
Epoch parallelism: one execution is not enough

Jessica Ouyang, Kaushik Veeraraghavan, Dongyoon Lee,
Peter M. Chen, Jason Flinn, and Satish Narayanasamy

University of Michigan

1 Introduction

The conventional approach for using multiprocessors re-
quires programmers to write correct, scalable parallel
programs. Unfortunately, writing such programs remains
a daunting task, despite decades of research on paral-
lel languages, programming models, static and dynamic
analysis tools, and synchronization primitives.

We argue that it is futile to expect programmers to
write a program that is both correct and scalable. Instead,
we propose a different style of parallel execution, called
epoch parallelism, that separates the goals of correctness
and scalability intodifferent executions. One execution
(called the epoch-parallel execution) runs a program that
is aimed at achieving correctness (or some other desir-
able property) but need not scale to multiple processors
(e.g., the program may be single-threaded). The other
execution (called the thread-parallel execution) runs a
program that is aimed at scaling to multiple processors
but need not always be correct. We then combine these
two executions to achieve both correctness and scalabil-
ity. The epoch-parallel execution counts as the “real” ex-
ecution, and the thread-parallel execution speeds up the
epoch-parallel execution by allowing multiple epochs to
run at the same time.

2 Epoch parallelism

The goal of epoch parallelism is to take one execution
that provides correctness (but may be slow or unscalable)
and another execution that provides performance (but
may be occasionally incorrect), and to combine these to
provide both performance and correctness.

Epoch parallelism combines these two executions in
the following manner. The epoch-parallel execution
counts as the “real” execution, i.e. it generates the results
that are output by the program. The thread-parallel exe-
cution exists merely to speed up the epoch-parallel exe-
cution. The thread-parallel execution could speed up the

[Ep 0]

[Ep 1]

[Ep 2]

[Ep 3]

A

CPU 0

B

CPU 1

C

CPU 2

D

CPU 3

.

.

.
.
.
.

.

.

.
.
.
.

Epoch-parallel executionThread-parallel execution

CPU 7

D

D

D

A

C

B

B
C
C

[Ep 3]

CPU 4

A

C

D

B

B

C

C
A

A

[Ep 0]

CPU 5

B

A

D

C

C

A
B

D

B

[Ep 1]

CPU 6

D

C

D

B

A

A

C
D

B

[Ep 2]

Figure 1: Epoch parallelism. In this example, the epoch-
parallel execution timeslices four threads (A,B,C,D) onto
a single processor to reduce the occurrence of races, en-
able deterministic replay, and provide sequential mem-
ory consistency. The thread-parallel execution generates
checkpoints at the end of each epoch, which makes it
possible to speculatively execute future epochs of the
epoch-parallel execution before prior epochs complete.

epoch-parallel execution in many ways (e.g., prefetching
data); we focus on using the thread-parallel execution to
generate checkpoints that allow multiple epochs of the
slow, epoch-parallel execution to run in parallel.

Figure 1 shows an example of how this works. In this
example, the epoch-parallel execution timeslices multi-
ple threads onto a single processor. Timeslicing threads
onto a single processor has several benefits: it reduces
the chance that certain race conditions will occur; it
makes it easier to replay deterministically; and it pro-
vides sequential memory consistency even on proces-
sors that do not support strong consistency across cores.
However, timeslicing all threads onto a single processor

1



loses all parallelism, so the epoch-parallel execution is
slow. To recover this lost parallelism, the thread-parallel
execution runs ahead and generates checkpoints specula-
tively. These checkpoints are used to speculatively start
later epochs of the epoch-parallel execution before prior
epochs finish. When an epoch of the epoch-parallel ex-
ecution completes, it checks the checkpoint predicted by
the thread-parallel execution with its own state. If these
differ, the system cancels the epochs that depended on in-
correct checkpoints, and the program restarts at the last
matching state. To increase the chance that the epoch-
parallel and thread-parallel executions match, we log the
order of synchronization operations issued by the thread-
parallel execution and replay these in the epoch-parallel
execution.

The main cost of epoch parallelism is higher CPU uti-
lization. In the above example, each original instruction
executes twice, so the system uses twice as many cores.
We believe the advent of many-core processors makes
this a worthwhile tradeoff: the number of cores per com-
puter is expected to grow exponentially, and scaling ap-
plications to use these extra cores is notoriously difficult.
In addition, we may be able to leverage the similarity be-
tween the thread-parallel and epoch-parallel executions
to reduce the cost. For example, the thread-parallel exe-
cution may help prefetch values or predict branches for
the epoch-parallel execution.

3 Uses of epoch parallelism

The main advantage of epoch parallelism is that it no
longer requires a single program and execution to satisfy
the multiple goals of correctness and speed. Instead, one
execution targets correctness (or other useful properties,
e.g., replayability, sequential consistency, etc.) and the
other targets speed. We can leverage this separation of
concerns in several ways, which we categorize by by the
amount of programmer effort needed.

No new code. In many uses of epoch parallelism, the
programmer writes a single program, which is used by
both thread-parallel and epoch-parallel executions. The
epoch-parallel executes in a safer, more correct manner
that allows us to check the results of the faster, though
not always correct, thread-parallel execution.

Uniprocessor execution is one example of how the
epoch-parallel execution can run multi-threaded pro-
grams more safely and slowly. Because multiple threads
are timesliced onto a single processor and never access
shared data concurrently, we can easily provide sequen-
tial memory consistency and deterministic replay, both
of which are difficult and expensive to provide when
threads execute in parallel. Executing on a uniproces-
sor also allows us to control the order of threads more
precisely, and this allows us to choose schedules (e.g.,

non-preemptive scheduling) that avoid or detect certain
types of races. The thread-parallel execution runs the
same program, but executes all threads on different pro-
cessors concurrently.

Another way to use epoch parallelism without writ-
ing new code is toelide lock operations in the thread-
parallel execution. The thread-parallel execution will run
faster but may experience harmful data races and atom-
icity violations. The epoch-parallel execution guarantees
correct program behavior because it continues to execute
lock operations. This is a form of optimistic concurrency
control (similar to transactional memory), but checks for
conflicts by comparing state between the thread-parallel
and epoch-parallel executions, rather than by monitoring
memory operations.

Some new code. In other uses of epoch parallelism,
the programmer may add code to the epoch-parallel ex-
ecution to make it more robust. Examples of such extra
code include assertions on data structure integrity, secu-
rity checks, or software rejuvenation. Or the program-
mer may modify code in the thread-parallel execution to
make it faster (at the potential cost of correctness), for
example by using fast, approximate algorithms to com-
pute results.

Completely new program. The most general use of
epoch parallelism is to write two completely different
programs, one buggy and fast, the other slow and correct.
In the extreme case, the programmer would write two
completely different programs, such as a single-threaded
program (easy to write correctly, but slow) and a multi-
threaded program (fast, but difficult to write correctly).
These two programs would run using epoch parallelism
style to provide the speed of the multi-threaded program
and the correctness of the single-threaded program, thus
freeing the programmer from ever writing a fast, correct
multi-threaded program. The main problem with this ap-
proach is that it becomes difficult for the thread-parallel
execution to generate checkpoints that can be used to
start future epochs of the epoch-parallel execution. One
way to circumvent this problem is to start epochs at pro-
gram points with minimal state, by saving the persistent
program state to a file at the end of an epoch, then im-
porting that file as the starting state of the next epoch.

2


