
A fast implementation of DES and Triple-DES on PA-RISC 2.0

Francisco Corella
Hewlett Packard Co.

1. Introduction

Encryption is an essential tool for protecting the confidentiality
of data. Network security protocols such as SSL or IPSec use
encryption to protect Internet traffic from eavesdropping. En-
cryption is also used to protect sensitive data before it is stored
on non-secure disks or tapes.

Encryption, however, is computationally expensive. A com-
puter server that must encrypt data for thousands of clients be-
fore sending it over the network can easily become crypto-
bound. The capacity of the server is then determined by the
speed at which it can perform encryption. This is especially the
case when slow encryption protocols such as the Digital En-
cryption Standard (DES) or Triple-DES are employed. Since
DES and Triple-DES are very widely used, it is important to
optimize the performance of these algorithms.

We describe an implementation of DES and Triple-DES in PA-
RISC 2.0 assembly language that outperforms other practical
(non bit-sliced) implementations by large margins. It is based on
a technique due to Eli Biham of the Technion that takes advan-
tage of 64-bit registers, with substantial improvements devel-
oped at Hewlett Packard.

We assume that the reader is familiar with the details of DES
and Triple-DES, which are described in [1].

2. Earlier software implementations

Most software implementations of DES and Triple-DES are
written for machines having 32-bit registers. In 1997, Eli Bi-
ham published an implementation, written in C, specifically
targeted for the 64-bit Alpha architecture [2].

Biham took advantage of the 64-bit register width as follows.
He stored the two block halves that each round of DES operates
on in two separate 64-bit registers. However, instead of storing
them in their standard 32-bit format, he stored them in the 48-bit
format that results from applying the expansion permutation to a
32-bit array, with zeros in the twelve remaining bit positions.
Each round then proceeds as follows. The right half, which is
already in expanded form in a 64-bit register, is xored with the
subkey, which is also contained in a 64-bit register. Then the

resulting 48-bit array is divided into eight groups of six bits, each
of which is used as the index into an S-box.

Biham also changed the format of the S-boxes. He turned each
S-box entry into a 64-bit array, derived from the 4-bit array of
the original S-box by the following procedure. First the 4-bit
array is placed in its proper position within a 32-bit (unex-
panded) block half, the other bit positions in the array being
filled with zeros. Then the 32-bit permutation is applied to the
32-bit array. Finally, the expansion permutation is applied to
this 32-bit array, producing a 48-bit array, which is completed
with zeros in the twelve remaining bit positions. Biham's algo-
rithm does an S-box look up as a straightforward DES imple-
mentation would, but the look up produces a 64-bit array,
mostly filled with zeros, rather than a 4-bit array. After the eight
S-boxes have been looked up, the eight resulting 64-bit results
are ored together and the result is then xored with the left half,
which is also stored in a 64-bit register in the expanded 48-bit
format.

With this implementation, Biham achieved a throughput of 46
Mb/s for DES and 22 Mb/s for Triple-DES on a 300 MHz Al-
pha 8400 processor. He compared this performance to that of
Eric Young's libdes library on the same machine, which pre-
sumably does not take advantage of the 64-bit register width.
The performance of libdes was quoted by Biham as 28 Mb/s for
DES.

Recently, however, other 32-bit implementations have achieved
better performance. The popular BSAFE cryptographic toolkit
of RSASecurity, can serve as a good benchmark for comparison
purposes. At the 1999 RSA conference, substantial perform-
ance improvements for several BSAFE algorithms were an-
nounced. The new performance figures quoted for DES and
Triple-DES were 39.2 Mb/s and 15.2 Mb/s respectively, on a
233 MHz Pentium II.

In the same paper [2], Biham also describes a bit-sliced imple-
mentation, which has higer throughput. However, a bit-sliced
implementation is not practical because application software
would have to be restructured to take advantage of the 64-way
parallelism that yields the increased throughput.

Young’s 32-bit im-
plementation

Biham’s 64-bit im-
plementation

BSAFE 32-bit imple-
mentation

Our 64-bit implemen-
tation

Throughput 28 Mb/s 46 Mb/s 39.2 Mb/s 183 Mb/s
CPU frequency 300 MHz 300 MHz 233 MHz 550 MHz
Relative speed 686 clocks/block 417 clocks/block 380 clocks/block 192 clocks/block

Table 1. Comparison of four DES implementations (CBC mode)

3. Our implementation

Biham provides an instruction count for his standard DES im-
plementation. Processing one DES block takes 634 instructions.
A majority of these instructions (61%) are concerned with S-box
look-up. Looking up an S-box takes three instructions, and this
is done 8 times per each of the 16 rounds, for a total of 16x8x3
= 384 instructions.

We have made two key improvements to Biham's implementa-
tion. First, we have grouped the eight S-boxes into four pairs of
boxes, and merged the two 6-input boxes in each pair into a
single 12-input box.1 The resulting four double S-boxes occupy
1 MB of memory.

Then, writing the code in PA-RISC 2.0 assembly language [3],
we have reduced the number of instructions needed to look up
an S-box from 3 to 2. An S-box look-up is performed by the
following two-instruction code fragment:

EXTRD,U gr1,pos,12,gr2
LDD,S gr2(gr3),gr4

The first instruction extracts an unsigned 12-bit value from bit
position pos of general register gr1, and places it in general reg-
ister gr2. In the implementation, the general register gr1 con-
tains the result of xoring the expanded right half with the subkey
for the round. The immediate value pos selects one of the four
groups of 12 bits that are used to look up the four 12-input S-
boxes.

The second instruction shifts left by three positions (i.e. multi-
plies by 8) the value contained in gr2, adds the result (a dis-
placement) to the contents of general register gr3 (a memory
address), and loads the 64-bit word stored at the resulting mem-
ory address into general register gr4. In the implementation, gr3
contains the base address of the 12-input S-box, gr2 contains the
12-bit index into the S-box, and gr4 receives the 64-bit entry
read from the referenced S-box entry.

The cumulative result of these two improvements is that S-box
look up only requires a total of 16x4x2 = 128 instructions, thus

1 This idea is due to Peter Markstein.

saving 256 instructions. A variety of other improvements saved
another 108 instructions, resulting in a count of only 270 in-
structions for a DES computation. Table 1 shows the perform-
ance achieved by our DES implementation, comparing it to that
of the other implementations mentioned above. Our Triple-DES
implementation takes only 471clocks/block (74.8 Mb/s on a 550
MHz CPU), while Biham’s and BSAFE take 873 and 981
clocks/block respectively.

Our implementations have been incorporated in the IPSec/9000
product available with HP-UX, and are currently being incorpo-
rated in a cryptographic toolkit.

Acknowledgements

Peter Markstein contributed the idea of merging two 6-input S-
boxes into a single 12-input box. Ruby Lee provided motivation
for the project and drew attention to Eli Biham's paper [2].

References

[1] FIPS 46-3, Data Encryption Standard (DES), National In-
stitute of Standards and Technology (NIST),
http://csrc.nist.gov/cryptval/des.htm.

[2] Eli Biham, A Fast New DES Implementation in Software,
Fast Software Encryption 4, Haifa, Israel, January 1997. Avail-
able from Eli Biham’s home page,
http://www.cs.technion.ac.il/~biham/.

[3] G. Kane, PA-RISC 2.0 Architecture, Prentice Hall, 1996.

