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Smartphone Privacy?
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Monitoring Smartphone Behavior

• There are tens of thousands of smartphone apps 
that provide both fun and valuable utility.

• General challenge: balance fun and utility with privacy

• Step 1:  “look inside” of applications 
to watch how they use privacy 
sensitive data

‣ location
‣ phone identifiers
‣ microphone
‣ camera
‣ address book
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Challenges
• Goal: Monitor app behavior to determine when 

privacy sensitive information leaves the phone

• Challenges ...

‣ Smartphones are resource constrained

‣ Third-party applications are entrusted with several types of 
privacy sensitive information

‣ Context-based privacy information is dynamic and can be 
difficult to identify even when sent in the clear

‣ Applications can share information
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Dynamic Taint Analysis

• Dynamic taint analysis is a technique that tracks 
information dependencies from an origin

• Conceptual idea:

‣ Taint source

‣ Taint propagation

‣ Taint sink

• Limitations: performance and granularity is a trade-off
5

c = taint_source()
...
a = b + c
...
network_send(a)
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TaintDroid
• TaintDroid is a system-wide integration of taint 

tracking into the Android platform

‣ Variable tracking throughout Dalvik VM environment
‣ Patches state after native method invocation
‣ Extends tracking between applications and to storage

• TaintDroid is a firmware modification, not an app
6
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VM Variable-level Tracking
• We modified the Dalvik VM interpreter to store and 

propagate taint tags (a taint bit-vector) on variables.

• Local variables and args: taint tags stored adjacent to 
variables on the internal execution stack.

‣ 64-bit variables span 32-bit storage

• Class fields: similar to locals, but 
inside static and instance field 
heap objects

• Arrays: one taint tag per array 
to minimize overhead
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Table I
DEX TAINT PROPAGATION LOGIC. REGISTER VARIABLES AND CLASS FIELDS ARE REFERENCED BY vX AND fX , RESPECTIVELY. R AND E ARE THE
RETURN AND EXCEPTION VARIABLES, RESPECTIVELY, MAINTAINED WITHIN THE INTERPRETER. A, B, AND C ARE CONSTANTS IN THE BYTE-CODE.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

DEX machine language. We begin by defining taint mark-
ings, taint tags, variables, and taint propagation. We then
present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each
taint marking be a label l. We assume a fixed set of
taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and
microphone input. We define the universe of taint markings
L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint
markings, i.e., a taint tag t is in the power set of L, denoted
2L, which includes ∅. Each variable has an associated tag.

Definition 3 (Variable). A variable is an instantiation of
one of the five variable types described in Section IV-A
(method local variable, method argument, class static field,
class instance field, and array). These variable types have
different representations in our logic. The local and argument
variables correspond to virtual registers. We refer to these
variables in the form vx. Class field variables are denoted
as fx to indicate a field variable with index x. fx alone
indicates a static field. Instance fields require an instance
object, which is referenced via a register vy . Hence, instance
fields are denoted as vy(fx). Finally, we use vx[·] to denote
an array. In this case, vx is an array object reference variable,
and vx[·] is the referenced array.

Definition 4 (Virtual taint map function τ(·)). Let v be a
variable. τ(v) returns the taint tag t for variable v. τ(v) can
also be used to assign a taint tag to a variable. Retrieval and
assignment is distinguished by the position of τ(·) w.r.t. the
← symbol. When τ(v) appears on the right hand side of ←,
τ(v) retrieves the taint tag for v. When τ(v) appears on the
left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define
runtime taint propagation for Dalvik VM. Table I captures
the propagation logic. The table enumerates abstracted ver-
sions of the byte-code instructions specified in the DEX
documentation. Register variables and class fields are ref-
erenced by vX and fX , respectively. R and E are the return
and exception variables, respectively, maintained within the
interpreter. A, B, and C are constants in the byte-code.

The const-op instructions assign constant values to virtual
registers. As these values come from the source code, they
are not tainted. Hence, the corresponding taint tag is set to ∅.
Note that in other scenarios (e.g., tracking values stored in
code sections), values different from ∅ may be appropriate.

Move instructions copy the taint tag from one variable to
another. Table I includes several move related instructions. In
addition to the standard move-op, DEX includes instructions
to transfer values between registers and “hidden variables”
managed by the interpreter. In particular, the Dalvik VM
provides transparent storage for return and exception values.
We instrument the corresponding instructions to copy the
taint tag, storing it alongside internally maintained values.

Arithmetic and logic instructions are performed with
the unary-op and binary-op instructions, including unary
negation, binary arithmetic, bit shifts, and bitwise AND and
OR. Table I abstracts these operations with the ⊗ symbol.
Taint propagation is defined in its usual form. Note that we
include bit shift distances in the propagation logic, and we
assume constant values in the DEX code to be untainted.
Additionally, due to the unfixed number of DEX registers,
we do not need to test for instruction idioms that clear values
(e.g., “xor eax, eax” in x86).

Array instructions propagate taint tags to and from array
objects (recall that we store one taint tag per array). The
aput-op instruction assigns the union of the existing taint tag
on the array and the taint tag of the stored variable to the
array. The aget-op instruction assigns the destination register
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Table I
DEX TAINT PROPAGATION LOGIC. REGISTER VARIABLES AND CLASS FIELDS ARE REFERENCED BY vX AND fX , RESPECTIVELY. R AND E ARE THE
RETURN AND EXCEPTION VARIABLES, RESPECTIVELY, MAINTAINED WITHIN THE INTERPRETER. A, B, AND C ARE CONSTANTS IN THE BYTE-CODE.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

DEX machine language. We begin by defining taint mark-
ings, taint tags, variables, and taint propagation. We then
present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each
taint marking be a label l. We assume a fixed set of
taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and
microphone input. We define the universe of taint markings
L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint
markings, i.e., a taint tag t is in the power set of L, denoted
2L, which includes ∅. Each variable has an associated tag.

Definition 3 (Variable). A variable is an instantiation of
one of the five variable types described in Section IV-A
(method local variable, method argument, class static field,
class instance field, and array). These variable types have
different representations in our logic. The local and argument
variables correspond to virtual registers. We refer to these
variables in the form vx. Class field variables are denoted
as fx to indicate a field variable with index x. fx alone
indicates a static field. Instance fields require an instance
object, which is referenced via a register vy . Hence, instance
fields are denoted as vy(fx). Finally, we use vx[·] to denote
an array. In this case, vx is an array object reference variable,
and vx[·] is the referenced array.

Definition 4 (Virtual taint map function τ(·)). Let v be a
variable. τ(v) returns the taint tag t for variable v. τ(v) can
also be used to assign a taint tag to a variable. Retrieval and
assignment is distinguished by the position of τ(·) w.r.t. the
← symbol. When τ(v) appears on the right hand side of ←,
τ(v) retrieves the taint tag for v. When τ(v) appears on the
left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define
runtime taint propagation for Dalvik VM. Table I captures
the propagation logic. The table enumerates abstracted ver-
sions of the byte-code instructions specified in the DEX
documentation. Register variables and class fields are ref-
erenced by vX and fX , respectively. R and E are the return
and exception variables, respectively, maintained within the
interpreter. A, B, and C are constants in the byte-code.

The const-op instructions assign constant values to virtual
registers. As these values come from the source code, they
are not tainted. Hence, the corresponding taint tag is set to ∅.
Note that in other scenarios (e.g., tracking values stored in
code sections), values different from ∅ may be appropriate.

Move instructions copy the taint tag from one variable to
another. Table I includes several move related instructions. In
addition to the standard move-op, DEX includes instructions
to transfer values between registers and “hidden variables”
managed by the interpreter. In particular, the Dalvik VM
provides transparent storage for return and exception values.
We instrument the corresponding instructions to copy the
taint tag, storing it alongside internally maintained values.

Arithmetic and logic instructions are performed with
the unary-op and binary-op instructions, including unary
negation, binary arithmetic, bit shifts, and bitwise AND and
OR. Table I abstracts these operations with the ⊗ symbol.
Taint propagation is defined in its usual form. Note that we
include bit shift distances in the propagation logic, and we
assume constant values in the DEX code to be untainted.
Additionally, due to the unfixed number of DEX registers,
we do not need to test for instruction idioms that clear values
(e.g., “xor eax, eax” in x86).

Array instructions propagate taint tags to and from array
objects (recall that we store one taint tag per array). The
aput-op instruction assigns the union of the existing taint tag
on the array and the taint tag of the stored variable to the
array. The aget-op instruction assigns the destination register
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Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an
Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get

(iget-op) rule.
The code listed in Figure 4 demonstrates a real in-

stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()

is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG

is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-

ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in

the object has taint tag of ∅; however, since the aget-op

propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,
only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally,
we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary

postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor
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Table I
DEX TAINT PROPAGATION LOGIC. REGISTER VARIABLES AND CLASS FIELDS ARE REFERENCED BY vX AND fX , RESPECTIVELY. R AND E ARE THE
RETURN AND EXCEPTION VARIABLES, RESPECTIVELY, MAINTAINED WITHIN THE INTERPRETER. A, B, AND C ARE CONSTANTS IN THE BYTE-CODE.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

DEX machine language. We begin by defining taint mark-
ings, taint tags, variables, and taint propagation. We then
present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each
taint marking be a label l. We assume a fixed set of
taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and
microphone input. We define the universe of taint markings
L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint
markings, i.e., a taint tag t is in the power set of L, denoted
2L, which includes ∅. Each variable has an associated tag.

Definition 3 (Variable). A variable is an instantiation of
one of the five variable types described in Section IV-A
(method local variable, method argument, class static field,
class instance field, and array). These variable types have
different representations in our logic. The local and argument
variables correspond to virtual registers. We refer to these
variables in the form vx. Class field variables are denoted
as fx to indicate a field variable with index x. fx alone
indicates a static field. Instance fields require an instance
object, which is referenced via a register vy . Hence, instance
fields are denoted as vy(fx). Finally, we use vx[·] to denote
an array. In this case, vx is an array object reference variable,
and vx[·] is the referenced array.

Definition 4 (Virtual taint map function τ(·)). Let v be a
variable. τ(v) returns the taint tag t for variable v. τ(v) can
also be used to assign a taint tag to a variable. Retrieval and
assignment is distinguished by the position of τ(·) w.r.t. the
← symbol. When τ(v) appears on the right hand side of ←,
τ(v) retrieves the taint tag for v. When τ(v) appears on the
left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define
runtime taint propagation for Dalvik VM. Table I captures
the propagation logic. The table enumerates abstracted ver-
sions of the byte-code instructions specified in the DEX
documentation. Register variables and class fields are ref-
erenced by vX and fX , respectively. R and E are the return
and exception variables, respectively, maintained within the
interpreter. A, B, and C are constants in the byte-code.

The const-op instructions assign constant values to virtual
registers. As these values come from the source code, they
are not tainted. Hence, the corresponding taint tag is set to ∅.
Note that in other scenarios (e.g., tracking values stored in
code sections), values different from ∅ may be appropriate.

Move instructions copy the taint tag from one variable to
another. Table I includes several move related instructions. In
addition to the standard move-op, DEX includes instructions
to transfer values between registers and “hidden variables”
managed by the interpreter. In particular, the Dalvik VM
provides transparent storage for return and exception values.
We instrument the corresponding instructions to copy the
taint tag, storing it alongside internally maintained values.

Arithmetic and logic instructions are performed with
the unary-op and binary-op instructions, including unary
negation, binary arithmetic, bit shifts, and bitwise AND and
OR. Table I abstracts these operations with the ⊗ symbol.
Taint propagation is defined in its usual form. Note that we
include bit shift distances in the propagation logic, and we
assume constant values in the DEX code to be untainted.
Additionally, due to the unfixed number of DEX registers,
we do not need to test for instruction idioms that clear values
(e.g., “xor eax, eax” in x86).

Array instructions propagate taint tags to and from array
objects (recall that we store one taint tag per array). The
aput-op instruction assigns the union of the existing taint tag
on the array and the taint tag of the stored variable to the
array. The aget-op instruction assigns the destination register
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Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an
Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get

(iget-op) rule.
The code listed in Figure 4 demonstrates a real in-

stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()

is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG

is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-

ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in

the object has taint tag of ∅; however, since the aget-op

propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,
only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally,
we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary

postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor
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Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an
Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get

(iget-op) rule.
The code listed in Figure 4 demonstrates a real in-

stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()

is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG

is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-

ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in

the object has taint tag of ∅; however, since the aget-op

propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,
only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally,
we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary

postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor
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Native Methods

• Applications execute native methods through the Java 
Native Interface (JNI)

• TaintDroid uses a combination of heuristics and 
method profiles to patch VM tracking state

‣ Applications are restricted to only invoking native 
methods in system-provided libraries
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IPC and File Propagation

• TaintDroid uses message level tracking for IPC

‣ Applications marshall and unmarshall individual data items

• Persistent storage tracked at the file level

‣ Single taint tag stored in the file system XATTR
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Performance

• Memory overhead: 4.4%

• IPC overhead: 27%

• Macro-benchmark:
‣ App load: 3% (2ms)

‣ Address book: (< 20 ms)
5.5% create, 18% read

‣ Phone call: 10% (10ms)

‣ Take picture: 29% (0.5s)
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Taint Adaptors

• Taint sources and sinks must be carefully integrated 
into the existing architectural framework.

• Depends on information properties

‣ Low-bandwidth sensors: location, accelerometer
‣ High-bandwidth sensors: microphone, camera
‣ Information databases: address book, SMS storage
‣ Device identifiers: IMEI, IMSI*, ICC-ID, Ph. #
‣ Network taint sink
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• Selected 30 applications with bias on popularity and 
access to Internet, location, microphone, and camera

• Of 105 flagged connections, only 37 clearly legitimate

applications # permissions
The Weather Channel, Cetos, Solitarie, Movies, Babble, 
Manga Browser 6

Bump, Wertago, Antivirus, ABC --- Animals, Traffic Jam, 
Hearts, Blackjack, Horoscope, 3001 Wisdom Quotes Lite, 
Yellow Pages, Datelefonbuch, Astrid, BBC News Live 
Stream, Ringtones

14

Layer, Knocking, Coupons, Trapster, Spongebot Slide, 
ProBasketBall 6

MySpace, Barcode Scanner, ixMAT 3
Evernote 1

Application Study
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Findings - Location

• 15 of the 30 applications shared physical location 
with an ad server (admob.com, ad.qwapi.com, 
ads.mobclix.com, data.flurry.com)

• Most traffic was plaintext (e.g., AdMob HTTP GET):

• In no case was sharing obvious to user or in EULA

‣ In some cases, periodic and occurred without app use
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...&s=a14a4a93f1e4c68&..&t=062A1CB1D476DE85 
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Findings - Phone Identifiers

• 7 applications sent device (IMEI) and 2 apps sent 
phone info (Ph. #, IMSI*, ICC-ID) to a remote server 
without informing the user.
‣ One app’s EULA indicated the IMEI was sent
‣ Another app sent the hash of the IMEI

• Frequency was app-specific, e.g., one app sent phone 
information every time the phone booted.
• Appeared to be sent to app developers ...

15

“There have been cases in the past on other mobile 
platforms where well-intentioned developers are simply 
over-zealous in their data gathering, without having 
malicious intent.” -- Lookout
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Limitations

• Approach limitations: 

‣ TaintDroid only tracks data flows (i.e., explicit flows).

• Taint source limitations: 

‣ IMSI contains country (MCC) and network (MNC) codes

‣ File databases must be all one type
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Summary

• TaintDroid provides efficient, system-wide, dynamic 
taint tracking and analysis for Android

• We found 20 of the 30 studied applications to share 
information in a way that was not expected.

• Source code will be available soon: appanalysis.org

• Future investigations:

‣ Provide direct feedback to users
‣ Potential for realtime enforcement
‣ Integration with expert rating systems
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Demo

• Demo available at http://appanalysis.org/demo/
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Questions?

• Additional Team Members

‣ Peter Gilbert (Duke University)
‣ Byung-Gon Chun (Intel Labs, Berkeley)
‣ Landon Cox (Duke University)
‣ Jaeyeon Jung (Intel Labs, Seattle)
‣ Patrick McDaniel (Penn State University)
‣ Anmol Sheth (Intel Labs, Seattle)
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