
Life or Death at Block-Level
Muthian Sivathanu, Lakshmi N. Bairavasundaram,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department
University of Wisconsin, Madison

{muthian, laksh, dusseau, remzi}@cs.wisc.edu

Abstract
A fundamental piece of information required in intelligent stor-
age systems is the liveness of data. We formalize the notion of
liveness within storage, and present two classes of techniques for
making storage systems liveness-aware. In the explicit notifica-
tion approach, we present robust techniques by which a file sys-
tem can impart liveness information to storage through a “free
block” command. In the implicit detection approach, we show
that such information can be inferred by the storage system ef-
ficiently underneath a range of file systems, without changes to
the storage interface. We demonstrate our techniques through
a prototype implementation of a secure deleting disk. We find
that while the explicit interface approach is desirable due to its
simplicity, the implicit approach is easy to deploy and enables
quick demonstration of new functionality, thus facilitating rapid
migration to an explicit interface.

1 Introduction
“Life is pleasant. Death is peaceful. It’s the transition
that’s troublesome.” Isaac Asimov

Smarter storage systems need to understand whether
blocks are live or dead. Previous work has demonstrated
the utility of such knowledge: dead blocks can be used to
store rotationally optimal replicas of data [33] or to pro-
vide zero-cost writes [31], and failure recovery time can
be reduced by restoring only live blocks [23].

Unfortunately, liveness information is not available
within modern storage systems, due to the narrow block-
based interface between file systems and storage [5, 9].
Storage systems simply observe block-level reads and
writes and thus are not aware of logical operations (such
as deletes) issued by the file system. This limitation pre-
cludes many storage level optimizations [12, 18, 23] and
makes others less effective [31, 32, 33].

In this paper, we address this limitation by presenting
techniques by which storage systems can be imparted with
liveness information. We perform a qualitative and quan-
titative comparison of two approaches. With explicit no-
tification, we augment the interface to storage with a new
“free block” command; file systems must be modified to
properly use it. With implicit detection, we develop tech-
niques to enable the storage system to infer liveness infor-
mation without any change to the interface.

To better evaluate these approaches, we first formal-
ize the notion of liveness within storage. Specifically, we
identify three useful classes of liveness (content, block,
and generation liveness), and present techniques for ex-
plicit and implicit tracking of each type. Because tech-
niques for imparting liveness information are dependent
on the characteristics of the file system, we study a range
of file systems, including ext2, ext3 and VFAT; in doing
so, we identify key file system properties that impact the
feasibility and complexity of such techniques.

To gain more direct experience with liveness-tracking
methods, we design, implement, and evaluate a prototype
secure deleting disk that shreds blocks that have been log-
ically deleted by the file system, making deleted data ir-
recoverable [12]. We implement secure delete due to its
extreme requirements on the type and accuracy of liveness
information.

On the surface, both explicit and implicit approaches
have their obvious benefits and drawbacks. Explicit no-
tification promises simplicity of implementation but re-
quires broad industry consensus, while implicit detection
suggests ease of deployment but at the cost of complexity.
Our analysis, however, reveals more complex trade-offs.

We find qualitatively that the explicit approach is less
complicated to design and implement. However, while it
may appear straightforward to modify file systems to is-
sue “free block” commands, accurate notification in the
presence of crashes entails careful integration with file
system consistency management schemes, thus noticeably
increasing complexity.

We also find that implicit liveness detection is feasi-
ble underneath a range of modern file systems; however,
some file system behaviors prohibit certain classes of live-
ness inference. Therefore, we identify the properties that
must hold in order to enable or simplify implicit liveness
inference. We also propose and implement minor modifi-
cations to file systems to conform to those properties.

Finally, we show that implicit liveness detection can be
accurate underneath modern asynchronous file systems;
our secure delete prototype utilizes implicit liveness to
shred blocks that are inferred to be dead. By proving cor-
rect operation of implicit secure delete, we demonstrate
that implicit liveness can be used in storage applications

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 379

with extreme correctness requirements. In evaluating the
performance of implicit liveness tracking, we find that it
is comparable to the explicit approach.

We conclude that storage systems can more easily im-
plement the explicit approach, if the interface is embel-
lished to support it. However, we see the implicit ap-
proach as a complementary instead of competitive tech-
nology; because industry consensus on interface change
is at best slow-moving, implicit techniques (even if com-
plex) can be of use. Specifically, by deploying a particu-
lar technology without explicit interface change, implicit
techniques can readily demonstrate possible benefits and
thus move industry rapidly towards an explicit change.

The paper is organized as follows. We first present an
extended motivation (§2), followed by a taxonomy of live-
ness (§3), and a list of file system properties that impact
techniques for imparting liveness information (§4). We
proceed by discussing explicit notification (§5) and im-
plicit detection (§6), and then describe secure deletion
(§7). We then describe our initial experience with im-
plicit detection under NTFS, a closed-source file system
(§8). Finally, we present a discussion on the relative mer-
its of the implicit and explicit approaches (§9), and finish
by discussing related work (§10) and concluding (§11).
Appendix A includes a proof of correctness for implicit
secure delete.

2 Extended Motivation
In this section, we first present examples of functionality
enabled by liveness information, and then motivate two
alternative approaches for gathering such information.

2.1 Utility of liveness
Liveness information enables a variety of functionality
and performance enhancements within the storage sys-
tem. Most of these enhancements cannot be implemented
at higher layers because they require low-level control
available only within the storage system.
Eager writing: Workloads that are write-intensive can
run faster if the storage system is capable of eager writing,
i.e., writing to “some free block closest to the disk arm”
instead of the traditional in-place write [8, 31]. However,
in order to select the closest block, the storage system
needs information on which blocks are live. Existing pro-
posals function well as long as there exist blocks that were
never written to; once the file system writes to a block,
the storage system cannot identify subsequent death of the
block as a result of a delete. A disk empowered with live-
ness information can be more effective at eager writing.
Adaptive RAID: Information on block liveness within
the storage system can also facilitate dynamic, adaptive
RAID schemes such as those in the HP AutoRAID sys-
tem [32]; AutoRAID utilizes free space to store data in
RAID-1 layout, and migrates data to RAID-5 when it runs

short of free space. Knowledge of block death can make
such schemes more effective.
Optimized layout: Techniques to optimize on-disk lay-
out transparently within the storage system have been well
explored. Adaptive reorganization of blocks within the
disk [21] and replication of blocks in rotationally optimal
locations [33] are two examples. Knowing which blocks
are free can greatly facilitate such techniques; live blocks
can be collocated together to minimize seeks, or the “free”
space corresponding to dead blocks can be used to hold
rotational replicas.
Smarter NVRAM caching: Buffering writes in
NVRAM is a common optimization in storage systems.
For synchronous write workloads that do not benefit much
from in-memory delayed writes within the file system,
NVRAM buffering improves performance by absorbing
multiple overwrites to a block. However, in delete-
intensive workloads, unnecessary disk writes can still
occur; in the absence of liveness information, deleted
blocks occupy space in NVRAM and need to be written
to disk when the NVRAM fills up. From real file system
traces [20], we found that up to 25% of writes are deleted
after the typical delayed write interval of 30 seconds, and
thus will be unnecessarily written to disk. Knowledge
about block death within storage removes this overhead.
Intelligent prefetching: Modern disks perform aggres-
sive prefetching; when a block is read, the entire track
in which the block resides is often prefetched [22], and
cached in the internal disk cache. In an aged (and thus,
fragmented) file system, only a subset of blocks within a
track may be live, and thus, caching the whole track may
result in suboptimal cache space utilization. Although
reading in the whole track is still efficient for disk I/O,
knowledge about liveness can enable the disk to selec-
tively cache only those blocks that are live.
Faster recovery: Liveness information enables faster re-
covery in storage arrays. A storage system can reduce re-
construction time during disk failure by only reconstruct-
ing blocks that are live within the file system [23].
Self-securing storage: Liveness information in storage
can help build intelligent security functionality in storage
systems. For example, a storage level intrusion detection
system (IDS) provides another perimeter of security by
monitoring traffic, looking for suspicious access patterns
such as deletes or truncates of log files [18]; detecting
these patterns requires liveness information.
Secure delete: The ability to delete data in a manner
that makes recovery impossible is an important compo-
nent of data security [3, 12, 14]. Government regulations
require strong guarantees on sensitive data being “forgot-
ten”, and such requirements are expected to become more
widespread in both government and industry in the near
future [1]. Secure deletion requires low-level control on
block placement that is available only within the storage

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association380

system; implementing storage level secure delete requires
liveness information within the storage system. We ex-
plore secure deletion further in Section 7.

2.2 Acquiring liveness information
Despite the clear benefits of liveness information in stor-
age systems, such information is not currently available.
A natural question that arises is how to convey liveness in-
formation to storage systems. We discuss two approaches:
explicit notification and implicit detection.

2.2.1 Explicit notification
Explicit notification involves augmenting the existing
storage interface with new “allocate block” and “free
block” commands, and then modifying file systems to use
these commands to explicitly convey liveness information
to the storage system. The main benefit of the explicit ap-
proach is its potential simplicity; once the new interface
is deployed, conveying liveness information is seemingly
straightforward.

However, while appearing to be a natural way to
achieve our goal, there are a few problems with this ap-
proach. First, changing the interface to storage raises
legacy issues and requires broad industry consensus. Sec-
ond, a demand for such a new interface often requires
agreement on the clear benefits of the interface, which is
difficult to achieve without deployment of the interface -
a chicken-and-egg problem.

2.2.2 Implicit detection
Implicit detection is intended to solve the bootstrapping
problem in explicit interface evolution. In this approach,
the storage system monitors block-level reads and writes
issued by the file system from underneath an unmodified
interface and infers liveness information implicitly, ide-
ally with no change to the file system above. The implicit
approach thus enables demonstration of benefits due to a
proposed interface change, thereby making it an evolu-
tionary step towards an eventual interface modification.

Previous work on semantically-smart storage sys-
tems [2, 23, 24] has explored implicit detection of vari-
ous forms of file system information from within the stor-
age system, for various storage-level enhancements. The
degree of accuracy required from the implicit detection
techniques in each case depends on the nature of the ap-
plication using that information. In X-RAY [2], the stor-
age system utilizes implicit information on file accesses
to implement an exclusive storage array cache; inaccu-
rate information in X-RAY simply reduces the potential
performance gain. In D-GRAID [23], the storage sys-
tem utilizes implicit information on the file a block be-
longs to, in order to place blocks in a fault-isolated fash-
ion, thus improving the availability of the storage system
under multiple disk failures; inaccurate information in D-
GRAID leads to poor fault isolation, but does not impact
correctness because the array still exhibits strictly better

Liveness Description Currently Example
type possible? utility

Content Data within block Yes Versioning
Block Whether a block holds No Eager write,

valid data currently fast recovery
Generation Block’s lifetime in No Secure delete,

the context of a file storage IDS

Table 1: Forms of liveness.

availability than traditional RAID. In this paper, we in-
vestigate the limits of implicit detection, by considering
applications that utilize implicit liveness information in a
way that directly impacts correctness.

The primary concern with implicit interface evolution
is that it ties the interacting layers together. For exam-
ple, if the file system changes, the storage system will
likely need to change as well. However, this issue may
not be as problematic as it seems. On-disk formats evolve
slowly, for reasons of backwards compatibility. For ex-
ample, the Linux ext2 file system, introduced in roughly
1994, has had the same layout for its lifetime. Further, the
ext3 journaling file system [29] is backwards compatible
with the on-disk layout of ext2 and the new extensions
to the FreeBSD file system [6] are backwards compati-
ble as well. We also have evidence that commercial stor-
age vendors are already willing to maintain and support
software specific to a file system; for example, the EMC
Symmetrix storage system [7] comes with software that
can understand most common file systems. These trends
point to the commercial viability of an implicit detection
approach.

3 Liveness in Storage: A Taxonomy
Having discussed the utility of liveness information
within a storage system, we now present a taxonomy of
the forms of liveness information that are relevant to stor-
age. Such liveness information can be classified along
three dimensions: granularity, accuracy, and timeliness.

3.1 Granularity of liveness
Depending on the specific storage-level enhancement that
utilizes liveness information, the logical unit of liveness
to be tracked can vary. We identify three granularities
at which liveness information is meaningful and useful:
content, block and generation. A summary is presented in
Table 1.

3.1.1 Content liveness
Content liveness is the simplest form of liveness. The unit
of liveness is the actual data in the context of a given
block; thus, “death” at this granularity occurs on every
overwrite of a block. When a block is overwritten with
new data, the storage system can infer that the old con-
tents are dead. An approximate form of content liveness is
readily available in existing storage systems, and has been
explored in previous work; for example, Wang et al.’s

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 381

virtual log disk frees the past location of a block when
the block is overwritten with new contents [31]. Track-
ing liveness at this granularity is also useful in on-disk
versioning, as seen in self-securing storage systems [28].
However, to be completely accurate, the storage system
also needs to know when a block is freed within the file
system, since the contents stored in that block are dead
even without it being overwritten.

3.1.2 Block liveness
Block liveness tracks whether a given disk block currently
contains valid data, i.e., data that is accessible through the
file system. The unit of interest in this case is the “con-
tainer” instead of the “contents”. Block liveness is the
granularity required for many applications such as intel-
ligent caching, prefetching, and eager writing. For ex-
ample, in deciding whether to propagate a block from
NVRAM to disk, the storage system just needs to know
whether the block is live at this granularity. This form
of liveness information cannot be tracked in traditional
storage systems because the storage system is unaware of
which blocks the file system thinks are live. However, a
weak form of this liveness can be tracked; a block that
was never written to can be inferred to be dead.

3.1.3 Generation liveness
The generation of a disk block is the lifetime of the block
in the context of a certain file. Thus, by death of a genera-
tion, we mean that a block that was written to disk (at least
once) in the context of a certain file becomes either free
or is reallocated to a different file. Tracking generation
liveness ensures that the disk can detect every logical file
system delete of a block whose contents had reached disk
in the context of the deleted file. An example of a stor-
age level functionality that requires generation liveness is
secure delete, since it needs to track not just whether a
block is live, but also whether it contained data that be-
longed to a file generation that is no longer alive. Another
application that requires generation liveness information
is storage-based intrusion detection. Generation liveness
cannot be tracked in existing storage systems.

3.2 Accuracy of liveness information
The second dimension of liveness is accuracy, by which
we refer to the degree of trust the disk can place in the
liveness information available to it. Inaccuracy in live-
ness information can lead the disk into either overestimat-
ing or underestimating the set of live entities (blocks or
generations). The degree of accuracy required varies with
the specific storage application. For example, in delete-
squashing NVRAM, it is acceptable for the storage sys-
tem to slightly overestimate the set of live blocks, since
it is only a performance issue and not a correctness issue;
on the other hand, underestimating the set of live blocks
is catastrophic since the disk would lose valid data. Sim-
ilarly, in generation liveness detection for secure delete,

it is acceptable to miss certain intermediate generation
deaths of a block as long as the latest generation death
of the block is known.

3.3 Timeliness of information
The third and final axis of liveness is timeliness, which
defines the time between a death occurring within the file
system and the disk learning of the death. In the explicit
notification approach, if the file system delays “free” no-
tifications (similar to delayed writes), there will be a time
lag before the disk learns of a block or generation death.
Similarly, in the implicit approach, the periodicity with
which the file system writes metadata blocks imposes a
bound on the timeliness of the liveness information in-
ferred. In many applications, such as eager writing and
delete-aware caching, this delayed knowledge of liveness
is acceptable, as long as the information has not changed
in the meantime. However, in certain applications such
as secure delete, timely detection may provide stronger
guarantees.

4 File System Properties
Both explicit and implicit methods for imparting liveness
information to storage are dependent on the characteris-
tics of the file system using the storage system. We there-
fore study the range of techniques required for such live-
ness notification (or detection) by experimenting under-
neath three different file systems: ext2, ext3, and VFAT.
We have also experimented with NTFS, but only on a lim-
ited scale due to lack of source code access; our NTFS
experience is described in Section 8. Given that ext2 has
two modes of operation (synchronous and asynchronous
modes) and ext3 has three modes (writeback, ordered, and
data journaling modes), all with different update behav-
iors, we believe these form a rich set of file systems.

We first begin with a brief background on the various
file systems and then outline some high level behavioral
properties of a file system that are relevant in the context
of liveness information. In the next two sections, we dis-
cuss how these properties influence different techniques
for storage-level liveness tracking.

4.1 File system background
In this subsection, we provide some background informa-
tion on the various file systems we study. We discuss both
key on-disk data structures and the update behavior.

4.1.1 Common properties
We begin with some properties common to all the file sys-
tems we consider, from the viewpoint of liveness tracking.
At a basic level, all file systems track at least two kinds
of on-disk metadata: a structure that tracks allocation of
blocks (e.g., bitmap, freelist), and index structures (e.g.,
inodes) that map each logical file to groups of blocks.

A common aspect of the update behavior of all mod-
ern file systems is asynchrony. When a data or metadata

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association382

block is updated, the contents of the block are not immedi-
ately flushed to disk, but instead, buffered in memory for
a certain interval (i.e., the delayed write interval). Blocks
that have been “dirty” longer than the delayed write in-
terval are periodically flushed to disk. The order in which
such delayed writes are committed can be potentially arbi-
trary, although certain file systems enforce ordering con-
straints [10].

4.1.2 Linux ext2
The ext2 file system is an intellectual descendant of the
Berkeley Fast File System (FFS) [16]. The disk is split
into a set of block groups, akin to cylinder groups in FFS,
each of which contains inode and data blocks. The alloca-
tion status (live or dead) of data blocks is tracked through
bitmap blocks. Most information about a file, including
size and block pointers, is found in the file’s inode. To
accommodate large files, a few pointers in the inode point
to indirect blocks, which in turn contain block pointers.

While committing delayed writes, ext2 enforces no or-
dering whatsoever; crash recovery therefore requires run-
ning a tool like fsck to restore metadata integrity (data
inconsistency may still persist). Ext2 also has a syn-
chronous mode of operation where metadata updates are
synchronously flushed to disk, similar to early FFS [16].

4.1.3 Linux ext3
The ext3 file system is a journaling file system that
evolved from ext2, and uses the same basic on-disk struc-
tures. Ext3 ensures metadata consistency by write-ahead
logging of metadata updates, thus avoiding the need to
perform an fsck-like scan after a crash. Ext3 employs a
coarse-grained model of transactions; all operations per-
formed during a certain epoch are grouped into a single
transaction. When ext3 decides to commit the transac-
tion, it takes an in-memory copy-on-write snapshot of
dirty metadata blocks that belonged to that transaction;
subsequent updates to any of those metadata blocks result
in a new in-memory copy.

Ext3 supports three modes of operation. In ordered
data mode, ext3 ensures that before a transaction com-
mits, all data blocks dirtied in that transaction are writ-
ten to disk. In data journaling mode, ext3 journals data
blocks together with metadata. Both these modes ensure
data integrity after a crash. The third mode, data write-
back, does not order data writes; data integrity is not guar-
anteed in this mode.

4.1.4 VFAT
The VFAT file system descends from the world of PC
operating systems. In this paper, we consider the Linux
implementation of VFAT. VFAT operations are centered
around the file allocation table (FAT), which contains an
entry for each allocatable block in the file system. These
entries are used to locate the blocks of a file, in a linked-
list fashion. For example, if a file’s first block is at address

Property E
xt

2

E
xt

2+
sy

nc

V
FA

T

E
xt

3-
w

b

E
xt

3-
or

d

E
xt

3-
da

ta

Reuse ordering × × × ×

Block exclusivity × × ×

Generation marking × × × × ×

Delete suppression × × × × × ×

Consistent metadata × × ×

Data-metadata coupling ×

Table 2: File system properties. The table summarizes the
various properties exhibited by each of the file systems we study.

b, one can look in entry b of the FAT to find the next block
of the file, and so forth. An entry can also hold an end-
of-file marker or a setting that indicates the block is free.
Unlike UNIX file systems, where most information about
a file is found in its inode, a VFAT file system spreads this
information across the FAT itself and the directory entries;
the FAT is used to track which blocks belong to the file,
whereas the directory entry contains information like size,
type information and a pointer to the start block of the file.
Similar to ext2, VFAT does not preserve any ordering in
its delayed updates.

4.2 Properties
The update behavior of the file system has a direct influ-
ence on the techniques through which liveness informa-
tion can be imparted to the storage system. Based on our
experience with the aforementioned file systems, we iden-
tify high-level file system properties that are relevant to
liveness tracking. Table 2 summarizes these properties.
Reuse ordering: If the file system guarantees that it will
not reuse disk blocks until the freed status of the block
(e.g., bitmaps or other metadata that pointed to the block)
reaches disk, the file system exhibits reuse ordering. This
property is necessary (but not sufficient) to ensure data in-
tegrity; in the absence of this property, a file could end
up with partial contents from some other deleted file af-
ter a crash, even in a journaling file system. While VFAT
and the asynchronous mode of ext2 do not have reuse or-
dering, all three modes of ext3, and ext2 in synchronous
mode, exhibit reuse ordering.
Block exclusivity: Block exclusivity requires that for ev-
ery disk block, there is at most one dirty copy of the block
in the file system cache. It also requires that the file sys-
tem employ adequate locking to prevent any update to the
in-memory copy while the dirty copy is being written to
disk. This property holds for certain file systems such as
ext2 and VFAT. However, ext3 does not conform to this
property. Because of its snapshot-based journaling, there
can be two dirty copies of the same metadata block, one
for the “previous” transaction being committed and the
other for the current transaction.
Generation marking: The generation marking property
requires that the file system track reuse of file pointer ob-

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 383

jects (e.g., inodes) with version numbers. Both the ext2
and ext3 file systems conform to this property; when an
inode is deleted and reused for a different file, the ver-
sion number of the inode is incremented. VFAT does not
exhibit this property.
Delete suppression: A basic optimization found in most
file systems is to suppress writes of deleted blocks. All
file systems we discuss obey this property for data blocks.
VFAT does not obey this property for directory blocks.
Consistent metadata: This property indicates whether
the file system conveys a consistent metadata state to the
storage system. All journaling file systems exhibit the
consistent metadata property; transaction boundaries in
their on-disk log implicitly convey this information. Ext2
and VFAT do not exhibit this property.
Data-metadata coupling: Data-metadata coupling
builds on the consistent metadata property, and it requires
the notion of consistency to be extended also to data
blocks. In other words, a file system conforming to this
property conveys a consistent metadata state together with
the set of data blocks that were dirtied in the context of
that transaction. Among the file systems we consider, only
ext3 in data journaling mode conforms to this property.

5 Explicit Liveness Notification
We now proceed to the techniques for imparting var-
ious forms of liveness information to storage systems.
In this section, we discuss the explicit notification ap-
proach, where we assume that special allocate and
free commands are added to SCSI. As an optimization,
we obviate the need for an explicit allocate command
by treating a write to a previously freed block as an im-
plicit allocate. Although modifying file systems to
use this interface may seem trivial, we find that supporting
the free command has ramifications in the consistency
management of the file system under crashes.

We have modified the Linux ext2 and ext3 file systems
to use this free command to communicate liveness in-
formation; we discuss the issues therein. The free com-
mand is implemented as an ioctl to a pseudo-device driver,
which serves as our enhanced disk prototype.

5.1 Granularity of free notification
One issue that arises with explicit notification is the ex-
act semantics of the free command, given the various
granularities of liveness outlined in Section 3. For exam-
ple, if only block liveness or content liveness needs to be
tracked, the file system can be lazy about initiating free
commands (thus suppressing free to blocks that are sub-
sequently reused). For generation liveness, the file system
needs to notify the disk of every delete of a block whose
contents reached disk in the context of the deleted file.
However, given multiple intermediate layers of buffering,
the file system may not know exactly whether the contents
of a block reached disk in the context of a certain file.

To simplify file system implementation, the file system
should not be concerned about what form of liveness a
particular disk functionality requires. In our approach, the
file system invokes the free command for every logi-
cal delete. On receiving a free command for a block,
the disk marks the block dead in its internal allocation
structure (e.g., a bitmap), and on a write, it marks the
corresponding block live. The responsibility for mapping
these free commands to the appropriate form of liveness
information lies with the disk. For example, if the disk
needs to track generation deaths, it will only be interested
in a free command to a block that it thinks is live (as
indicated by its internal bitmaps); a redundant free to a
block that is already free within the disk (which happens
if the block is deleted before being written to disk) will
not be viewed as a generation death. For correct opera-
tion, the file system should guarantee that it will not write
a block to disk without a prior allocation; if the write it-
self is treated as an implicit allocate, this guarantee is
the same as the delete suppression property. A write to
a freed block without an allocation will result in incorrect
conclusion of generation liveness within the disk. Note
that after a free is issued for a block, the disk can safely
use that block, possibly erasing its contents.

5.2 Timeliness of free notification
Another important issue that arises in explicit notification
of a free is when the file system issues the notification.
One option is immediate notification, where the file sys-
tem issues a “free” immediately when a block gets deleted
in memory. Unfortunately, this solution can result in loss
of data integrity in certain crash scenarios. For example,
if a crash occurs immediately after the free notification
for a block B but before the metadata indicating the corre-
sponding delete reaches disk, the disk considers block B
as dead, while upon recovery the file system views block
B as live since the delete never reached disk. Since a live
file now contains a freed block, this scenario is a violation
of data integrity. While such violations are acceptable in
file systems such as ext2 which already have weak data in-
tegrity guarantees, file systems that preserve data integrity
(such as ext3) need to delay notification until the effect of
the delete reaches disk.

Delayed notification requires the file system to conform
to the reuse ordering property; otherwise, if the block
is reused (and becomes live within the file system) be-
fore the effect of the previous delete reaches disk, the
delayed free command would need to be suppressed,
which means the disk would miss a generation death.

5.3 Orphan allocations
Finally, explicit notification needs to handle the case of or-
phan allocations, where the file system considers a block
dead while the disk considers it live. Assume that a block
is newly allocated to a file and is written to disk in the con-

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association384

text of that file. If a crash occurs at this point (but before
the metadata indicating the allocation is written to disk),
the disk would assume that the block is live, but on restart,
the file system views the block as dead. Since the on-disk
contents of the block belong to a file that is no longer ex-
tant in the file system, the block has suffered a generation
death, but the disk does not know of this. The free no-
tification mechanism should enable accurate tracking of
liveness despite orphan allocations. Handling orphan al-
locations is file system specific, as we describe below.

5.4 Explicit notification in ext2
As mentioned above, because ext2 does not provide data
integrity guarantees on a crash, the notification of deletes
can be immediate; thus ext2 invokes the free com-
mand synchronously whenever a block is freed in mem-
ory. Dealing with orphan allocations in ext2 requires a
relatively simple but expensive operation; upon recovery,
the fsck utility conservatively issues free notifications to
every block that is currently dead within the file system.

5.5 Explicit notification in ext3
Because ext3 guarantees data integrity in its ordered and
data journaling modes, free notification in ext3 has to
be delayed until the effect of the corresponding delete
reaches disk. In other words, the notification has to be de-
layed until the transaction that performed the delete com-
mits. Therefore, we record an in-memory list of blocks
that were deleted as part of a transaction, and issue free
notifications for all those blocks when the transaction
commits. Since ext3 already conforms to the reuse or-
dering property, such delayed notification is feasible.

However, a crash could occur during the invocation of
the free commands (i.e., immediately after the com-
mit of the transaction); therefore, these free operations
should be redo-able on recovery. For this purpose, we also
log special free records in the journal which are then re-
played on recovery, as part of the delete transaction.

During recovery, since there can be multiple commit-
ted transactions which will need to be propagated to their
on-disk locations, a block deleted in a transaction could
have been reallocated in a subsequent committed transac-
tion. Thus, we cannot replay all logged free commands.
Given our guarantee of completing all free commands
for a transaction before committing the next transaction,
we should only replay free commands for the last suc-
cessfully committed transaction in the log (and not for any
earlier committed transactions that are replayed).

To deal with orphan allocations, we log block numbers
of data blocks that are about to be written, before they are
actually written to disk. On recovery, ext3 can issue free
commands to the set of orphan data blocks that were part
of the uncommitted transaction.

6 Implicit Liveness Detection
In this section, we analyze various issues in implicit detec-
tion of liveness from within the storage system. Implicit
liveness inference requires the storage system to have se-
mantic understanding [24] of the on-disk format of the
file system running above, coupled with careful observa-
tion of file system traffic. Because implicit liveness de-
tection is file system dependent, we discuss the feasibility
and generality of implicit liveness detection by consider-
ing three different file systems: ext2, ext3, and VFAT. In
Section 8, we discuss our initial experience with implicit
detection underneath the Windows NTFS file system.

Among the different forms of liveness we address, we
only consider the granularity and accuracy axes men-
tioned in Section 3. Along the accuracy axis, we con-
sider accurate and approximate inferences; the approxi-
mate instance refers to a strict over-estimate of the set of
live entities. On the timeliness axis, we address the more
common (and complex) case of lack of timely informa-
tion; under most modern file systems that delay metadata
updates, timeliness is not guaranteed. With guarantees of
timeliness (e.g., under a synchronously mounted file sys-
tem), implicit inference of liveness is trivial [24].

6.1 Content liveness
As discussed in Section 3, when the disk observes a write
of new contents to a live data block, it can infer that the
previous contents stored in that block has suffered a con-
tent death. However, to be completely accurate, content
liveness inference requires information on block liveness.

6.2 Block liveness
Block liveness information enables a storage system to
know whether a given block contains valid data at any
given time. To track block liveness, the storage system
monitors updates to structures tracking allocation. In ext2
and ext3, there are specific data bitmap blocks which con-
vey this information; in VFAT this information is embed-
ded in the FAT itself, as each entry in the FAT indicates
whether or not the corresponding block is free. Thus,
when the file system writes an allocation structure, the
storage system examines each entry and concludes that
the relevant block is either dead or live.

Because allocation bitmaps are buffered in the file sys-
tem and written out periodically, the liveness information
that the storage system has is often stale, and does not
account for new allocations (or deletes) that occurred dur-
ing the interval. Table 3 depicts a time line of operations
which leads to an incorrect inference by the storage sys-
tem. The bitmap block MB tracking the liveness of B
is written in the first step indicating B is dead. Subse-
quently, B is allocated to a new file I1 and written to disk
while MB (now indicating B as live) is still buffered in
memory. At this point, the disk wrongly believes that B
is dead while the on-disk contents of B are actually valid.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 385

Operation In-memory On-disk
Initial MB ⇒ B free
MB write to disk B free
I1 alloc I1 → B

MB ⇒ B alloc
B write to disk B written
Liveness belief B live B free

Table 3: Naive block liveness detection. The table depicts a
time line of events that leads to an incorrect liveness inference.
This problem is solved by the shadow bitmap technique.

To address this inaccuracy, the disk tracks a shadow
copy of the bitmaps internally [23]; whenever the file sys-
tem writes a bitmap block, the disk updates its shadow
copy with the copy written. In addition, whenever a data
block is written to disk, the disk pro-actively sets the cor-
responding bit in its shadow bitmap copy to indicate that
the block is live. In the above example, the write of B
leads the disk to believe that B is live, thus preventing the
incorrect conclusion from being drawn.

6.2.1 File system properties for block liveness
The shadow bitmap technique tracks block liveness ac-
curately only underneath file systems that obey either the
block exclusivity or data-metadata coupling property.

Block exclusivity guarantees that when a bitmap block
is written, it reflects the current liveness state of the rel-
evant blocks. If the file system tracks multiple snapshots
of the bitmap block (e.g., ext3), it could write an old ver-
sion of a bitmap block MB (indicating B is dead) after a
subsequent allocation and write of B. The disk would thus
wrongly infer that B is dead while in fact the on-disk con-
tents of B are valid, since it belongs to a newer snapshot;
such uncertainty complicates block liveness inference.

If the file system does not exhibit block exclusivity,
block liveness tracking requires the file system to exhibit
data-metadata coupling, i.e., to group metadata blocks
(e.g., bitmaps) with the actual data block contents in a
single consistent group; file systems typically enforce
such consistent groups through transactions. By observ-
ing transaction boundaries, the disk can then reacquire the
temporal information that was lost due to lack of block
exclusivity. For example, in ext3 data journaling mode, a
transaction would contain the newly allocated data blocks
together with the bitmap blocks indicating the allocation
as part of one consistent group. Thus, at the commit point,
the disk conclusively infers liveness state from the state of
the bitmap blocks in that transaction. Since data writes to
the actual in-place locations occur only after the corre-
sponding transaction commits, the disk is guaranteed that
until the next transaction commit, all blocks marked dead
in the previous transaction will remain dead. In the ab-
sence of data-metadata coupling, a newly allocated data
block could reach its in-place location before the corre-
sponding transaction commits, and thus will become live
in the disk before the disk detects it.

Operation In-memory On-disk
Initial MB ⇒ B alloc B live

I1 → B I1 → B

B write to disk B written
I1 delete MB ⇒ B free
I2 alloc I2 → B

MB ⇒ B alloc
MB write to disk B live
Liveness belief (Missed gen. death)

Table 4: Missed generation death under block liveness. The
table shows a scenario to illustrate that simply tracking block
liveness is insufficient to track generation deaths.

For accuracy, block liveness also requires the file sys-
tem to conform to the delete suppression property; if
delete suppression does not hold, a write of a block does
not imply that the file system views the block as live, and
thus the shadow bitmap technique will overestimate the
set of live blocks until the next bitmap write. From Ta-
ble 2, ext2, VFAT, and ext3 in data journaling mode thus
readily facilitate block liveness detection.

6.3 Generation liveness
Generation liveness is a stronger form of liveness than
block liveness, and hence builds upon the same shadow
bitmap technique. With generation liveness, the goal is to
find, for each on-disk block, whether a particular “gener-
ation” of data (e.g., that corresponding to a particular file)
stored in that block is dead. Thus, block liveness is a spe-
cial case of generation liveness; a block is dead if the latest
generation that was stored in it is dead. Conversely, block
liveness information is not sufficient to detect generation
liveness because a block currently live could have stored
a dead generation in the past. Table 4 depicts this case.
Block B initially stores a generation of inode I1, and the
disk thinks that block B is live. I1 is then deleted, freeing
up B, and B is immediately reallocated to a different file
I2. When MB is written the next time, B continues to be
marked live. Thus, the disk missed the generation death
of B that occurred between these two bitmap writes.

6.3.1 Generation liveness under reuse ordering
Although tracking generation liveness is in general more
challenging, a file system that follows the reuse ordering
property makes it simple to track. With reuse ordering,
before a block is reused in a different file, the deleted
status of the block reaches disk. In the above example,
before B is reused in I2, the bitmap block MB will be
written, and thus the disk can detect that B is dead. In
the presence of reuse ordering, tracking block liveness ac-
curately implies accurate tracking of generation liveness.
File systems such as ext3 that conform to reuse ordering,
thus facilitate accurate tracking of generation liveness.

6.3.2 Generation liveness without reuse ordering
Underneath file systems such as ext2 or VFAT that do not
exhibit the reuse ordering property, tracking generation

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association386

liveness requires the disk to look for more detailed in-
formation. Specifically, the disk needs to monitor writes
to metadata objects that link blocks together into a single
logical file (such as the inode and indirect blocks in ext2,
the directory and FAT entries in VFAT). The disk needs to
explicitly track the “generation” a block belongs to. For
example, when an inode is written, the disk records that
the block pointers belong to the specific inode.

With this extra knowledge about the file to which each
block belongs, the disk can identify generation deaths by
looking for changes in ownership. For example, in Ta-
ble 4, if the disk tracked that B belongs to I1, then even-
tually when I2 is written, the disk will observe a change of
ownership, because I2 owns a block that I1 owned in the
past; the disk can thus conclude that a generation death
must have occurred in between.

A further complication arises when instead of being
reused in I2, B is reused again in I1, now representing
a new file. Again, since B now belongs to a new gen-
eration of I1, this scenario has to be detected as a gen-
eration death, but the ownership change monitor would
miss it. To detect this case, we require the file system to
track reuse of inodes (i.e., the generation marking prop-
erty). Ext2 already maintains such a version number, and
thus enables detection of these cases of generation deaths.
With version numbers, the disk now tracks for each block
the “generation” it belonged to (the generation number
is a combination of the inode number and the version
number). When the disk then observes an inode written
with an incremented version number, it concludes that all
blocks that belonged to the previous version of the inode
should have incurred a generation death. We call this tech-
nique generation change monitoring.

Finally, it is pertinent to note that the generation live-
ness detection through generation change monitoring is
only approximate. Let us assume that the disk observes
that block B belongs to generation G1, and at a later
time observes that B belongs to a different generation G2.
Through generation change monitoring, the disk can con-
clude that there was a generation death of B that occurred
in between. However, the disk cannot know exactly how
many generation deaths occurred in the relevant period.
For example, after being freed from G1, B could have
been allocated to G3, freed from G3 and then reallocated
to G2, but the disk never saw G3 owning B due to delayed
write of G3. However, as we show in our case study, this
weaker form of generation liveness is still quite useful.

A summary of the file system properties required for
various forms of implicit liveness inference is presented
in Table 5.

7 Case Study: Secure Delete
To demonstrate our techniques for imparting liveness to
storage, we present the design, implementation, and eval-
uation of a secure deleting disk under both explicit and im-

Liveness type Properties
BlockApprox Block exclusivity or Data-metadata coupling
BlockAccurate [BlockApprox] + Delete suppression
GenerationApprox [BlockApprox] + Generation marking
GenerationAccurate [BlockAccurate] + Reuse ordering

Table 5: FS properties for implicit liveness detection.
Approx indicates the set of live entities is over-estimated.

plicit approaches. We first describe implicit secure delete
in detail, and then briefly discuss explicit secure delete.

There are two primary reasons why we chose secure
deletion as our case study. First, secure delete requires
tracking of generation liveness, which is the most chal-
lenging to track. Second, secure delete uses the liveness
information in a context where correctness is paramount.
A false positive in detecting a delete would lead to irrevo-
cable deletion of valid data, while a false negative would
result in the long-term recoverability of deleted data (a vi-
olation of secure deletion guarantees). Compared to pre-
vious work [24] which functioned only under a simplistic
assumption of a synchronously mounted file system, we
demonstrate that accurate inference of liveness is feasible
underneath a variety of modern file system behaviors.

Our implicit secure deletion prototype is called FADED
(A File-Aware Data-Erasing Disk); FADED works under-
neath three different file systems: ext2, VFAT, and ext3.
Because of its complete lack of ordering guarantees, ext2
presented the most challenges. Specifically, since ext2
does not have the reuse ordering property, detecting gen-
eration liveness requires tracking generation information
within the disk, as described in Section 6.3. We there-
fore mainly focus on the implementation of FADED un-
derneath ext2, and finally discuss some key differences in
our implementation for other file systems.

7.1 Goals of FADED
The desired behavior of FADED is as follows: for every
block that reaches the disk in the context of a certain file F,
the delete of file F should trigger a secure overwrite (i.e.,
shred) of the block. This behavior corresponds to the no-
tion of generation liveness defined in Section 3. A shred
involves multiple overwrites to the block with specific pat-
terns so as to erase remnant magnetic effects of past lay-
ers (that could otherwise be recovered through techniques
such as magnetic scanning tunneling microscopy [12]).
Recent work suggests that two such overwrites are suf-
ficient to ensure non-recoverability in modern disks [14].

Traditionally, secure deletion is implemented within the
file system [3, 25, 26]; however, such implementations
are unreliable given modern storage systems. First, for
high security, overwrites need to be off-track writes (i.e.,
writes straggling physical track boundaries), which ex-
ternal erase programs (e.g., the file system) cannot per-
form [13]. Further, if the storage system buffers writes in
NVRAM [32], multiple overwrites done by the file system

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 387

may be collapsed into a single write to the physical disk,
making the overwrites ineffective. Finally, in the presence
of block migration [7, 32] within the storage system, an
overwrite by the file system will only overwrite the current
block location; stray copies of deleted data could remain.
Thus, the storage system is the proper locale to implement
secure deletion.

Note that FADED operates at the granularity of an en-
tire volume; there is no control over which individual files
are shredded. However, this limitation can be dealt with
by storing “sensitive” files in a separate volume on which
the secure delete functionality is enabled.

7.2 Basic operation
As discussed in Section 6.3, FADED monitors writes to
inode and indirect blocks and tracks the inode generation
to which each block belongs. It augments this information
with the block liveness information it collects through the
shadow bitmap technique. Note that since ext2 obeys the
block exclusivity and delete suppression properties, block
liveness detection is reliable. Thus, when a block death is
detected, FADED can safely shred that block.

On the other hand, if FADED detects a generation death
through the ownership change or generation change mon-
itors (i.e., the block is live according to the block liveness
module), FADED cannot simply shred the block, because
FADED does not know if the current contents of the block
belong to the generation that was deleted, or to a new gen-
eration that was subsequently allocated the same block
due to block reuse. If the current contents of the block
are valid, a shredding of the block would be catastrophic.

We deal with such uncertainty through a conservative
approach to generation-death inference. By being conser-
vative, we convert an apparent correctness problem into
a performance problem, i.e., we may end up performing
more overwrites than required. Fundamental to this ap-
proach is the notion of a conservative overwrite.

7.2.1 Conservative overwrites
A conservative overwrite of block B erases past layers of
data on the block, but leaves the current contents of B
intact. Thus, even if FADED does not know whether a
subsequent valid write occurred after a predicted gener-
ation death, a conservative overwrite on block B will be
safe; it can never shred valid data. To perform a conserva-
tive overwrite of block B, FADED reads the block B into
non-volatile RAM, then performs a normal secure over-
write of the block with the specific pattern, and ultimately
restores the original data back into block B.

The problem with a conservative overwrite is that if
the block contents that are restored after the conservative
overwrite are in fact the old data (which had to be shred-
ded), the conservative overwrite was ineffective. In this
case, FADED can be guaranteed to observe one of two
things. First, if the block had been reused by the file sys-

tem for another file, the new, valid data will be written
eventually (i.e., within the delayed write interval of the
file system). When FADED receives this new write, it
buffers the write, and before writing the new data to disk,
FADED performs a shred of the concerned block once
again; this time, FADED knows that it need not restore
the old data, because it has the more recent contents of
the block. To identify which writes to treat in this special
manner, FADED tracks the list of blocks that were sub-
jected to a conservative overwrite in a suspicious blocks
list, and a write to a block in this list will be committed
only after a secure overwrite of the block; after the sec-
ond overwrite, the block is removed from the suspicious
list. Note that the suspicious list needs to be stored persis-
tently, perhaps in NVRAM, in order to survive crashes.

Second, if the block is not reused by the file system im-
mediately, then FADED is guaranteed to observe a bitmap
reset for the corresponding block, which will be flagged as
a block death by the block liveness detector. Since block
liveness tracking is reliable, FADED can now shred the
block again, destroying the old data. Thus, in both cases
of wrongful restore of old data, FADED is guaranteed to
get another opportunity to make up for the error.

7.2.2 Cost of conservatism
Conservative overwrites come with a performance cost;
every conservative overwrite results in the concerned
block being treated as “suspicious”, regardless of whether
the data restored after the conservative overwrite was the
old or new data, because FADED has no information to
find it at that stage. Because of this uncertainty, even
if the data restored were the new data (and hence need
not be overwritten again), a subsequent write of the block
in the context of the same file would lead to a redundant
shredding of the block. Here we see one example of the
performance cost FADED pays to circumvent the lack of
perfect information.

7.3 Coverage of deletes
In the previous subsection, we showed that for all genera-
tion deaths detected, FADED ensures that the appropriate
block version is overwritten, without compromising valid
data. However, for FADED to achieve its goals, these de-
tection techniques must be sufficient to identify all cases
of deletes at the file system level that need to be shredded.
In this section, we show that FADED can indeed detect all
deletes, but requires two minor modifications to ext2.

7.3.1 Undetectable deletes
Because of the weak properties of ext2, certain deletes can
be missed by FADED. We present the two specific situ-
ations where identification of deletes is impossible, and
then propose minor changes to ext2 to fix those scenarios.
File truncates: The generation change monitor assumes
that the version number of the inode is incremented when
the inode is reused. However, the version number in ext2

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association388

Operation In-memory On-disk
Initial I1 → B

Ind
I1 → B

Ind

I1 delete B free
I2 alloc I2 → B

B write to disk I1 → B
Ind

(wrong type)

Table 6: Misclassified indirect block. The table shows a
scenario where a normal data block is misclassified as an indi-
rect block. BInd indicates that B is treated as an indirect block.
Reuse ordering for indirect blocks prevents this problem.

is only incremented on a complete delete and reuse; par-
tial truncates do not affect the version number. Thus if a
block is freed due to a partial truncate and is reassigned
to the same file, FADED misses the generation death. Al-
though such a reuse after a partial truncate could be argued
as a logical overwrite of the file (and thus, not a delete),
we adopt the more complex (and conservative) interpreta-
tion of treating it as a delete.

To handle such deletes, we propose a small change to
ext2; instead of incrementing the version number on a re-
allocation of the inode, we increment it on every trun-
cate. Alternatively, we could introduce a separate field
to the inode that tracks this version information. This is a
non-intrusive change, but is effective at providing the disk
with the requisite information. This technique could re-
sult in extra overwrites in the rare case of partial truncates,
but correctness is guaranteed because the “spurious” over-
writes would be conservative and would leave data intact.
Reuse of indirect blocks: A more subtle problem arises
due to the presence of indirect pointer blocks. Indirect
blocks share the data region of the file system with other
user data blocks; thus the file system can reuse a normal
user data block as an indirect block and vice versa. In the
presence of such dynamic typing, the disk cannot reliably
identify an indirect block [23].

The only way FADED can identify a block B as an
indirect block is when it observes an inode I1 that contains
B in its indirect pointer field. FADED then records the
fact that B is an indirect block. However, when it later
observes a write to B, FADED cannot be certain that the
contents indeed are those of the indirect block, because in
the meanwhile I1 could have been deleted, and B could
have been reused as a user data block in a different inode
I2. This scenario is illustrated in Table 6.

Thus, FADED cannot trust the block pointers in a sus-
pected indirect block; this uncertainty can lead to missed
deletes in certain cases. To prevent this occurrence, a data
block should never be misclassified as an indirect block.
To ensure this, before the file system allocates, and imme-
diately after the file system frees an indirect block BInd,
the concerned data bitmap block MBInd should be flushed
to disk, so that the disk will know that the block was freed.
Note that this is a weak form of reuse ordering only for in-
direct blocks. As we show later, this change has very little

Operation In-memory On-disk
Initial B free B free
I1 alloc I1 → B

B write to disk B written
I1 delete B free
I2 alloc I2 → B

I2 write to disk I2 → B

(Missed delete of B)

Table 7: Missed delete due to an orphan write. The table
illustrates how a delete can be missed if an orphan block is not
treated carefully. Block B, initially free, is allocated to I1 in
memory. Before I1 is written to disk, B is written. I1 is then
deleted and B reallocated to I2. When I2 is written, FADED
would associate B with I2 and would miss the overwrite of B.

impact on performance, since indirect blocks tend to be a
very small fraction of the set of data blocks.
Practicality of the changes: The two changes dis-
cussed above are minimal and non-intrusive; the changes
together required modification of 12 lines of code in ext2.
Moreover, they are required only because of the weak or-
dering guarantees of ext2. In file systems such as ext3
which exhibit reuse ordering, these changes are not re-
quired. Our study of ext2 is aimed as a limit study of the
minimal set of file system properties required to reliably
implement secure deletion at the disk.

7.3.2 Orphan allocations
Implicit block liveness tracking in FADED already ad-
dresses the orphan allocation issue discussed in § 5.3;
when ext2 recovers after a crash, the fsck utility writes out
a copy of all bitmap blocks; the block liveness monitor in
FADED will thus detect death of those orphan allocations.

7.3.3 Orphan writes
Due to arbitrary ordering in ext2, FADED can observe a
write to a newly allocated data block before it observes the
corresponding owning inode. Such orphan writes need to
be treated carefully because if the owning inode is deleted
before being written to disk, FADED will never know that
the block once belonged to that inode. If the block is
reused in another inode, FADED would miss overwriting
the concerned block which was written in the context of
the old inode. Table 7 depicts such a scenario.

One way to address this problem is to defer orphan
block writes until FADED observes an owning inode [23],
a potentially memory-intensive solution. Instead, we use
the suspicious block list used in conservative overwrites
to also track orphan blocks. When FADED observes a
write to an orphan block B, it marks B suspicious; when
a subsequent write arrives to B, the old contents are shred-
ded. Thus, if the inode owning the block is deleted before
reaching disk, the next write of the block in the context
of the new file will trigger the shred. If the block is not
reused, the bitmap reset will indicate the delete.

This technique results in a redundant secure overwrite
anytime an orphaned block is overwritten by the file sys-

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 389

Persistent

liveness
monitor

Block

Block−to−inode
mapping

Overwrite
thread

data
Delayed overwrites

Suspicious list

Shadow bitmaps

monitor

Generation
change

Figure 1: Key components of FADED.

tem in the context of the same file, again a cost we pay for
conservatism. Note that this overhead is incurred only the
first time an orphan block is overwritten.

7.3.4 Guaranteed detection of deletes
With these techniques, we can prove that for every block
B that is deleted by the file system after it has reached
disk, FADED always overwrites the deleted contents of
B. The proof is presented in Appendix A.

7.4 Delayed overwrites
Multiple overwrites of the same block cause additional
disk I/Os that can hurt performance if incurred on the crit-
ical path. For better performance, FADED delays over-
writes until idle time in the workload [11] (or option-
ally, until up to n minutes of detection). Thus, whenever
FADED decides to shred a block, it just queues it; a low
priority thread services this queue if FADED had not ob-
served useful foreground traffic for more than a certain du-
ration. Delayed overwrites help FADED to present writes
to the disk in a better, sequential ordering, besides re-
ducing the impact on foreground performance. Delaying
also reduces the number of overwrites if the same block is
deleted multiple times. The notion of conservative over-
writes is crucial to delaying overwrites arbitrarily, even
after the block that had to be overwritten is written in the
context of a new file. Note that if immediate shredding is
required, the user needs to perform a sync.

A summary of the key data structures and components
of FADED is presented in Figure 1.

7.5 FADED for other file systems
We have also implemented FADED underneath other file
systems, and in each case, validated our implementation
with the same testing methodology as will be described in
Section 7.7. However, due to space constraints, we only
point to the key differences we observed relative to ext2.

7.5.1 FADED for VFAT
Like ext2, VFAT also does not conform to reuse order-
ing, so FADED needs to track generation information
for each block in order to detect deletes. One key dif-
ference in VFAT compared to ext2 is that there are no
pre-allocated, uniquely addressable “inodes”, and conse-
quently, no “version” information as well. Dynamically

allocated directory blocks contain a pointer to the start
block of a file; the FAT chains the start block to the other
blocks of the file. Thus, detecting deletes reliably under-
neath unmodified VFAT is impossible. We therefore in-
troduced an additional field to a VFAT directory entry that
tracks a globally unique generation number. The genera-
tion number gets incremented on every create and delete
in the file system, and a newly created file is assigned
the current value of generation number. With this small
change (29 lines of code) to VFAT, the generation change
monitor accurately detects all deletes of interest.

7.5.2 FADED for ext3
Since ext3 exhibits reuse ordering, tracking generation
liveness in ext3 is the same as tracking block liveness.
However, since ext3 does not obey the block exclusivity
property, tracking block liveness accurately is impossible
except in the data journaling mode which has the useful
property of data-metadata coupling. For the ordered and
writeback modes, we had to make a small change: when
a metadata transaction is logged, we also made ext3 log
a list of data blocks that were allocated in the transaction.
This change (95 lines of code), coupled with the reuse or-
dering property, enables accurate tracking of deletes.

7.6 Explicit secure delete
We have also built secure deletion under the explicit no-
tification framework. We modified the ext2 and ext3 file
systems to notify the disk of every logical delete (as de-
scribed in §5). The file system modifications accounted
for 14 and 260 lines of code respectively. Upon receiving
the notification, the disk decides to shred the block. How-
ever, similar to FADED, the disk delays overwrites until
idle time to minimize impact on foreground performance.

7.7 Evaluation
In this section, we evaluate our implicit and explicit im-
plementations of secure delete. The enhanced disk is im-
plemented as a pseudo-device driver in the Linux 2.4 ker-
nel; the driver observes the same information as a hard-
ware prototype, but suffers contention for CPU and mem-
ory from the host. We use a 2.4 GHz Pentium-4 with 1 GB
RAM and a 10K RPM IBM 9LZX disk. Due to space con-
straints, we provide results only for the ext2 version.

7.7.1 Correctness and accuracy
To test whether our FADED implementation detected all
deletes of interest, we instrument the file system to log
every delete, and correlate it with the log of writes and
overwrites by FADED, to capture cases of unnecessary
or missed overwrites. We tested our system on various
workloads with this technique, including a few busy hours
from the HP file system traces [19]. Table 8 presents the
results of this study on the trace hour 09 00 of 11/30/00.

In this experiment, we ran FADED under four versions
of Linux ext2. In the first, marked “No changes”, a default

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association390

Config Delete Overwrite Excess Miss
No changes 76948 68700 11393 854
Indirect 76948 68289 10414 28
Version 76948 69560 11820 0
Both 76948 67826 9610 0

Table 8: Correctness and accuracy. The table shows the
number of overwrites performed by the FADED under various
configurations of ext2. The columns (in order) indicate the num-
ber of blocks deleted within the file system, the total number
of logical overwrites performed by FADED, the number of un-
necessary overwrites, and the number of overwrites missed by
FADED. Note that deletes that occurred before the correspond-
ing data write do not require an overwrite.

Config Reads Writes Run-time(s)
No changes 394971 234664 195.0
Version 394931 234648 195.5
Both 394899 235031 200.0

Table 9: Impact of FS changes on performance. The per-
formance of the various file system configurations under a busy
hour of the HP Trace is shown. For each configuration, we show
the number of blocks read and written, and the trace run-time.

ext2 file system was used. In “Indirect”, we used ext2
modified to obey reuse ordering for indirect blocks. In
“Version”, we used ext2 modified to increment the inode
version number on every truncate, and the “Both” con-
figuration represents both changes (the correct file system
implementation required for FADED). The third column
gives a measure of the extra work FADED does in order
to cope with inaccurate information. The last column in-
dicates the number of missed overwrites; in a correct sys-
tem, the fourth column should be zero.

We can see that the cost of inaccuracy is quite rea-
sonable; FADED performs roughly 14% more overwrites
than the minimal amount. Also note that without the ver-
sion number modification to ext2, FADED indeed misses
a few deletes. The reason no missed overwrites are re-
ported for the “Version” configuration is the rarity of the
case involving a misclassified indirect block.

7.7.2 Performance impact of FS changes
We next evaluate the performance impact of the two
changes we made to ext2, by running the same HP trace
on different versions of ext2. Table 9 shows the results.
As can be seen, even with both changes, the performance
reduction is only about 2% and the number of blocks writ-
ten is marginally higher due to synchronous bitmap writes
for indirect block reuse ordering. We thus conclude that
the changes are quite practical.

7.7.3 Performance of secure delete
We now explore the foreground performance of implicit
and explicit secure delete, and the cost of overwrites.
Foreground performance impact: Tracking block and
generation liveness requires FADED to perform extra pro-
cessing. This cost of reverse engineering directly impacts
application performance because it is incurred on the crit-

Run-time (s)
System Implicit Explicit

PostMark HP Trace HP Trace
Default 166.8 200.0 195.0
SecureDelete2 177.7 209.6 195.5
SecureDelete4 178.4 209.0 196.8
SecureDelete6 179.0 209.3 196.4

Table 10: Foreground impact: Postmark and HP trace. The
run-times for Postmark and the HP trace are shown for FADED,
with 2, 4 and 6 overwrite passes. For comparison, the run-time
of explicit secure delete on the HP Trace is also shown. Post-
mark was configured with 40K files and 40K transactions.

ical path of every disk operation. We quantify the impact
of this extra processing required at FADED on foreground
performance. Since our software prototype competes for
CPU and memory resources with the host, these are worst
case estimates of the overheads.

We run the Postmark file system benchmark [15] and
the HP trace on a file system running on top of FADED.
Postmark is a metadata intensive small-file benchmark,
and thus heavily exercises the inferencing mechanisms of
FADED. To arrive at a pessimistic estimate, we perform
a sync at the end of each phase of Postmark, causing all
disk writes to complete and account that time in our re-
sults. Note that we do not wait for completion of delayed
overwrites. Thus, the numbers indicate the performance
perceived by the foreground task.

Table 10 compares the performance of FADED both
with a default disk and with explicit secure delete. From
the table, we can see that even for 4 or 6 overwrite passes,
foreground performance is not affected much. Extra CPU
processing within FADED causes only about 4 to 7%
lower performance compared to the modified file system
running on a normal disk. The explicit implementation
performs better because it does not incur the overhead of
inference. Further, it does not require the file system mod-
ifications reported in Table 9 (this corresponds to the “No
changes” row in Table 9). Note that we do not model the
cost of sending a free command across the SCSI bus;
thus the overheads in the explicit case are optimistic.
Idle time required: We now quantify the cost
of performing overwrites for shredding. With micro-
benchmarks, we verified that the overwrites obtained near
sequential bandwidth due to their delayed, ordered issue.
We also found that when block reuse occurs within the file
system (resulting in multiple deletes to the same block),
delaying overwrites significantly reduces overwrite traf-
fic. We omit these results due to space constraints.

We next explore the time required for overwrites. First,
we use the same Postmark configuration as above, but
measure the time for the benchmark to complete includ-
ing delayed overwrites. Since Postmark deletes all files at
the end of its run, we face a worst case scenario where the
entire working set of the benchmark has to be overwrit-

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 391

Run-time with overwrites (s)
System Implicit Explicit

PostMark HP Trace HP Trace
Default 166.8 200.0 195.0
SecureDelete2 466.6 302.8 280.0
SecureDelete4 626.4 345.6 316.2
SecureDelete6 789.3 394.3 346.1

Table 11: Idle time requirement. The table shows the total
run-time of two benchmarks, Postmark and the HP trace. The
time reported includes completion of all delayed overwrites.

ten, accounting for the large overwrite times reported in
Table 11. In the HP-trace, the overwrite times are more
reasonable. Since most blocks deleted in the HP trace
are then reused in subsequent writes, most of the over-
writes performed here are conservative. This accounts
for the steep increase from 0 to 2 overwrite passes, in the
implicit case. The explicit implementation incurs 8-13%
lower overwrite times compared to FADED because it has
perfect information on deletes, and thus avoids extra over-
writes incurred due to conservatism.

8 Implicit Detection Under NTFS
In this section, we present our experience building sup-
port for implicit liveness detection underneath the Win-
dows NTFS file system. The main challenge we faced
underneath NTFS was the absence of source code for the
file system. While the basic on-disk format of NTFS is
known [27], details of its update semantics and journaling
behavior are not publicly available. As a result, our im-
plementation currently tracks only block liveness which
requires only knowledge of the on-disk layout; generation
liveness tracking could be implemented if the details of
NTFS journaling mechanism were known.

The fundamental piece of metadata in NTFS is the Mas-
ter File Table (MFT); each record in the MFT contains
information about a unique file. Every piece of metadata
in NTFS is treated as a regular file; file 0 is the MFT it-
self, file 2 is the recovery log, and so on. The allocation
status of all blocks in the volume is maintained in a file
called the cluster bitmap, which is similar to the block
bitmap tracked by ext2. On block allocations and dele-
tions, NTFS regularly writes out modified bitmap blocks.

Our prototype implementation runs as a device driver
in Linux, similar to the setup described earlier for other
file systems. The virtual disk on which we interpose is
exported as a logical disk to a virtual machine instance of
Windows XP running over VMware Workstation [30]. To
track block liveness, our implementation uses the same
shadow bitmap technique mentioned in Section 6.2. By
detailed empirical observation under long-running work-
loads, we found that NTFS did not exhibit any violation
of the block exclusivity and delete suppression properties
mentioned in Section 4.2; however, due to the absence
of source code, we cannot assert that NTFS always con-
forms to these properties. This limitation points to the

general difficulty of using implicit techniques underneath
closed-source file systems; one can never be certain that
the file system conforms to certain properties unless those
are guaranteed by the file system vendor. In the absence
of such guarantees, the utility of implicit techniques is
limited to optimizations that can afford to be occasionally
“wrong” in their implicit inference.

Our experience with NTFS also points to the utility of
characterizing the precise set of file system properties re-
quired for various forms of liveness inference. This set of
properties now constitutes a minimal “interface” for com-
munication between file system and storage vendors. For
example, if NTFS confirmed its conformance to the block
exclusivity and delete suppression properties, the storage
system could safely implement aggressive optimizations
that rely on its implicit inference.

9 Discussion
In this section, we reflect on the lessons learned from our
case study to refine our comparison on the strengths and
weaknesses of the explicit and implicit approaches.

The ideal scenario for the implicit approach is where
changes are required only in the storage system and not in
the file system or the interface. However, in practice, ac-
curate liveness detection requires certain file system prop-
erties, which means the file system needs to be modified
if it does not conform to those requisite properties. In the
face of such changes to both the storage system and the
file system, it might appear that the implicit approach is
not much more pragmatic than the explicit approach of
changing the interface also. There are two main reasons
why we believe the implicit approach is still useful.

First, file system changes are not required if the file sys-
tem already conforms to the requisite properties. For ex-
ample, many file systems (e.g. ext2, VFAT, ext3-data jour-
naling, and perhaps NTFS) are already amenable to block
liveness detection without any change to the file system.
The ext3 file system in data journaling mode already con-
forms to the properties required for generation liveness
detection. Clearly, in such cases, the implicit approach
enables non-intrusive deployment of functionality.

Second, we believe that modifying the file system to
conform to a set of well-defined properties is more gen-
eral than modifying the file system (and the interface) to
convey a specific piece of information. Although we have
discussed the file system properties from the viewpoint of
implicit liveness detection, some of the properties enable
richer information to be inferred; for example, the associ-
ation between a block and its owning inode (required for
certain applications such as file-aware layout [23]) can be
tracked accurately if the file system obeys the reuse or-
dering or the consistent metadata properties. Our ultimate
goal is to arrive at a set of properties that enable a wide
variety of information to be tracked implicitly, thus out-
lining how file systems may need to be designed to enable

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association392

such transparent extension within the storage system. In
contrast, the approach of changing the interface requires
introducing a new interface every time a different piece of
information is required.

10 Related Work
The need for liveness information in storage systems has
been recognized in previous work. In most existing pro-
posals, an interface to communicate liveness is a part of a
more radical set of changes to the existing storage inter-
face. For example, logical disks have a list-based interface
to storage which includes a command to “delete” a block
from a list [4]. More recent work suggests an object-like
interface to storage [17], which moves the responsibilities
of low-level storage management such as liveness track-
ing from the file system into the drives themselves. In
contrast to such wide-scale changes, our “explicit notifi-
cation” approach for imparting liveness is much less in-
trusive on the large body of file systems that utilize the
existing block-based interface to storage.

There has also been work on implementing “smarts”
within a storage system without interface change, simi-
lar to our implicit approach. Some of these systems uti-
lize a limited form of liveness inference. For example,
AutoRAID requires information on free space to decide
the amount of data that can be stored in RAID-1 [32];
AutoRAID infers that blocks that have not been written
ever, are dead. This inference is a weak form of liveness
because once a block is written, subsequent deletes can-
not be detected. Other systems such as the programmable
disk [31] make similar inferences. The existence of these
proposals indicates that liveness information is important
in storage systems, and yet systematic techniques for ac-
quiring such information have been missing.

Most related to the implicit techniques in this work is
our previous work on semantically-smart disks [24]. In
that work, we presented techniques by which a block-
based storage system can infer file system level informa-
tion and implemented a set of case studies such as track-
aligned extents, journaling, and secure delete. However,
all correctness-sensitive case studies implemented therein
required the file system to be synchronously mounted; un-
der synchronous file systems, implicit information track-
ing is trivial. Our more recent work on D-GRAID [23]
considered asynchronous file systems, but the layout
mechanisms of D-GRAID did not depend on accuracy for
correctness; it was acceptable in D-GRAID to get predic-
tions wrong. Also, fast recovery in D-GRAID utilized
block liveness (a much easier property to track than gener-
ation liveness) under specific assumptions on file system
behavior. In this work, we go beyond our previous work
by generalizing our techniques for inference underneath a
wide range of realistic file system behaviors, and demon-
strating that storage-level functionality where correctness
is paramount, can utilize this information reliably.

11 Conclusion
As system layers evolve

Explicit

Implicit

File System

Storage System

Interface

change

change

change
over time, interfaces be-
tween layers become ob-
solete or sub-optimal, ne-
cessitating their evolution.
We have presented two ap-
proaches for interface evo-
lution: explicit and im-
plicit, in the context of em-
bedding liveness informa-

tion into storage. A qualitative summary of the complex-
ity of the two approaches along various axes is presented
in the figure. We have shown that the explicit approach,
while appearing straightforward, entails a fair amount of
file system change in practice, besides requiring some
minimal support from the storage system. Despite these
factors, the explicit approach results in simpler systems
than the implicit case. The main strength of the implicit
approach is that it permits demonstration of functionality
without changes to the interface, thus enabling seamless
deployment while catalyzing rapid interface evolution.

Acknowledgments
We thank Nitin Agrawal, John Bent, Timothy Denehy, Todd
Jones, James Nugent, Florentina Popovici, and Vinod Yeg-
neswaran for their helpful comments. We also thank Mendel
Rosenblum for his excellent shepherding, the anonymous re-
viewers for their thoughtful feedback, and Gordon Hughes for
his useful comments on secure delete. This work is sponsored
by NSF CCR-0092840, CCR-0133456, CCR-0098274, NGS-
0103670, ITR-0086044, ITR-0325267, IBM and EMC.

References
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic

databases. In 28th VLDB, 2002.
[2] L. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive
Caching Mechanism for RAIDs. In ISCA ’04, 2004.

[3] S. Bauer and N. B. Priyantha. Secure Data Deletion for Linux File
Systems. In USENIX Security, August 2001.

[4] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical Disk:
A New Approach to Improving File Systems. In SOSP ’93, 1993.

[5] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Bridging the Information Gap in Storage Protocol Stacks. In
USENIX, Monterey, CA, June 2002.

[6] I. Dowse and D. Malone. Recent Filesystem Optimisations on
FreeBSD. In FREENIX, June 2002.

[7] EMC Corporation. Symmetrix Enterprise Information Storage
Systems. http://www.emc.com, 2002.

[8] R. M. English and A. A. Stepanov. Loge: A Self-Organizing Disk
Controller. In USENIX, Jan. 1992.

[9] G. R. Ganger. Blurring the Line Between Oses and Storage De-
vices. TR SCS CMU-CS-01-166, Dec. 2001.

[10] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N. Patt. Soft
Updates: A Solution to the Metadata Update Problem in File Sys-
tems. ACM TOCS, 18(2), May 2000.

[11] R. A. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes.
Idleness is not sloth. In USENIX Winter, pages 201–212, 1995.

[12] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-
State Memory. In USENIX Security, July 1996.

[13] G. Hughes. Personal communication, 2004.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 393

[14] G. Hughes and T. Coughlin. Secure Erase of Disk Drive Data.
IDEMA Insight Magazine, 2002.

[15] J. Katcher. PostMark: A New File System Benchmark. NetApp
TR-3022, October 1997.

[16] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast
File System for UNIX. TOCS, 2(3), Aug. 1984.

[17] M. Mesnier, G. R. Ganger, and E. Riedel. Object-Based Storage.
IEEE Communications Magazine, 41(8), August 2003.

[18] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Goodson, and
G. Ganger. Storage-based Intrusion Detection: Watching Storage
Activity For Suspicious Behavior. In USENIX Security, 2003.

[19] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framework for
Evaluating Storage System Security. In FAST ’02, 2002.

[20] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File
System Workloads. In USENIX ’00, 2000.

[21] C. Ruemmler and J. Wilkes. Disk Shuffling. Technical Report
HPL-91-156, HP Laboratories, 1991.

[22] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Charac-
teristics. In FAST ’02, January 2002.

[23] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Improving Storage System Availability with D-
GRAID. In FAST ’04, Mar. 2004.

[24] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Semantically-Smart
Disk Systems. In FAST ’03, 2003.

[25] SourceForge. SRM: Secure File Deletion for POSIX Systems.
http://srm.sourceforge.net, 2003.

[26] SourceForge. Wipe: Secure File Deletion.
http://wipe.sourceforge.net, 2003.

[27] SourceForge. The Linux NTFS Project. http://linux-ntfs.sf.net/,
2004.

[28] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. Soules, and
G. R. Ganger. Self-Securing Storage: Protecting Data in Compro-
mised Systems. In OSDI 2000, 2000.

[29] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3 Filesys-
tem. In FREENIX, June 2002.

[30] VMWare. VMWare Workstation 4.5.
http://www.vmware.com/products/, 2004.

[31] R. Wang, T. E. Anderson, and D. A. Patterson. Virtual Log-Based
File Systems for a Programmable Disk. In OSDI ’99, 1999.

[32] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP Au-
toRAID Hierarchical Storage System. ACM Transactions on Com-
puter Systems, 14(1):108–136, February 1996.

[33] X. Yu, B. Gum, Y. Chen, R. Wang, K. Li, A. Krishnamurthy, and
T. Anderson. Trading Capacity for Performance in a Disk Array.
In OSDI ’00, 2000.

A Guaranteed detection of deletes
We now prove that the techniques in FADED for ext2
guarantee shredding of all deletes of blocks whose con-
tents reached disk.

When a delete of an inode I1 occurs within ext2, a set
of blocks are freed from a file; this results in an increment
of the version number of I1, and the reset of relevant bits
in the data bitmap block pertaining to the freed blocks.
Let us consider one such block B that is freed. Let us as-
sume that B had already been written to disk in the con-
text of I1. If B had not been written to disk, the disk does
not need to perform any overwrite, so we do not consider
that case. Let the bitmap block containing the status of
B be MB, and let BI be the block containing the inode
I1. Now, there are two possibilities: either B is reused by
the file system before MB is written to disk, or B is not
reused until the write of MB .

Case 1: Block B not reused
If B is not reused immediately to a different file, the

bitmap block MB, which is dirtied, will be eventually

written to disk, and the disk will immediately know of the
delete through the block liveness module, and thus over-
write B.

Case 2: Block B is reused
Let us now consider the case where B is reused in inode

I2. There are three possibilities in this case: at the point of
receiving the write of B, the disk either thinks B belongs
to I1, or it thinks B is free, or that B belongs to some
other inode Ix.

Case 2a: Disk thinks I1 → B
If the disk knew that I1 → B, the disk would have

tracked the previous version number of I1. Thus, when it
eventually observes a write of BI , (which it will, since BI

is dirtied because of the version number increment), the
disk will note that the version number of I1 has increased,
and thus would overwrite all blocks that it thought be-
longed to I1, which in this case includes B. Thus B would
be overwritten, perhaps restoring a newer value. As dis-
cussed in Section 7.2, even if this was a conservative over-
write, the old contents are guaranteed to be shredded.

Case 2b: Disk thinks B is free
If the disk thinks B is free, it would treat B as an orphan

block when it is written, and mark it suspicious. Conse-
quently, when B is written again in the context of the new
inode I2, the old contents of B will be shredded.

Case 2c: Disk thinks Ix → B
To believe that Ix → B, the disk should have observed

Ix pointing to B at some point before the current write to
B. 1 The disk could have observed Ix → B either before
or after B was allocated to I1 by the file system.

Case 2c-i: Ix → B before I1 → B
If the disk observed Ix → B before it was allocated

to I1, and still thinks Ix → B when B is written in the
context of I1, it means the disk never saw I1 → B. How-
ever, in this case, block B was clearly deleted from Ix at
some time in the past in order to be allocated to I1. This
would have led to the version number of Ix increment-
ing, and thus when the disk observes Ix written again, it
would perform an overwrite of B since it thinks B used
to belong to Ix.

Case 2c-ii: Ix → B after I1 → B
If this occurs, it means Ix was written to disk owning

B after B was deleted from I1 but before B is written.
In this case, B will only be written in the context of Ix

which is still live, so it does not have to be overwritten. As
discussed in Section 4.2, this holds because of the block
exclusivity property of ext2.

Note that the case of a block being deleted from a file
and then quickly reallocated to the same file is just a spe-
cial case of Case 2c , with I1 = Ix.

Thus, in all cases where a block was written to disk in
the context of a certain file, the delete of the block from
the file will lead to a shred of the deleted contents.

1If indirect block detection was uncertain, the disk can wrongly think
Ix → B because of a corrupt “pointer” in a false indirect block; our file
system change for reuse ordering in indirect blocks prevents this case.

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association394

