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● Difficult to write bug-free software
● Administrators mis-configure policies
● Users choose weak, guessable passwords

● Need both “proactive” security,
and “reactive” recovery mechanisms
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Limited existing recovery tools

● Anti-virus tools
● Only repair for predictable attacks

● Backup tools
● Restoring from backup discards all changes

● Administrators spend days or weeks manually 
tracking down all effects of the attack
● No guarantee if they found everything



Challenge: disentangle changes 
by attacker and legitimate user

● Adversary could have modified many files directly

● Legitimate processes may have been affected
● Users ran trojaned pdflatex or ls
● SSH server read a modified /etc/passwd

● Those processes are now suspect as well



Our approach: help users 
disentangle on one machine

● Record history of all computations on machine

● After intrusion found, roll back affected objects

● Re-execute actions that were indirectly affected

● Minimize user input required to disentangle
● User edited attacker's file with emacs
● External effects outside of our control



Contributions

● New approach to system-wide intrusion recovery
● Action history graph tracks computations and repairs
● Techniques: re-execution, predicates, and refinement

● Retro: prototype recovery system for Linux
● Recovers from 10 real-world and synthetic attacks
● No user input required in most cases



Contributions

● New approach to system-wide intrusion recovery
● Action history graph tracks computations and repairs
● Techniques: re-execution, predicates, and refinement

● Retro: prototype recovery system for Linux
● Recovers from 10 real-world and synthetic attacks
● No user input required in most cases

● Instead of spending days on manual recovery,
admin can use Retro to automatically recover,
and ensure that all effects of attack are caught



Example attack scenario

● Attacker not targeting Alice, wants to run botnet

● Attacker modifies /etc/passwd to add new account
● Installs trojan pdflatex, ls to restart, hide botnet

● Alice logs in via SSH
● SSH server reads /etc/passwd
● Alice runs trojaned pdflatex, ls

● Admin modifies /etc/passwd
to add account for Alice
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Alice's account
and files are lost!
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Step 1: identify attack input
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Step 2: roll back to checkpoint
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Step 3: replay non-attack inputs
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Problem with VM strawman:
re-execution is expensive, diverges

TimeInputs

Outputs
Attack input       X

● May take one week to re-execute for a week-old attack

● Original VM inputs may be meaningless for new system
● Non-determinism: new SSH crypto keys, inode #s, app state, … 

● Can't do deterministic re-execution, since some inputs changed



Retro's approach:
selective re-execution

● Record fine-grained action history graph
● Includes system call arguments, function calls, …
● Assume tamper-proof kernel, storage

● Roll back objects directly affected by attack
● Avoid the false positives of taint tracking

● Re-execute actions indirectly affected by attack
● Avoid expense, non-determinism of whole-VM re-exec.



Action history graph:
Objects represent files, processes
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Action history graph:
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Action history graph:
Actions have dependencies
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Repeat step 3: redo actions
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Repeat step 3: redo actions
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Better than either VM
or taint tracking:

Alice account preserved,
no re-run of entire VM



Challenge: how to avoid
re-executing everything?
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Exit status affects shell,
which affects sshd, and so on…

Naïve process-level re-execution
still re-executes entire system!



Observation: many suspect
computations are not affected

● Attacker adds 1 account to password file
● Alice's sshd reads password file,

but looks up Alice's account instead of attacker's

● Attacker adds 1 line to pdflatex to restart botnet
● Alice's pdflatex process may restart botnet,

but otherwise does legitimate work

● Significant changes → can detect attack earlier



Approach: minimize re-execution

● Predicates: Retro skips equivalent computations
● Predicate checks whether inputs are the same
● If so, assume original result OK, avoid re-execution

● Refinement: Retro re-executes fine-grained actions
● Avoid re-executing entire process or login session,

when only a small part of it was affected



Example 1:
exit status to shell unchanged
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Predicates:
avoid equivalent re-execution
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Same input
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as before?

No need to re-run
shell action.



read(offset, data)

             X
write(offset, data)

Example 2:
user's password unchanged
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             X

Refinement:
re-execute individual functions
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return
(Alice's password)

call

getpwnam(“alice”)
read(offset, data)

             X

Refinement:
re-execute individual functions
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Remaining challenge:
external dependencies

● What if the attack was externally-visible?
● Attacker sent spam, or user saw wrong output from ls

● Cannot solve general case (spam already sent)
● Will need to pause repair and ask for user input

● Can do compensating actions in some cases



Compensating action for
terminals: email diff to user

  nickolai@karakum:~$ cd undosys/libundo
  nickolai@karakum:~/undosys/libundo$ ls l
  rwrr 1 nickolai nickolai  493 20100513 09:46 Makefile
 rwrr 1 nickolai nickolai 2124 20100513 10:22 attack.c
  drwxrxrx 2 nickolai nickolai 4096 20100513 09:46 bdb
  rwxrxrx 1 nickolai nickolai  973 20100513 09:46 mailserver.py
  drwxrxrx 2 nickolai nickolai 4096 20100513 09:46 php
  rwrr 1 nickolai nickolai 5221 20100513 09:46 pwd.c
  rwrr 1 nickolai nickolai 1424 20100513 09:46 undo.py
+ rwrr 1 nickolai nickolai  662 20100513 09:46 undocall.c
+ rwrr 1 nickolai nickolai 1340 20100513 09:46 undocall.h
+ rwrr 1 nickolai nickolai  755 20100513 09:46 undotest.c
+ rwxrxrx 1 nickolai nickolai  360 20100513 09:46 undotest.py
  rwrr 1 nickolai nickolai 6603 20100513 09:46 undowrap.c
  nickolai@karakum:~/undosys/libundo$ du ks .
 84      .
+ 96      .
  nickolai@karakum:~/undosys/libundo$ cd ..
  nickolai@karakum:~/undosys$ 
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Retro implementation

Linux kernel
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Existing checkpointing
file system (e.g., btrfs)

Preserve inode numbers
by only reusing inodes

that are free in every snapshot
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Shepherd re-execution using ptrace
to detect and skip equivalent

system calls (e.g., exec)



Retro implementation

Linux kernel

Retro module

Processes

libc wrappers

Action history
graph

Snapshots

Log

File system

. . .

Repair
managers

OS mgr

File system

Terminal

Network
Repair

controller

Well-defined API:
rollback, redo, equiv, connect



Evaluation questions

● How much better is Retro than manual repair?

● What is Retro's cost during normal execution?



Evaluation setup

● 2 real-world attacks from honeypot
● Remove log entries, add accounts, run botnet

● 2 synthetic challenge attacks
● Running example (LaTeX trojan) and sshd trojan

● 6 attacks from Taser recovery system [Goel'05]
● File sharing, web servers, databases, desktop apps
● Website backdoors, trojans in ls, new accounts



Retro repairs from all attacks

Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt
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6/10 cases: no user input needed,
automatic re-execution suffices
Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt



2/10 cases: user input needed
to skip attacker's SSH logins

Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt



2/10 cases: user input needed
to handle legitimate network I/O
Attack Retro User input required

Root pw change Skip attacker's login attempt

Log cleaning –

LaTeX trojan –

sshd trojan Packet replay req'd – conflict!

Illegal storage –

Content destruct. – (generates terminal diff)

Unhappy student – (generates terminal diff)

Compromised DB –

Browser plugin Skip re-execution of browser

Weak password Skip attacker's login attempt



Repair cost:
Retro repairs few objects

Attack Objects repaired
by Retro

Root pw change 7 (0.5%)

Log cleaning 99 (8%)

LaTeX trojan 190 (15%)

sshd trojan 880 (70%)



Repair cost:
Retro repairs few objects

● Repair cost proportional to extent of attack

Attack Objects repaired
by Retro

Root pw change 7 (0.5%)

Log cleaning 99 (8%)

LaTeX trojan 190 (15%)

sshd trojan 880 (70%)



Repair time depends
largely on # objects, not log size

Total size of Retro log 
(action history graph)

Repair time for
136 objects / 399 syscalls

            399 system calls 0.3 seconds
  5,699,149 system calls 4.7 seconds



Repair time depends
largely on # objects, not log size

● 10,000X increase in workload leads to
       10X increase in repair time

● Much more efficient than whole-VM re-execution

Total size of Retro log 
(action history graph)

Repair time for
136 objects / 399 syscalls

            399 system calls 0.3 seconds
  5,699,149 system calls 4.7 seconds



Runtime overheads

Workload CPU cost Storage overhead

HotCRP conference web site 35% 4GB / day  
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Apache, small static files 127% 100GB / day  

Continuous kernel recompile 89% 150GB / day  

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case extreme workloads



Runtime overheads

Workload CPU 
cost

w/ 2nd 
core

Storage overhead

HotCRP conference web site 35% 2% 4GB / day  

Apache, small static files 127% 33% 100GB / day  

Continuous kernel recompile 89% 18% 150GB / day  

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case extreme workloads

● Can off-load CPU overhead to extra core



Related work

● Tracking down intrusions
● BackTracker [King'03], IntroVirt [Joshi'05]

● Taint tracking to find, revert affected files
● Taser [Goel'05], Polygraph [Mahajan'09]

● Selective undo and re-execution
● Undoable mail store [Brown'03]

(fixing configuration errors in a single app)



Conclusion

● Hard to recover from attacks and preserve
legitimate user changes

● Retro repairs attacks, keeps legitimate changes
● Key idea: re-execution of legitimate actions
● Predicates and refinement minimize re-execution



Additional slides follow



Non-deterministic re-execution

● Goal: an acceptable execution
● An execution that could have happened in the 

absence of the attack

● What if program is non-deterministic?
● Re-run may lead to another acceptable execution
● Result will not be influenced by attack
● If significant differences arise (e.g., new crypto keys),

might need user input to re-execute
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