Can the Production Network Be the Testbed?

T··

Rob Sherwood Deutsche Telekom Inc. R&D Lab

big switch networks Glen Gibb, KK Yap, Guido Appenzeller, Martin Cassado, Nick McKeown, Guru Parulkar

Stanford University, Big Switch Networks, Nicira Networks

Problem:

Realisticly evaluating new network services is *hard*

- services that require changes to switches and routers
- e.g.,
 o routing protocols
 o traffic monitoring services
 o IP mobility

Result: Many good ideas don't gets deployed; Many deployed services still have bugs.

Why is Evaluation Hard?

Real Networks

Testbeds

Not a New Problem

- Build open, programmable network hardware

 NetFPGA, network processors
 but: deployment is expensive, fan-out is small
- Build bigger software testbeds

 VINI/PlanetLab, Emulab
 but: performance is slower, realistic topologies?
- Convince users to try experimental services

 personal incentive, SatelliteLab
 but: getting *lots* of users is hard

Solution Overview: Network Slicing

- Divide the production network into logical slices
 each slice/service controls its own packet forwarding
 users pick which slice controls their traffic: opt-in
 existing production services run in their own slice
 e.g., Spanning tree, OSPF/BGP
- Enforce strong isolation between slices
 actions in one slice do not affect another
- Allows the (logical) testbed to mirror the production network
 o real hardware, performance, topologies, scale, users

Rest of Talk...

- How network slicing works: FlowSpace, Opt-In
- Our prototype implementation: FlowVisor
- Isolation and performance results
- Current deployments: 8+ campuses, 2+ ISPs
- Future directions and conclusion

Current Network Devices

Add a Slicing Layer Between Planes

Network Slicing Architecture

A network slice is a collection of sliced switches/routers

- Data plane is unmodified
 - Packets forwarded with no performance penalty
 - Slicing with existing ASIC
- Transparent slicing layer
 - each slice believes it owns the data path
 - enforces isolation between slices
 - i.e., rewrites, drops rules to adhere to slice police
 - forwards exceptions to correct slice(s)

Slicing Policies

The policy specifies resource limits for each slice:

- Link bandwidth
- Maximum number of forwarding rules
- Topology
- Fraction of switch/router CPU
- FlowSpace: which packets does the slice control?

FlowSpace: Maps Packets to Slices

Real User Traffic: Opt-In

Allow users to Opt-In to services in real-time

 Users can delegate control of individual flows to
 Slices

Add new FlowSpace to each slice's policy

- Example:
 - o "Slice 1 will handle my HTTP traffic"
 - "Slice 2 will handle my VoIP traffic"
 - "Slice 3 will handle everything else"
- Creates incentives for building high-quality services

Rest of Talk...

- How network slicing works: FlowSpace, Opt-In
- Our prototype implementation: FlowVisor
- Isolation and performance results
- Current deployments: 8+ campuses, 2+ ISPs
- Future directions and conclusion

Implemented on OpenFlow

Server

- API for controlling packet forwarding
- Abstraction of control plane/data plane protocol
- Works on commodity hardware
 - via firmware upgrade
 - www.openflow.org

FlowVisor Implemented on OpenFlow

FlowVisor Implementation

- •Custom handlers for each of OpenFlow's 20 message types
 - Transparent OpenFlow proxy
 - 8261 LOC in C
 - New version with extra API for GENI
- •Could extend to non-OpenFlow (ForCES?)
- Code: `git clone git://openflow.org/flowvisor.git`

Rest of Talk...

- How network slicing works: FlowSpace, Opt-In
- Our prototype implementation: FlowVisor
- Isolation and performance results
- Current deployments: 8+ campuses, 2+ ISPs
- Future directions and conclusion

Isolation Techniques

Isolation is critical for slicing

In talk:

Device CPU

In paper:

- FlowSpace
- Link bandwidth
- Topology
- Forwarding rules

As well as performance and scaling numbers

Device CPU Isolation

- Ensure that no slice monopolizes Device CPU
- CPU exhaustion
 - prevent rule updates
 - drop LLDPs ---> Causes link flapping
- Techniques
 - Limiting rule insertion rate
 - Use periodic drop-rules to throttle exceptions
 - Proper rate-limiting coming in OpenFlow 1.1

CPU Isolation: Malicious Slice

Rest of Talk...

- How network slicing works: FlowSpace, Opt-In
- Our prototype implementation: FlowVisor
- Isolation and performance results
- Current deployments: 8+ campuses, 2+ ISPs
- Future directions and conclusion

FlowVisor Deployment: Stanford

- Our real, production network

 15 switches, 35 APs
 25+ users
 1+ year of use
 my personal email and web-traffic!
- Same physical network hosts Stanford demos

 7 different demos

FlowVisor Deployments: GENI

Future Directions

- Currently limited to subsets of actual topology
 Add virtual links, nodes support
- Adaptive CPU isolation
 - Change rate-limits dynamically with load
 - ... message type
- More deployments, experience

Conclusion: Tentative Yes!

- Network slicing can help perform more realistic evaluations
- FlowVisor allows experiments to run concurrently but safely on the production network
 - CPU isolation needs OpenFlow 1.1 feature
- Over one year of deployment experience
- FlowVisor+GENI coming to a campus near you!

Questions? git://openflow.org/flowvisor.git

Backup Slides

What about VLANs?

- Can't program packet forwarding

 Stuck with learning switch and spanning tree
- OpenFlow per VLAN?
 - No obvious opt-in mechanism:
 - Who maps a packet to a vlan? By port?
 - Resource isolation more problematic
 - CPU Isolation problems in existing VLANs

FlowSpace Isolation

Policy	Desired Rule	Result
HTTP	ALL	HTTP-only
HTTP	VoIP	Drop

- Discontinuous FlowSpace:
 - (HTTP or VoIP) & ALL == two rules
- Isolation by rule priority is hard
 - longest-prefix-match-like ordering issues
 - need to be careful about preserving rule ordering

Scaling

Performance

