high. You should not expect
code to become faster because of exception handling.

The size aspect is even more surprising, as shown on
Table 2 below.

Table 2. Size penalty for various optimizations

+01 +02 +03
099.go 9.41% 9.07% -9.58%
124.m88ksim 18.83% | 13.02% | -11.30%
129.compress 0.01% <0.01% | <0.01%
130.li 35.73% | 24.87% | -14.19%
132.ijpeg 0.72% 0.42% -0.48%
134.perl 28.80% | 28.57% | -18.49%
147.vortex 37.48% | 30.57% | -8.08%

Processing exceptions requires additional code. The
effect above on the IA-64 compiler shows only for the
maximum optimization level (+O3), and may actually
indicate a problem with the tested compiler. At lower
optimization levels, the PA-RISC compiler consistently
produces executables of the same size with or without
+noeh. The TA-64 compiler produces executables that are
significantly larger with exception handling enabled, which
is what one would expect.

5. Analysis

Overall, the objective of minimizing the negative
runtime performance impact of exception handling at high
optimization levels is achieved. This constrasts with PA-
RISC, where penalties as high as 15% are observed (and in
practice 10% is not uncommon). It remains to be seen if
this conclusion remains valid as more aggressive
optimizations are added to the IA-64 compiler.

The size penalty on IA-64 tends to be higher, at least at
optimization levels used during application development.
This is due largely to cleanup code, which takes more
space than the same information stored in PA-RISC action
tables. As usual, there was a space versus time trade off,
and this technology definitely favored speed.

The added exception handling code is normally
infrequently executed. Modern operating systems do not
load code into memory until it is about to be executed. So
most of the time, the additional code just consumes disk
space, without necessarily increasing the memory footprint
of the application. Disk space gets cheaper all the time, so
the trade off was a reasonable one.

This code size penalty may be reduced somewhat in the
production compilers by a change in the C++ Application
Binary Interface (ABI) [6] that is not implemented in the
tested compiler. This change reduces the size of a minimal
landing pad from 32 bytes down to 16.

The reason for the size reduction at maximum
optimization has not been investigated yet. It may indicate
a problem with the compiler, such as an optimization being
accidentally turned off when exceptions are disabled.
Exception handling may also prevent some code-expanding
transformations that look less profitable, such as inlining
and loop unrolling. It is unclear if these results will persist
with a production compiler.

In general, keep in mind that all measurements above
were made with a largely prototype compiler, and in a
simulator. As our understanding of optimization techniques
specifically targetting the IA-64 architecture improves, the
results may change significantly.

6. Conclusion

Landing pads offer an interesting alternative to more
traditional implementations of C++ Exception Handling.
They leave more optimization freedom to the compiler.
Many aggressive optimizations can now be performed
equally well even in the presence of exception handling
code, making applications that require exception handling
faster.

One the design objectives of C++ is that you don’t pay
for features that you don’t use. This objective was not met
with many exception handling implementations. The IA-64
implementation presented here is one more little step
towards that goal.

This design has been shared by Hewlett-Packard with
other Unix vendors, and should hopefully become available
on a variety of IA-64 platforms as part of the effort towards
a common C++ Application Binary Interface for IA-64 on
Unix [6].

7. References

[1] A Portable Implementation of C++ Exception Handling
D. Cameron, P. Faust, D.Lenkov and M. Mehta, Proc.
USENIX C++ Conference, August 1992.

[2] 1A-64 Instruction Set Architecture Guide Revision 1.0,
Intel Corporation / Hewlett-Packard Company
http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html

[3] 1A-64 Register Stack Engine Chapter 9 of the "IA-64
Instruction Set Architecture Guide" [2]
http://devresource.hp.com/devresource/Docs/Refs/IA64I1SA/rse.html

[4] 1A-64 Software Conventions and Runtime Architecture
Vers. 1.0, Hewlett-Packard Company
http://devresource.hp.com/devresource/Docs/Refs/IA64CVRuntime.pdf

[5] Stack Unwinding and Exception Handling
Chapter 11 of "IA-64 Software Conventions and Runtime
Architecture" [4].

[6] C++ ABI for IA-64: Exception Handling
Working document, C++ ABI Committee
http://reality.sgi.com/dehnert_engr/cxx/abi-eh.html

[7] ISO 14882: C++ Programming Language

http://www.iso.ch

Thanks to M. Brown, D. Cameron, C. Coutant, D. Handly,
E. Gornish, D. Gross, R. Ju, and D. Vandevoorde for their contri-
butions to this paper or the techniques it describes.

