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Abstract

Out-of-core applications consume physical resources at a rapid
rate, causing interactive applications sharing the same machine
to exhibit poor response times. This behavior is the result of de-
fault resource management strategies in the OS that are inappro-
priate for memory-intensive applications. Using an approach that
integrates compiler analysis with simple OS support and a run-
time layer that adapts to dynamic conditions, we have shown that
the impact of out-of-core applications on interactive ones can be
greatly mitigated. A combination of prefetching pages that will
soon be needed, and releasing pages no longer in use results in
good throughput for the out-of-core task and good response time
for the interactive one. Each class of application performs well
according to the metric most important to it. In addition, the OS
does not need to attempt to identify these application classes, or
modify its default resource management policies in any way. We
also observe that when an out-of-core application releases pages,
it both improves the response time of interactive tasks, and also
improves its own performance through better replacement deci-
sions and reduced memory management overhead.

1 Introduction

Many of the computational problems of interest to sci-
entists and engineers involve data sets that are much larger
than physical memory [6, 7, 17]. Despite the continu-
ing trend toward larger memories, it is unlikely that these
data sets will ever fit entirely within main memory. In-
creases in processor power and memory capacity make it
feasible to solve larger problems, or to solve the same
problem at a finer granularity, but the size of the data set
grows with the problem being solved. For instance, input
data sets for scientific visualization can currently exceed
100 Gbytes [5]. For these “out-of-core” applications, I/O is
required throughout the execution of the program to bring
data into memory as it is needed and possibly to move it
back out to disk. Performance concerns have traditionally
forced programmers to explicitly manage the I/O in their
out-of-core codes. Recently, however, we demonstrated
that paged virtual memory can be enhanced with prefetch-
ing to effectively hide the latency of page faults without

placing any burden on the programmer [15]. In this ap-
proach, the compiler provides information on future access
patterns, the OS supports a simple prefetch/release inter-
face, and a run-time layer improves performance by adapt-
ing to dynamic behavior.

While this earlier work demonstrated that out-of-core
applications can achieve excellent performance on a ded-
icated machine, it would be far more cost-effective if these
tasks could coexist with other applications in a multipro-
grammed environment. Unfortunately, out-of-core tasks
have the potential to severely degrade the performance of
other tasks which are attempting to use the machine at the
same time. This problem arises because operating on mas-
sive data sets consumes physical resources (memory and
disk bandwidth) at a rapid rate, displacing the working sets
of other applications and increasing their page fault ser-
vice times. To make matters worse, successful prefetching
causes physical resources to be consumed even faster, in-
creasing the negative impact on other applications.

1.1 Impact on Interactive Performance
In many cases, the excessive resource consumption by

out-of-core tasks is caused not by inherent resource re-
quirements, but rather by sub-optimal resource manage-
ment policies in the OS. While the default policies perform
well in most cases, they are poorly suited to the demands
of memory-intensive programs. For instance, most com-
mercial operating systems use a global page replacement
algorithm, which allows pages to be stolen from any ap-
plication to satisfy page faults. Interactive tasks are par-
ticularly vulnerable in such an environment since they are
unable to defend their memory effectively. Consider an ed-
itor program which may have no memory system activity
for several seconds while it waits for user input. A pro-
gram computing the inner product of two out-of-core vec-
tors could easily sweep through all of physical memory in
this time, stealing pages from the editor as they move to the
head of the LRU queue. In this case, the out-of-core com-
putation could have achieved the same performance using
only two pages of physical memory, allowing the editor to
remain responsive regardless of the intervening delay.



 With Out-of-Core that Prefetches
 With Out-of-Core (Original)
 Alone

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|50

|100

|150

|200

|250

|300

|350

|400

 Sleep Time (secs)

 R
es

po
ns

e 
T

im
e 

(m
se

cs
)

Figure 1. Impact of sharing the machine with an out-of-core
matrix-vector multiplication (MATVEC) on the response time
of an interactive task across a range of sleep times between
touching 1 MB of data.

To illustrate the impact of out-of-core applications on in-
teractive performance, we ran the following experiment on
a 4-processor SGI Origin 200 configured to have approxi-
mately 75 MB of memory available to user programs.1 A
simple program emulates the memory system behavior of
an interactive task by repeatedly touching a 1 MB data set,
then sleeping for a fixed amount of time. By varying the
amount of sleep time we can control the frequency with
which each page of the “interactive” task is accessed. The
“response time” is the time to touch the entire data set. This
program is run concurrently with one that repeatedly per-
forms a matrix-vector multiplication on an out-of-core data
set (400 MB). The results are shown in Figure 1. With
no sleep time, the “interactive” task defends its memory
extremely well, achieving the same response time as on a
dedicated machine. As the sleep time increases, however,
the task incurs an increasing number of page faults and the
response time rises. When the out-of-core program uses
prefetching, the response time begins to increase at much
shorter sleep times, grows much faster, and rises to a higher
level. Prefetching combined with global replacement puts
the interactive task at a serious disadvantage.

In recognition of the shortcomings of existing OS poli-
cies, a significant amount of recent research has focused on
customizable operating systems. While a customizable OS
could provide the flexibility to tailor the resource manage-
ment policies for out-of-core codes, our results in this pa-
per demonstrate that we can achieve the desired outcome
(i.e. customizable behavior) in this particular case through
relatively modest extensions of today’s commercial operat-
ing systems. To accomplish this goal, we adopt a strategy
similar to our earlier work [15] in which the OS, compiler,
and a run-time layer all cooperate. The role of the OS is to
perform global resource allocation across all applications
while the role of each out-of-core application (via the com-

1This amount of memory is artificially low for modern systems, but
makes it possible to run experiments on out-of-core programs in a reason-
able amount of time. Similar behavior can be seen with more memory
and larger out-of-core programs, although the time required to consume
all physical memory increases with the amount of memory available

piler and run-time layer) is to effectively manage the re-
sources it has been granted.

1.2 Objectives of This Study
In our earlier study [15], our focus was using prefetching

to hide the I/O latency of out-of-core applications running
on a dedicated machine. In this study, we focus on using
release operations to manage physical memory intelligently
within a multiprogramming workload that includes an out-
of-core application. Although we introduced the concept of
release operations in that earlier paper, we made little use of
them because they offered no significant performance ben-
efit to stand-alone out-of-core applications on the research
prototype OS (Hurricane [21]) and machine (Hector [22])
that we used. Note that we observe a different result in this
study using a modern commercial OS and machine.

The primary contribution of this paper is that we pro-
pose, implement, and evaluate a solution to the problem
of preventing out-of-core applications from ruining the re-
sponse time of interactive applications while still enjoy-
ing the performance benefits of aggressive I/O prefetching.
Our solution uses the compiler to automatically insert re-
lease hints (in addition to prefetch hints) into the out-of-
core application while a run-time layer and OS provide ap-
propriate support. This approach requires minimal changes
to existing operating systems and places no additional bur-
den on the programmer. We implement our solution within
a modern commercial system (an SGI Origin 200 running
our modified version of IRIX 6.5) and evaluate its perfor-
mance impact on both out-of-core applications and interac-
tive tasks sharing the same machine.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates allowing applications to manage their own
resources, and describes the features we feel are needed to
do so effectively. Section 3 describes the components of
our system and their implementations. Section 4 presents
our experimental results, and we discuss related work and
draw conclusions in Sections 5 and 6.

2 Memory Management Strategies
The goal of a virtual memory management system in a

multiprocessor environment is to share the physical mem-
ory resources among all the competing applications. Most
operating systems provide policies that perform well in the
common case, but exhibit bad behavior when a memory-
intensive program is sharing the machine with others. In
this section we discuss why it may be beneficial to give de-
manding applications control over their own memory man-
agement, and examine some forms such control could take.
Finally, we outline the features we believe are necessary
for an effective system that allows applications to explic-
itly manage their memory resources.

2.1 Global vs. Local Replacement
An out-of-core task can degrade the responsiveness of

an interactive task because global replacement policies se-
lect victims from among all the pages in the system with-



out regard to ownership. In contrast, a local page replace-
ment strategy helps to isolate each process from the pag-
ing activity of others. Each process is allocated a fixed
set of physical pages and a victim is selected from among
them as needed. Thus, interactive tasks would not have to
worry about losing pages to a demanding out-of-core pro-
gram. Unfortunately, poor memory utilization may occur,
as pages are not allocated to processes according to their
need. Attempting to determine the right number of pages
to allocate to each process and dynamically adjusting this
number during execution can improve memory usage but
greatly complicates the OS. In practice, most workstation
operating systems use global page replacement.

Although local replacement policies can insulate pro-
cesses from each other, they may not provide the best re-
placement policy for each application. Rather than altering
the overall strategy employed by the OS, it is preferable to
modify individual applications so that their competition for
physical resources better reflects their actual needs. This
approach enables applications to improve their own per-
formance through local replacement decisions that are su-
perior to those used by the OS. The largest drawback of
specializing applications to do memory management is the
burden placed on the programmer; however, we propose
a framework in which all the necessary modifications are
performed automatically by a compiler.

2.2 Application-Managed Replacement
Giving specialized applications more control over their

own memory management to improve their performance
has been suggested before. For instance, the Mach OS sup-
ports external pagers to allow applications to control the
backing storage of their memory objects [18]. Extensions
to the external pager interface have been used to implement
user-level page replacement polices [14], and to support
discardable pages (i.e. dirty pages that do not need to be
written to backing store) [20]. In contrast, our approach
shows that specialized applications can and should exploit
extra control for the benefit of other applications execut-
ing concurrently. This is especially true for programs that
use prefetching to improve their own performance since the
gains they enjoy impose a heavy penalty on other processes
sharing the system. In this case, the OS could require that
prefetching applications also explicitly release pages.

Given that application-controlled memory management
is desirable, one possibility is for the OS to allow applica-
tions to choose from a small set of “reasonable” replace-
ment policies. This strategy does not require much effort
on the part of the application programmer, but also does
not provide a great deal of power or flexibility. Another
possibility is for the OS to provide a more general interface
that allows applications to explicitly specify which of their
pages can be reclaimed. This approach is preferable since
individual applications can implement a variety of replace-
ment policies tailored to their specific needs.

Application management of memory resources through
an interface that allows individual pages to be specified can

be either reactive or pro-active. In a reactive approach, the
OS notifies the application when one or more of its pages
is about to be reclaimed. The application can then im-
plement its own replacement policy by telling the system
which pages to take. This is essentially the approach taken
by the VINO page eviction extension [19], for example. A
reactive system benefits applications that can make better
replacement decisions than the default OS policy, and has
the advantage of delaying the decision until memory actu-
ally needs to be reclaimed. Unfortunately, it will not help
isolate other applications from a memory-intensive one—
the OS still decides which processes should give up pages.

In a pro-active system, an application returns pages to
the system before they are strictly required, either as soon
as they are no longer needed or based on some other criteria
such as the amount of free memory. A pro-active approach
can obviate the need for the OS to steal pages by increasing
the global pool of free memory, thus providing benefit to all
applications sharing the system. Of course, the pro-active
approach is not without potential cost to the application us-
ing it. If the decision to release memory is made without
full knowledge of future accesses, as is typically the case,
then the application may give up pages that are still useful.

Our goal is to develop a system that allows applications
to pro-actively return memory to the system on a page-by-
page basis, to the mutual benefit of themselves and other
concurrently executing applications without placing any
additional burden on the programmer. We now outline the
elements that we believe are necessary to achieve this goal.

2.3 Requirements for Effective Application-
Directed Memory Management

If applications are to manage their own memory usage,
the first requirement is some form of support from the OS
for this type of activity. Second, to automate memory man-
agement without rewriting the application source code, we
will need compiler analysis to detect access patterns and
insert the necessary paging operations. Finally, since good
replacement decisions will depend on dynamic conditions
during program execution, we will need a run-time layer
to intercept the information provided by the compiler and
adapt the application’s behavior as required.

2.3.1 Operating System Support
The OS must supply both primitive operations and addi-

tional information to applications. The operations should
allow the application to specify the virtual memory ad-
dresses that it will need in the future as well as those that
it no longer needs. The additional information is needed
to allow the application to make informed decisions about
when memory management activity is required. It should
include information about which virtual pages are currently
in memory, how many pages are currently in use, and the
upper limit on pages that the application should use.

2.3.2 Compiler and Run-time Support
To determine whether a given page should be released at

a particular point, the compiler attempts to answer the fol-
lowing questions. First, will the page be referenced again
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Figure 2. Information flow between components of our system.

in the future? If not, then a release hint is inserted. Second,
does the number of other unique pages that will be accessed
before the page is reused exceed the expected amount of
available memory? If so, then the page is unlikely to re-
main in memory, and a release hint is inserted. Otherwise,
release hints are not inserted.

There is a certain duality between the analysis for in-
serting prefetches and releases. In both cases, the com-
piler attempts to model when pages are being reused, and
whether enough intervening accesses exist between these
reuses to cause displacement. For prefetching, the ques-
tion is whether a given page has remained in memory since
its last reuse (if so, we do not need to insert a prefetch
hint for it); for releasing, the question is whether a given
page will remain in memory until its next reuse (in which
case we do not want to release it). One difference, how-
ever, is that prefetching uses this analysis only to min-
imize overheads—the latency-hiding benefit of prefetch-
ing depends only on scheduling prefetches early enough—
whereas the benefit of release hints depends directly on the
quality of this reuse analysis.

Ideally, the compiler would be able to analyze the data
accesses perfectly and insert these paging directives pre-
cisely where they are needed. However, this ideal is not
realistic for the following two reasons. First, one cannot al-
ways predict memory access patterns with only static infor-
mation. They may depend on run-time parameters (such as
the problem size for the current run) or be data-dependent
(such as the indirect references that often occur in sparse-
matrix programs, e.g., a[b[i]]). While it is possible
to issue prefetches for indirect references [8, 15], it is not
possible to reason statically about any reuse that they may
have, and hence it is not clear that the compiler can gen-
erate useful release hints for them. The second major lim-
itation of the compiler is that it decides when reuse can
be exploited based on an assumption of how much mem-
ory will be available to the application at run-time. In a
multiprogrammed environment, such assumptions may be
wildly inaccurate, especially since the amount of available
memory may fluctuate dynamically during execution.

For these reasons, it may be undesirable to actually re-
lease a page at the point where the compiler has inserted the
corresponding release hint. Instead, a run-time layer should
collect information about pages that could be released, ac-
cording to the compiler-generated addresses, and actually
perform the releases only when necessary. In addition to
the addresses of releasable pages, the compiler should in-
clude some indication of whether it believes the released
pages will be used again or not. The role of the run-time

layer is to use the information provided by the OS and the
compiler to answer the following questions: When should
memory be returned to the OS? How many pages should be
released? Which of the “releasable” pages should actually
be given up? Figure 2 depicts the flow of information from
the compiler and the OS to the run-time layer.

The decision of when to release memory depends pri-
marily on how close the application is to the upper limit
on memory usage suggested by the operating system. The
decision of how much memory to release is more compli-
cated. The run-time layer needs to balance the desire to
remain below the OS limit, the desire to retain as much
memory as possible, and the desire to perform release op-
erations as infrequently as possible to minimize overhead.
For example, suppose the run-time layer detects that the ap-
plication is close to its upper memory limit, and has knowl-
edge of 1000 pages that could be released. By releasing all
of these pages, the run-time layer increases the amount of
time before it will have to act again, but it may have given
up pages that would be used again in the future by acting
too aggressively. The run-time layer should also consider
the application’s expected future need for memory when
deciding how much to release. If the application is close
to the upper memory limit, but only needs a small num-
ber of additional pages, the run-time layer may not need to
release memory at all. Finally, once the run-time layer has
determined that a release is necessary, and has decided how
many pages to release, it must choose which pages should
actually be returned to the OS. This decision depends on
the expected future use of these pages; the run-time layer’s
choice should be guided by information from the compiler.

There are two situations that may arise from the compiler
analysis. First, the compiler may have inserted release hints
because it has determined that the page will not be reused
again. The run-time layer should release these pages before
any pages that are known to have reuse. Second, the com-
piler may have detected that data reuse existed, but inserted
release hints anyway because the volume of data accessed
between reuses was expected to flush the page from mem-
ory. For these pages, the run-time layer should perform
releases according to the intrinsic data reuse (which can be
revealed by the compiler), attempting to keep as much data
in memory as possible for the subsequent accesses. For
instance, suppose the application is repeatedly accessing
an array that is much larger than physical memory. The
run-time layer can implement most recently used (MRU)
replacement once the memory usage approaches the upper
limit set by the OS, thus keeping at least the first portion of
the array in memory for future use.

2.4 An Example
To help illustrate these concepts, we now present a sim-

ple example. Figure 3(a) shows the source code for a calcu-
lation that averages an element of a matrix with its neigh-
bors, while Figure 3(b) depicts the data elements that are
touched during a single iteration of the innermost loop.
The references have temporal reuse along the i dimension



(a) Source code for averaging nearest-neighbors
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
a[i][j] = (a[i+1][j-1] + a[i+1][j]

+ a[i+1][j+1] + a[i][j-1] + a[i][j]
+ a[i][j+1] + a[i-1][j-1] + a[i-1][j]
+ a[i-1][j+1])/9.0;

(b) View of data references to the matrix a

Trailing reference
a[i-1][j-1]

a[i][j]

j

i

Leading reference
a[i+1][j+1]

Leading edge
references

Figure 3. Example source code showing multiple references
with different types of reuse, and graphical view of the data
accesses during a single iteration of the innermost loop.

(since the items accessed at a[i+1][*] are touched again
in the next iterations of the i-loop). There is spatial reuse
along the j dimension, and there may also be spatial reuse
along the i dimension, depending on the length of the rows.

We can identify two major working sets in this access
pattern. At the smallest level, we need to hold the leading
edge of the data access square (those references indexed by
j+1) in memory, requiring at most one page for each of the
three references on this edge. Except at page boundaries,
the references indexed by j-1 will fall on the same page
as this leading edge due to spatial reuse. We therefore need
at most six pages to fully exploit the spatial reuse along
the j dimension. The second level working set exploits
the temporal reuse along the i dimension, requiring us to
hold three rows of the matrix in memory, so that the row
first indexed by i+1 in one iteration will still be available
for the i and i-1 references in the subsequent iterations.
Of course, there is also a third level, which corresponds to
keeping the entire matrix in memory.

The compiler can determine precisely which references
to prefetch and release if it has the dimensions of the ma-
trix and a good estimate of the physical memory available.
To successfully exploit the reuse across iterations of the i
loop, we need to retain three rows of the matrix in mem-
ory. If this is possible, then a prefetch will be inserted only
for the leading reference, a[i+1][j+1], and a release
will be inserted for the trailing reference, a[i-1][j-1].
This corresponds to keeping the second level working set
in memory. If the amount of memory needed to hold three
rows is less than the amount available, the compiler will in-
stead decide to prefetch all three references on the leading
edge of the data access square (i.e. the a[i+1][*] refer-
ences) and release the references on the trailing edge, corre-
sponding to the first level working set. If the dimensions of

the matrix are unknown at compile-time, the compiler must
choose between these two options. Since over-estimating
the ability of memory to retain data leads to missed op-
portunities (both for prefetching and releasing), it is prefer-
able to assume that only the smallest working set will fit in
memory. The run-time layer is responsible for reducing the
overhead of unnecessary operations that result.

Having outlined the features that we believe are neces-
sary to achieve a good pro-active user-level memory man-
agement system, we turn now to a discussion of the specific
components in our prototype system.

3 Overview of Prototype System
Our prototype system consists of three major compo-

nents: extensions to the OS, a compiler analysis pass, and
a run-time layer. We now describe these components.

3.1 Implementation of OS Support
We have implemented support for user-level paging di-

rectives (i.e. prefetch and release) within the SGI IRIX 6.5
operating system. IRIX 6.5 supports policy modules
(PMs) that allow users to select various memory man-
agement policies for page size, allocation, migration, and
replication. A PM may be connected to any range of
an application’s virtual address space, down to the level
of a single page. We have defined a new PM—called
“PagingDirected”—that allows a user-level process to in-
voke prefetch and release operations on pages of its address
space. In addition, the PagingDirected PM shares informa-
tion about memory usage with the application through a
single 16KB page.

3.1.1 Managing the Shared Page
The shared page is allocated by the OS and mapped read-

only into the application’s address space when the Pag-
ingDirected PM is created. The page is used primarily as a
bitmap, indexed by virtual page number, in which bits are
set to indicate that the corresponding page is in memory,
and cleared otherwise. The first two words in the page are
reserved, however, to indicate the current number of pages
in use by the process, and the upper limit on pages that the
process should be using, respectively.

All updates to the shared page are handled by the OS.
When the PagingDirected PM is created, all bits in the
shared page are initially set. When the application attaches
the PM to a region of its virtual address space, the bits cor-
responding to those addresses are all cleared. Thereafter,
bits are set whenever a physical page is allocated for a vir-
tual page associated with this PM, either due to prefetch
requests or ordinary page faults. Bits are cleared when
pages are reclaimed, either by an explicit release request
or due to default page replacement activity. The estimates
of current and maximum usage are updated only when the
process experiences some type of memory system activ-
ity, rather than every time the information changes. One
consequence of this approach is that an application’s upper
limit may drop dramatically if another process begins us-
ing memory (reducing the total free memory in the system),



but the first process will not be informed of this change un-
til it issues a prefetch/release request, page faults, or has
memory stolen from it. The alternative approach of im-
mediate updates would require the OS to either maintain
a list of processes that should be informed, or to scan the
list of all processes each time the amount of free memory
in the system changes. This additional expense does not
appear to be justified. Another alternative that we have not
explored would be to notify interested applications if con-
ditions change by more than a set threshold, rather than
waiting for memory activity to occur.

3.1.2 Handling Prefetch and Release Requests
When the PagingDirected PM receives a request to

prefetch a page, it performs actions similar to those that
occur for a page fault, with two notable exceptions. First,
if there is no free memory, the request is discarded imme-
diately. This feature prevents memory from being stolen
to satisfy prefetches when the demand for memory is high.
Second, when the request completes, the prefetched page
is not fully validated and no entry is made in the TLB. This
feature prevents mappings for prefetched pages from dis-
placing TLB entries which are still in use.

Requests to release pages are handled by passing the
addresses to a new system releasing daemon—called the
releaser—which functions similarly to the paging daemon,
but is specialized to reclaim only the pages indicated by
the application. When a release request is made, the Pag-
ingDirected PM clears the bits for the pages and enters the
request in the releaser’s work queue. The releaser handles
requests as they are received, first checking the bit vector
to make sure that the pages have not been referenced again
(either by a prefetch or a real reference) since the time of
the request. The releaser then performs all actions needed
to free the pages, including writing back dirty pages. Re-
leased pages are placed at the end of the free list, giving
pages that were released too early a chance to be rescued.

3.1.3 Setting the Memory Limit
The goal in setting the upper limit on memory usage is

to prevent the default page replacement policies from be-
ing activated, if at all possible. IRIX provides a number of
tunable system parameters that control when pages will be
stolen; these parameters can be also used by the PagingDi-
rected PM in an effort to prevent such activity. First, the
maximum number of pages that any process can have resi-
dent in memory (max rss) can be set. If a process exceeds
this limit, the system paging daemon will attempt to trim
physical pages from it. Second, the minimum number of
pages that should be kept free (min freemem) can be set. If
total free memory falls below this limit, the paging daemon
will steal pages from all processes in the system according
to an approximation of an LRU policy.

If physical memory is ample, it is sufficient to tell the
process to remain below max rss. When memory is lim-
ited, the process should be encouraged to use no more
than its current memory usage (current size), plus the
amount of free memory in the system (tot freemem), less

min freemem. The recommended upper limit on memory
usage in our system is thus given as follows:

upper limit = min(max rss; (current size +

tot freemem �min freemem)) (1)

Note that in setting this upper limit we are not guarantee-
ing that the application will be able to allocate this many
pages for itself. Instead, the upper limit is an indication of
the number of pages for which the application is allowed to
compete. Pages that have already been allocated to another
process are not part of the global free memory pool and
thus may not be acquired by the prefetching application.
One result of this decision is that the upper memory limit is
a moving target which is dynamically adjusted as the total
demand for physical memory by all applications changes.
Thus, the OS does not try to determine the “right” amount
of memory to allocate to each process, it simply tells inter-
ested processes how much memory is still available. Find-
ing the right amount of memory for each process is beyond
the scope of this paper.

3.2 Implementation of Compiler Analysis
We implemented our compiler algorithm as a pass in

the SUIF (Stanford University Intermediate Format) com-
piler [9]. This algorithm is an extension of the algorithm
we developed earlier for inserting prefetching hints into
array-based codes [15]; pointer-based data structures are
not currently handled, although techniques used for cache
prefetching may be applicable [13]. We now briefly de-
scribe our algorithm. The following parameters are given
to the compiler to describe the target system: the size of
main memory, the page size, and the page fault latency.
The compiler first uses reuse analysis to detect the intrinsic
data reuses in the access patterns, then uses the page size
and memory size parameters to apply locality analysis to
predict when misses (i.e. page faults) are likely to occur.
References that are likely to suffer page faults are isolated
through loop splitting techniques, and prefetches for these
references are scheduled based on the latency parameter
using software pipelining. Figure 4 shows the process of
creating the specialized executable from the original source
code. The compiler analyzes each set of nested loops inde-
pendently, thus reuses that occur between independent sets
of loops are not considered. While the earlier algorithm
did insert release hints in some cases, we have extended
that analysis in two major ways: (i) we insert releases far
more aggressively, and (ii) we encode reuse information
into the release hints to allow the runtime layer to choose
which pages to release first.

Given the existing locality analysis, it is relatively
straightforward to generate release operations. During lo-
cality analysis, the compiler identifies groups of references
that effectively share the same data and can be treated as
a single reference—this is called “group locality”. For
each of these groups (a group may contain only a sin-
gle reference), the compiler identifies the leading reference
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Figure 4. Steps in the automatic transformation of original application into prefetching/releasing executable.

(i.e. the first reference to access the data) as the reference
to prefetch—we simply extend this analysis to also iden-
tify the trailing reference (the last one to touch the data)
as the address to release. For indirect references (e.g.,
a[b[i]]), we do not insert a release request since it is
too hard to predict whether the data will be accessed again.

In addition to identifying the addresses of data that can
be released, the compiler also indicates whether the data
has temporal reuse, and how soon the reuse is expected,
based on the reuse analysis. (Recall that releases may be
generated because the reuse is not expected to result in
locality). The reuse information is encoded as a priority
value which is passed as a parameter in the release requests;
larger numbers represent references with earlier reuse—i.e.
those which we would most prefer to retain in memory. The
release priority is calculated as follows. Let depth(i) denote
the depth of loop i, with the outermost loop nest having a
depth of 0. Let temporal(x) be the set of nested loops in
which reference x has temporal reuse. The release priority
is computed by the following equation:

priority(x) =
X

i 2 temporal(x)

2 depth(i) (2)

The run-time layer can use this information to prioritize
which pages are actually returned to the system when the
memory usage approaches the upper limit, attempting to
retain those pages that will be reused earlier to reduce the
total amount of paging.

Figure 5 shows an example of the output of our compiler
for a set of loops that repeatedly perform a matrix-vector
multiplication. The compiler analysis has determined that
references to the b array have temporal reuse with respect
to both the i-loop and the iter-loop, but that this reuse is
not expected to result in locality since the volume of data
accessed between reuses is more than the memory size pa-
rameter. In contrast, references to the a array have tem-
poral locality with respect to the iter-loop only. Both
array references have spatial reuse (and locality) causing
the compiler to schedule prefetches for the first reference
to each page, and releases after the last reference to each
page. Using equation (2), a release priority of 1 is assigned
to the releases for the a array, and a priority of 3 is assigned
to the releases for the b array, indicating that b’s pages will
be reused before a’s pages. Neither prefetches nor releases
are inserted for the c array since this item is smaller than a
page and is expected to remain in memory.

(a) Original Code
int a[100][1000000];
int b[1000000];
int c[100];

for (iter = 0; iter < 10; iter++)
for (i = 0; i < 100; i++)

for (j = 0; j < 1000000; j++)
c[i] = c[i] + a[i][j]*b[j];

(b) Code with Prefetch and Release
for (iter = 0; iter < 10; iter++) f

for (i = 0; i < 100; i++) f
prefetch block(&a[i][0], 56, 1, 0);
prefetch block(&b[0], 56, 3, 3);
for (j1 = 0; j1 < 770048; j1 += 16384) f

prefetch release block(&a[i][245759 + j1],
&a[i][j1-16384], 4, 1, 2);

prefetch release block(&b[245759 + j1],
&b[j1-16384], 4, 3, 5);

for (j = j1; j < j1 + 16384; j++)
c[i] = c[i] + a[i][j]*b[j];

g
for (j = 770048; j < 1000000; j++)

c[i] = c[i] + a[i][j]*b[j];
release block(&a[i][770048], 56, 1, 1);
release block(&b[770048], 56, 3, 4);

g
g

Figure 5. Example of the output of the prefetching compiler.
Arguments are: (prefetch address, release address, number
of 16KB pages, release priority, request identifier)

3.3 Implementation of the Run-time Layer

Figure 6 illustrates how prefetches and releases are pro-
cessed by the run-time layer. To achieve the full bene-
fit of prefetching, we need to be able to both fetch data
asynchronously (so the application can continue after is-
suing the prefetch) and take advantage of any available
parallelism in the disk subsystem. The run-time layer ac-
complishes these requirements by creating a number of
pthreads [11] that make the actual calls to the PagingDi-
rected PM and wait for the prefetches to complete. When
a prefetch request inserted by the compiler is intercepted
by the run-time layer, the bitvector is checked to see if
a prefetch is really needed. If so, the request is placed
on a work queue and one of the prefetching threads is
signaled to handle the request. The prefetching threads
simply remove requests from the queue and issue them to
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the PagingDirected PM. We chose to use a pthreads-based
approach since the IRIX kernel does not provide asyn-
chronous I/O to user-level programs. Rather than attempt
to add this functionality to IRIX, we chose an approach
very similar to the implementation of the asynchronous I/O
library in IRIX.

The same set of pthreads are also used to actually is-
sue the release requests to the OS. We have built run-time
layers which implement two different policies for handling
the release requests inserted by the compiler—one aggres-
sively issues release requests to the OS at the time when
they are encountered, while the other buffers releases based
on the compiler-inserted priorities and only issues requests
when necessary, based on the information provided by the
OS. By comparing these two approaches, we can evaluate
the usefulness of buffering release requests in the run-time

layer rather than simply relying on the compiler analysis.
In both cases, the run-time layer attempts to reduce over-

head by filtering out the obviously bad releases inserted by
the compiler. There are two ways in which these bad re-
leases are detected. First, the requests inserted by the com-
piler are checked against the bitvector to make sure that the
pages are in memory. Second, the run-time layer tracks
the last address released for each unique release directive
placed in the code, using the request identifier (or tag) gen-
erated by the compiler. The first release request for any tag
is recorded until the next request for that tag is issued. If a
release request identifies the same page as the previous re-
quest, it is dropped since the page is obviously still in use.
If instead, the current release request identifies a different
page, then the previously recorded release is actually han-
dled and the current one is recorded. The releases issued
by the run-time layer are thus always one or more iterations
behind those identified by the compiler. Handling a previ-
ously recorded request involves either placing it in a release
queue (if buffering is being used), or issuing it to the OS.
Programs with loop nests that have unknown bounds often
cause the compiler to generate overly-aggressive code, and
these simple checks help to reduce the overhead of releas-
ing pages that are still in active use.

Figure 6(b) shows how release requests are buffered. Re-
quests with no reuse (i.e. a priority of 0) are issued to the
OS after passing the simple checks. Other requests are
stored in release queues indexed by their tags, allowing
multiple buffered releases for a particular reference to be
coalesced into a single entry in the queue. When the first re-
lease for a tag is seen, the priority value is used to index into
the priority list where a pointer is set to the release queue
for that tag. The priority list can hold pointers to multiple
queues having the same priority. When a release request
is placed into one of the queues, the current memory us-
age and memory limit are checked. If the current usage is
close to the limit, the priority list is used to issue releases
from the lowest-priority queues. Requests are issued from
all queues at the same priority level in a round-robin fash-
ion. Currently, the run-time layer attempts to release a total
of 100 pages whenever releasing is deemed necessary. (We
have not experimented with varying this parameter.)

As we will show in Section 4, even the simple strategy
of always issuing the releases improves the performance
of the prefetching out-of-core application over prefetching
alone, while simultaneously keeping memory free for other
applications in most cases. When there is temporal reuse
in an application, however, the advantages of prioritizing
releases become clear.

4 Experimental Results
To evaluate the concepts presented in this paper, we ran

several out-of-core applications with the simulated interac-
tive task described in Section 1.1. We will first describe
the platform used to obtain these results, then look at the
impact of prefetching, alone and with both aggressive re-
leasing and release buffering, on the execution time of the



Table 1. Experimental platform characteristics.

Processor
Processor type: MIPS R10000
Number of Processors: 4
Clock rate: 180 MHz

Physical Memory
Total size: 128 MBytes
Available to application: 75 MBytes
Page size: 16 KBytes

Disks
Manufacturer: Seagate
Model: Cheetah 4LP
Number of disks used for swap: 10
Maximum external (I/O) transfer rate: 40 Mbytes/sec/disk
Average rotational latency: 2.99 msec
Track-to-track seek, read: 18 msec (typical)
Track-to-track seek, write: 19 msec(typical)
Number of SCSI controllers: 5
Disks per controller: 2

out-of-core program. To explain the basic performance re-
sults, we will then take a closer look at the effectiveness
of the release operation by examining the activity in the
virtual memory subsystem. Finally, we evaluate the use-
fulness of explicitly releasing memory for improving the
response time of the interactive task.

4.1 Hardware Platform
Our experimental results were obtained on a 4-processor

SGI Origin 200, running our modified version of the
IRIX 6.5 operating system. The system was configured so
that approximately 75MB of physical memory was avail-
able to user programs, and the system swap space was
striped across ten Seagate Cheetah 4LP disks using raw
swap partitions. Five SCSI adapters each control two of
these ten disks; the SCSI adapters are in turn connected to
the PCI buses on the Origin. The basic hardware character-
istics of our system are summarized in Table 1.

4.2 Benchmarks
We performed our experiments using out-of-core ver-

sions of five applications taken from the NAS Parallel
benchmark suite [1] as well as a matrix-vector multiplica-
tion kernel (MATVEC). The code for MATVEC was shown
earlier in Figure 5(a). We have increased the data sets of
the NAS benchmarks to make them larger than the avail-
able memory on our system. Other than increasing the data
set sizes, we did not modify these applications by hand in
any way—all prefetch and release operations were inserted
automatically by our compiler pass.

Table 2 summarizes the characteristics of these applica-
tions; each exhibits different data access behavior. EMBAR

has only one-dimensional loops, while MATVEC has multi-
dimensional loops with known bounds. For both, the com-
piler analysis is essentially perfect and excellent results are
obtained for both the benchmarks themselves and the inter-
active task. BUK and CGM are more difficult cases, as they
involve both unknown loop bounds and indirect references,
both of which reduce the compiler’s ability to analyze the
data accesses. Nonetheless, the run-time layer is able to

Table 2. Description of applications.

Memory Orig
Required Exec.
(and % of Time

Name Description Input Data Set Available) (mins)

BUK integer bucket 2
24 20-bit 206 MB 13.5

sort algorithm integers (275%)
40k x 40k

CGM sparse linear sparse matrix, 206 MB 16.2
system solver �15M non-zeros (275%)

EMBAR monte-carlo 2
24 random 134 MB 13.8

simulation numbers (179%)
FFTPDE 3-D FFT PDE 256x128x128 235 MB 34.2

complex matrix (313%)
computes 3-D

MGRID potential using 256x256x256 452 MB 23.9
multigrid solver matrix (600%)

MATVEC matrix-vector 102 x 106 matrix, 404 MB 11.1
multiply 106 vector (539%)

adapt the behavior based on dynamic conditions and excel-
lent results are again achieved. MGRID and FFTPDE are
the most difficult cases. Both involve multi-dimensional
loops with unknown bounds. In MGRID the loop bounds
change dynamically on different calls to the same proce-
dures, making it impossible to release memory optimally
in all cases, since we only generate a single version of the
code. In FFTPDE, the access stride changes within a set
of loops, making it seem as though the access is not de-
pendent on the loop induction variable. This causes the
compiler to identify some releases as having reuse when
in fact none exists. Ultimately, the solution to the prob-
lems experienced by MGRID and FFTPDE is to generate
more adaptive code, and specialize the loops at run-time
according to dynamic conditions. Even without this extra
sophistication, MGRID performs better with releases and
can significantly reduce (although not eliminate) its nega-
tive impact on interactive response time. We believe that
any additional improvements to the results shown here will
come from improved compiler analysis and code genera-
tion, and greater run-time layer involvement, rather than
from additional operating system support.

4.3 Performance of the Out-of-Core Applications
The goal of I/O prefetching is to improve the execution

time of out-of-core applications by hiding the page fault
latency. The goals of explicitly releasing memory are to
reduce the number of page faults in out-of-core programs
by making better replacement decisions, to reduce the in-
terference caused by the OS selecting victims for replace-
ment, and to alleviate the impact of out-of-core programs
on other applications sharing the same system. We begin
by examining how well our scheme achieves these goals
from the perspective of the out-of-core applications.

In Figure 7, we show the execution times of the out-of-
core programs, normalized to the original case. For each
benchmark we show four bars: the original, unmodified
program (O), the program compiled to use prefetching only
(P), the program compiled to use both prefetching and ag-
gressive releasing (R), and the program compiled to use
both prefetching and release buffering (B). Each bar is bro-
ken down into four components. The top section is the time
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Figure 7. Impact of prefetching and releasing on the execu-
tion times of the out-of-core applications. (O = original, P =
with prefetching, R = with prefetching and releasing, B = with
prefetching and release buffering)

that the program was stalled waiting for I/O. The next com-
ponent is the time that the process was stalled waiting for
unavailable resources, including physical memory, mem-
ory system locks, and CPUs. The second-lowest compo-
nent is the system time, which is primarily spent handling
page faults. The bottom section of each bar is the time
spent executing user code. Increases in user time over the
original case show the overhead of handling prefetch and
release requests in the run-time layer. Because we use sep-
arate threads to issue the prefetch requests, the prefetch ser-
vice time does not appear in the execution time of the main
application. Since we are using a multiprocessor, many of
the prefetches can be serviced in parallel. Although the
prefetch threads compete with the main application and the
interactive task for CPU time, it is a very small effect since
these threads spend most of their time waiting for I/O.

All prefetching versions of the benchmarks achieve sim-
ilar reductions in the I/O stall time, with over 85% of the
I/O stall eliminated in all cases. The time spent executing
system code is nearly identical across all versions of the
benchmarks, and only modest increases in user time oc-
cur in the prefetching versions. The increase in user time
is most pronounced for CGM, where a very large num-
ber of unnecessary prefetch and release requests need to
be filtered out by the run-time layer. These unnecessary
requests are the result of the compiler’s inability to rea-
son about the amount of data accessed in loops with un-
known bounds. For CGM, most of these loops are small
and prefetches and releases are not needed. In all cases
except for FFTPDE and MATVEC, the results for aggres-
sive releasing and release buffering are very similar, since
these applications do not have temporal reuse within a sin-
gle set of loops, and the compiler analysis is unable to de-
tect reuse across independent sets of loops. When all re-
lease requests have zero-priority, both implementations of
the run-time layer perform the same actions (issuing the re-
quests to the OS without buffering), although the version
which attempts to buffer requests incurs a small amount of
additional overhead to check the priorities. In FFTPDE, the
compiler incorrectly identifies some references as having
temporal reuse, causing the run-time layer to preferentially

retain these pages in memory to the detriment of others.
For MATVEC, however, the benefit of buffering and priori-
tizing releases is dramatic. In this case, without buffering,
both the matrix and the vector are released, but the vector
is frequently reused shortly thereafter. Large amounts of
contention occur between the release daemon attempting to
free the pages of the vector and the application attempting
to reclaim them. When the run-time layer buffers and pri-
oritizes the releases, only the pages of the matrix need to be
released and contention is greatly reduced. In the remain-
der of this section, we will discuss both releasing versions
of the benchmarks together, since their behavior is essen-
tially the same, making specific reference to MATVEC in
the cases where buffering makes a difference.

The I/O stall reductions, and the system time and user
time components of these experiments all validate the re-
sults we obtained in our previous study on compiler-based
I/O prefetching [15], demonstrating that these techniques
are still applicable with modern hardware and software.
Our prior study, however, showed that releasing memory
provided no significant benefit to the out-of-core applica-
tions over prefetching alone. One key difference here is
that the earlier compiler implementation did not insert re-
lease operations in many situations. Our results here, in
contrast, show that there is a substantial reduction in the
execution time of the out-of-core applications when releas-
ing is applied aggressively. The speedups from applying
both prefetching and releasing over prefetching alone range
from 13% for EMBAR to over 50% for CGM. This added
benefit is rather unexpected, both because it did not occur
in the previous study, and because the run-time layer imple-
mentations are not trying to actively improve the replace-
ment policy (since there is no known reuse)—they simply
try to maintain as large a pool of free memory as possi-
ble by releasing pages which the application apparently no
longer needs. There are essentially three reasons for the
improvement due to aggressive releasing: (i) a reduction in
the number of soft page faults caused by the paging daemon
attempting to identify unused pages; (ii) a reduction in the
contention for memory locks needed by both the fault han-
dling code and the paging daemon; and (iii) improvements
in the replacement policy created by the compiler analysis
alone. We now discuss the impact of each of these effects.

Looking at the components of the bars in Figure 7, we
see that the greatest difference between the prefetching-
only and the two prefetching-and-releasing cases is in the
time stalled for unavailable resources. Without releasing,
the paging daemon needs to determine which pages should
be reclaimed. To do so, a variant of a clock algorithm is
used, in which pages can be reclaimed if they have not been
referenced for a number of passes of the clock hand. Since
the MIPS TLB does not have reference bits, reference in-
formation must be simulated in software using the valid bit
instead. As free memory becomes low, pages are period-
ically marked invalid to see if they are still in use. These
invalidations increase the number of soft page faults as the
process references, and needs to re-validate, the pages that



Table 3. Pages freed by system or by release, and pages rescued from the free list.
Original With Prefetch and Release

Pages System Page Stolen Total Pages System Page Stolen Pages Released Total
Stolen Reclamation Pages Pages Stolen Reclamation Pages Freed Pages Pages

Benchmark by System Events Rescued Allocated by System Events Rescued by release Rescued Allocated

BUK 126,842 2,796 32,532 131,354 5,043 111 4,340 33,916 3,176 158,210
CGM 289,696 6,130 3,472 313,522 1,567 34 109 72,276 266 305,805

EMBAR 126,793 2,987 4 165,838 0 0 0 32,712 4 132,170
FFTPDE 330,490 7,847 9,999 389,504 134,612 3,172 16,574 81,520 2,801 395,478
MGRID 313,595 7,555 806 376,301 72,883 1,735 111 255,114 183,835 360,599

MATVEC 272,541 11,679 7,159 281,297 0 0 0 105,588 261,100 286,294
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Figure 8. Soft page faults due to page invalidations.

were still in its working set. However, with aggressive re-
leasing, the paging daemon does not need to find pages to
reclaim, thus greatly reducing the number of invalidations.

Figure 8 shows the number of page faults caused by these
periodic invalidations for each version of our out-of-core
benchmarks. Not only are the number of soft page faults
greater when prefetching is used without releasing, the time
to service each of these faults is also amplified due to in-
creased contention for locks between the paging daemon
and the fault handling code. The time to handle hard page
faults is also increased by this contention. When the paging
daemon needs to invalidate or reclaim pages, it holds locks
on the address spaces of the processes from which pages
are being stolen. During this time, page faults for these vir-
tual memory regions cannot be serviced. The releasing dae-
mon must hold the same locks while freeing the explicitly
released pages; however, it typically operates on smaller
blocks of pages, so the locks can be held for much shorter
periods of time. Furthermore, the releasing daemon has
been specialized for the purpose of freeing pre-identified
pages. Thus, it requires fewer locks overall and can do
much less processing per page while locks are held. The
resulting lock contention caused by the releasing daemon
is significantly less than that caused by the paging daemon.

Finally, in some cases the compiler analysis is able to
improve upon the replacement policy without extra sup-
port from the run-time layer. In BUK, the data set consists
of two very large sequentially-accessed arrays and a third
equally large randomly-accessed array. The compiler in-
serts releases for the first two, but does not try to release
the third because it cannot reason about any locality that
may exist. The result is that demand for new pages is satis-
fied by the releases of the first two arrays and the pages of

the third array are able to remain mostly in memory. With-
out releasing, the paging daemon reclaims pages from all
three arrays according to their last use, but without regard
to their access patterns, causing many more page faults to
occur. Although the run-time layer is not able to prioritize
releases due to a lack of temporal reuse, the decision by the
compiler to not release randomly accessed data effectively
accomplishes the desired effect. Having discussed the over-
all performance impact of our system, we now take a closer
look at how effective the compiler and run-time layer are at
generating and managing releases.

4.4 Effectiveness of Releases
There are two considerations when evaluating the effec-

tiveness of the release operation. First, the purpose of is-
suing releases is to maintain a large enough pool of free
memory to prevent the default page reclamation behavior.
To see how well we achieve this goal, we look at how much
work the paging daemon performs, both with and without
releases. Second, we should only be releasing pages that
are really no longer in use by the application (or will not
be used again for a long time) to avoid increasing the page
fault rate. To see how useful the releases are, we look at
how many released pages are “rescued” from the free list
(i.e. returned to the process that was using it). If we are ac-
tually releasing pages that are no longer needed, very few
pages should be rescued. The page reclamation and alloca-
tion activity is summarized in Table 3 for the original out-
of-core programs and the versions that both prefetch and
release memory without buffering.

From Table 3, we see that releases are usually very effec-
tive at reducing the need for the paging daemon to reclaim
memory. In the worst case, the number of times that the
paging daemon needs to operate is reduced by more than
half, and the total number of pages stolen is reduced by
more than a factor of three. In the other cases, the activ-
ity of the paging daemon is reduced by one to two orders
of magnitude, both in terms of frequency and number of
pages stolen. Although it is very difficult for the applica-
tion to release its pages perfectly, it can still provide a great
deal of assistance to the OS.

Next we look at how often useful pages are reclaimed
too early, either by the paging daemon or due to explicit
release requests. There are two possibilities. First, useful
pages may still be on the free list when they are referenced
again, and can be rescued and returned to the application.
Second, useful pages may have been re-allocated to hold
other data before being referenced again, and the reused
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Figure 9. Breakdown of outcomes for freed pages.

data will need to be brought back into memory from swap.
Figure 9 shows what fraction of all the pages freed are

freed by the paging daemon vs. the fraction freed explicitly
by release requests. We also show the fraction of each that
are rescued from the free list. The interesting cases here are
BUK, MGRID and MATVEC. As we see in Figure 9, BUK

without any releasing (both the original and prefetching
versions) frequently needs to rescue the pages reclaimed
by the paging daemon from the free list. The greater de-
mand on memory introduced by prefetching increases the
need for the paging daemon to reclaim memory, resulting
in useful pages being placed on the free list more often.
Consequently, the fraction of reclaimed pages that are res-
cued also increases. With releasing, however, most of the
pages are freed by explicit release requests and very few are
rescued from the free list. In this case, releasing helps the
application to retain its most-needed pages in memory. For
MGRID, we see that even with releasing, over half of the
pages freed are reclaimed by the paging daemon, and that
more than half of the pages explicitly released are rescued
from the free list. This suggests that the compiler is unable
to determine which pages to release and when for MGRID.
Note also that FFTPDE with release buffering performs very
few useful releases due to incorrectly attempting to retain
pages with no reuse. For MATVEC without releasing, the
OS does a reasonable job of freeing the pages of the ma-
trix and keeping the frequently accessed vector in memory.
With aggressive releasing, however, approximately half of
the pages released are for the vector and need to be rescued
from the free list. When release buffering is used, most of
the released pages are for the matrix, and the number of
rescued pages is much smaller. Overall, we can see that re-
leasing greatly reduces the need for the paging daemon to
reclaim memory, and typically does a good job of releasing
pages that are no longer in use.

Detecting pages that were freed too early and re-
allocated before they could be rescued is a more difficult
task. These pages will increase the total number of page al-
locations required (over the ideal) as new pages are needed
to bring the reused data back into memory. While we can-
not compare the total number of page allocations to the
ideal number, we can look at the number of allocations
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(c) Average number of page faults requiring I/O for the interactive
task with each out-of-core benchmark.

Figure 10. Impact of releasing on interactive response time.

in the original case versus the prefetching-and-releasing
cases. From Table 3, we see that the total number of page
allocations increases by a small amount with prefetching
and releasing in half of the cases, and decreases by a small
amount in the other half. This suggests that releasing is
typically doing no worse at freeing needed pages than the
paging daemon, but results in much less contention.

We now look at how useful releases are for improving
the performance of the interactive task.

4.5 Impact on Interactive Response Time
Figure 10 gives an overview of the performance im-

provements obtained for the “interactive” task. In Fig-
ure 10(a), we show the average response time for the in-
teractive task when executed concurrently with MATVEC

across a range of sleep times. As discussed in Section 1.1,
the response times become greatly inflated when the out-of-



core program executes normally, and are made even worse
when prefetching alone is used. When releasing is added to
prefetching, however, the response times of the interactive
task almost perfectly matches the times obtained when it is
run alone on the machine, regardless of the amount of sleep
time. Although blindly following the release directives in-
serted by the compiler has a severe effect on MATVEC’s
own performance, this strategy does leave most of mem-
ory free for the interactive task. However, when release
buffering is used to improve the performance of MATVEC,
there is still nearly no impact on the interactive task. The
run-time layer is able to both buffer releases for the ben-
efit of the out-of-core task and keep enough memory free
for the interactive one. The negative impact of the out-of-
core program on the response time of the interactive task
in this case has been almost completely eliminated. For
the other out-of-core applications, we chose an intermedi-
ate sleep time of five seconds for the interactive task and
recorded the average response times. The results for each
of the four versions of the out-of-core programs are shown
in Figure 10(b). The response times in this graph have been
normalized to the time for the interactive task executing
alone on the machine. As we see in Figure 10(b), releasing
is usually successful at eliminating or substantially reduc-
ing the degradation in interactive response time. FFTPDE

with release buffering is the exception as this benchmark
fails to release enough memory.

Figure 10(c) shows the average number of hard page
faults (i.e. those that require I/O) experienced by the in-
teractive task during a single sweep through its data set,
when it is executed concurrently with each version of our
out-of-core benchmarks. From this table, we see that the
number of page faults increases when the out-of-core pro-
gram uses prefetching alone, rising to the maximum level
of 65 pages. At this point, the entire data set of the inter-
active task must be paged in from the swap space. When
the out-of-core program also releases pages, the number of
hard page faults is significantly reduced. This result ver-
ifies that the primary reason for the increased interactive
response time is not being able to keep pages in memory.

5 Related Work
Many researchers have suggested that better perfor-

mance can be obtained if sophisticated applications are
given control over their own memory management deci-
sions. Most previous work in this area has focused on
how the OS can provide this functionality to the applica-
tions. For instance, the Mach operating system supports
external pagers to allow applications to control the back-
ing storage of their memory objects [18]. Extensions to the
external pager interface have been used to implement user-
level page replacement policies [14] and to support discard-
able pages (i.e. dirty pages that do not have to be written to
backing store) [20]. More aggressive application control
of physical memory was implemented in the V++ kernel
by Harty and Cheriton [10]. In their scheme, the applica-
tion was given complete control over a cache of physical

pages, enabling the implementation of application-specific
memory management policies. Giving applications more
control over physical resources (not just memory) is also
a part of the motivation behind extensible operating sys-
tems such as Exokernel [12], SPIN [2], and Vino [19]. Pro-
viding support for application-specific control is only half
of the picture, however. If the mechanisms provided re-
quire programmers to re-write their applications manually,
the full power of the scheme is unlikely to be realized in
the real world. In contrast, our approach provides not only
the mechanisms for application-controlled memory man-
agement, but also a means to leverage these mechanisms
automatically through the use of the compiler.

Other related work has shown the importance of consid-
ering both prefetching and replacement decisions in tan-
dem, in the context of I/O prefetching for file system ref-
erences. Cao et al. [3] present several properties that op-
timal prefetching and caching strategies must have; how-
ever the complete reference stream is required to satisfy
these properties. The TIP system for I/O prefetching by
Patterson et al. [16] uses a cost-benefit model to estimate
which file blocks should be replaced from the buffer cache,
based on access-pattern hints disclosed by the application.
While the goal of using application-specific knowledge to
improve overall system performance is the same as in our
system, we focus on virtual memory references rather than
file reads and writes. In the original TIP implementation,
applications had to be manually modified to generate the
necessary access hints. Recently, another approach for au-
tomatically modifying applications to provide hints about
their future accesses has been presented by Chang and Gib-
son [4]. Applications are modified automatically (using
a binary modification tool on the program executable) to
speculatively execute the code and generate access pattern
hints to be passed to the TIP system. Because it is much
more costly to track all virtual memory references (versus
explicit file requests only) the techniques used by the TIP
system for deciding what to eject from the file cache are
not especially applicable for virtual memory management.

6 Conclusions
We have implemented and evaluated a complete and

fully-automatic system which exploits compiler-inserted
release operations to intelligently manage the physical
memory resources of out-of-core applications. These spe-
cialized applications can reduce their impact on the per-
formance of other applications while still exploiting ag-
gressive prefetching to hide their I/O latency. Our results
confirm that compiler-inserted I/O prefetching works well
on commercial operating systems and state-of-the-art ma-
chines (even though faster processors make it much more
challenging to hide the I/O latency), hiding roughly 85-
100% of the I/O stall time in our out-of-core benchmarks
and achieving good overall speedups.

The significant benefit to the out-of-core benchmarks
due to aggressively releasing memory was mostly unex-
pected. In BUK we expected to see a benefit from improv-



ing on the replacement policy, but for the other applications
(excepting MATVEC, which is hurt by aggressive releas-
ing), the improvement comes from reducing the interfer-
ence between the operating system and the application. We
found the extent of this interference between the paging
daemon and the page fault handling to be especially sur-
prising. Not only does the paging daemon greatly increase
the number of soft page faults as it attempts to simulate
reference bits in software, but the time to handle these page
faults is also inflated by increased lock contention. Because
the overhead of determining which pages to replace is so
large, explicit replacement hints can improve performance,
even if they are not making better replacement decisions
than the default policy. It would be interesting to see if
these benefits still occur on a system with hardware refer-
ence bits (although such a study was beyond the scope of
this paper since IRIX only runs on MIPS processors).

Overall, our compiler-based approach for combining
both prefetching and releasing to allow out-of-core appli-
cations to explicitly manage their virtual memory is a situ-
ation in which everyone wins. Both the memory-intensive
programs and the less demanding interactive ones sharing
the system obtain performance benefits. Only the out-of-
core programs need to be modified, and the changes are
performed automatically by the compiler without burden-
ing the application programmer. Furthermore, the default
policies of the operating system do not need to be changed,
and no overhead is introduced in the common case for man-
aging ordinary applications.

7 Acknowledgements
We thank Andrew Myers (our shepherd) for helping us

improve the presentation of this paper. This research is sup-
ported by a grant from NASA. Todd C. Mowry is partially
supported by an Alfred P. Sloan Research Fellowship.

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The
NAS Parallel Benchmarks. Technical Report RNR-91-002,
NASA Ames Research Center, Aug. 1991.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Extensi-
bility, Safety and Performance in the SPIN Operating Sys-
tem. In Proc. of the 15th Symp. on Operating System Prin-
ciples, Dec. 1995.

[3] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of In-
tegrated Prefetching and Caching Strategies. In Proc. of the
ACM SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, pages 188–197, 1995.

[4] F. Chang and G. Gibson. Automatic I/O Hint Generation
Through Speculative Execution. In Proc. of the 3rd OSDI,
Feb. 1999.

[5] M. Cox and D. Ellsworth. Application-Controlled Demand
Paging for Out-of-Core Visualization. In Proc. of Visualiza-
tion ’97, Oct. 1997.

[6] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. In-
put/Output Characteristics of Scalable Parallel Applications.
In Proc. of Supercomputing ’95, Dec. 1995.

[7] J. M. del Rosario and A. Choudhary. High Performance I/O
for Massively Parallel Computers: Problems and Prospects.
IEEE Computer, 27(3):59–68, Mar. 1994.

[8] A. K. Demke. Automatic I/O Prefetching for Out-of-Core
Applications. Master’s thesis, University of Toronto, De-
partment of Computer Science, Jan. 1997.

[9] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
Multiprocessor Performance with the SUIF Compiler. IEEE
Computer, 29(12):84–89, Dec. 1996.

[10] K. Harty and D. Cheriton. Application-Controlled Physical
Memory Using External Page-Cache Management. In Proc.
of the 5th ASPLOS, pages 187–199, Oct. 1992.

[11] IEEE. Threads Extension for Portable Operating Systems
(Draft 7), Feb. 1992.

[12] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceo,
R. Hunt, D. Mazires, T. Pinckney, R. Grimm, J. Jannotti, and
K. MacKenzie. Application Performance and Flexibility on
Exokernel Systems. In Proc. of the 16th Symp. on Operating
System Principles, Oct. 1997.

[13] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching
for Recursive Data Structures. In Proc. of the 7th ASPLOS,
pages 222–233, Oct. 1996.

[14] D. McNamee and K. Armstrong. Extending the Mach Exter-
nal Pager Interface to Accommodate User-Level Page Re-
placement Policies. In Proc. of the USENIX Assoc. Mach
Workshop, pages 17–29, 1990.

[15] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic
Compiler-Inserted I/O Prefetching for Out-of-Core Appli-
cations. In Proc. of the 2nd OSDI, pages 3–17, Oct. 1996.

[16] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. In Proc. of
the 15th Symp. on Operating System Principles, pages 79–
95, Dec. 1995.

[17] J. T. Poole. Preliminary Survey of I/O Intensive Appli-
cations. Technical Report CCSF-38, Scalable I/O Initia-
tive, Caltech Concurrent Supercomputing Facilities, Cal-
tech, 1994.

[18] R. Rashid, A. Tevanian, Jr., M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. Machine-Independent
Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures. In Proc. of the 2nd ASPLOS,
Oct. 1987.

[19] C. Small and M. Seltzer. A Comparison of OS Extension
Technologies. In Proc. of the 1996 USENIX Technical Con-
ference, Jan. 1996.

[20] I. Subramanian. Managing Discardable Pages with an Exter-
nal Pager. In Proc. of the USENIX Mach Symposium, Nov.
1991.

[21] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hier-
archical Clustering: A Structure for Scalable Multiproces-
sor Operating System Design. Journal of Supercomputing,
9(1/2):105–134, 1995.

[22] Z. G. Vranesic, M. Stumm, R. White, and D. Lewis. The
Hector Multiprocessor. IEEE Computer, 24(1), Jan. 1991.


