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Abstract
We propose a new timekeeping architecture for virtu-

alized systems, in the context of Xen. Built upon a feed-
forward based RADclock synchronization algorithm, it
ensures that the clocks in each OS sharing the hardware
derive from a single central clock in a resource effective
way, and that this clock is both accurate and robust. A
key advantage is simple, seamless VM migration with
consistent time. In contrast, the current Xen approach
for timekeeping behaves very poorly under live migra-
tion, posing a major problem for applications such as fi-
nancial transactions, gaming, and network measurement,
which are critically dependent on reliable timekeeping.
We also provide a detailed examination of the HPET and
Xen Clocksource counters. Results are validated using a
hardware-supported testbed.

1 Introduction

Virtualization represents a major movement in the evo-
lution of computer infrastructure. Its many benefits in-
clude allowing the consolidation of server infrastructure
onto fewer hardware platforms, resulting in easier man-
agement and energy savings. Virtualization enables the
seamless migration of running guest operating systems
(guest OSs), which reduces reliance on dedicated hard-
ware, and eases maintenance and failure recovery.

Timekeeping is a core service on computing plat-
forms, and accurate and reliable timekeeping is im-
portant in many contexts including network measure-
ment and high-speed trading in finance. Other applica-
tions where accurate timing is essential to maintain at
all times, and where virtualization can be expected to
be used either now or in the future, include distributed
databases, financial transactions, and gaming servers.
The emerging market of outsourced cloud computing
also requires accurate timing to manage and correctly bill
customers using virtualized systems.

Software clocks are based on local hardware (oscilla-
tors), corrected using synchronization algorithms com-
municating with reference clocks. For cost and conve-
nience reasons, reference clocks are queried over a net-
work.

Since a notion of universally shared absolute time is
tied to physics, timekeeping poses particular problems
for virtualization, as a tight ‘real’ connection must be
maintained across the OSs sharing the hardware. Both
timekeeping and timestamping rely heavily on hardware
counters. Virtualization adds an extra layer between the
hardware and the OSs, which creates additional resource
contention, and increased latencies, that impact perfor-
mance.

In this paper we propose a new timekeeping architec-
ture for para-virtualized systems, in the context of Xen
[1]. Using a hardware-supported testbed, we show how
the current approach using the Network Time Protocol
(NTP) system is inadequate, in particular for VM migra-
tion. We explain how the feed-forward based synchro-
nization adopted by the RADclock [14] allows a depen-
dent clock paradigm to be used and ensures that all OSs
sharing the hardware share the same (accurate and ro-
bust) clock in a resource effective way. This results in
robust and seamless live migration because each phys-
ical host machine has its own unique clock, with hard-
ware specific state, which never migrates. Only a state-
less clock-reading function migrates. We also provide a
detailed examination and comparison of the HPET and
Xen Clocksource counters.

Neither the idea of a dependent clock, nor the RAD-
clock algorithm, are new. The key contribution here is to
show how the feed-forward nature, and stateless clock
read function, employed by the RADclock, are ideally
suited to make the dependent clock approach actually
work. In what is the first evaluation of RADclock in a vir-
tualized context, we show in detail that the resulting so-
lution is orders of magnitude better than the current state
of the art in terms of both average and peak error follow-
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ing disruptive events, in particular live migration. We
have integrated our work into the RADclock [14] pack-
ages for Linux, which now support the architecture for
Xen described here.

After providing necessary background in Section 2,
we motivate our work in depth by demonstrating the in-
adequacies of the status quo in Section 3. Since hardware
counters are key to timekeeping in general and to our so-
lution in particular, Section 4 provides a detailed exam-
ination of the behavior of counters of key importance to
Xen. Section 5 describes and evaluates our proposed tim-
ing architecture on a single physical host, and Section 6
deals with migration. We conclude in Section 7.

2 Background

We provide background on Xen, hardware counters,
timekeeping, the RADclock and NTP clocks, and com-
parison methodology.

To the best of our knowledge there is no directly rel-
evant peer-reviewed published work on timekeeping in
virtualized systems. A valuable resource however is [21].

2.1 Para-Virtualization and Xen
All virtualization techniques rely on a hypervisor, which,
in the case of Xen [1, 2, 9], is a minimal kernel with
exclusive access to hardware devices. The hypervisor
provides a layer of abstraction from physical hardware,
and manages physical resources on behalf of the guests,
ensuring isolation between them. We work within the
para-virtualization paradigm, whereby all guest OS’s are
modified to have awareness of, and access to, the native
hardware via hypercalls to the hypervisor, which are sim-
ilar to a system call. It is more challenging to support
accurate timing under the alternative fully hardware vir-
tualized paradigm [2], and we do not consider this here.

Although we work in the context of para-virtualized
Xen, the architecture we propose has broader applicabil-
ity. We focus on Linux OS’s as this is the most active
platform for Xen currently. In Xen, the guest OSs be-
long to two distinct categories: Dom0 and DomU. The
former is a privileged system which has access to most
hardware devices and provides virtual block and network
devices for the other, DomU, guests.

2.2 Hardware Counters
The heart of any software clock is local oscillator hard-
ware, accessed via dedicated counters. Counters com-
monly available today include the Time Stamp Counter
(TSC) [6] which counts CPU cycles1, the Advanced Con-

1TSC is x86 terminology, other architectures use other names.

figuration and Power Interface (ACPI) [10], and the
High Precision Event Timer (HPET) [5].

The TSC enjoys high resolution and also very fast ac-
cess. Care is however needed in architectures where a
unique TSC of constant nominal frequency may not ex-
ist. This can occur because of multiple processors with
unsynchronized TSC’s, and/or power management ef-
fects resulting in stepped frequency changes and execu-
tion interruption. Such problems were endemic in archi-
tectures such as Intel Pentium III and IV, but have been
resolved in recent architectures such as Intel Nehalem
and AMD Barcelona.

In contrast to CPU counters like the TSC, HPET and
ACPI are system-wide counters which are unaffected by
processor speed issues. They are always on and run at
constant nominal rate, unless the entire system is sus-
pended, which we ignore here. HPET is accessed via
a data bus and so has much slower access time than the
TSC, as well as lower resolution as its nominal frequency
is about 14.3MHz. ACPI has even lower resolution with
a frequency of only 3.57MHz. It has even slower access,
since it is also read via a bus but unlike HPET is not
memory mapped.

Beyond the counter ticking itself, power management
affects all counters through its impact on counter access
latency, which naturally requires CPU instructions to be
executed. Recent processors can, without stopping exe-
cution, move between different P-States where the oper-
ating frequency and/or voltage are varied to reduce en-
ergy consumption. Another strategy is to stop processor
execution. Different such idle states, or C-States C0, C1,
C2. . . are defined, where C0 is normal execution, and the
deeper the state, the greater the latency penalty to wake
from it [12]. The impact on latency of these strategies is
discussed in more detail later.

2.3 Xen Clocksource

The Xen Clocksource is a hardware/software hybrid
counter presented to guest OSs by the hypervisor. It
aims to combine the reliability of a given platform timer
(HPET here) with the low access latency of the TSC.
It is based on using the TSC to interpolate between
HPET readings made on ‘ticks’ of the periodic inter-
rupt scheduling cycle of the OS (whose period is typi-
cally 1ms), and is scaled to a frequency of approximately
1GHz. It is a 64-bit cumulative counter, and is effectively
initialized to zero for each guest when they boot (this is
implemented by a ‘system time’ variable they keep) and
monotonically increases.

The Xen Clocksource interpolation is a relatively
complex mechanism that accounts for lost TSC ticks
(it actively overwrites the TSC register) and frequency
changes of the TSC due to power management (it main-
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tains a TSC scaling factor which can be used by guests to
scale their TSC readings). Such compensation is needed
on some older processors as described in Section 2.2.

2.4 Clock Fundamentals

A distinction must be drawn between the software clock
itself, and timestamping. A clock may be perfect, yet
timestamps made with it be very inaccurate due to large
and/or variable access latency. Such timestamping er-
rors will vary widely depending on context and may er-
roneously reflect on the clock itself.

By a raw timestamp we mean a reading of the underly-
ing counter. For a clock C which reads C(t) at true time
t, the final timestamp will be a time in seconds based not
only on the raw timestamp, but also the clock parameters
set by the synchronization algorithm.

A local (scaled) counter is not a suitable clock and
needs to be synchronized because all counters drift if left
to themselves: their rate, although very close to constant
(typically measured to 1 part in 106 or less), varies. Drift
is primarily influenced by temperature.

Remote clock synchronization over a network is based
on a (typically bidirectional) exchange of timing mes-
sages from an OS to a time server and back, giving rise to
four timestamps: two made by the OS as the timing mes-
sage (here an NTP packet) leaves then returns, and two
made remotely by the time server. Typically, exchanges
are made periodically: once every poll-period.

There are two key problems faced by remote synchro-
nization. The first is to filter out the variability in the
delays to and from the server, which effectively corrupt
timestamps. This is the job of the clock synchronization
algorithm, and it is judged on its ability to do this well
(small error and small error variability) and consistently
in real environments (robustness).

The second problem is that of a fundamental ambigu-
ity between clock error and the degree of path asymme-
try. Let A = d↑ − d↓ denote the true path asymmetry,
where d↑ and d↓ are the true minimum one-way delays
to and from the server, respectively; and let r = d↑ + d↓

be the minimal Round Trip Time (RTT). In the absence
of any external side-information on A, we must guess a
value, and Â = 0 is typically chosen, corresponding to
a symmetric path. This allows the clock to be synchro-
nized, but only up to an unknown additive error lying
somewhere in the range [−r, r]. This ambiguity cannot
be circumvented, even in principle, by any algorithm.
We explore this further under Experimental Methodol-
ogy below.

2.5 Synchronization Algorithms

The ntpd daemon [11] is the standard clock synchro-
nization algorithm used today. It is a feedback based
design, in particular since system clock timestamps are
used to timestamp the timing packets. The existing ker-
nel system clock, which provides the interface for user
and kernel timestamping and which is ntpd-oriented, is
disciplined by ntpd. The final software clock is therefore
quite a complex system as the system clock has its own
dynamics, which interacts with that of ntpd via feedback.
On Xen, ntpd relies on the Xen Clocksource as its under-
lying counter.

The RADclock [20] (Robust Absolute and Difference
Clock) is a recently proposed alternative clock synchro-
nization algorithm based on a feed-forward design. Here
timing packets are timestamped using raw packet times-
tamps. The clock error is then estimated based on these
and the server timestamps, and subtracted out when the
clock is read. This is a feed-forward approach, since er-
rors are corrected based on post-processing outputs, and
these are not themselves fed back into the next round of
inputs. In other words, the raw timestamps are indepen-
dent of clock state. The ‘system clock’ is now stateless,
simply returning a function of parameters maintained by
the algorithm.

More concretely, the (absolute) RADclock is defined
as Ca(t) = N(t)·p̄ + K − E(t), where N(t) is the raw
timestamp made at true time t, p̄ is a stable estimate of
average counter period, K is a constant which aligns the
origin to the required timescale (such as UTC), and E(t)
is the current estimate of the error of the ‘uncorrected
clock’ N(t) · p̄ + K which is removed when the clock
is read. The parameters p̄, K and E are maintained by
the clock algorithm (see [20] for details of the algorithm
itself). The clock reading function simply reads (or is
passed) the raw timestamp N for the event of interest,
fetches the clock parameters, and returns Ca(t).

The RADclock can use any counter which satisfies ba-
sic requirements, namely that it be cumulative, does not
roll over, and has reasonable stability. In this paper we
provide results using both the HPET and Xen Clock-
source.

2.6 Experimental Methodology

We give a brief description of the main elements of our
methodology for evaluating clock performance. More
details can be found in [15].

The basic setup is shown in Figure 1. It incorporates
our own Stratum-1 NTP server on the LAN as the ref-
erence clock, synchronised via a GPS-corrected atomic
clock. NTP timing packets flow between the server and
the clocks in the host machine (two OS’s each with two
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clocks are shown in the figure) for synchronization pur-
poses, typically with a poll period of 16 seconds. For
evaluation purposes, a separate box sends and receives
a flow of UDP packets (with period 2 seconds) to the
host, acting as a set of timestamping ‘opportunities’ for
the clocks under test. In this paper a separate stream was
sent to each OS in the host, but for a given OS, all clocks
timestamp the same UDP flow.

Based on timestamps of the arrival and departure of
the UDP packets, the testbed allows two kinds of com-
parisons.
External: a specialized packet stamping ‘DAG’ card [4]
timestamps packets just before they enter the NIC of the
host machine. These can be compared to the timestamps
for the same packets taken by the clocks inside the host.
The advantage is an independent assessment; the disad-
vantage is that there is ‘system’ lying between the two
timestamping events, which adds a ‘system noise’ to the
error measurement.
Internal: clocks inside the same OS timestamp the pack-
ets back-to-back (thanks to our kernel modifications), so
subtracting these allows the clocks to be compared. The
advantage is the elimination of the system noise between
the timestamps; the disadvantage is that differences be-
tween the clocks cannot be attributed to any specific
clock.

The results appearing in this paper all use the external
comparison, but internal comparisons were also used as
a key tool in the process of investigation and validation.

As far as possible experiments are run concurrently so
that clocks to be compared experience close to identical
conditions. For example, clocks in the same OS share
the very same NTP packets to the time server (and hence
in particular, share the same poll period). There are a
number of subtle issues we have addressed regarding the
equivalence between what the test UDP packets, and the
NTP packets actually used by the algorithm, ‘see’, which
depends on details of the relative timestamping locations
in the kernel. This topic is discussed further below in
relation to ‘host asymmetry’.
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Figure 1: Testbed and clock comparison methodology.

It is essential to note that the delays experienced by
timing packets have components both in the network, and
in the host itself (namely the NIC + hardware + OS),
each with their own minimum RTT and asymmetry val-
ues. Whereas the DAG card timestamps enable the net-
work side to be independently measured and corrected,
the same is not true of the host side component. Even
when using the same server then, a comparison of dif-
ferent clocks, which have different asymmetry induced
errors, is problematic. Although the spread of errors can
be meaningfully compared, the median errors can only
be compared up to some limit imposed by the (good but
not perfect) methodology, which is of the order of 1 to
10 µs. Despite these limitations, we believe our method-
ology to be the best available at this time.

3 Inadequacy of the Status-Quo

The current timekeeping solution for Xen is built on top
of the ntpd daemon. The single most important thing
then regarding the performance of Xen timekeeping is to
understand the behavior first of ntpd in general, and then
in the virtualized environment.

There is no doubt that ntpd can perform well under
the right conditions. If a good quality nearby time server
is available, and if ntpd is well configured, then its per-
formance on modern kernels is typically in the tens of
microseconds range and can rival that of the RADclock.
An example in the Xen context is provided in Figure 2,
where the server is a Stratum-1 on the same LAN, and
both RADclock and ntpd, running on Dom0 in paral-
lel, are synchronizing to it using the same stream of
NTP packets. Here we use the host machine kultarr, a
2.13GHz Intel Core 2 Duo. Xen selects a single CPU for
use with Xen Clocksource, which is then used by ntpd.
Power management is disabled in the BIOS.

The errors show a similar spread, with an Inter-
Quartile Range (IQR) of around 10 µs for each. Note that
here path asymmetry effects have not been accounted for,
so that as discussed above the median errors do not re-
flect the exact median error for either clock.

In this paper our focus is on the right architecture
for timing in virtualized systems, in particular such that
seamless VM migration becomes simple and reliable,
and not any performance appraisal of ntpd per se. Ac-
cordingly, unless stated otherwise we consistently adopt
the configuration which maximizes ntpd performance –
single nearby statically allocated Stratum-1 server, static
and small polling period.

The problem with ntpd is the sudden performance
degradations which can occur when conditions deviate
from ‘ideal’. We have detailed these robustness issues of
ntpd in prior work, including [17, 18]. Simply put, when
path delay variability exceeds some threshold, which is a
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Figure 3: Error in the DomU dependent clock (dependent
on the ntpd on Dom0 shown in Figure 2), measured using
the external comparison with DAG. This 2 hour zoom is
representative of an experiment 20 days long.

complex function of parameters, stability of the feedback
control is lost, resulting in errors which can be large over
small to very long periods. Recovery from such periods
is also subject to long convergence times.

Consider now the pitfalls of using ntpd for timekeep-
ing in Xen, through the following three scenarios.

Example 1 – Dependent ntpd clock In a dependent
clock paradigm, only Dom0 runs a full clock synchro-
nization algorithm, in this case ntpd. Here we use a
2.6.26 kernel, the last one supporting ntpd dependent
timekeeping.

In the solution detailed in [19], synchronizing times-
tamps from ntpd are communicated to DomU guests via
the periodic adjustment of a ‘boot time’ variable in the
hypervisor. Timestamping in DomU is achieved by a
modified system clock call which uses Xen Clocksource
to extrapolate from the last time this variable was up-
dated forward to the current time. The extrapolation as-
sumes Xen Clocksource to be exactly 1GHz, resulting
in a sawtooth shaped clock error which, in the example
from our testbed given in Figure 3, is in the millisecond
range. This is despite the fact that the Dom0 clock it
derives from is the one depicted in Figure 2, which has
excellent performance in the 10 µs range.

These large errors are ultimately a result of the way
in which ntpd interacts with the system clock. With no
ntpd running on DomU (the whole point of the depen-
dent clock approach), the system clock has no way of in-
telligently correcting the drift of the underlying counter,

in this case Xen Clocksource. The fact that Xen Clock-
source is in reality only very approximately 1GHz means
that this drift is rapid, indeed appearing to first order as
a simple skew, that is a constant error in frequency. This
failure of the dependent clock approach using ntpd has
led to the alternative solution used today, where each
guest runs its own independent ntpd daemon.

Example 2 – Independent ntpd clock In an inde-
pendent clock paradigm, which is used currently in Xen
timekeeping, each guest OS (both Dom0 and DomU) in-
dependently runs its own synchronization algorithm, in
this case ntpd, which connects to its own server using its
own flow of NTP timing packets. Clearly this solution
is not ideal in terms of the frugal use of server, network,
NIC and host resources. In terms of performance, the un-
derlying issue is that the additional latencies suffered by
guests in the virtual context make it more likely ntpd will
be pushed into instability. Important examples of such
latencies are the descheduling and time-multiplexing of
guests across physical cores.

An example is given in Figure 4, where, despite syn-
chronizing to the same high quality server on the LAN as
before, stability is lost and errors reach the multiple mil-
lisecond range. This was brought about simply by adding
a moderate amount of system load (some light churn of
DomU guests and some moderate CPU activity on other
guests), and allowing NTP to select its own polling pe-
riod (in fact the default configuration), rather than fixing
it to a constant value.
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Figure 4: Error in the ntpd independent clock on DomU
synchronizing to a Stratum-1 server on the LAN, with
polling period set by ntpd. Additional guests are created
and destroyed over time.
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Example 3 – Migrating independent ntpd clock This
example considers the impact of migration on the syn-
chronization of the ntpd independent clock (the current
solution) of a migrating guest. Since migration is treated
in detail in Section 6, we restrict ourselves here to point-
ing to Figure 11, where extreme disruption – of the order
of seconds – is seen following migration events. This is
not a function of this particular example but is a generic
result of the design of ntpd in conjunction with the in-
dependent clock paradigm. A dependent ntpd clock so-
lution would not exhibit such behavior under migration,
however it suffers from other problems as detailed above.

In summary, there are compelling design and robust-
ness reasons for why ntpd is ill suited to timekeeping in
virtual environments. The RADclock solution does not
suffer from any of the drawbacks detailed above. It is
highly robust to disruptions in general as described for
example in [20, 15, 16], is naturally suited to a depen-
dent clock paradigm as detailed in Section 5, as well as
to migration (Section 6).

4 Performance of Xen Clocksource

The Xen Clocksource hybrid counter is a central compo-
nent of the current timing solution under Xen. In this sec-
tion we examine its access latency under different condi-
tions. We also compare it to that of HPET, both because
HPET is a core component of Xen Clocksource, so this
enables us to better understand how the latter is perform-
ing, and because HPET is a good choice of counter, be-
ing widely available and uninfluenced by power manage-
ment. This section also provides the detailed background
necessary for subsequent discussions on network noise.

Access latency, which impacts directly on timekeep-
ing, depends on the access mechanism. Since the tim-
ing architecture we propose in Section 5 is based on a
feed-forward paradigm, to be of relevance our latency
measurements must be of access mechanisms that are
adequate to support feed-forward based synchronization.
The fundamental requirement is that a counter be de-
fined, which is cumulative, wide enough to not wrap be-
tween reboots (we use 64-bit counters which take 585
years to roll over on a 1GHz processor), and accessible
from both kernel and user context. The existing ntpd-
oriented software clock mechanisms do not satisfy these
conditions. We describe below the alternatives we im-
plement.

4.1 Baseline Latencies
In this section we use the host machine kultarr, a
2.13GHz Intel Core 2 Duo, and measure access latencies
by counting the number of elapsed CPU cycles. For this
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Figure 5: Distribution of counter latencies. Top: TSC
and HPET in an unvirtualized system using feed-forward
compatible access; Middle: Xen Clocksource and HPET
from Dom0; Bottom: from DomU.

purpose we use the rdtsc() function, a wrapper for the
x86 RDTSC instruction to read the relevant register(s)
containing the TSC value and to return it as a 64-bit in-
teger. This provides direct access to the TSC with very
low overhead from both user and kernel space. To en-
sure a unique and reliable TSC, from the BIOS we dis-
able power management (both P-states and C-states), and
also disable the second core to avoid any potential failure
of TSC synchronization across the cores.

We begin by providing a benchmark result for HPET
on a non-virtualized system. The top right plot in Fig-
ure 5 gives its latency histogram measured from within
kernel context, using the access mechanism described in
[3]. This mechanism augments the Linux clocksource
code (which supports a choice among available hardware
counters), to expose a 64-bit cumulative version of the
selected counter. For comparison, in the top left plot we
give the latency of the TSC accessed in the same way –
it is much smaller as expected, but both counters have
low variability. Note (see [3]) that the latency of TSC
accessed directly via rdtsc() is only around 80 cycles, so
that the feed-forward friendly access mechanism entails
an overhead of around 240 cycles on this system.
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Now consider latency in a Xen system. To provide
the feed-forward compatible access required for each of
HPET and Xen Clocksource, we first modified the Xen
Hypervisor (4.0) and the Linux kernel 2.6.31.13 (Xen
pvops branch) to expose the HPET to Dom0 and DomU.
We added a new hypercall entry that retrieves the current
raw platform timer value, HPET in this case. Like Xen
Clocksource, this is a 64-bit counter which satisfies the
cumulative requirement. We then added a system call to
enable each counter to be accessed from user context. Fi-
nally, for our purposes here we added an additional sys-
tem call that measures the latency of either HPET or Xen
Clocksource from within kernel context using rdtsc().

The middle row in Figure 5 shows the latency of Xen
Clocksource and HPET from Dom0’s kernel point of
view. The Xen Clocksource interpolation mechanism
adds an extra 200 CPU cycles compared to accessing
the TSC alone in the manner seen above, for a total of
250 ns at this CPU frequency. The HPET latency suf-
fers from the penalty created by the hypercall needed to
access it, lifting its median value by 800 cycles for a to-
tal latency of 740 ns. More importantly, we see that the
hypercall also adds more variability, with an IQR that in-
creases from 40 to 72 CPU cycles, and the appearance
of a multi-modal distribution which we speculate arises
from some form of contention among hypercalls. The
Xen Clocksource in comparison has an IQR only slightly
larger than that of the TSC counter.

The bottom row in Figure 5 shows the latency of Xen
Clocksource and HPET from DomU’s kernel point of
view. The Xen Clocksource shows the same performance
as in the Dom0 case. HPET is affected more, with an in-
crease in the number of modes and the mass within them,
resulting in a considerably increased IQR.

In conclusion, Xen Clocksource performs well despite
the overhead of its software interpolation scheme. In par-
ticular, although its latency is almost double that of a
simple TSC access (and 7 times a native TSC access), it
does not add a significant latency variability even when
accessed from DomU. On the other hand however, the
simple feed-forward compatible way of accessing HPET
used here is only four times slower than the much more
complicated Xen Clocksource and is still under 1 µs.
This performance could certainly be improved, for exam-
ple by replacing the hypercall by a dedicated mechanism
such as a read-only memory-mapped interface.

4.2 Impact of Power Management

Power management is one of the key mechanisms po-
tentially affecting timekeeping. The Xen Clocksource is
designed to compensate for its effects in some respects.
Here we examine its ultimate success in terms of latency.

In this section we use the host machine sarigue, a

3GHz Intel Core 2 Duo E8400. Since we do not use
rdtsc() for latency measurement in this section, we do
not disable the second core as we did before. Instead we
measure time differences in seconds, to sub-nanosecond
precision, using the RADclock difference clock [20] with
HPET as the underlying counter2. P-states are disabled
in the BIOS, but C-states are enabled.

Ideally one would like to directly measure Xen Clock-
source’s interpolation mechanism and so evaluate it in
detail. However, the Xen Clocksource recalibrates the
HPET interpolation on every change in P-State (fre-
quency changes) or C-State (execution interruption), as
well as once per second. Since oscillations for exam-
ple between C-States occur hundreds of times per second
[8], it is not possible to reliably timestamp these events,
forcing us to look at coarser characterizations of perfor-
mance.

From the timestamping perspective, the main problem
is the obvious additional latency due to the computer be-
ing idle in a C-State when an event to timestamp occurs.
For example, returning from C-State C3 to execution C0
takes about 20 µs [8].

For the purpose of synchronization over the network,
the timestamping of outgoing and incoming synchroniza-
tion packets is of particular interest. A useful measure of
these is the Round-Trip-Time (RTT) of a request-reply
exchange, however since this includes network queuing
and delays at the time server as well as delays in the host,
it is of limited use in isolating the latter.

To observe the host latency we introduce a metric we
call the RTThost, which is roughly speaking the compo-
nent of the RTT that lies within the host. More precisely,
for a given request-reply packet pair, the RTThost is the
sum of the two one-way delays from the host to the DAG
card, and from the DAG card to the host. It is not possible
to reliably measure these one-way delays individually in
our testbed. However, the RTThost can be reliably mea-
sured as the difference of the RTT seen by the host and
that seen by the DAG card. The RTThost is a measure
of ‘system noise’ with a specific focus on packet times-
tamping. The smaller RTThost, the less noisy the host,
and the higher the quality of packet timestamps.

Figure 6 shows RTThost values measured over 80
hours on two DomU guests on the same host. The cap-
ture starts with only the C-State C0 enabled, that is with
power management functions disabled. Over the period
of the capture, deeper C-States are progressively enabled
and we observe the impact on RTThost. At each stage
the CPU moves between the active state C0 and the idle
states enabled at the time. Table 1 gives a breakdown of

2This level of precision relates to the difference clock itself, when
measuring time differences of size of the order of 100 µs as here. It
does not take into account the separate issue of timestamping errors,
such as the (much larger!) counter access latencies studied above.
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Figure 6: System noise as a function of the deepest enabled C-State for Xen Clocksource (upper time series and left
box plots) and HPET (lower time series and right box plots). Time series plots have been sampled for clarity.

time spend in different states. It shows that typically the
CPU will rest in the deepest allowed C-state unless there
is a task to perform.

The left plot in Figure 6 is a compact representation of
the distribution of RTThost values for Xen Clocksource
and HPET, for each section of the corresponding time se-
ries presented on the right of the figure. Here whiskers
show the minimum and 99th percentile values, the lower
and upper sides of the box give the 25th and 75th per-
centiles, while the internal horizontal line marks the me-
dian.

The main observation is that, for each counter, RT-
Thost generally increases with the number of C-States
enabled, although it is slightly higher for HPET. The in-
crease in median RTThost from C0 to C3 is about 20 µs, a
value consistent with [8]. The minimum value is largely
unaffected however, consistent with the fact that if a
packet (which of course is sent when the host is in C0),
is also received when it is in C0, then it would see the
RTThost corresponding to C0, even if it went idle in be-
tween.

We saw earlier that the access latencies of HPET and
Xen Clocksource differ by less than 1 µs, and so this can-
not explain the differences in their RTThost median val-
ues seen here for each given C-State. These are in fact
due to the slightly different packet processing in the two
DomU systems.

C0 C1 C2 C3
C0 enabled 100% – – –
C1 enabled 2.17% 97.83% – –
C2 enabled 2.85% 0.00% 97.15% –
C3 enabled 2.45% 0.00% 1.84% 95.71%

Table 1: Residency time in different C-States. Here “Cn
enabled” denotes that all states from C0 up to Cn are
enabled.

We conclude that Xen Clocksource, and HPET using
our proof of concept access mechanism, are affected by
power management when it comes to details of times-
tamping latency. These translate into timestamping er-
rors, which will impact both clock reading and poten-
tially clock synchronization itself. The final size of
such errors however is also crucially dependent on the
asymmetry value associated to RTThost, which is un-
known. Thus the RTTHost measurements effectively
place a bound on the system noise affecting timestamp-
ing, but do not determine it.

5 New Architecture for Virtualized Clocks

In this section we examine the performance and detail
the benefits of the RADclock algorithm in the Xen en-
vironment, describe important packet timestamping is-
sues which directly impact clock performance, and fi-
nally propose a new feed-forward based clock architec-
ture for para-virtualized systems.

In Section 5.1 we use sarigue, and in Section 5.2 kul-
tarr, with the same BIOS and power management set-
tings described earlier.

5.1 Independent RADclock Performance
We begin with a look at the performance of the RAD-
clock in a Xen environment. Figure 7 shows the final er-
ror of two independent RADclocks, one using HPET and
the other Xen Clocksource, running concurrently in two
different DomU guests. Separate NTP packet streams
are used to the same Stratum-1 server on the LAN with
a poll period of 16 seconds. The clock error for each
clock has been corrected for path asymmetry, in order
to reveal the underlying performance of the algorithm as
a delay variability filter (this is possible in our testbed,
but impossible for the clocks in normal operation). The
difference of median values between the two clocks is

8
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Figure 7: RADclock performance in state C0 using Xen Clocksource and HPET, running in parallel, each in a separate
DomU guest.

extremely small, and below the detection level of our
methodology. We conclude that the clocks essentially
have identical median performance.

In terms of clock stability, as measured by the IQR of
the clock errors, the two RADclock instances are again
extremely similar, which reinforces our earlier observa-
tions that the difference in stability of the Xen Clock-
source and HPET is very small (below the level of detec-
tion in our testbed), and that RADclock works well with
any appropriate counter. The low frequency oscillation
present in the time series here is due to the periodic cy-
cle of the air conditioning system in the machine room,
and affects both clocks in a similar manner consistent
with previous results [3]. It is clearly responsible for the
bulk of the RADclock error in this and other experiments
shown in this paper.

Power management is also an important factor that
may impact performance. Figure 8 shows the distribu-
tion of clock errors of the RADclock, again using HPET
and the Xen Clocksource separately but concurrently as
above, with different C-State levels enabled. In this case
the median of each distribution has simply been shifted
to zero to ease the stability (IQR) comparison. For each
of the C-State levels shown, the stability of the RADclock
is essentially unaffected by the choice of counter.

As shown in Figure 6, power management creates ad-
ditional delays of higher variability when timestamping
timing packets exchanged with the reference clock. The
near indifference of the IQR given in Figure 8 to C-State
shows that the RADclock filtering is robust enough to see
through this extra noise.

Power management also has an impact on the asym-
metry error all synchronization algorithms must face. In
an excellent example of systematic observation bias, in
a bidirectional paradigm a packet send by an OS would
not be delayed by the power management strategy, be-
cause the OS chooses to enter an idle state only when it
has nothing to do. On the other hand, over the time in-
terval defined by the RTT of a time request, it is likely
the host will choose to stop its execution and enter an
idle state (perhaps a great many times) and the return-
ing packet may find the system in such a state. Con-
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Figure 8: Compact centred distributions of RADclock
performance as a function of the deepest C-State enabled
(whiskers give 1st to 99th percentile).

sequently, only the timestamping of received packets is
likely to be affected by power management, which trans-
lates into a bias towards an extra path asymmetry, in the
sense of ‘most but not all packets’, in the receiving direc-
tion. This bias is difficult to measure independently and
authoritatively. The measurement of the RTThost shown
in Figure 6 gives however a direct estimate of an upper
bound for it.

5.2 Sharing the Network Card

The quality of the timestamping of network packets is
crucial to the accuracy the synchronization algorithm can
achieve. The networking in Xen relies on a firewall and
networking bridge managed by Dom0. In Figure 9 we
observe the impact of system load on the performance of
this mechanism.

The top plot shows the RTThost time series, as seen
from the Dom0 perspective, as we add more DomU
guests to the host. Starting with Dom0 only, we add an
additional guest every 12 hours. None of the OSs run
any CPU or networking intensive tasks. The middle plot
gives the box plots of the time series above, where the
increase in median and IQR values is more clearly seen.
For reference the ‘native’ RTThost of a non-virtualized
system is also plotted. The jump from this distribution
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to the one labeled ‘Dom0’ represents the cost of the net-
working bridge implemented in Xen.

The last plot in figure 9 shows the distribution of RT-
Thost values from each guest’s perspective. All guests
have much worse performance than Dom0, but perfor-
mance degrades by a similar amount as Dom0 as a func-
tion of the number of guests. For a given guest load
level, the performance of each guest clock seems essen-
tially the same, though with small systematic differences
which may point to scheduling policies.

The observations above call for the design of a
timestamping system under a dependent clock paradigm
where Dom0 has an even higher priority in terms of net-
working, so that it can optimize its timestamping qual-
ity and thereby minimize the error in the central Dom0
clock, to the benefit of all clocks on the system. Fur-
ther, DomU packet timestamping should be designed to
minimize any differences between DomU guests, and re-
duce as much as possible the difference in host asym-
metry between Dom0 and DomU guests, to help make
the timestamping performance across the whole system
more uniform.
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Figure 9: kultarr: RTThost (a.k.a. system noise) as a
function of the number of active guests. Top: RTThost
timeseries seen by Dom0; Middle: corresponding dis-
tribution summaries (with native non-Xen case added on
the left for comparison); Bottom: as seen by each DomU.
Whiskers show the minimum and 99th percentile.

5.3 A Feed-Forward Architecture

As described in Section 2.5, the feed-forward approach
used by the RADclock has the advantage of cleanly
separating timestamping (performed as a raw times-
tamp in the kernel or user space as needed), which is
stateless, and the clock synchronization algorithm itself,
which operates asynchronously in user space. The algo-
rithm updates clock parameters and makes them avail-
able through the OS, where any authorized clock reading
function (a kind of almost trivial stateless ‘system clock’)
can pick them up and use them either to compose an ab-
solute timestamp, or robustly calculate a time difference
[20].

The RADclock is then naturally suited for the depen-
dent clock paradigm and can be implemented in Xen as a
simple read/write stateless operation using the XenStore,
a file system that can be used as an inter-OS communica-
tion channel. After processing synchronization informa-
tion received from its time server, the RADclock running
on Dom0 writes its new clock parameters to the Xen-
Store. On DomU, a process reads the updated clock pa-
rameters upon request and serves them to any application
that needs to timestamp events. The application times-
tamps the event(s) of interest. These raw timestamps can
then be easily converted either into a wallclock time or
a time difference measured in seconds (this can even be
done later off-line).

Unlike with ntpd and its coupled relationship to the
(non-trivial) incumbent system clock code, no adjust-
ment is passed to another dynamic mechanism, which
ensures that only a single clock, clearly defined in a sin-
gle module, provides universal time across Dom0 and all
DomU guests.

With the above architecture, there is only one way in
which a guest clock can not be strictly identical with the
central Dom0 clock. The read/write operation on the
XenStore is not instantaneous and it is possible that the
update of clock parameters, which is slightly delayed af-
ter the processing of a new synchronization input to the
RADclock, will result in different parameters being used
to timestamp some event. In other words, the time across
OSs may appear different for a short time if a timestamp-
ing function in a DomU converts a raw timestamp with
outdated data. However, this is a minor issue since clock
parameters change slowly, and using out of date values
has the same impact as the synchronization input simply
being lost, to which the clock is already robust.

In Figure 10 we measured the time required to write to
the XenStore using the RADclock difference clock which
has an accuracy well below 1 µs [20]. We present results
obtained on 2 host machines with slightly different hard-
ware architectures, namely kultarr (2.13 GHz Intel Core
2 Duo) and tastiger (3.40 GHz Intel Pentium D), that
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Figure 10: Distribution of clock update latency through
the xenstore, tastiger (left, Pentium D, 3.4GHz) and kul-
tarr (right, Core 2 Duo, 2.13GHz).

show respective median delays of 1.2 and 1.4 ms. As-
suming a 16 s poll period, this corresponds to 1 chance
out of 11,500 that the clocks would (potentially) disagree
if read at some random time.

The dependent RADclock is ideally suited for time
keeping on Xen DomU. It is a simple, stateless, standard
read/write operation that is robust as it avoids the danger-
ous dynamics of feedback approaches, ensures that the
clocks of all guests agree, and is robust to system load
and power management effects. As a dependent clock
solution, it saves both host and network resources and
is inherently scalable. Thanks to a simple timestamping
function it provides the same level of final timekeeping
accuracy to all OSs.

6 A Migration-Friendly Architecture

Seamlessly migrating a running system from one phys-
ical machine to another is a key innovation of virtu-
alization [13, 7]. However this operation becomes far
from seamless with respect to timing when using ntpd.
As mentioned in Section 3, ntpd’s design requires each
DomU to run its own instance of the ntpd daemon, which
is fundamentally unsuited to migration, as we now ex-
plain.

The synchronization algorithm embodied in the ntpd
daemon is stateful. In particular it maintains a time vary-
ing estimate of the Xen Clocksource’s rate-of-drift and
current clock error, which in turn is defined by the char-
acteristics of the oscillator driving the platform counter.
After migration, the characteristics seen by ntpd change
dramatically since no two oscillators drift in the same
way. Although the Xen Clocksource counters on each
machine nominally share the same frequency (1GHz), in
practice this is only true very approximately. The tem-
perature environment of the machine DomU migrates to
can be very different from the previous one which can
have a large impact, but even worse, the platform timer
may be of a different nature, HPET originally and ACPI

after migration for example. Furthermore, ntpd will also
inevitably suffer from an inability to account for the time
during which DomU has been halted during the migra-
tion. When DomU restarts, the reference wallclock time
and last Xen Clocksource value maintained by its system
clock will be quite inconsistent with the new ones, lead-
ing to extreme oscillator rate estimates. In summary, the
sudden change in status of ntpd’s state information, from
valid to almost arbitrary, will, at best, deliver a huge error
immediately after migration, which we expect to decay
only slowly according to ntpd’s usual slow convergence.
At worst, the ‘shock’ of migration may push ntpd into an
unstable regime from which it may never recover.

In contrast, by decomposing the time information into
raw timestamps and clock parameters, as described in
Section 5, the RADclock allows the daemon running on
DomU to be stateless within an efficient dependent clock
strategy. The migration then becomes trivial from a time-
keeping point of view. Once migrated, DomU times-
tamps events of interests with its chosen counter and re-
trieves the RADclock clock parameters maintained by the
new Dom0 to convert them into absolute time. DomU
immediately benefits from the accuracy of the dedicated
RADclock running on Dom0 – the convergence time is
effectively zero.

The plots in Figure 11 confirm the claims above and il-
lustrate a number of important points. In this experiment,
each of tastiger and kultarr run an independent RAD-
clock in Dom0. The clock error for these is remarkably
similar, with an IQR below 10 µs as seen in the top plot
(measured using the DAG external comparison). Here
for clarity the error time series for the two Dom0 clocks
have been corrected for asymmetry error, thereby allow-
ing their almost zero inherent median error, and almost
identical behavior (the air-conditioning generated oscil-
lations overlay almost perfectly), to be clearly seen.

For the migration experiment, a single DomU OS is
started on tastiger, and two clocks launched on it: a de-
pendent RADclock, and an independent ntpd clock. A
few hours of warm up are then given (not shown) to al-
low ntpd to fully converge. The experiment proper then
begins. At the 30 minute mark DomU is migrated to kul-
tarr, it migrates back to tastiger after 2 hours then back
again after another 2, followed by further migrations with
a smaller period of 30 minutes.

The resulting errors of the two migrating DomU
clocks are shown in the top plot, and in a zoomed out
version in the middle plot, as measured using the ex-
ternal comparison. Before the results, a methodologi-
cal point. The dependent RADclock running on DomU
is by construction identical to the RADclock running on
Dom0, and so the two time series (if asymmetry cor-
rected) would superimpose almost perfectly, with small
differences owing to the different errors in the times-
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Figure 11: Clock errors under migration. Top: asymmetry corrected unmigrated RADclock Dom0 clocks, and (uncor-
rected) migrated clocks on DomU; Middle: zoom out on top plot revealing the huge size of the migration ‘shock’ on
ntpd; Bottom: effect of migration load on Dom0 clocks on kultarr.

tamping of the separate UDP packet streams. We choose
however, in the interests of fairness and simplicity of
comparison, not to apply the asymmetry correction in
this case, since it is not possible to apply an analogous
correction to the ntpd error time series. As a substi-
tute, we instead draw horizontal lines over the migrating
RADclock time series representing the correction which
would have been applied. No such lines can be drawn in
the ntpd case.

Now to the results. As expected, and from the very
first migration, ntpd exhibits extremely large errors (from
-1 to 27 s!) for periods exceeding 15 minutes (see zoom
in middle plot) and needs at least another hour to con-
verge to a reasonable error level. The dependent RAD-
clock on the other hand shows seamless performance

with respect to the horizontal lines representing the ex-
pected jumps due to asymmetry changes as just de-
scribed. These jumps are in any case small, of the order
of a few microseconds. Note that these corrections are
a function both of RTThost and asymmetry that are both
different between tastiger and kultarr.

Finally, we present a load test comparison. The bottom
plot in Figure 11 compares in detail the performance of
the independent RADclock running on Dom0 on kultarr,
and an independent ntpd clock, also running on Dom0
during the experiment (not shown previously). Whereas
the RADclock is barely affected by the changes in net-
work traffic and system load associated with the migra-
tions of the DomU guest, ntpd shows significant devi-
ation. In summary, not only is ntpd in an independent
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clock paradigm incompatible with clock migration, it is
also, regardless of paradigm, affected by migration oc-
curring around it.

One could also consider the performance of an inde-
pendent RADclock paradigm under migration. However,
we expect that the associated ‘migration shock’ would be
severe as the RADclock is not designed to accommodate
radical changes in the underlying counter. Since the de-
pendent solution is clearly superior from this and many
other points of view, we do not present results for the
independent case under migration.

7 Conclusion

Virtualization of operating systems and accurate com-
puter based timing are two areas set to increase in im-
portance in the future. Using Xen para-virtualization as
a concrete framework, we highlighted the weaknesses
of the existing timing solution, which uses indepen-
dent ntpd synchronization algorithms (coupled to state-
ful software clock code) for each guest operating system.
In particular, we showed that this solution is fundamen-
tally unsuitable for the important problem of live VM
migration, using both arguments founded on the design
of ntpd, as well as detailed experiments in a hardware-
validated testbed.

We reviewed the architecture of the RADclock algo-
rithm, in particular its underlying feed-forward basis, the
clean separation between its timestamping and synchro-
nization aspects, and its high robustness to network and
system noise (latency variability). We argued that these
features make it ideal as a dependent clock solution, par-
ticularly since the clock is already set up to be read
through combining a raw hardware counter timestamp
with clock parameters sourced from a central algorithm
which owns all the synchronization intelligence, via a
commonly accessible data structure. We supported our
claims by detailed experiments and side-by-side com-
parisons with the status quo. For the same reasons, the
RADclock approach enables seamless and simple migra-
tion, which we also demonstrated in benchmarked ex-
periments. The enabling of a dependent clock approach
entails considerable scalability advantages and suggests
further improvements through optimizing the timestamp-
ing performance of the central clock in Dom0.

As part of an examination of timestamping and
counter suitability for timekeeping in general and the
feed-forward paradigm in particular, we provided a de-
tailed evaluation of the latency and accuracy of the Xen
Clocksource counter, and compared it to HPET. We con-
cluded that it works well as intended, however note that
it is a complex solution created to solve a problem which
will soon disappear as reliable TSC counters again be-
come ubiquitous. The RADclock is suitable for use with

any counter satisfying basic properties, and we showed
its performance using HPET or Xen Clocksource was in-
distinguishable.

The RADclock [14] packages for Linux now support a
streamlined version of the architecture for Xen described
here using Xen Clocksource as the hardware counter.
With the special code allowing system instrumentation
and HPET access removed, no modifications to the hy-
pervisor are finally required.
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