
Intrusion Recovery
using Selective Re-execution

Taesoo Kim, Xi Wang,
Nickolai Zeldovich, M. Frans Kaashoek

MIT CSAIL

Attackers routinely
compromise system integrity

Attackers routinely
compromise system integrity

Attackers routinely
compromise system integrity

Compromises inevitable

● Difficult to write bug-free software
● Administrators mis-configure policies
● Users choose weak, guessable passwords

Compromises inevitable

● Difficult to write bug-free software
● Administrators mis-configure policies
● Users choose weak, guessable passwords

● Need both “proactive” security,
and “reactive” recovery mechanisms

Limited existing recovery tools

● Anti-virus tools
● Only repair for predictable attacks

● Backup tools
● Restoring from backup discards all changes

Limited existing recovery tools

● Anti-virus tools
● Only repair for predictable attacks

● Backup tools
● Restoring from backup discards all changes

● Administrators spend days or weeks manually
tracking down all effects of the attack
● No guarantee if they found everything

Challenge: disentangle changes
by attacker and legitimate user

● Adversary could have modified many files directly

● Legitimate processes may have been affected
● Users ran trojaned pdflatex or ls
● SSH server read a modified /etc/passwd

● Those processes are now suspect as well

Our approach: help users
disentangle on one machine

● Record history of all computations on machine

● After intrusion found, roll back affected objects

● Re-execute actions that were indirectly affected

● Minimize user input required to disentangle
● User edited attacker's file with emacs
● External effects outside of our control

Contributions

● New approach to system-wide intrusion recovery
● Action history graph tracks computations and repairs
● Techniques: re-execution, predicates, and refinement

● Retro: prototype recovery system for Linux
● Recovers from 10 real-world and synthetic attacks
● No user input required in most cases

Contributions

● New approach to system-wide intrusion recovery
● Action history graph tracks computations and repairs
● Techniques: re-execution, predicates, and refinement

● Retro: prototype recovery system for Linux
● Recovers from 10 real-world and synthetic attacks
● No user input required in most cases

● Instead of spending days on manual recovery,
admin can use Retro to automatically recover,
and ensure that all effects of attack are caught

Example attack scenario

● Attacker not targeting Alice, wants to run botnet

● Attacker modifies /etc/passwd to add new account
● Installs trojan pdflatex, ls to restart, hide botnet

● Alice logs in via SSH
● SSH server reads /etc/passwd
● Alice runs trojaned pdflatex, ls

● Admin modifies /etc/passwd
to add account for Alice

Strawman 1: Taint tracking

…

Attacker
process

passwd
file

pdflatex
binary

botnet.c adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
files

Alice's
PDF file

Strawman 1: Taint tracking

…

Attacker
process

passwd
file

pdflatex
binary

botnet.c adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
files

Alice's
PDF file

● Log all OS-level dependencies in system

Strawman 1: Taint tracking

…

Attacker
process

passwd
file

pdflatex
binary

botnet.c adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
files

Alice's
PDF file

● Given attack, track down all affected files, and
restore just those files from backup

Attack

Strawman 1: Taint tracking

…

Attacker
process

passwd
file

pdflatex
binary

botnet.c adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
files

Alice's
PDF file

● Given attack, track down all affected files, and
restore just those files from backup

Attack

Problem with taint tracking:
false positives

…

Attacker
process

passwd
file

pdflatex
binary

botnet.c adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
files

Alice's
PDF file

● Taint tracking conservatively propagates
everywhere through shared files

Attack

Problem with taint tracking:
false positives

…

Attacker
process

passwd
file

pdflatex
binary

botnet.c adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
files

Alice's
PDF file

● Taint tracking conservatively propagates
everywhere through shared files

Attack

Alice's account
and files are lost!

Strawman 2: VM

Time

Virtual machine

Strawman 2: VM

Time

Virtual machine

Inputs

Outputs

Periodic VM checkpoints

Time

Virtual machine

Inputs

Outputs

Step 1: identify attack input

Time

Virtual machine

Inputs

Outputs
Attack input

Step 2: roll back to checkpoint

Time

Virtual machine

Inputs

Outputs
Attack input

Step 3: replay non-attack inputs

Time

Virtual machine

Inputs

Outputs
Attack input X

Problem with VM strawman:
re-execution is expensive, diverges

TimeInputs

Outputs
Attack input X

● May take one week to re-execute for a week-old attack

● Original VM inputs may be meaningless for new system
● Non-determinism: new SSH crypto keys, inode #s, app state, …

● Can't do deterministic re-execution, since some inputs changed

Retro's approach:
selective re-execution

● Record fine-grained action history graph
● Includes system call arguments, function calls, …
● Assume tamper-proof kernel, storage

● Roll back objects directly affected by attack
● Avoid the false positives of taint tracking

● Re-execute actions indirectly affected by attack
● Avoid expense, non-determinism of whole-VM re-exec.

Action history graph:
Objects represent files, processes

Time
attacker's
process

password
file

adduser
alice

admin's
shell

Action history graph:
Actions represent execution

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)

Action history graph:
Actions have dependencies

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)
exec

(prog, args, ..)

Action history graph:
Actions have dependencies

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write

(offset, data)

write(offset, data)
exec

(prog, args, ..)

read(offset, data)

Action history graph:
Actions have dependencies

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)
exec

(prog, args, ..)

read(offset, data)

exit
(status)

write

(offset, data)

Action history graph:
Actions have dependencies

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)
exec

(prog, args, ..)

read(offset, data)

exit
(status)

write

(offset, data)

Action history graph:
Objects have checkpoints

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)
exec

(prog, args, ..)

read(offset, data)

exit
(status)

write

(offset, data)

Step 1: find attack action

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)
exec

(prog, args, ..)

read(offset, data)

exit
(status)

write

(offset, data)

Step 2: roll back affected objects

Time
attacker's
process

password
file

adduser
alice

admin's
shell

read(offset, data)

exec

(prog, args, ..)

exit
(status)

write

(offset, data)

 X

Step 3: redo non-attack actions

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X

Repeat step 2: roll back objects

Time
attacker's
process

password
file

adduser
alice

admin's
shell

write(offset, data)

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X

Repeat step 3: redo actions

Time
attacker's
process

password
file

adduser
alice

admin's
shell

Key advantage over
VM strawman:

Re-run only adduser,
not entire VM.

write(offset, data)

Repeat step 3: redo actions

Time
attacker's
process

password
file

adduser
alice

admin's
shell

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X
write(offset, data)

Repeat step 3: redo actions

Time
attacker's
process

password
file

adduser
alice

admin's
shell

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X
write(offset, data)

Better than either VM
or taint tracking:

Alice account preserved,
no re-run of entire VM

Challenge: how to avoid
re-executing everything?

Time
attacker's
process

password
file

adduser
alice

admin's
shell

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X
write(offset, data)

Exit status affects shell,
which affects sshd, and so on…

Naïve process-level re-execution
still re-executes entire system!

Observation: many suspect
computations are not affected

● Attacker adds 1 account to password file
● Alice's sshd reads password file,

but looks up Alice's account instead of attacker's

● Attacker adds 1 line to pdflatex to restart botnet
● Alice's pdflatex process may restart botnet,

but otherwise does legitimate work

● Significant changes → can detect attack earlier

Approach: minimize re-execution

● Predicates: Retro skips equivalent computations
● Predicate checks whether inputs are the same
● If so, assume original result OK, avoid re-execution

● Refinement: Retro re-executes fine-grained actions
● Avoid re-executing entire process or login session,

when only a small part of it was affected

Example 1:
exit status to shell unchanged

Time
attacker's
process

password
file

adduser
alice

admin's
shell

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X
write(offset, data)

Predicates:
avoid equivalent re-execution

Time
attacker's
process

password
file

adduser
alice

admin's
shell

read(offset, data)

exec

(prog, args, ..)

write

(offset, data)

exit
(status)

 X
write(offset, data)

Same input
(exit status)
as before?

No need to re-run
shell action.

read(offset, data)

 X
write(offset, data)

Example 2:
user's password unchanged

Time
attacker's
process

password
file

alice's
sshd

read(offset, data)

call

getpwnam(“alice”)

return
(Alice's password)

 X

Refinement:
re-execute individual functions

Time
attacker's
process

password
file

getpwnam
function

write(offset, data)

alice's
sshd

return
(Alice's password)

call

getpwnam(“alice”)
read(offset, data)

 X

Refinement:
re-execute individual functions

Time
attacker's
process

password
file

getpwnam
function

write(offset, data)

Same
return value
as before?

alice's
sshd

Remaining challenge:
external dependencies

● What if the attack was externally-visible?
● Attacker sent spam, or user saw wrong output from ls

● Cannot solve general case (spam already sent)
● Will need to pause repair and ask for user input

● Can do compensating actions in some cases

Compensating action for
terminals: email diff to user

 nickolai@karakum:~$ cd undosys/libundo
 nickolai@karakum:~/undosys/libundo$ ls l
 rwrr 1 nickolai nickolai 493 20100513 09:46 Makefile
 rwrr 1 nickolai nickolai 2124 20100513 10:22 attack.c
 drwxrxrx 2 nickolai nickolai 4096 20100513 09:46 bdb
 rwxrxrx 1 nickolai nickolai 973 20100513 09:46 mailserver.py
 drwxrxrx 2 nickolai nickolai 4096 20100513 09:46 php
 rwrr 1 nickolai nickolai 5221 20100513 09:46 pwd.c
 rwrr 1 nickolai nickolai 1424 20100513 09:46 undo.py
+ rwrr 1 nickolai nickolai 662 20100513 09:46 undocall.c
+ rwrr 1 nickolai nickolai 1340 20100513 09:46 undocall.h
+ rwrr 1 nickolai nickolai 755 20100513 09:46 undotest.c
+ rwxrxrx 1 nickolai nickolai 360 20100513 09:46 undotest.py
 rwrr 1 nickolai nickolai 6603 20100513 09:46 undowrap.c
 nickolai@karakum:~/undosys/libundo$ du ks .
 84 .
+ 96 .
 nickolai@karakum:~/undosys/libundo$ cd ..
 nickolai@karakum:~/undosys$

Retro implementation

Linux kernel

Retro module

Processes

libc wrappers

Action history
graph

Snapshots

Log

File system

. . .

Repair
managers

OS mgr

File system

Terminal

Network
Repair

controller

Retro implementation

Linux kernel

Retro module

Processes

libc wrappers

Action history
graph

Snapshots

Log

File system

. . .

Repair
managers

OS mgr

File system

Terminal

Network
Repair

controller

700 lines
of C

3,300 lines
of C

4,800 lines
of Python

200 lines
of Python

Retro implementation

Linux kernel

Retro module

Processes

libc wrappers

Action history
graph

Snapshots

Log

File system

. . .

Repair
managers

OS mgr

File system

Terminal

Network
Repair

controller

Existing checkpointing
file system (e.g., btrfs)

Preserve inode numbers
by only reusing inodes

that are free in every snapshot

Retro implementation

Linux kernel

Retro module

Processes

libc wrappers

Action history
graph

Snapshots

Log

File system

. . .

Repair
managers

OS mgr

File system

Terminal

Network
Repair

controller

Shepherd re-execution using ptrace
to detect and skip equivalent

system calls (e.g., exec)

Retro implementation

Linux kernel

Retro module

Processes

libc wrappers

Action history
graph

Snapshots

Log

File system

. . .

Repair
managers

OS mgr

File system

Terminal

Network
Repair

controller

Well-defined API:
rollback, redo, equiv, connect

Evaluation questions

● How much better is Retro than manual repair?

● What is Retro's cost during normal execution?

Evaluation setup

● 2 real-world attacks from honeypot
● Remove log entries, add accounts, run botnet

● 2 synthetic challenge attacks
● Running example (LaTeX trojan) and sshd trojan

● 6 attacks from Taser recovery system [Goel'05]
● File sharing, web servers, databases, desktop apps
● Website backdoors, trojans in ls, new accounts

Retro repairs from all attacks

Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt

Retro repairs from all attacks

Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt

6/10 cases: no user input needed,
automatic re-execution suffices
Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt

2/10 cases: user input needed
to skip attacker's SSH logins

Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt

2/10 cases: user input needed
to handle legitimate network I/O
Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt

Repair cost:
Retro repairs few objects

Attack Objects repaired
by Retro

Root pw change 7 (0.5%)

Log cleaning 99 (8%)

LaTeX trojan 190 (15%)

sshd trojan 880 (70%)

Repair cost:
Retro repairs few objects

● Repair cost proportional to extent of attack

Attack Objects repaired
by Retro

Root pw change 7 (0.5%)

Log cleaning 99 (8%)

LaTeX trojan 190 (15%)

sshd trojan 880 (70%)

Repair time depends
largely on # objects, not log size

Total size of Retro log
(action history graph)

Repair time for
136 objects / 399 syscalls

 399 system calls 0.3 seconds
 5,699,149 system calls 4.7 seconds

Repair time depends
largely on # objects, not log size

● 10,000X increase in workload leads to
 10X increase in repair time

● Much more efficient than whole-VM re-execution

Total size of Retro log
(action history graph)

Repair time for
136 objects / 399 syscalls

 399 system calls 0.3 seconds
 5,699,149 system calls 4.7 seconds

Runtime overheads

Workload CPU cost Storage overhead

HotCRP conference web site 35% 4GB / day

Runtime overheads

Workload CPU cost Storage overhead

HotCRP conference web site 35% 4GB / day

Apache, small static files 127% 100GB / day

Continuous kernel recompile 89% 150GB / day

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case extreme workloads

Runtime overheads

Workload CPU
cost

w/ 2nd
core

Storage overhead

HotCRP conference web site 35% 2% 4GB / day

Apache, small static files 127% 33% 100GB / day

Continuous kernel recompile 89% 18% 150GB / day

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case extreme workloads

● Can off-load CPU overhead to extra core

Related work

● Tracking down intrusions
● BackTracker [King'03], IntroVirt [Joshi'05]

● Taint tracking to find, revert affected files
● Taser [Goel'05], Polygraph [Mahajan'09]

● Selective undo and re-execution
● Undoable mail store [Brown'03]

(fixing configuration errors in a single app)

Conclusion

● Hard to recover from attacks and preserve
legitimate user changes

● Retro repairs attacks, keeps legitimate changes
● Key idea: re-execution of legitimate actions
● Predicates and refinement minimize re-execution

Additional slides follow

Non-deterministic re-execution

● Goal: an acceptable execution
● An execution that could have happened in the

absence of the attack

● What if program is non-deterministic?
● Re-run may lead to another acceptable execution
● Result will not be influenced by attack
● If significant differences arise (e.g., new crypto keys),

might need user input to re-execute

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

