
Systems and Internet Infrastructure Security Laboratory (SIIS) Page

TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones

OSDI’10

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth

1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Smartphone Privacy?

2

(http://www.flickr.com/photos/pong/2404940312/)

http://www.flickr.com/photos/pong/2404940312/
http://www.flickr.com/photos/pong/2404940312/

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Monitoring Smartphone Behavior

• There are tens of thousands of smartphone apps
that provide both fun and valuable utility.

• General challenge: balance fun and utility with privacy

• Step 1: “look inside” of applications
to watch how they use privacy
sensitive data

‣ location
‣ phone identifiers
‣ microphone
‣ camera
‣ address book

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Challenges
• Goal: Monitor app behavior to determine when

privacy sensitive information leaves the phone

• Challenges ...

‣ Smartphones are resource constrained

‣ Third-party applications are entrusted with several types of
privacy sensitive information

‣ Context-based privacy information is dynamic and can be
difficult to identify even when sent in the clear

‣ Applications can share information

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Dynamic Taint Analysis

• Dynamic taint analysis is a technique that tracks
information dependencies from an origin

• Conceptual idea:

‣ Taint source

‣ Taint propagation

‣ Taint sink

• Limitations: performance and granularity is a trade-off
5

c = taint_source()
...
a = b + c
...
network_send(a)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

TaintDroid
• TaintDroid is a system-wide integration of taint

tracking into the Android platform

‣ Variable tracking throughout Dalvik VM environment
‣ Patches state after native method invocation
‣ Extends tracking between applications and to storage

• TaintDroid is a firmware modification, not an app
6

Network Interface

Native System Libraries

Virtual
Machine

Virtual
Machine

Application Code Application CodeMsg

Secondary Storage

Message-level tracking

Variable-level
tracking

Method-level
tracking

File-level
tracking

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

VM Variable-level Tracking
• We modified the Dalvik VM interpreter to store and

propagate taint tags (a taint bit-vector) on variables.

• Local variables and args: taint tags stored adjacent to
variables on the internal execution stack.

‣ 64-bit variables span 32-bit storage

• Class fields: similar to locals, but
inside static and instance field
heap objects

• Arrays: one taint tag per array
to minimize overhead

7

out1 taint tag

(unused)

VM goop

v0 == local0

v0 taint tag

v1 == local1

v1 taint tag

v2 == in0

Low Addresses (0x00000000)

High Addresses (0xffffffff)

out0

VM goop

v0 == local0

v0 taint tag

v1 == in0

 frame pointer (previous)

frame pointer (current)

Interpreted Targets

arg0

Native Targets

stack pointer (top)

out1

out0 taint tag

out0

v1 taint tag

v2 == in1

v2 taint tag

arg1

return taint

arg0 taint tag

arg1 taint tag

v4 taint tag

 variable
 variable taint tag

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Table I
DEX TAINT PROPAGATION LOGIC. REGISTER VARIABLES AND CLASS FIELDS ARE REFERENCED BY vX AND fX , RESPECTIVELY. R AND E ARE THE
RETURN AND EXCEPTION VARIABLES, RESPECTIVELY, MAINTAINED WITHIN THE INTERPRETER. A, B, AND C ARE CONSTANTS IN THE BYTE-CODE.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

DEX machine language. We begin by defining taint mark-
ings, taint tags, variables, and taint propagation. We then
present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each
taint marking be a label l. We assume a fixed set of
taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and
microphone input. We define the universe of taint markings
L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint
markings, i.e., a taint tag t is in the power set of L, denoted
2L, which includes ∅. Each variable has an associated tag.

Definition 3 (Variable). A variable is an instantiation of
one of the five variable types described in Section IV-A
(method local variable, method argument, class static field,
class instance field, and array). These variable types have
different representations in our logic. The local and argument
variables correspond to virtual registers. We refer to these
variables in the form vx. Class field variables are denoted
as fx to indicate a field variable with index x. fx alone
indicates a static field. Instance fields require an instance
object, which is referenced via a register vy . Hence, instance
fields are denoted as vy(fx). Finally, we use vx[·] to denote
an array. In this case, vx is an array object reference variable,
and vx[·] is the referenced array.

Definition 4 (Virtual taint map function τ(·)). Let v be a
variable. τ(v) returns the taint tag t for variable v. τ(v) can
also be used to assign a taint tag to a variable. Retrieval and
assignment is distinguished by the position of τ(·) w.r.t. the
← symbol. When τ(v) appears on the right hand side of ←,
τ(v) retrieves the taint tag for v. When τ(v) appears on the
left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define
runtime taint propagation for Dalvik VM. Table I captures
the propagation logic. The table enumerates abstracted ver-
sions of the byte-code instructions specified in the DEX
documentation. Register variables and class fields are ref-
erenced by vX and fX , respectively. R and E are the return
and exception variables, respectively, maintained within the
interpreter. A, B, and C are constants in the byte-code.

The const-op instructions assign constant values to virtual
registers. As these values come from the source code, they
are not tainted. Hence, the corresponding taint tag is set to ∅.
Note that in other scenarios (e.g., tracking values stored in
code sections), values different from ∅ may be appropriate.

Move instructions copy the taint tag from one variable to
another. Table I includes several move related instructions. In
addition to the standard move-op, DEX includes instructions
to transfer values between registers and “hidden variables”
managed by the interpreter. In particular, the Dalvik VM
provides transparent storage for return and exception values.
We instrument the corresponding instructions to copy the
taint tag, storing it alongside internally maintained values.

Arithmetic and logic instructions are performed with
the unary-op and binary-op instructions, including unary
negation, binary arithmetic, bit shifts, and bitwise AND and
OR. Table I abstracts these operations with the ⊗ symbol.
Taint propagation is defined in its usual form. Note that we
include bit shift distances in the propagation logic, and we
assume constant values in the DEX code to be untainted.
Additionally, due to the unfixed number of DEX registers,
we do not need to test for instruction idioms that clear values
(e.g., “xor eax, eax” in x86).

Array instructions propagate taint tags to and from array
objects (recall that we store one taint tag per array). The
aput-op instruction assigns the union of the existing taint tag
on the array and the taint tag of the stored variable to the
array. The aget-op instruction assigns the destination register

6

DEX Propagation Logic

8

• Data flow: propagate source regs to destination reg

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Table I
DEX TAINT PROPAGATION LOGIC. REGISTER VARIABLES AND CLASS FIELDS ARE REFERENCED BY vX AND fX , RESPECTIVELY. R AND E ARE THE
RETURN AND EXCEPTION VARIABLES, RESPECTIVELY, MAINTAINED WITHIN THE INTERPRETER. A, B, AND C ARE CONSTANTS IN THE BYTE-CODE.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

DEX machine language. We begin by defining taint mark-
ings, taint tags, variables, and taint propagation. We then
present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each
taint marking be a label l. We assume a fixed set of
taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and
microphone input. We define the universe of taint markings
L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint
markings, i.e., a taint tag t is in the power set of L, denoted
2L, which includes ∅. Each variable has an associated tag.

Definition 3 (Variable). A variable is an instantiation of
one of the five variable types described in Section IV-A
(method local variable, method argument, class static field,
class instance field, and array). These variable types have
different representations in our logic. The local and argument
variables correspond to virtual registers. We refer to these
variables in the form vx. Class field variables are denoted
as fx to indicate a field variable with index x. fx alone
indicates a static field. Instance fields require an instance
object, which is referenced via a register vy . Hence, instance
fields are denoted as vy(fx). Finally, we use vx[·] to denote
an array. In this case, vx is an array object reference variable,
and vx[·] is the referenced array.

Definition 4 (Virtual taint map function τ(·)). Let v be a
variable. τ(v) returns the taint tag t for variable v. τ(v) can
also be used to assign a taint tag to a variable. Retrieval and
assignment is distinguished by the position of τ(·) w.r.t. the
← symbol. When τ(v) appears on the right hand side of ←,
τ(v) retrieves the taint tag for v. When τ(v) appears on the
left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define
runtime taint propagation for Dalvik VM. Table I captures
the propagation logic. The table enumerates abstracted ver-
sions of the byte-code instructions specified in the DEX
documentation. Register variables and class fields are ref-
erenced by vX and fX , respectively. R and E are the return
and exception variables, respectively, maintained within the
interpreter. A, B, and C are constants in the byte-code.

The const-op instructions assign constant values to virtual
registers. As these values come from the source code, they
are not tainted. Hence, the corresponding taint tag is set to ∅.
Note that in other scenarios (e.g., tracking values stored in
code sections), values different from ∅ may be appropriate.

Move instructions copy the taint tag from one variable to
another. Table I includes several move related instructions. In
addition to the standard move-op, DEX includes instructions
to transfer values between registers and “hidden variables”
managed by the interpreter. In particular, the Dalvik VM
provides transparent storage for return and exception values.
We instrument the corresponding instructions to copy the
taint tag, storing it alongside internally maintained values.

Arithmetic and logic instructions are performed with
the unary-op and binary-op instructions, including unary
negation, binary arithmetic, bit shifts, and bitwise AND and
OR. Table I abstracts these operations with the ⊗ symbol.
Taint propagation is defined in its usual form. Note that we
include bit shift distances in the propagation logic, and we
assume constant values in the DEX code to be untainted.
Additionally, due to the unfixed number of DEX registers,
we do not need to test for instruction idioms that clear values
(e.g., “xor eax, eax” in x86).

Array instructions propagate taint tags to and from array
objects (recall that we store one taint tag per array). The
aput-op instruction assigns the union of the existing taint tag
on the array and the taint tag of the stored variable to the
array. The aget-op instruction assigns the destination register

6

DEX Propagation Logic

8

To appear at the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI’10)

Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an
Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get

(iget-op) rule.
The code listed in Figure 4 demonstrates a real in-

stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()

is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG

is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-

ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in

the object has taint tag of ∅; however, since the aget-op

propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,
only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally,
we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary

postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor

6

• Data flow: propagate source regs to destination reg

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Table I
DEX TAINT PROPAGATION LOGIC. REGISTER VARIABLES AND CLASS FIELDS ARE REFERENCED BY vX AND fX , RESPECTIVELY. R AND E ARE THE
RETURN AND EXCEPTION VARIABLES, RESPECTIVELY, MAINTAINED WITHIN THE INTERPRETER. A, B, AND C ARE CONSTANTS IN THE BYTE-CODE.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

DEX machine language. We begin by defining taint mark-
ings, taint tags, variables, and taint propagation. We then
present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each
taint marking be a label l. We assume a fixed set of
taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and
microphone input. We define the universe of taint markings
L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint
markings, i.e., a taint tag t is in the power set of L, denoted
2L, which includes ∅. Each variable has an associated tag.

Definition 3 (Variable). A variable is an instantiation of
one of the five variable types described in Section IV-A
(method local variable, method argument, class static field,
class instance field, and array). These variable types have
different representations in our logic. The local and argument
variables correspond to virtual registers. We refer to these
variables in the form vx. Class field variables are denoted
as fx to indicate a field variable with index x. fx alone
indicates a static field. Instance fields require an instance
object, which is referenced via a register vy . Hence, instance
fields are denoted as vy(fx). Finally, we use vx[·] to denote
an array. In this case, vx is an array object reference variable,
and vx[·] is the referenced array.

Definition 4 (Virtual taint map function τ(·)). Let v be a
variable. τ(v) returns the taint tag t for variable v. τ(v) can
also be used to assign a taint tag to a variable. Retrieval and
assignment is distinguished by the position of τ(·) w.r.t. the
← symbol. When τ(v) appears on the right hand side of ←,
τ(v) retrieves the taint tag for v. When τ(v) appears on the
left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define
runtime taint propagation for Dalvik VM. Table I captures
the propagation logic. The table enumerates abstracted ver-
sions of the byte-code instructions specified in the DEX
documentation. Register variables and class fields are ref-
erenced by vX and fX , respectively. R and E are the return
and exception variables, respectively, maintained within the
interpreter. A, B, and C are constants in the byte-code.

The const-op instructions assign constant values to virtual
registers. As these values come from the source code, they
are not tainted. Hence, the corresponding taint tag is set to ∅.
Note that in other scenarios (e.g., tracking values stored in
code sections), values different from ∅ may be appropriate.

Move instructions copy the taint tag from one variable to
another. Table I includes several move related instructions. In
addition to the standard move-op, DEX includes instructions
to transfer values between registers and “hidden variables”
managed by the interpreter. In particular, the Dalvik VM
provides transparent storage for return and exception values.
We instrument the corresponding instructions to copy the
taint tag, storing it alongside internally maintained values.

Arithmetic and logic instructions are performed with
the unary-op and binary-op instructions, including unary
negation, binary arithmetic, bit shifts, and bitwise AND and
OR. Table I abstracts these operations with the ⊗ symbol.
Taint propagation is defined in its usual form. Note that we
include bit shift distances in the propagation logic, and we
assume constant values in the DEX code to be untainted.
Additionally, due to the unfixed number of DEX registers,
we do not need to test for instruction idioms that clear values
(e.g., “xor eax, eax” in x86).

Array instructions propagate taint tags to and from array
objects (recall that we store one taint tag per array). The
aput-op instruction assigns the union of the existing taint tag
on the array and the taint tag of the stored variable to the
array. The aget-op instruction assigns the destination register

6

DEX Propagation Logic

8

To appear at the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI’10)

Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an
Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get

(iget-op) rule.
The code listed in Figure 4 demonstrates a real in-

stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()

is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG

is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-

ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in

the object has taint tag of ∅; however, since the aget-op

propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,
only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally,
we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary

postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor

6

To appear at the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI’10)

Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an
Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get

(iget-op) rule.
The code listed in Figure 4 demonstrates a real in-

stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()

is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG

is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-

ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in

the object has taint tag of ∅; however, since the aget-op

propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,
only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally,
we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary

postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor

6

• Data flow: propagate source regs to destination reg

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Native Methods

• Applications execute native methods through the Java
Native Interface (JNI)

• TaintDroid uses a combination of heuristics and
method profiles to patch VM tracking state

‣ Applications are restricted to only invoking native
methods in system-provided libraries

9

Network Interface

Native System Libraries

Virtual
Machine

Virtual
Machine

Application Code Application CodeMsg

Secondary Storage

Message-level tracking

Variable-level
tracking

Method-level
tracking

File-level
tracking

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

IPC and File Propagation

• TaintDroid uses message level tracking for IPC

‣ Applications marshall and unmarshall individual data items

• Persistent storage tracked at the file level

‣ Single taint tag stored in the file system XATTR

10

Network Interface

Native System Libraries

Virtual
Machine

Virtual
Machine

Application Code Application CodeMsg

Secondary Storage

Message-level tracking

Variable-level
tracking

Method-level
tracking

File-level
tracking

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

• Memory overhead: 4.4%

• IPC overhead: 27%

• Macro-benchmark:
‣ App load: 3% (2ms)

‣ Address book: (< 20 ms)
5.5% create, 18% read

‣ Phone call: 10% (10ms)

‣ Take picture: 29% (0.5s)

11

0

200

400

600

800

1000

1200

1400

1600

1800

2000

sieve loop logic string float method total

Android

TaintDroid

CaffeineMark 3.0 benchmark
(higher is better)

14% overhead

CaffeineMark score roughly corresponds to
the number of Java instructions per second.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Taint Adaptors

• Taint sources and sinks must be carefully integrated
into the existing architectural framework.

• Depends on information properties

‣ Low-bandwidth sensors: location, accelerometer
‣ High-bandwidth sensors: microphone, camera
‣ Information databases: address book, SMS storage
‣ Device identifiers: IMEI, IMSI*, ICC-ID, Ph. #
‣ Network taint sink

12

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Selected 30 applications with bias on popularity and
access to Internet, location, microphone, and camera

• Of 105 flagged connections, only 37 clearly legitimate

applications # permissions
The Weather Channel, Cetos, Solitarie, Movies, Babble,
Manga Browser 6

Bump, Wertago, Antivirus, ABC --- Animals, Traffic Jam,
Hearts, Blackjack, Horoscope, 3001 Wisdom Quotes Lite,
Yellow Pages, Datelefonbuch, Astrid, BBC News Live
Stream, Ringtones

14

Layer, Knocking, Coupons, Trapster, Spongebot Slide,
ProBasketBall 6

MySpace, Barcode Scanner, ixMAT 3
Evernote 1

Application Study

13

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Findings - Location

• 15 of the 30 applications shared physical location
with an ad server (admob.com, ad.qwapi.com,
ads.mobclix.com, data.flurry.com)

• Most traffic was plaintext (e.g., AdMob HTTP GET):

• In no case was sharing obvious to user or in EULA

‣ In some cases, periodic and occurred without app use

14

...&s=a14a4a93f1e4c68&..&t=062A1CB1D476DE85
B717D9195A6722A9&d%5Bcoord%5D=47.6612278900
00006%2C-122.31589477&...

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Findings - Phone Identifiers

• 7 applications sent device (IMEI) and 2 apps sent
phone info (Ph. #, IMSI*, ICC-ID) to a remote server
without informing the user.
‣ One app’s EULA indicated the IMEI was sent
‣ Another app sent the hash of the IMEI

• Frequency was app-specific, e.g., one app sent phone
information every time the phone booted.
• Appeared to be sent to app developers ...

15

“There have been cases in the past on other mobile
platforms where well-intentioned developers are simply
over-zealous in their data gathering, without having
malicious intent.” -- Lookout

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Limitations

• Approach limitations:

‣ TaintDroid only tracks data flows (i.e., explicit flows).

• Taint source limitations:

‣ IMSI contains country (MCC) and network (MNC) codes

‣ File databases must be all one type

16

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Summary

• TaintDroid provides efficient, system-wide, dynamic
taint tracking and analysis for Android

• We found 20 of the 30 studied applications to share
information in a way that was not expected.

• Source code will be available soon: appanalysis.org

• Future investigations:

‣ Provide direct feedback to users
‣ Potential for realtime enforcement
‣ Integration with expert rating systems

17

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Demo

• Demo available at http://appanalysis.org/demo/

18

http://appanalysis.org/demo/
http://appanalysis.org/demo/

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Questions?

• Additional Team Members

‣ Peter Gilbert (Duke University)
‣ Byung-Gon Chun (Intel Labs, Berkeley)
‣ Landon Cox (Duke University)
‣ Jaeyeon Jung (Intel Labs, Seattle)
‣ Patrick McDaniel (Penn State University)
‣ Anmol Sheth (Intel Labs, Seattle)

19

William Enck
Systems and Internet Infrastructure Security (SIIS) Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University

enck@cse.psu.edu

mailto:enck@cse.psu.edu
mailto:enck@cse.psu.edu

