
Configuration Debugging as Search: Finding the Needle in the Haystack

Andrew Whitaker, Richard S. Cox, and Steven D. Gribble
University of Washington

{andrew,rick,gribble}@cs.washington.edu

Abstract

This work addresses the problem of diagnosing con-
figuration errors that cause a system to function incor-
rectly. For example, a change to the local firewall policy
could cause a network-based application to malfunction.
Our approach is based on searching across time for the
instant the system transitioned into a failed state. Based
on this information, a troubleshooter or administrator can
deduce the cause of failure by comparing system state
before and after the failure.

We present the Chronus tool, which automates the
task of searching for a failure-inducing state change.
Chronus takes as input a user-provided software probe,
which differentiates between working and non-working
states. Chronus performs “time travel” by booting a vir-
tual machine off the system’s disk state as it existed at
some point in the past. By using binary search, Chronus
can find the fault point with effort that grows logarithmi-
cally with log size. We demonstrate that Chronus can di-
agnose a range of common configuration errors for both
client-side and server-side applications, and that the per-
formance overhead of the tool is not prohibitive.

1 Introduction

Continual change is a fact of life for software sys-
tems. For desktop machines, users can install new appli-
cations, apply software upgrades, change security poli-
cies, and alter system configuration options. Servers and
other infrastructure services are also subject to frequent
changes in functionality and administrative settings.

The ability to change is what gives software its vi-
brancy and relevance. At the same time, change has
the potential to disrupt existing functionality. For exam-
ple, software patches can break existing applications [5].
Seemingly unrelated applications can conflict — for ex-
ample, by corrupting Windows registry keys or shared
configuration options. Changes to security policies,
while often necessary to respond to emerging threats, can
disrupt functionality. For server-side applications, ad-
ministrator actions and other “operator errors” [17] are
a substantial contributor to overall downtime.

In most cases, these change-induced failures are
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Figure 1: Searching through time for a configuration error:
Chronus reveals configuration errors by pinpointing the instant
in time the system transitioned to a failed state.

diagnosed by human experts such as system adminis-
trators. This approach suffers on a variety of fronts:
trained experts are expensive, they are in short supply,
and they are faced with escalating system complexity and
change. In consequence, system administrative costs are
approaching 60-80% of the total cost of ownership of in-
formation technology [12].

The goal of this work is to reduce the burden on
human experts by partially automating problem diagno-
sis. In particular, we analyze the applicability of search
techniques for diagnosing configuration errors. Our in-
sight is that although computers cannot compete with
human intuition, they are very effective at exploring a
large configuration space. Our diagnosis tool, which we
call Chronus, uses search to identify the specific time in
the past when a system transitioned from a working to
a non-working state, as shown in Figure 1. Using this
information, an administrator can more easily diagnose
why the system stopped working, for example, by com-
paring the file system state immediately before and after
the fault point to determine the configuration change that
“broke” the system.

1.1 Existing Approaches

In this work, we focus on automated problem diag-
nosis. For the sake of completeness, we briefly survey
other approaches, arguing that the approach embodied
by Chronus represents an advance for a significant class
of configuration errors.
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The best approach to dealing with configuration er-
rors is prevention. Unfortunately, the complexity of to-
day’s systems makes it difficult to reason a priori about
all possible side effects of a configuration change. One
problem is that modern systems are built from compo-
nents from many vendors, and there are few global mech-
anisms that are capable of understanding the effects of
configuration changes in the large. The situation is fur-
ther exacerbated by the inadequacy of analysis tools. For
example, determining whether a software patch results in
“equivalent” system behavior is intractable.

Recovery tools such as Windows XP Restore [24]
create occasional state checkpoints, allowing users to
“undo” [8] the effects of bad configuration changes.
While effective in some situations, this approach faces
several limitations. First, it requires the user to choose
an appropriate state snapshot, which assumes that some
form of problem diagnosis has already occurred. Second,
recovery itself can corrupt system state, either by undo-
ing “good” changes or restoring “bad” changes. Problem
diagnosis in Chronus does not modify system state, and
can therefore be safely employed in more situations.

Expert system diagnosis tools have a similar goal
as Chronus, in that they attempt to map from symptoms
to a root cause. A widely used (though rudimentary) ex-
ample is the Windows “Help and Support Center.” Ex-
pert systems typically rely on a static rule database, and
are therefore only effective for known configuration er-
rors. Arguably, known configuration errors would be bet-
ter handled by improvements in software design or user
interface. In addition, as systems grow more complex,
static rule databases grow increasingly incomplete.

When all else fails, the last recourse is manual diag-
nosis by an expert. People have intuition and experience,
letting them reason about unexpected situations. Unfor-
tunately, human resources are scarce and costly, and mas-
tering the complexity of today’s software systems repre-
sents a significant hurdle to effective diagnosis.

1.2 The Chronus Approach

Chronus is a troubleshooting tool whose goals are
to simplify the task of diagnosing a configuration er-
ror and to reduce the need for costly human expertise.
Rather than requiring troubleshooters to answer the dif-
ficult question “why is the system not working,” our tool
instead requires them to supply a software probe (i.e., a
script or program) that answers the simpler question “is
the system currently working?” Given a probe, Chronus
searches through time for the instant that the system tran-
sitioned from a working to a non-working state. As
we will demonstrate, many common configuration errors
can be diagnosed with simple shell scripts.

Chronus relies on several components. A time-travel
disk [25] captures the progression of the system’s durable

User-written
software probe Is the system working?

Chronus

Analysis tools
(diff, regdiff, log files)

When did the system
stop working?

Why did the system
stop working?

Figure 2: A Chronus debugging session: Given a user-
supplied software probe, Chronus reveals when the system be-
gan failing. Based on this information, it is possible to under-
stand the cause of failure using higher-level analysis tools.

state over time by logging disk block writes. Chronus
uses the µDenali virtual machine monitor [35] to instan-
tiate, boot, and test historical snapshots of the system,
including the complete operating system and application
state. Chronus executes the user-supplied software probe
to test whether a given historical state works correctly.
Finally, Chronus relies on a search strategy to efficiently
educe the failure-inducing state change from a large se-
quence of historical states. In many cases, Chronus can
use binary search, allowing for diagnosis time that scales
logarithmically with log length.

The output from Chronus is the time of the fault
point. Based on this timing information (the “when”), the
troubleshooter can then use OS- or application-specific
tools to diagnose the cause of the failure (the “why”).
One simple but useful technique is to compare the com-
plete file system state immediately before and after the
failure using an invocation of the UNIX diff command.
Figure 2 depicts the stages of a typical Chronus session.

1.3 Outline

In the remainder of this paper, we describe the de-
sign and implementation of Chronus, and we demon-
strate its ability to help a troubleshooter diagnose signif-
icant configuration errors. The remainder of this paper
is organized as follows. In Section 2, we describe some
of the challenges we faced and design decisions that we
made. Section 3 discusses the Chronus implementation.
We evaluate Chronus in Section 4. After discussing re-
lated work in Section 6, we describe open problems and
future work in Section 7, and we conclude in Section 8.

2 Challenges and Design Tradeoffs

In this section, we drill down into the major com-
ponents of Chronus. In each case, we identify the major
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challenges and describe the design tradeoffs we faced.

2.1 Time travel

Chronus relies on a time travel mechanism to in-
stantiate previous system states. Traditional checkpoint-
ing systems capture the complete state of a system, in-
cluding both persistent (e.g., disk contents) and tran-
sient state (e.g., memory and CPU state). This approach
recreates previous states with high fidelity, but imposes
a heavy overhead to continually flush memory state to
disk. Approaches based on incremental logging (e.g.,
Revirt [15]), reduce overhead during normal operation,
but require more time to recreate a previous system state.

Instead of taking full checkpoints, Chronus only
records updates to persistent storage. This allows for rea-
sonable performance during both normal operation and
problem diagnosis. As we demonstrate in Section 5.1,
the overhead of our versioning storage system is primar-
ily limited to disk space (which is plentiful) rather than
degraded performance.

A drawback of disk-only state capture is that we sac-
rifice completeness: only errors that persist across sys-
tem restarts are recorded by the time travel layer. Note,
however, that some configuration changes require system
restarts to take effect — for example, changes to shared
libraries or the OS kernel typically require system re-
boots. For this type of “delayed release” configuration
change, the on-disk state is more meaningful than the in-
stantaneous characteristics of the running system.

2.1.1 Time-travel disks

Time-travel or versioning storage systems have been
extensively studied. Proposed systems include version-
ing file systems [30, 31], source code repositories [14],
time-travel databases [32], and the Peabody time-travel
disk [25]. Taken as a whole, these systems demonstrate
a tradeoff between completeness and high-level seman-
tics (Figure 3). At one extreme, the time-travel disk of-
fers the most completeness, in that it captures all state
changes without requiring support from operating sys-
tems or applications. At the other extreme, relational
databases offers strong data consistency semantics, but
require applications to utilize a particular API.

For Chronus, we chose a storage system based on a
time-travel disk. One of our goals ws to avoid making
assumptions about how and where configuration errors
arise. Because of its low-level interface, a time-travel
disk captures all local configuration changes, without re-
gard to application or OS functionality. Chronus is to
some degree “future-proof,” in that it can diagnose con-
figuration errors for systems that have yet to be written.

A drawback of a time-travel disk is that it offers poor
data consistency semantics. In some cases, the on-disk

Completeness

Semantics

Disk

File system

CVS

Relational
database

Figure 3: Time travel storage layer tradeoff: Chronus uses a
time travel disk, which achieves completeness while forfeiting
high-level semantics.

state may be corrupt, causing Chronus to discover a spu-
rious error unrelated to the true cause of failure. More
commonly, Chronus may discover the correct error, but
the granularity of a block change is too fine to make a
useful diagnosis. For example, configuration files can
temporarily disappear while the text editor’s “save” op-
eration is in progress. Because such inconsistencies are
short-lived, it often suffices to “zoom out” by computing
state changes over a slightly longer interval.

2.2 Instantiating a historical state

Another key design decision is the technique used
to instantiate previous system configurations. A sim-
ple strategy would be to use application-layer restarts, in
which the user-mode processes of interest are restarted
after each configuration change. Unfortunately, many
relevant configuration changes require whole-system re-
boots, including changes to system software (the kernel,
shared libraries) or configuration options (TCP/IP pa-
rameters, firewall policy).

In this work, we use a virtual machine monitor
(VMM) [13, 33, 35] to perform “virtual reboots” in soft-
ware. Because VMMs emulate the hardware layer, they
provide a more complete representation of whole-system
behavior. As well, VM restarts offer a series of advan-
tage compared to physical machine restarts. VMs can be
rebooted faster, because they avoid re-initializing phys-
ical I/O devices. For Chronus, this translates into faster
problem diagnosis. VMMs provide robust mechanisms
for terminating failed tests and reclaiming state changes,
and they enable debugger-like functionality, allowing the
user to inspect or modify VM state.

There are disadvantages to using VMMs. Virtual-
ization imposes performance overhead; this can be min-
imized [4], but may still be significant in some settings.
VMMs tend to reduce virtual device interfaces to the
lowest common denominator, and thus may mask or per-
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turb some configuration errors. A VMM might not ex-
pose a bleeding-edge graphics card, for example. Finally,
a VMM-based implementation of Chronus cannot diag-
nose configuration errors within the virtualization layer
itself, such as updates to physical device drivers.

2.3 Testing a historical state

Chronus’s automated diagnosis capability relies on
a user-supplied software probe to test whether the sys-
tem is functioning correctly. Testing a system is often
easier than performing a full failure diagnosis. Never-
theless, testing itself can be a non-trivial task, and probe
authorship represents a hurdle to utilizing Chronus.

In our current prototype, probes are written on the
fly in response to specific failure conditions. We assume
that troubleshooters have knowledge of shell scripts and
basic command line tools. With this, many configuration
errors are testable, including application crashes, a Web
browser that fails to load pages, or a remote execution
service that refuses access to valid clients.

For errors that are beyond the scope of shell scripts,
Chronus supports a manual testing mode, in which the
human troubleshooter performs some or all of the testing
process by hand. We have found manual testing partic-
ularly useful to evaluate errors that involve sequences of
GUI actions or that require the user to interpret a visual
image. Manual testing can be used with more configura-
tion errors than probes, but it imposes a heavier burden.

In the future, we plan to explore techniques to sim-
plify probe creation. One option is to create static li-
braries of probes, which could be used to test generic
forms of application behavior. For example, a generic
web server probe might attempt to download the system
home page. For graphical applications, Chronus could
leverage point-and-click tools for capturing and replay-
ing sequences of GUI actions [20].

Regardless of testing strategy, there are some con-
figuration errors that Chronus cannot diagnose. Non-
deterministic errors (or Heisenbugs [17]) that cannot be
reliably reproduced are beyond the scope of our tool.

2.4 Searching over time

Given a probe, a naı̈ve approach to finding a fault
point is to sequentially examine every historical state of
the system. Of course, this is impractical, as it would re-
quire instantiating, booting, and testing a virtual machine
for each disk block write that occurred in the past.

A more intelligent approach is to use a binary search
through time. If the troubleshooter can identify a past in-
stance in time at which the system worked, and assuming
there is a single transition from that working state to the
current non-working state (as in Figure 1), then binary
search will find the fault point in logarithmic time.

working

failing

time

true failurespurious failure

Figure 4: A spurious search result: Chronus may detect an
error that is unrelated to the current cause of failure.

However, in some cases, a system may make multi-
ple transitions from a working to a non-working state, as
shown in Figure 4. Most of these additional state transi-
tions are spurious, in that they are not related to the true
source of the current configuration error. For example,
because software is typically unavailable during a soft-
ware upgrade, Chronus may mistakenly implicate a past
upgrade that is unrelated to the current configuration er-
ror. Other sources of spurious errors include configura-
tion changes that have already been fixed, and short-term
inconsistencies due to corrupt file system state.

A simple strategy for dealing with multiple failures
is simply to run Chronus multiple times. By choosing
different time ranges for each search, Chronus can be
made to explore different regions of the system time-
line. This is philosophically similar to simulated anneal-
ing search, which uses random choices to escape local
minimums [29]. The troubleshooter can then analyze all
returned state transitions to determine which one is the
likely source of failure.

An alternate strategy is to construct probes that are
less likely to exhibit spurious errors. One useful strategy
is to construct error-directed probes, which search for
changes in the system’s observable symptoms, regardless
of whether the behavior is “correct.” The key insight is
that different failure causes often produce different fail-
ure modes. For example, one error might cause an appli-
cation to hang, whereas another produces an identifiable
error messages. Therefore, probes that search for a par-
ticular symptom are less likely to reveal spurious errors
unrelated to the true cause of failure. We explore such a
complex error scenario in Section 4.3.

2.5 Going from “when” to “why”

The output from Chronus is the instant in time the
transition to a failing state occurred. Using this, the trou-
bleshooter can determine the state change that induced
the failure. In many cases, this information alone is suf-
ficient to diagnose the configuration error.

In other cases, however, the individual state change
revealed by Chronus may be insufficient to diagnose the
error. For binary configuration data, there is no univer-
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sal differencing mechanism that reveals the “meaning” of
a state change. Another limitation is that Chronus can-
not uncover the broader context in which a state change
was carried out. For example, Chronus cannot associate
a modification to a dynamic library with the act of in-
stalling a particular application. In these cases, reversing
the single state change revealed by Chronus may be in-
sufficient to remedy the problem.

The solution to this “semantic gap” [11] between
hardware-level events and higher-level semantics lies in
combining Chronus with other debugging tools. The
UNIX diff, which reveals changes to ASCII files, is
one such tool, but others may be more appropriate in cer-
tain contexts. For example, the Windows regdiff tool re-
veals changes between two snapshots of the Windows
Registry. The Backtracker tool [22] performs root-cause
analysis by mapping from a low-level state event to high-
level user action. Another approach is to leverage exist-
ing system logs. Currently, the sheer volume of this log-
ging makes it difficult to use, but the timing information
provided by Chronus can be used to quickly zoom-in on
a small cross-section of system log entries.

2.6 Summary

The Chronus tool maps from a user-provided soft-
ware probe to the instant the system transitioned to a fail-
ing state. This information, in conjunction with higher-
level analysis tools like diff, allows a troubleshooter to
diagnose the cause of failure.

The design of Chronus was guided by a few ba-
sic goals. Unlike programming language debuggers,
Chronus strives for low overhead during normal oper-
ation. To achieve this, our snapshot mechanism only
captures storage updates rather than complete memory
checkpoints. Chronus also strives to capture the most
possible configuration errors. We achieve this by us-
ing a time-travel disk (which captures all persistent state
changes) and virtual machine monitors (which repro-
duce the entire system boot sequence). Finally, Chronus
strives for fast problem diagnosis. Binary search pro-
vides for diagnosis time that scales logarithmically with
log size. Also, our use of virtual machines enables indi-
vidual tests to execute significantly faster than would be
possible on physical hardware.

3 Implementation

In this section, we describe our prototype implemen-
tation of Chronus. Our prototype consists of roughly
2600 commented lines of C code, approximately half of
which is dedicated to the time-travel disk. The other half
comprises the search, testing, and diagnosis functional-
ity. Figure 5 shows a high-level view of Chronus.

Guest OSGuest OS

TTDiskChronus
Search Engine

lib_interpose

Parent VM
Child VM

Disk interposition
µµµµDenali VMM

probe

Figure 5: Chronus software architecture: During normal
operation, the parent VM records the child’s disk writes to a
time-travel disk (TTDisk). During debugging, a software probe
is used to determine the correctness of a given state. Chronus
uses the probe to implement a search strategy (such as binary
search) across the system time-line.

Chronus makes heavy use of the µDenali
VMM [35]. Presently, µDenali (and hence Chronus)
only supports the NetBSD guest OS. µDenali VMM
allows a “parent” virtual machine to exert control over
its “child” virtual machines. In addition to being able
to create, destroy, and boot child VMs, the parent
can interpose on and respond to its children’s virtual
hardware device events. For example, if a child issues
a virtual disk write, that event is passed to the parent
via the “lib interpose” interposition library. In Chronus,
the child executes normal user programs, while the
parent implements the Chronus debugging functionality.
Chronus itself runs as a normal user process with
permission to access the interposition and control APIs
described by Whitaker et al. [35]

Chronus exposes a command-line interface to the
troubleshooter. The search command initiates a di-
agnosis session. The command’s arguments include the
name of a time-travel disk, the beginning and end of a
search range (expressed as log indexes), and a probe con-
figuration file, which defines the executable probe rou-
tine and other probe meta-data. If the search range limits
are omitted, Chronus defaults to the beginning and end of
the log. After Chronus has identified the instant of fail-
ure, the attach command is used to mount the child
disk into the parent’s local file system before and after
the failure. The troubleshooter can then use commands
such as diff to extract meaningful state changes. In ad-
dition to the search and attach commands, Chronus
provides a set of command line utilities for interacting
with time-travel disks. See Table 1 for details.

Beyond the µDenali VMM, the major components
of Chronus’s implementation are a time-travel disk for
recreating previous states, testing infrastructure for eval-
uating individual states, and binary search for efficiently
localizing the failure across many previous states.
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boot a virtual machine from a loaded diskboot

kill a virtual machinekill

create a new TTDiskmake

Administration query meta-data about a TTDiskquery

flush and reclaim a portion of the logflush

mount loaded disk(s) into the local file
systemattach

load a TTDisk at one or more time stepsload

Manual
search

test a single time steptest

linear search over a time rangescan

binary search over a time rangesearch
Automatic

search

DescriptionCommandCategory

Table 1: Chronus command-line utilities: Automatic com-
mands perform time-travel searches given a search probe. Man-
ual commands allow the troubleshooter to instantiate a time-
travel disk at some point in the past. Administrative commands
perform TTDisk creation and maintenance.

3.1 Time-travel Disk

The Chronus time-travel disk (or TTDisk) maintains
a log of the child VM’s disk writes. The TTDisk imple-
ments the µDenali disk interface [35], a C API that al-
lows the programmer to implement custom functionality
for disk reads and writes. The TTDisk functionality is
hidden behind the hardware disk interface, so the child’s
guest OS requires no modifications.

The TTDisk uses two helper disks to maintain state.
A checkpoint disk contains the initial disk contents. All
disk writes are recorded to a log disk. The implementa-
tion of both disks is abstracted away behind the µDenali
disk interface. In our current implementation, check-
point/log disks can be backed by either physical disk par-
titions or by files in the parent’s local file system. We
disable write caching to ensure that disk writes are syn-
chronously flushed to disk. Periodically, the log can be
trimmed by flushing old entries back to the checkpoint.

In addition to the data disks, the TTDisk requires
a meta-data region to map a given disk block to a lo-
cation in either the checkpoint or the log. The TTDisk
meta-data is similar to the checkpoint region of the log-
structured file system [28], except that it preserves all
previous disk writes, not merely those that are still active.
For each TTDisk block, the meta-data region maintains a
sorted list of the log writes that modified the given block.
The meta-data region is backed by a file in the parent’s
local file system. As with the log-structured file system,
we alternate between two meta-data regions (files) to en-
sure consistency in the face of failure [28].

3.1.1 Design details

The TTDisk uses a block size larger than the disk
sector size to reduce the amount of meta-data. For

NetBSD, the correct choice for this parameter is not the
file system block size, but rather the file system frag-
ment size. BSD systems typically use a large block size
and rely on smaller fragments to efficiently store small
files [23]. By choosing the TTDisk block size to match
the file system fragment size, we avoid degrading perfor-
mance for small writes.

A general problem for log-structured storage sys-
tems is maintaining consistency without synchronously
writing log meta-data. The design of the TTDisk avoids
synchronous meta-data writes by appending a recovery
sector to each block written to the log. The recovery
sector contains two fields: the virtual block index that
the log write corresponds to, and a 64-bit counter, which
is used to indicate the last log entry. During recovery,
we roll forward the log starting from the last meta-data
checkpoint until we reach a recovery sector that does not
contain a valid counter.

The implementation of TTDisk crash recovery is not
complete in our current prototype. We have implemented
a version of TTDisk that writes recovery sectors, but this
version exhibits poor performance because the µDenali
disk interface currently supports only 4 KB block opera-
tions (as opposed to 512 byte sector operations).

3.2 Testing infrastructure

Chronus relies on user-supplied software probes to
indicate whether a given time step corresponds to a “cor-
rect” system state. Given such a probe, the testing infras-
tructure automates the task of instantiating and evaluat-
ing a previous system state. After the test has completed,
any state changes made during the test are discarded.

Chronus supports two styles of software probes. In-
ternal probes run inside the child virtual machine being
tested. External probes run on the parent virtual machine
conducting the test. Generally, external probes are used
for diagnosing server failures. Running a probe inter-
nally on the server could yield incorrect results, since the
local loopback network device is configured separately
from the external interface. Internal probes are used for
all other types of applications, including network clients
and non-networked applications.

The steps for executing a probe differ for internal
versus external probes. In both cases, the first step is to
wrap the time-travel disk with a copy-on-write (COW)
disk. This provides a convenient mechanism for discard-
ing state changes made during probe execution. For in-
ternal probes, the parent virtual machine then executes
a pre-processing routine, which mounts the COW disk
into the parent’s file system, and configures the child’s
file system to execute the probe routine on boot. By con-
vention, the probe output is stored in a particular file for
later extraction. Once the probe has executed, the child
VM performs a halt operation, causing the parent VM to
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terminate it. Alternately, a timeout mechanism is used
for tests that hang or stall. After termination, the parent
VM once again mounts the COW disk, and executes a
post-processing routine to extract the probe result.

The steps for executing external probes are simi-
lar, but simpler. The pre-processing and post-processing
phases are omitted. The probe runs in the parent vir-
tual machine while the child virtual machine is running.
Once the probe terminates or times out, the child VM is
garbage collected.

3.3 Binary search

Chronus uses binary search to quickly find the fault
point along the system time-line. We assume the system
exhibits a transition from a working to a non-working
state, as shown in Figure 1. Chronus begins by run-
ning the probe at the limits of the user-provided search
range. Assuming the limits exhibit different probe re-
sults, Chronus then tests the midpoint; if the midpoint’s
output is the same as the endpoint’s, Chronus recursively
tests the earlier half of time line. If the probe’s output
differs from the endpoint’s, Chronus recursively tests the
later half of the time line. In some cases, a probe may
fail to execute or may produce non-binary results. To
handle this, Chronus considers all results that differ from
the endpoint to be the same. This tends to work because
probe failures often coincide with a non-working system,
and we are generally interested in the last transition from
a working to a non-working state.

Chronus requires the troubleshooter to specify a
search range whose limits exhibit different probe results.
Because the troubleshooter might not know an appropri-
ate range a priori, Chronus provides a test command,
which allows the troubleshooter to guess-and-check in-
dividual time steps. In our experience, this mechanism
has proven sufficient to quickly discover a valid search
range for most failure cases.

4 Debugging Experience

In this section, we describe our experience using
the Chronus tool. For each experiment, we used binary
search to locate the failure in time and the UNIX diff util-
ity to extract the state change. In some cases, it was nec-
essary to compute the state difference over a time range
larger than a single block. As a result, diff sometimes de-
tects spurious changes such as changes to emacs backup
files or modifications to the system lost+found directory.
In some cases, we have sanitized the results for brevity,
but we never removed more than eight lines of output.
All probes are written as UNIX shell scripts.

#!/bin/sh

TEMPFILE=./QXB50.tmp
rm -f ${TEMPFILE}

ssh root@10.19.13.17 ’date’ > ${TEMPFILE}

if (test -s ${TEMPFILE})
then echo "SSHD UP"

else echo "SSHD DOWN"
fi

exit 0

Figure 6: sshd probe: This is the complete version of a shell
script that diagnosed a configuration fault in the ssh daemon.

>>> search netbsd andrew.time
0000: SSHD UP 5267: SSHD DOWN 2633: SSHD UP
3950: SSHD UP 4608: SSHD UP 4937: SSHD DOWN
4772: SSHD UP 4854: SSHD UP 4895: SSHD UP
4916: SSHD UP 4926: SSHD DOWN 4921: SSHD DOWN
4918: SSHD UP 4919: SSHD UP 4920: SSHD DOWN

# attach ttdisk before and after fault
>>> attach andrew.time 4919 4920

# use recursive diff to find what changed
>>> diff -r /child1 /child2
Binary file /etc/ssh/ssh_host_key differs

Figure 7: Diagnosing the sshd failure: This terminal log
shows Chronus’s output for a binary search using the sshd
probe. We have added comments to the raw output, preceded
by ’#’. After pinpointing the failure instant, we attach the time-
travel disk before and after the fault, and use recursive diff to
elicit the failure cause.

4.1 Randomly injected failures

We wrote a fault-injection tool called etc-smasher
that creates typos in key system configuration files. Such
errors can be difficult to diagnose because they often do
not take effect until after the machine is rebooted. Once
per second, etc-smasher chooses a random file from the
/etc directory (which contains system and application
configuration files). 90% of the time, etc-smasher writes
back the file without modifying it; this creates “back-
ground noise” in the system. For the remaining 10%, the
program changes the file in a small way, by either re-
moving, adding, or modifying a character. To generate a
sample run, we ran the program for several minutes, and
observed the most obvious failure symptom.

The first two runs of this program induced the fol-
lowing configuration errors:

Configuration Fault #1: sshd failure. The child VM’s
sshd daemon does not respond to remote login requests.

Configuration Fault #2: boot failure. The child VM
does not boot correctly. Instead of a login prompt, the
user is asked to enter a shell name.
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# Probe
#!/bin/sh

rm -f /TTOUTPUT
echo ’SUCCESS’ > /TTOUTPUT

# Console output

% search netbsd andrew2.time

0000: SUCCESS 1607: FAILURE 0803: SUCCESS
1205: SUCCESS 1406: SUCCESS 1506: FAILURE
1456: FAILURE 1431: FAILURE 1418: FAILURE
1412: FAILURE 1409: FAILURE 1407: SUCCESS
1408: FAILURE

% attach andrew2.time 1407 1408
% diff -r --exclude ’*dev*’ /child1 /child2

file: /child1/etc/rc.d/bootconf.sh differs
< conf=${_DUMMY}
> conf=${$DUMMY}

Figure 8: Boot failure probe and console output: The probe
writes a string to a file, but only if the boot process completes
successfully. Using this probe, Chronus diagnosed the failure
as resulting from a change to the file bootconf.sh.

To diagnose the sshd failure, we wrote a probe that
attempts to login via ssh and execute the UNIX date
command. This probe (shown in Figure 6) is an exter-
nal probe: it runs on the parent VM. Notice that the
probe only deals with the observable symptoms of ssh,
and not with any of its potential failure causes (TCP/IP
mis-configurations, authentication failure, failure of the
ssh daemon itself, etc.) Figure 7 shows the output of
running a Chronus binary search for this error. The ssh
fault was introduced between disk block writes 4919 and
4920 within the log. The output from diff indicates the
error resulted from a change in the ssh host key file.

To diagnose the boot failure, we crafted a probe that
writes a string into a file (see Figure 8). The probe runs
internally (within the child VM), but only executes af-
ter the boot sequence has completed. As a result, the
existence of the file /TTOUTPUT indicates a successful
trial. If the boot process hangs, Chronus eventually ter-
minates the virtual machine, and the trial constitutes a
failure. As shown in Figure 8, Chronus correctly iden-
tified the source of the error as a small typo in the file
/etc/rc.d/bootconf.sh.

4.2 Debugging Mozilla errors

To understand Chronus’s behavior for graphical ap-
plications, we analyzed a list of frequently asked ques-
tions for the Mozilla Web browser [26]. The questions
fall into two categories: 1) customization questions such
as “how can I make Mozilla my default browser?” and
2) errors/problems. The latter category comprises 24 out
of a total of 53 questions.

In Table 2, we indicate which Mozilla errors could
be diagnosed with Chronus. To qualify for Chronus sup-
port, an error must be both easily reproducible and result
from a state change from Mozilla’s default configuration.
Overall, 15 of the 24 errors (63%) in the Mozilla FAQ
satisfy these criteria.

We further break down the errors captured by
Chronus according to the best available testing strategy.
For 7 error cases, it would be possible to construct a
shell-script probe to elicit the failure condition. From
a script, it is possible to direct Mozilla to a specific page
and extract the returned result. Also, Mozilla supports
a “ping” command, which is useful for determining if
the application has crashed or hung. The 8 remaining er-
ror cases require manual control over some or all of the
testing process; typically, these errors involve GUI inter-
actions that are difficult to script. In the future, it may
be possible to automate more diagnoses using graphical
capture/replay tools [20].

The “connection refused” error requires further ex-
planation. The error arises when a local firewall prevents
the Mozilla executable from establishing out-bound con-
nections. This error has a subtle dependence on the or-
der that the firewall and Mozilla are installed. If Mozilla
is installed first, then the installation of the firewall will
trigger a failure, which Chronus can detect. If the fire-
wall is installed first, then Mozilla will never work cor-
rectly. Nevertheless, it is still possible to diagnose this
error with Chronus by using a probe that first installs
Mozilla, and then tests the application.

Beyond studying applicability, we also used
Chronus to diagnose several of the Mozilla errors. For
each trial, we synthetically injected the error condition
based on the description in the Mozilla FAQ. We then
wrote a probe to diagnose the behavior, and ran Chronus
to pinpoint the offending state transition. We now de-
scribe two such trials in more depth.

4.2.1 JavaScript error

JavaScript is used by some web sites to provide en-
hanced functionality beyond static content. JavaScript
is also a security concern, and Mozilla allows users to
limit the functionality of scripts, or to disable JavaScript
completely. In some cases, JavaScript-enabled sites may
demonstrate strange behavior if JavaScript is not en-
abled. For example, the user may be unable to follow
hyperlinks for a particular page [26].

To model this error, we installed Mozilla in a virtual
machine and disabled JavaScript through the preferences
menu. To test for the error, we wrote a probe that directs
Mozilla to fetch a web page that requires JavaScript sup-
port. The probe asks the user whether the resulting dis-
play output is correct. The probe and console output are
shown in Figure 9.
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Table 2: The applicability of Chronus for Mozilla errors: 15 of these 24 errors could be captured by Chronus. This means that
they are both repeatable and result from a state change. In 7 of these cases, the testing could be conducted automatically given a
shell-script probe. For the other 8 cases, the testing process requires assistance from a human operator, either to manipulate Mozilla
or interpret its visual output.

4.2.2 A misbehaved extension

Mozilla allows developers to provide new function-
ality via an extensibility API. These extensions are not
well-isolated, and a misbehaved extension can cause the
overall browser to malfunction. To model this error, we
installed a set of extensions from the Web. After quit-
ting and restarting the program, we discovered that one
of these extensions had introduced a malfunction, such
that Mozilla would hang before displaying a page.

To diagnose this error, we wrote a probe that
uses the Mozilla “ping” command to indicate whether
a previously-launched browser is functioning correctly.
Figure 10 shows the output of the diff utility. Although
more verbose than previous examples, the state change
reveals that the “StockTicker” extension caused Mozilla
to malfunction.

4.3 A complex Apache error

As discussed in Section 2.4, binary search can fail
in the presence of multiple faults in a single time-line.
To explore this phenomenon, we introduced a sequence
of configuration events inside an Apache web server,
as shown in Figure 11a. The “true failure” is a mis-
configuration of the Apache suexec command, which
allows an administrator to run CGI scripts as a different

user than the overall Web server. suexec is a common
source of configuration errors, especially when scripts
require special privileges [7]. In our example, the CGI
script must connect to a back end database, which only
permits access from the user www. As a result, Web re-
quests for this script return an HTTP error message.

In addition to the suexec error, we performed two
actions that affect the Web server’s functionality. Near
the start of the trace, we changed the server’s IP ad-
dress. Because DNS mappings are not captured in our
time-travel layer, any attempt to connect to the server
before the IP address change will not succeed. Subse-
quently, we upgraded the version of the Apache running
on the server. This new build was necessary to support
the suexec command. During the installation of the up-
grade, the Web server is unavailable to Chronus probes.

There are two strategies one could take in analyz-
ing this failure. First, one could write a success-directed
probe, which tests whether the system successfully han-
dles requests. We wrote such a probe by testing for a suc-
cessful HTTP response. The drawback of such a probe is
that it may detect any transition from a working to a fail-
ing state, as shown in Figure 11a. In the worst case, the
user must decipher two spurious results before revealing
the true source of the error.

An alternate approach is to construct a failure-
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# Probe
#!/bin/sh

ssh -X root@10.19.13.79 ’mozilla $WEBSITE’ &

echo -n ’RESULT: ’

read result
echo $result

# Console output

169904: RESULT: GOOD 222044: RESULT: BAD
195974: RESULT: BAD 182939: RESULT: BAD
176421: RESULT: BAD 173162: RESULT: GOOD
174791: RESULT: BAD 173976: RESULT: BAD
173569: RESULT: BAD 173365: RESULT: GOOD
173467: RESULT: BAD 173416: RESULT: GOOD
173441: RESULT: GOOD 173454: RESULT: BAD
173447: RESULT: GOOD 173450: RESULT: GOOD
173452: RESULT: BAD 173451: RESULT: BAD

>>> diff -r /child1 /child2
file /root/.mozilla/default/zc1u3kp2.slt/prefs.js
differs:
> user_pref("browser.download.dir", "/root");
> user_pref("browser.startup.homepage",
"http://www.mozilla.org/start/");
> user_pref("javascript.enabled", false);

Figure 9: Mozilla JavaScript probe and console output:
This probe, combined with user input, diagnosed a Mozilla ren-
dering problem related to JavaScript. The probe runs externally
on the parent VM, so that X-windows ssh forwarding is set up
properly. Spurious information exists because Mozilla atomi-
cally saves all preference changes made during a user session.

directed probe. Instead of looking for successful com-
pletion of a request, a failure-directed probe searches for
the precise error behavior exhibited by the application.
In this example, the suexec failure returned a distinc-
tive error message. Because different errors often exhibit
different symptoms, a failure directed probe can result
in fewer state transitions over an equivalent system time-
line (see Figure 11b). Using a failure-directed probe, we
discovered the source of the suexec failure using a sin-
gle Chronus search invocation.

4.4 Reverse debugging

Although we intended Chronus as a tool for finding
configuration bugs, an alternate use is to search for con-
figuration fixes. This is especially useful in cases when
the “fix” was applied serendipitously. For example, ap-
plication X might install a dynamic library that fortu-
itously allows application Y to work correctly. In prac-
tice, the issue is even more subtle, because the order in
which packages are installed can affect the system’s final
configuration [19]. Given a failing machine and a cor-
rect machine, an administrator can use Chronus to find
the fix from the correct machine, and then apply the fix
to the failing machine.

>>> diff -r /child1 /child2
file /root/.mozilla/default/zc1irw5u.slt/chrome
/chrome.rdf differs:

> <RDF:Description about="urn:mozilla:package
:stockticker"
> c:baseURL="jar:file:///root/.mozilla/default
/zc1irw5u.slt
> /chrome/stockticker.jar!/content/"
> c:locType="profile"
> c:author="Jeremy Gillick"
> c:authorURL="http://jgillick.nettripper.com/"
> c:description="Shows your favorite stocks in a
> customized ticker."
> c:displayName="StockTicker 0.4.2"
> c:extension="true"
> c:name="stockticker"
> c:settingsURL="chrome://stockticker/content
/options.xul" />

Figure 10: Console output for a buggy Mozilla extension:
Chronus traced the failure to the “StockTicker” extension.

We used reverse debugging to elicit the correct con-
figuration for the NetBSD Network Time Protocol (NTP)
daemon. Initially, the system’s NTP configuration was
incorrect, causing the system’s time to be set to an in-
correct value. Although we fixed the problem in one
particular VM, the change was not propagated back to
the base disk image. To locate the fix, we wrote a probe
that searches for unusual behavior from the make utility;
make relies on a correct clock, and may force unneces-
sary recompilation when the clock is mis-configured.

5 Quantitative Evaluation

In this section, we provide quantitative measure-
ments of Chronus. We analyze time-travel disk perfor-
mance, log growth, and debugging execution time. All
tests were run on a uniprocessor 3.2GHz Pentium 4 with
hyperthreading disabled. The test machine had 2 GB of
RAM, but the virtual machines (both the parent and the
child) were configured to use at most 512 MB. The ma-
chine contained a single 80 GB, 7200 RPM Maxtor Di-
amondMax Plus IDE drive, and an Intel PRO/1000 PCI
gigabit Ethernet card.

All of the following experiments were run without
appending recovery sectors to log writes. Therefore, the
results model a system that uses some other mechanism
for insuring meta-data consistency (e.g., non-volatile
RAM). An implementation with recovery sectors would
require 12.5% more disk space (one 512 byte recovery
sector is appended to each 4 KB block). The perfor-
mance overhead would likely be similar.

5.1 Runtime Overhead

To evaluate time-travel disk performance, we ran the
set of workloads shown in Table 3. We generated the
sequential read and write workloads using the UNIX dd
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Figure 11: Apache suexec error, as seen by two different
probes: A success-directed probe searches for transitions from
a working to a failing state. This may return spurious results
when the system contains multiple such transitions. A failure-
directed probe searches for changes in the specific error symp-
tom exhibited by the application. For this example, a failure-
directed probe revealed the configuration error with a single
Chronus invocation.

command using 32 KB block increments. We also ran
an “adversarial” sequential read, in which we read over
a disk region that was previously written in reverse order
in 32 KB increments. Finally, we ran untar and grep over
the Mozilla 1.6 source tree. Mozilla 1.6 contains 35,186
files in 2,454 directories, and has a total size of 300 MB.
The “native disk” data series shows the performance of
a child VM using a physical disk partition. The time-
travel disk log was backed by a physical partition. No
disk operations were processed by the checkpoint disk,
and swapping was disabled for these tests.

For most workloads, the performance of the time-
travel disk is competitive with the native disk. The one
exception is the adversarial sequential read workload.
Because blocks are written out in reverse log order, this
style of workload generates poor performance from a
log-structured storage layer. Most files are processed se-
quentially [2], suggesting this style of workload occurs
rarely in practice.

5.2 Measuring log inflation

Chronus relies on excess storage capacity to main-
tain the time-travel log. This is reasonable, given that
storage capacity is growing at an annual rate of 60% [18]
and shows no signs of abating. Other researchers have
noted that users can already go years without reclaiming
storage [16].

15.3 MB/sec33.1 MB/sec
Sequential read

(adversarial)

125.7 sec123.4 secUntar

253 sec221 secGrep

32.7 MB/sec33.1 MB/secSequential read

31.7 MB/sec32.6 MB/secSequential write

Time-travel diskNative diskWorkload

Table 3: Time-travel disk performance: The time-travel disk
is competitive with the native disk for all workloads, except for
the “adversarial” workload designed to exhibit poor locality in
the time-travel log.

1432 MB

1905 MB

215.0 MB

Log growth

5.71 MB(-300.4 MB)remove mozilla/

36.1 MB300.4 MBuntar mozilla.tar

29.6 MB214.8 MBcopy mozilla.tar

Log growth
(compressed)

File System
GrowthOperation

Table 4: Log inflation: Operations that greatly modify the
file system directory structure generate a large number of
log writes. Fortunately, the writes are highly redundant and
amenable to compression.

One remaining concern is log inflation, which arises
from file system meta-data operations. Applications that
heavily modify the directory structure can generate ex-
cessive log growth. Table 4 shows the amount of log
growth required for various operations on the Mozilla 1.6
archive. As expected, simply copying the tar file does not
generate undue log inflation. However, untaring Mozilla
causes log growth that is more than six times larger than
the growth in the underlying file system. Even worse,
deleting the Mozilla directory tree (with rm -Rf) gener-
ates 1432 MB of log data! The source of this log growth
is repeated, synchronous updates to file system structures
such as free block lists, inodes, and directory contents.

We have considered two possibilities for combating
log inflation. One possibility is compression. The con-
tents of meta-data operations are highly redundant, and
therefore would exhibit significant size reductions (as
shown in Figure 4). A second possibility is to temporar-
ily deactivate versioning — for example, using heuris-
tics similar to those employed by the Elephant file sys-
tem [30]. We have not yet experimented with or imple-
mented either of these strategies.

5.3 Debug execution time

Because Chronus uses binary search, it can discover
configuration errors in a logarithmic number of steps.
Figure 12 shows Chronus’s convergence time for logs of
various sizes. The test uses an internal probe that tests
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Figure 12: Debug execution time: The runtime grows loga-
rithmically with log size.

for the existence of a particular file. Chronus currently
requires roughly 20 seconds to conduct a single probe.
More than half this time is devoted to file system consis-
tency check (fsck) operations, which we must do twice
for each probe — once before installing the probe, and
once to extract the result. Moving to a journaling file
system would substantially reduce this overhead.

6 Related Work

We now discuss related work in problem diagnosis
and resolution. We first discuss history-based resolution
techniques, and then we discuss other techniques.

6.1 History-based problem resolution

Researchers have proposed versioning storage sys-
tems at various levels of abstraction [25, 30, 31, 32, 14].
In some cases, recovery from configuration errors has
been cited as a driving application. The VMWare vir-
tual machine monitor [33] also supports checkpointing
to enable safe recovery. Unlike Chronus, these systems
do not perform failure diagnosis. As a result, the user is
forced to undo all state changes that occurred after the
error. Chronus helps to reveal the specific failure cause,
enabling recovery with minimal lost state.

The Operator Undo work [8] attempts to recover lost
state by invoking an application-specific replay proce-
dure. In a similar vein, Windows XP restore [24] allows
developers to exert some control over which state is in-
cluded in state snapshots. Both of these approaches, be-
ing application specific, are less general than Chronus.
Also, these techniques have side effects, which can fur-
ther corrupt system state. For example, Windows Restore
may inadvertently re-introduce a virus into the system.

The Backtracker tool [22] maintains an operating
system causal history log. Such a tool could address one
of Chronus’s current shortcomings, which is its inability

to extract semantically relevant debugging information
from the child virtual machine. For example, Chronus
might discover that an application failure was caused by
an update to a particular dynamic library. Given this
starting point, a Backtracker-like tool could determine
that the library change was caused by the installation of
an unrelated application.

Several research efforts have extended programming
language debuggers with the ability to perform time-
travel or backwards execution [6]. These systems tend
to have high overhead or long replay times, depending
on the extent to which they rely on checkpointing or log-
ging. In addition, these systems are tied to a particular
language or runtime environment. Chronus detects con-
figuration errors that span applications and the OS, and it
does so with tolerable overhead by recording only those
changes that reach stable storage.

Delta-debugging [36] applies search techniques to
the problem of localizing source code edits that induced
a failure. Delta-debugging does not assume changes
are ordered, and much of the system’s complexity de-
rives from having to prune an exponentially large search
space. The challenges for Chronus relate to capturing
and replaying complete system states using time-travel
disks and virtual machines.

The STRIDER [34] project uses periodic snapshots
of the Windows registry to reveal configuration errors.
Unlike Chronus, STRIDER monitors a single execution
of a failing program, during which it records the registry
keys that are accessed by the faulty process. STRIDER
requires registry-specific heuristics to prune the search
space: for example, registry keys that differ across ma-
chines are less likely to be at fault. STRIDER does not
detect indirect dependencies that result from interactions
with helper processes or the operating system. For ex-
ample, STRIDER cannot reveal errors related to TCP/IP
parameters or firewall policy.

6.2 Other problem resolution techniques

A direct strategy for automated debugging is to con-
struct a software agent that embodies the knowledge of a
human expert [3]. The limitation of such systems is that
they are only as good as their initial diagnosis heuristics.
Complex systems generate unexpected errors. Chronus
can capture these errors by operating beneath the layer
of operating system and application semantics.

The No-Futz [21] computing initiative advocates a
principled approach to maintaining configuration state.
For example, the authors advocate making individual
configuration parameters orthogonal to limit the effect
of unintended side effects. While this is a worthwhile
goal, the tight integration of today’s application and
system functionality suggests that debugging techniques
will still be necessary when inevitable failures occur.
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Redstone et al. proposed a model of automated de-
bugging that extracts relevant system state and symptoms
to serve as a query against a database of known prob-
lems [27]. A challenge for such a system is constructing
a database and query format that yield meaningful re-
sults. Chronus avoids using databases by directly “query-
ing” the system state at a previous instant in time. The
results returned by our system may be more relevant be-
cause they pertain exclusively to the system under con-
sideration.

Several recent projects have investigated path-based
debugging of distributed systems [10, 1]. These systems
log the interactions between components or nodes of a
distributed system. By applying statistical techniques to
these traces, it is possible to extract some information
of interest, e.g., localizing performance problems or de-
tecting an incipient system failure. These systems de-
pend on the ability to extract large volumes of trace data
showing the integration between distributed components.
Chronus is useful in situations where these assumptions
are not satisfied, e.g., desktop personal computers.

7 Future Work

Although functional, our Chronus prototype could
be extended in numerous ways. One area of interest
is extending µDenali and Chronus beyond a UNIX en-
vironment. In particular, systems based on Microsoft
Windows are likely to exhibit qualitatively different con-
figuration errors. We are also interested in extending
Chronus with different time-travel storage mechanisms.
For example, some administrators use CVS to maintain
a log of configuration changes. Chronus could use CVS
check-ins to reconstruct previous system states.

Chronus is not a fully automatic tool: the trou-
bleshooter must supply a software probe and interpret the
state change that induced the failure. It may be possible
to reduce this manual effort by combining Chronus with
related research efforts. For example, capture/replay
tools could automate probe creation [20], and Back-
tracker [22] could simplify end-to-end diagnosis by map-
ping from a low-level state change to a high-level action.

A final area for future work is to perform a more
complete evaluation of Chronus. Our work to date has
focused on a small number of case studies representing
“common” configuration errors. Although our initial re-
sults are promising, we do not have enough data about
configuration errors in the wild to make strong claims
about the applicability of Chronus. An even harder chal-
lenge is to measure the “usefulness” of our tool. In the
end, a complete evaluation of Chronus will likely require
a user study, since simulating a human operator is in-
tractable. Work by Brown et al. provides a starting point
for such an effort [9].

8 Conclusions

Software systems often break. When they do, di-
agnosing the cause of failure can be difficult, especially
when the application depends on a wide range of system-
level and user-level functionality. Existing automated ap-
proaches based on expert systems can only handle er-
ror cases that are known in advance. Human experts
can leverage intuition to solve unforeseen problems, but
manual diagnosis requires significant expertise, which
ultimately translates into substantial cost.

This paper has described Chronus, a tool for au-
tomating the diagnosis of configuration errors caused by
a state change. Chronus represents a novel synthesis of
existing techniques: versioning storage systems, virtual
machine monitors, testing, and search. Chronus reduces
the burden on human experts from complete diagnosis
(“why is the system not working”) to testing for correct-
ness (“is the system working?”). Our experience to date
suggests that Chronus is a valuable tool for a significant
class of configuration errors.
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