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Abstract

As dependence on the World Wide Web continues to
grow, so does the need for businesses to have quantitative
measures of the client perceived response times of their
Web services. We present ksniffer, a kernel-based traf-
fic monitor capable of determining pageview response
times as perceived by remote clients, in real-time at giga-
bit traffic rates. ksniffer is based on novel, online mech-
anisms that take a “look once, then drop” approach to
packet analysis to reconstruct TCP connections and learn
client pageview activity. These mechanisms are designed
to operate accurately with live network traffic even in the
presence of packet loss and delay, and can be efficiently
implemented in kernel space. This enables ksniffer to
perform analysis that exceeds the functionality of cur-
rent traffic analyzers while doing so at high bandwidth
rates. ksniffer requires only to passively monitor network
traffic and can be integrated with systems that perform
server management to achieve specified response time
goals. Our experimental results demonstrate that ksnif-
fer can run on an inexpensive, commodity, Linux-based
PC and provide online pageview response time measure-
ments, across a wide range of operating conditions, that
are within five percent of the response times measured at
the client by detailed instrumentation.

1 Introduction
For many businesses, the World Wide Web is a highly
competitive environment. Customers seeking quality on-
line services have choices, and often the characteristic
that distinguishes a successful site from the rest is per-
formance. Clients are keenly aware when response time
exceeds acceptable thresholds and are not hesitant to
simply take their business elsewhere. It is therefore ex-
tremely important for businesses to know the response
time that their clients are experiencing. This places them
in a difficult position: having to obtain accurate client
perceived response time metrics in a timely, cost effec-
tive manner so that problems can be immediately iden-
tified and fixed. For larger Web sites, the requirement
of having a scalable solution is key; in addition, the ca-
pability to transmit this information to an online cluster
management system is also a necessity.

Server farm management systems that allocate re-
sources on-demand to meet specified response time goals
are receiving much attention. The ability of a Web host-
ing center to move CPU cycles, machines, bandwidth
and storage from a hosted Web site that is meeting its
latency goal to one that is not, is a key requirement for
an automated management system. Such allocation de-
cisions must be based on accurate measurements. Over-
allocating resources to one hosted Web site results in an
overcharge to that customer and a reduction in the avail-
able physical resources left to meet the needs of the oth-
ers. Under-allocation results in poor response time and
unsatisfied Web site users. The ability to base these al-
location decisions on a measure that is relevant to both
the Web site owner and the end user of the Web site is a
competitive advantage.
Unfortunately, obtaining an accurate measure of the

client perceived response time is non-trivial. Current ap-
proaches include active probing from geographically dis-
tributed monitors, instrumenting HTMLWeb pages with
JavaScript, offline analysis of packet traces, and instru-
menting Web servers to measure application-level per-
formance or per connection performance. All of these
approaches fall short, in one area or another, in terms of
accuracy, cost, scalability, usefulness of information col-
lected, and real-time availability of measurements.
We have created ksniffer, an online server-side traffic

monitor that combines passive packet capture with fast
online mechanisms to accurately determine client per-
ceived pageview response times on a per pageview basis.
ksniffer uses a model of TCP retransmission and expo-
nential backoff that accounts for latency due to connec-
tion setup overhead and network packet loss. It combines
this model with higher level online mechanisms that use
access history and HTTP referer information when avail-
able to learn relationships among Web objects to corre-
late connections and Web objects to determine pageview
response times.
ksniffer mechanisms take a “look once, then drop” ap-

proach to packet analysis, use simple hashing data struc-
tures to match Web objects to pageviews, and can be
efficiently implemented in kernel space. Furthermore,
ksniffer only looks at TCP/IP and HTTP protocol header
information and does not need to parse any HTTP data
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payload. This enables ksniffer to perform higher level
Web pageview analysis effectively online in the presence
of high data rates; it can monitor traffic at gigabit line
speeds while running on an inexpensive, commodity PC.
These mechanisms enable ksniffer to provide accurate
results across a wide range of operating conditions, in-
cluding high load, connection drops, and packet loss. In
these cases, obtaining accurate performance measures is
most crucial because Web server and network resources
may be overloaded.
ksniffer has several advantages over other approaches.
First, ksniffer does not require any modifications to Web
pages, Web servers, or browsers, making deployment
easier and faster. This is particularly important for Web
hosting companies responsible for maintaining the in-
frastructure surrounding a Web site but are often not
permitted to modify the customer’s server machines or
content. Second, ksniffer captures network character-
istics such as packet loss and delay, aiding in distin-
guishing network problems from server problems. Third,
ksniffer measures the behavior of every session for ev-
ery real client who visits the Web site. Therefore, it
does not fall prey to biases that arise when sampling
from a select, predefined set of client monitoring ma-
chines that have better connectivity, and use different
Web browser software, than the actual users of the Web
site. Fourth, ksniffer can obtain metrics for any Web
content, not just HTML. Fifth, ksniffer performs online
analysis of high bandwidth, live packet traffic instead of
offline analysis of traces stored on disk, bypassing the
need to manage large amounts of disk storage to store
packet traces. More importantly, ksniffer can provide
performance measurements to Web servers in real-time,
enabling them to respond immediately to performance
problems through diagnosis and resource management.
This paper presents the design and implementation of
ksniffer. Section 2 presents an overview of the ksniffer
architecture. Section 3 describes the ksniffer algorithms
for reconstructing TCP connections and pageview activ-
ities. Section 4 discusses how ksniffer handles less ideal
operating conditions, such as packet loss and server over-
load. Section 5 presents experimental results quantifying
the accuracy and scalability of ksniffer under various op-
erating conditions. We measure the accuracy of ksniffer
against measurements obtained at the client and compare
the scalability of ksniffer against user-space packet anal-
ysis systems. Section 6 discusses related work. Finally,
we present some concluding remarks and directions for
future work.

2 Overview of ksniffer Architecture
ksniffer is motivated by the desire to have a fast, scalable,
flexible, inexpensive traffic monitor that can be used both
in production environments for observing Web servers,
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Figure 1: ksniffer architecture.

as well as a platform for research into traffic analysis.
Figure 1 depicts the ksniffer architecture.
ksniffer is designed to be implemented as a set of dy-

namically loadable kernel modules that reside above the
network device independent layer in the operating sys-
tem. Its device independence makes it easy to deploy
on any inexpensive, commodity PC without special NIC
hardware or device driver modifications. ksniffer appears
to the kernel simply as another network protocol layer
within the stack and is treated no different than TCP/IP,
which is shown for comparison in Figure 1. ksniffer
monitors bidirectional traffic and looks at each packet
once, extracts any TCP/IP or HTTP header information
that is present, then discards the packet. The in-kernel
implementation exploits several performance advantages
such as zero-copy buffer management, eliminated sys-
tem calls, and reduced context switches [16, 17]. ksniffer
does not produce packet trace log files, but can read con-
figuration parameters and write debugging information
to disk from kernel space.
This design gives ksniffer a three to four fold improve-

ment in performance over user space systems that copy
every packet to user space. Each packet could potentially
impact the response time measurement, yet ksniffer only
examines a small percentage of the bytes within each
packet (TCP/IP fields and the HTTP headers, if present).
By executing in kernel space, ksniffer avoids transferring
large amounts of irrelevant bytes to user space, saving
CPU cycles and memory bandwidth.
ksniffer provides a low overhead shared memory in-
terface (similar to MAGNET [13]) to export results (not
packets) to user space. This allows more sophisticated
analysis that is less performance critical to be done in
user-level programs without additional system call over-
head. ksniffer also provides the ability to transmit re-
sults directly to a remote machine for processing. Fil-
tering within ksniffer is performed on the results, not on
the incoming packet stream. This differentiates ksnif-
fer from traditional monitors that exclude certain TCP
flows from analysis, which affects aggregate metrics for
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the Web site. A detailed discussion of how ksniffer fa-
cilitates other user-level and remote analysis is beyond
the scope of this paper. The focus of this paper is on
the protocol analysis portion of ksniffer shown in Fig-
ure 1, which contains the functionality for determining
pageview response times. For simplicity, we assume a
singleWeb server in our discussion, but the same ksniffer
monitoring approach also applies to a Web site supported
by multiple Web servers.

3 ksniffer Pageview Response Time
To determine the client perceived response time for a
Web page, ksniffer measures the time from when the
client sends a packet corresponding to the start of the
transaction until the client receives the packet corre-
sponding to the end of the transaction. How a packet may
indicate the start or end of a transaction depends upon
several factors. To show how this is done, we first briefly
describe some basic entities tracked by ksniffer, then de-
scribe how ksniffer determines response time based on
an anatomical view of the client/server behavior that oc-
curs when a Web page is downloaded.
ksniffer keeps track of four entities to maintain the
information it needs to measure response time: clients,
pageviews, HTTP objects, and TCP connections. ksnif-
fer tracks each of these entities using the corresponding
data objects shown in Figure 2. Clients are uniquely
identified by their IP address. A pageview consists of
a container page and a set of embedded HTTP objects.
For example, a typical Web page consists of an HTML
file as the container page and a set of embedded images
which are the embedded HTTP objects. Pageviews are
identified by the URL of the associated container page
and Web objects are identified by their URL. A flow rep-
resents a TCP connection, and is uniquely identified by
the four tuple consisting of source and destination IP ad-
dress and port numbers.
It is the associations between instances of these ob-
jects which enables ksniffer to reconstruct the activity
at the Web site. To efficiently manage these associa-
tions, ksniffer maintains sets of hash tables to perform
fast lookup and correlation between the four types of ob-
jects. Separate hash tables are used for finding clients
and flows, indexed by hash functions on the IP address
and four-tuple, respectively. Each client object contains
a pageview hash table indexed by a hash function over
the container page URL. Flows contain a FIFO request
queue of Web objects that have been requested but not
completed, and a FIFO finish queue of Web objects that
have been completed.
Suppose a remote client, Cj , requests a Web page. We
decompose the resulting client/server behavior into four
parts: TCP connection setup, HTTP request, HTTP re-
sponse, and embedded object processing. We use the fol-
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Figure 2: Objects used by ksniffer for tracking.

lowing notation in our discussion. Let Cj be the jth re-
mote client and F j

i be the ith TCP connection associated
with remote client Cj . Let pvj

i be the ith pageview asso-
ciated with remote clientCj , andwj,i

k be the k
thWeb ob-

ject requested on F j
i . Let ti be the ith moment in time, d

represent an insignificant amount of processing time, ei-
ther at the client or the server, p represent the Web server
processing time of an HTTP request, and RTT be the
round trip time between the client and the server.

3.1 TCP Connection Setup
If the client, Cj , is not currently connected to the Web
server, the pageview transaction begins with making a
connection. Connection establishment is performed us-
ing the well known TCP three-way handshake, as shown
in Figure 3. The start of the pageview transaction cor-
responds to the SYN J packet transmitted by the client
at time t0. However, ksniffer is located on the server-
side of the network, where a dotted line is used in Fig-
ure 3 to represent the point at which ksniffer captures
the packet stream. ksniffer does not capture SYN J un-
til time t0 + .5RTT , after the packet takes 1/2 RTT to
traverse the network. This is assuming ksniffer and the
Web server are located close enough together that they
see packets at essentially the same time.
If this is the first connection fromCj , ksniffer will cre-
ate a flow object F j

1 and insert it in the flow hash table.
At this moment, ksniffer does not know the value for
RTT since only the SYN J packet has been captured,
so it cannot immediately determine time t0. Instead, it
sets the start time for F j

1 equal to t0 + .5RTT . ksnif-
fer then waits for further activity on the connection. At
t0 + 1.5RTT + 2d, ksniffer and the Web server receive
the ACK K+1 packet, establishing the TCP connection
between client and server. ksniffer can now determine
the RTT as the difference between the SYN-ACK from
the server (the SYN K, ACK J+1 packet) and the result-
ing ACK from the client during connection establishment
(the ACK K+1 packet). ksniffer then updates F j

1 ’s start
time by subtracting 1/2 RTT from its value to obtain t0.
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At time t0 + 1.5RTT + 2d, for the first connection
from Cj , ksniffer creates a client object Cj , saves the
RTT value, and inserts the object into the client hash
table. For each subsequent connection from Cj , a new
flow object F j

i will be created and linked to the existing
client object, Cj. The RTT for each new flow will be
computed, and Cj’s RTT will be updated based on an
exponentially weighted moving average of the RTT s of
its flows in the same manner as TCP [28]. The updated
RTT is then used to determine the actual start time for
each flow, t0.

3.2 HTTP Request
Once connected to the server, the remote client transmits
an HTTP request for the container page and waits for the
response. If this is not the first request over the connec-
tion, then this HTTP request indicates the beginning of
the pageview transaction. Figure 3 depicts the first re-
quest over a connection. At time ti, the client transmits
the HTTP GET request onto the network, and after tak-
ing 1/2 RTT to traverse the network, the server receives
the request at ti + .5RTT .
ksniffer captures and parses the packet containing the
HTTP GET request, splitting the request into all its con-
stituent components and identifying the URL requested.
Since this is the first HTTP request over connection F j

1 ,
it incurs the connection setup overhead. In this case, a
Web object is created, wj,1

1 , to represent the request, and
the start time forwj,1

1 is set to the start time of F
j
1 . In this

manner, the connection setup time is attributed to the first
HTTP request on each flow. wj,1

1 is then inserted into
F j

1 ’s request queue and F j
1 ’s number-of-requests field is

set to one. If this was not the first HTTP request over
connection F j

1 , but was instead the kth request on F j
1 , a

Web objectwj,1
k would be created but its start time would

be set equal to ti.
Next, ksniffer creates pvj

1, the pageview object that
will track the pageview, and inserts it into Cj’s pageview
hash table. We assume for the moment that wj,1

1 is a

container page; embedded objects are discussed in Sec-
tion 3.5. ksniffer sets pvj

1’s start time equal to wj,1
1 ’s start

time, and sets wj,1
1 as the container Web object for pvj

1.
At this point in time, ksniffer has properly determined
which pageview is being downloaded, and the correct
start time of the transaction.

3.3 HTTP Response
After the Web server receives the HTTP request and
takes p amount of time to process it, the server sends
a reply back to the client. ksniffer captures the value
of p, the server response time, which is often mistak-
enly cited as the client perceived response time. Server
response time can underestimate the client perceived re-
sponse time by more than an order of magnitude [27].
The first response packet contains the HTTP response
header, along with the initial portion of the Web object
being retrieved. ksniffer looks at the response headers
but never parses the actual Web content returned by the
server; HTML parsing would entail too much overhead
to be used in an online, high bandwidth environment.
ksniffer obtains F j

1 from the flow hash table and deter-
mines the first Web object in F j

1 ’s request queue is w
j,1
1 ,

which was placed onto the queue when the request was
captured. An HTTP response header does not specify the
URL for which the response is for. Instead, HTTP proto-
col semantics dictate that, for a given connection, HTTP
requests be serviced in the order they are received by the
Web server. As a result, F j

1 ’s FIFO request queue en-
ables ksniffer to identify each response over a flow with
the correct request object.
ksniffer updates wj,1

1 ’s server reply state based on
information contained in the response header. In par-
ticular, ksniffer uses the Content-length: and Trans-
fer Encoding: fields, if present, to determine what will
be the sequence number of the last byte of data transmit-
ted by the server for this request.
ksniffer captures each subsequent packet to identify

the time of the end of the response. This is usually done
by identifying the packet containing the sequence num-
ber for the last byte of the response. When the response
is chunked [10], sequence number matching cannot be
used. Instead, ksniffer follows the chunk chain within
the response body across multiple packets to determine
the packet containing the last byte of the response. For
CGI responses over HTTP 1.0 which do not specify the
Content-length: field, the server closes the connection to
indicate the end of the response. In this case, ksniffer
simply keeps track of the time for the last data packet
before the connection is closed.
ksniffer sets wj,1

1 ’s end time to the arrival time of each
response packet, plus 1/2 RTT to account for the tran-
sit time of the packet from server to client. ksniffer also
sets pvj

1’s end time to wj,1
1 ’s end time. The end time will
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monotonically increase until the server reply has been
completed, at which point the (projected) end time will
be equal to tk + .5RTT , as shown in Figure 3. When
ksniffer captures the last byte of the response at time tk,
wj,1

1 is moved from F j
1 ’s request queue to F j

1 ’s finish
queue, where it remains until either F j

1 is closed or un-
til ksniffer determines that all segment retransmissions
(if any) have been accounted for, which is discussed in
Section 4.
Most Web browsers in use today serialize multiple
HTTP requests over a connection such that the next
HTTP request is not sent until the response for the pre-
vious request has been fully received. For these clients,
there is no need for each flow object to maintain a queue
of requests since there will only be one outstanding re-
quest at any given time. The purpose of ksniffer’s re-
quest queue mechanism is to support HTTP pipelining,
which has been adopted by a small, but potentially grow-
ing number of Web browsers. Under HTTP pipelin-
ing, a browser can send multiple HTTP requests at once,
without waiting for the server to reply to each individ-
ual request. ksniffer’s request queues provide support
for HTTP pipelining by conforming to RFC2616 [10],
which states that a server must send its responses to a set
of pipelined requests in the same order that the requests
are received. Since TCP is a reliable transport mecha-
nism, requests that are pipelined from the client, in a cer-
tain order, are always received by the server in the same
order. Any packet reordering that may occur in the net-
work is handled by TCP at the server. ksniffer provides
similar mechanisms to handle packet reordering so that
HTTP requests are placed in F j

1 ’s request queues in the
correct sequence. This entails properly handling a packet
that contains multiple HTTP requests as well as an HTTP
request which spans packet boundaries.
At this point in time, ksniffer has properly determined

tk + .5RTT , the time at which the packet containing the
last byte of data for wj,1

1 was received by client Cj . If
the Web page has no embedded objects then this marks
the end of the pageview transaction. For example, if wj,1

1

corresponds to a PDF file instead of an HTML file, ksnif-
fer can determine that the transaction has completed,
since a PDF file cannot have embedded objects.
If wj,1

1 can potentially embed one or more Web ob-
jects, ksniffer cannot assume that pvj

1 has completed. In-
stead, it needs to determine what embedded objects will
be downloaded to calculate the pageview response time.
At time tk + .5RTT , ksniffer cannot determine yet if re-
quests for embedded objects are forthcoming or not. In
particular, ksniffer does not parse the HTML within the
container page to identify which embedded objects may
be requested by the browser. Such processing is too com-
putationally expensive for an online, high bandwidth sys-
tem, and often does not even provide the necessary infor-

mation. For example, a JavaScript within the container
page could download an arbitrary object that could only
be detected by executing the JavaScript, not just parsing
the HTML. Furthermore, HTML parsing would not in-
dicate which embedded objects are directly downloaded
from the server, since some may be obtained via caches
or proxies. ksniffer instead takes a simpler approach
based on waiting and observing what further HTTP re-
quests are sent by the client, then using HTTP request
header information to dynamically learn which container
pages embed which objects.

3.4 Online Embedded Pattern Learning
ksniffer learns which container pages embed which ob-
jects by tracking the Referer: field in HTTP request
headers. The Referer: field contained in subsequent re-
quests is used to group embedded objects with their as-
sociated container page. Since the Referer: field is not
always present, ksniffer develops patterns from those it
does collect to infer embedded object relationships when
requests are captured that do not contain a Referer: field.
This technique is faster than parsing HTML, executing
JavaScript, or walking the Web site with a Web crawler.
In addition, it allows ksniffer to react to changes in con-
tainer page composition as they are reflected in the actual
client transactions.
ksniffer creates referer patterns on the fly. For each
HTTP request that is captured, ksniffer parses the HTTP
header and determines if the Referer: field is present.
If so, this relationship is saved in a pattern for the con-
tainer object. For example, when monitoring ibm.com, if
a GET request for obj1.gif is captured, and the Referer:
field is found to contain “www.ibm.com/index.html”,
ksniffer adds obj1.gif as an embedded object within the
pattern for index.html. If a Referer: field is captured
which specifies a host not being monitored by ksniffer,
such as “www.xyz.com/buy.html”, it is ignored.
ksniffer uses file extensions as a heuristic when build-

ing patterns. Web objects with an extension such as .ps
and .pdf cannot contain embedded objects, nor can they
be embedded within a page. As such, patterns are not
created for them, nor are they associated with a container
page. Web objects with an extension such as .gif or .jpg
are usually associated with a container page, but cannot
themselves embed other objects. Web objects with an
extension such as .html or .htm can embed other objects
or be embedded themselves. Each individual .html ob-
ject has its own unique pattern, but currently an .html
object is never a member of another object’s pattern.
This prevents cycles within the pattern structures, but re-
sults in ksniffer treating frames of .html pages as separate
pageviews.
Taking this approach means that ksniffer does not need

to be explicitly told which Web pages embed which ob-
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jects – it learns this on its own. Patterns are persistently
kept in memory using a hash table indexed by the con-
tainer page URL. Each pvj

i and container w
j,i
k is linked

to the pattern for the Web object it represents, allowing
ksniffer to efficiently query the patterns associated with
the set of active pageview transactions.
Since Web pages can change over time, patterns get
dynamically updated, based on the client activity seen at
the Web site. Therefore, a particular embedded object,
obj1.jpg, may not belong to the pattern for container in-
dex.html at time ti, and yet belong to the pattern at time
ti±k. Likewise, a pattern may not exist for buy.html at
time ti, but then be created at a later time ti+k, when a re-
quest is captured. Of course, the same embedded object,
obj1.jpg, may appear in multiple patterns, index.html and
buy.html, at the same time or at different times. Since
patterns are only created from client transactions, the set
of patterns managed by ksniffer may be a subset of all
the container pages on the Web site. This can save mem-
ory: ksniffer maintains patterns for container pages that
are being downloaded, but not for those container pages
on the Web site which do not get requested.
Only the Referer: field is used to manipulate patterns,

and the embedded objects within a pattern are unordered.
ksniffer places a configurable upper bound of 100 em-
bedded objects within a pattern so as to limit storage re-
quirements. When the limit is reached, an LRU algo-
rithm is used for replacement, removing the embedded
object which has not been linked to the container page in
an HTTP request for the longest amount of time.
Each pattern typically contains a superset of those ob-
jects which the container page actually embeds. As the
pattern changes, the new embedded objects get added to
the pattern; but the old embedded objects only get re-
moved from the pattern if the limit is reached. This is
perfectly acceptable since ksniffer does not use patterns
in a strict sense to determine, absolutely, whether or not
a container page embeds a particular object.
Most Web browsers, including Internet Explorer and

Mozilla, provide referer fields, but some do not and pri-
vacy proxies may remove them. To see what percentage
of embedded objects have referer fields in practice, we
analyzed the access log files of a popular musician re-
source Web site that has over 800,000 monthly visitors.
The access logs covered a 15 month period from January
2003 until March 2004. 87% of HTTP requests had a ref-
erer field, indicating that a substantial portion of embed-
ded objects may have referer fields in practice. ksniffer
is specifically designed for monitoring high speed links
that transmit a large number of transactions per second.
In the domain of pattern generation, this is an advantage.
The probability that at least one HTTP request with the
Referer: field set for a particular container page will ar-
rive within a given time interval is extremely high.

3.5 Embedded Object Processing
If a container page references embedded objects, the end
of the transaction will be indicated by the packet con-
taining the sequence number of the last byte of data, for
the last object to complete transmission. To identify this
packet, ksniffer determines which embedded object re-
quests are related to each container page using the Ref-
erer: field of HTTP requests, file extension information,
and the referer patterns discussed in Section 3.4.
In our example, suppose index.html contains ref-

erences to five embedded images obj1.gif, obj2.gif,
obj3.gif, obj4.gif, and obj8.gif. The embedded objects
will be identified and processed as shown in Figure 4
(ignoring for the moment F j

3 ). At time tk + .5RTT , the
browser parses the HTML document and identifies any
embedded objects. If embedded objects are referenced
within the HTML, the browser opens an additional con-
nection, F j

2 , to the server so that multiple HTTP requests
for the embedded objects can be serviced, in parallel, to
reduce the overall latency of the transaction. The packet
containing the sequence number of the last byte of the
last embedded object to be fully transmitted indicates the
end of the pageview transaction, te.
The start and end times for embedded object requests

are determined in the same manner as previously de-
scribed in Sections 3.2 and 3.3. Each embedded object
that is requested is tracked in the same manner that the
container page, index.html, was tracked. For example,
when the second connection is initiated, ksniffer creates
a flow object F j

2 to track the connection, and associates
it with Cj . When the request for obj1.gif on F j

2 is cap-
tured at time tq, a wj,2

1 object is created for tracking the
request, and is placed onto F j

2 ’s request queue.
To determine the pageview response time, which is

calculated as te - t0, requires correlating embedded ob-
jects to their proper container page, which involves tack-
ling a set of challenging problems. Clients, especially
proxies, may be downloading multiple pageviews simul-
taneously. It is possible for a person to open two or more
browsers and connect to the sameWeb site, or for a proxy
to send multiple pageview requests to a server, on behalf
of several remote clients. In either case, there can be
multiple currently active pageview transactions simulta-
neously associated with the remote client Cj (e.g., pvj

1,
pvj

2 ... pvj
k). In addition, some embedded objects being

requested may appear in multiple pageviews, and some
Web objects may be retrieved from caches or CDNs.
ksniffer applies a set of heuristics that attempt to deter-
mine the true container page for each embedded object.
We present experimental results in Section 5 demonstrat-
ing that these heuristics are effective for accurately mea-
suring client perceived response time.
For example, suppose that F j

3 in Figure 4 depicts
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Figure 4: Downloading multiple container pages and em-
bedded objects over multiple connections.

client Cj downloading buy.html at roughly the same time
as index.html (i.e., t0 ≈ tj). Suppose also that ksnif-
fer knows in advance that index.html embeds {obj1.gif,
obj3.gif, obj8.gif, obj4.gif ,obj2.gif} and that buy.html
embeds {obj1.gif, obj8.gif, obj11.gif}. This means that
both container pages are valid candidates for the true
container page of obj1.gif. Whether or not tr < tq is
a crucial indication as to the true container page. At
time ta, when connection F j

2 is being established, there
is no information which could distinguish whether this
connection belongs to index.html or buy.html. The only
difference between F j

1 , F
j
2 and F j

3 with respect to the
TCP/IP 4-tuple is the remote client port number. Hence
only the client, Cj , can be identified at time ta, and at
time tq, it is unknown whether index.html or buy.html is
the true container page for obj1.gif.
To manage pageviews and their associated embedded
objects, ksniffer maintains three lists of active pageviews
for each client, each sorted by request time, as shown in
Figure 5. The loners queue contains pageviews which
represent objects that cannot have embedded objects.
These pageviews are kept in their own list, which is never
searched when attempting to locate a container page for
a new embedded object request. All other pageviews,
which could potentially embed an object, are placed on
both a FIFO pageview queue and the pageview hash ta-
ble. This enables ksniffer to quickly locate the youngest
candidate container page. Each pageview also maintains
an embedded object hash table, not shown in Figure 5,
that consists of the embedded objects associated with that
pageview and state indicating whether and to what extent
they have been downloaded.
Given a request wj,k

i captured on flow F j
k for client

Cj , ksniffer will perform the following actions:

1. If wj,k
i ∈ {.html, .shtml, ...} ksniffer will treat wj,k

i

as a container page by placing it into the pageview
hash table (and FIFO queue) for client Cj . In addi-
tion, if a pageview is currently associated with F j

k ,

jC
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Figure 5: Client active pageviews.

ksniffer assumes that pageview is done.
2. If wj,k

i ∈ {.pdf, .ps, ...} ksniffer will treat wj,k
i as

a loner object by placing it on the loner queue for
Cj . In addition, if a pageview is currently associ-
ated with F j

k , ksniffer assumes it is done.
3. If wj,k

i ∈ {.jpg, .gif, ...} then
(a) If the Referer: field contains the monitored
server name, such as www.ibm.com/buy.html,
then Cj’s pageview hash table is searched to
locate pvj

c , the youngest pageview download-
ing that container page (buy.html) that has yet
to downloadwj,k

i . If pvj
c exists, w

j,k
i is associ-

ated to pvj
c as one of its embedded objects. If

no pageview meets the criterion, pvj
c is created

and wj,k
i is associated to it.

(b) If the Referer: field contains a foreign host
name, such as www.xyz.com/buy.html, then
wj,k

i is treated as a loner object.
(c) If wj,k

i has no Referer: field, then the FIFO
queue is searched to locate, pvj

c , the youngest
pageview which has wj,k

i in its referer pattern
and has yet to download wj,k

i . If pvj
c exists,

then wj,k
i is associated to pvj

c as one of its em-
bedded objects. If no pageview meets the cri-
terion, then wj,k

i is treated as a loner object.

The algorithm above is based on several premises. If
a request for an embedded object wj,k

i arrives with a
referer field containing the monitored server as the host
(e.g., www.ibm.com/buy.html), then the remote browser
almost certainly must have previously downloaded that
container page (e.g., buy.html) from the monitored server
(e.g., www.ibm.com), parsed the page, and is now send-
ing the request for the embedded object wj,k

i . If ksniffer
failed to capture the request for the container page (e.g.,
buy.html) it is highly likely that it is being served from
the browser cache for this particular transaction. If a re-
quest for an embedded object arrives with a referer field
containing a foreign host (e.g., www.xyz.com/buy.html),
it is highly likely that the foreign host is simply embed-
ding objects from the monitored Web site into its own
pages.
When a request for an embedded object arrives with-
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out a referer field, every pageview associated with the
client becomes a potential candidate for the container
page of that object. This is depicted in Figure 4 when
the request for obj1.gif arrives without a Referer: field.
If the client is actually a remote proxy, then the num-
ber of potential candidates may be large. ksniffer applies
the patterns described in Section 3.4 as a means of re-
ducing the number of potential candidates and focusing
on the true container page of the embedded object. The
heuristic is to locate the youngest pageview which con-
tains the object in its pattern, but has yet to download
the object. Patterns are therefore exclusionary. Any can-
didate pageview not containing the embedded object in
its pattern is excluded from consideration. This may re-
sult in the true container page being passed over, but as
mentioned in Section 3.4, the likelihood that a container
page embeds an object that does not appear in the page’s
pattern is very low for an active Web site. If a suitable
container pageview is not found, then the object is treated
as a loner object. If a Referer: field is missing, then most
likely it was removed by a proxy and not a browser on
the client machine; but if the proxy had cached the con-
tainer page during a prior transaction, it is likely to have
cached the embedded object as well. This implies the
object is not being requested as part of a page, but being
downloaded as an individual loner object.
If a client downloads an embedded object, such as
obj1.gif, it is unlikely that the client will download the
same object again, for the same container page. If an
object appears multiple places within a container page,
most browsers will only request it once from the server.
Therefore, ksniffer not only checks if an embedded ob-
ject is in the pattern for a container page, but also checks
if that instance has already downloaded the object or not.
The youngest candidate is usually a better choice than
the oldest candidate. If browsers could not obtain objects
from a cache or CDN, then the oldest candidate would
be a better choice, based on FCFS. Since this is not the
case choosing the oldest candidate will tend to assign
an object obj1.jpg to a container page whose ‘slot’ for
obj1.jpg was already filled via an unseen cache hit. This
tends to overestimate response time for older pages. It is
more likely that an older page obtained obj1.jpg from a
cache and that the younger page is the true container for
obj1.jpg, than vice versa.
ksniffer relies on capturing the last byte of data for the
last embedded object to determine the pageview response
time. However, given the use of browser caches and
CDNs, not all embedded objects will be seen by ksniffer
since not all objects will be downloaded directly from the
Web server. The purpose of a cache or CDN is to provide
much faster response time than can be delivered by the
original Web server. As a result, it is likely that objects
requested from a cache or CDN will be received by the

client before objects requested from the original server.
If the Web server is still serving the last embedded ob-
ject received by the client, other objects served from a
cache or CDN will not impact ksniffer’s pageview re-
sponse time measurement accuracy. If the last embedded
object received by the client is from a cache or CDN,
ksniffer will end up not including that object’s download
time as part of its pageview response time. Since caches
and CDNs are designed to be fast, the time unaccounted
for by ksniffer will tend to be small even in this case.
Given that embedded objects may be obtained from

someplace other than the server, and that a pattern for
a container page may not be complete, how can ksnif-
fer determine that the last embedded object has been re-
quested? For example, at time te, how can ksniffer deter-
mine whether the entire download for index.html is com-
pleted, or another embedded object will be downloaded
for index.html on either F j

1 or F
j
2 ? This is essentially the

same problem described at the end of Section 3.3 with
respect to whether or not a embedded objects requests
will follow a request for a container page or not.
ksniffer approaches this problem in two ways. First, if

no embedded objects are associated to a pageview after
a timeout interval, the pageview transaction is assumed
to be complete. A six second timeout is used by default,
in part based on the fact that the current ad hoc industry
quality goal for complete Web page download times is
six seconds [19]. If a client does not generate additional
requests for embedded objects within this time frame, it
is very likely that the pageview is complete. ksniffer also
cannot report the response time for a pageview until the
timeout expires. A six second timeout is small enough to
impose only a modest delay in reporting.
Second, if a request for a container page, wj,i

k , arrives
on a persistent connection F j

i , then we consider that all
pageview transactions associated with each prior object,
wj,i

b , b < k, on F j
i to be complete. In other words, a

new container page request over a persistent connection
signals the completion of the prior transaction and the be-
ginning of a new one. We believe this to be a reasonable
assumption, including under pipelined requests, since in
most cases, only the embedded object requests will be
pipelined. Typical user behavior will end up serializ-
ing container page requests over any given connection.
Hence, the arrival of a new container page request would
indicate a user click in the browser associated with this
connection. Taking this approach also allows ksniffer to
properly handle quick clicks, when the user clicks on a
visible link before the entire pageview is downloaded and
displayed in the browser.

4 Packet Loss
Studies have shown that the packet loss rate within the
Internet is roughly 1-3% [34]. We classify packet loss

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association340

 



into three types: A) a packet is dropped by the network
before being captured by ksniffer, B) a packet is dropped
by the network after being captured and C) a packet
is dropped by the server or client after being captured.
Types A and B are most often due to network congestion
or transmission errors while type C drops occur when
the Web server (or, less likely, the client) becomes tem-
porarily overloaded. The impact that a packet drop has
on measuring response time depends not only on where
or why it was dropped, but also on the contents of the
packet. We first address the impact of SYN drops, then
look at how a lost data packet can affect response time
measurements.
Figure 3 depicts the well known TCP connection es-

tablishment protocol. Suppose that the initial SYNwhich
is transmitted at time t0 is either dropped in the network
or at the server. In either case, no SYN/ACK response is
forthcoming from the server. The client side TCP recog-
nizes such SYN drops through use of a timer [27]. If a
response is not received in 3 seconds, TCP will retrans-
mit the SYN packet. If that SYN packet is also dropped
by the network or server, TCP will again resend the same
SYN packet, but not until after waiting an additional 6
seconds. As each SYN is dropped, TCP doubles the wait
period between SYN retransmissions: 3 s, 6 s, 12 s, 24
s, etc. TCP continues in this manner until either the con-
figured limit of retries is reached, at which time TCP re-
ports “unable to connect” back to the browser, or the user
takes an action to abort the connection attempt, such as
refreshing or closing the browser.
This additional delay has a large impact on the client
response time. Suppose there is a 3% network packet
loss rate from client to server. Three percent of the SYN
packets sent from the remote clients will be dropped in
the network before reaching ksniffer or the server. The
problem is that since the SYN packets are dropped in
the network before reaching the server farm, both ksnif-
fer and the server are completely unaware that the SYNs
were dropped. This will automatically result in an er-
ror for any traffic monitoring system which measures re-
sponse time using only those packets which are actually
captured. If each client is using two persistent connec-
tions to access the Web site, this error will be 180% for a
100 ms response time and a 4.5% error for a 4s response
time. Under HTTP 1.0 without Keep-Alive, where a con-
nection is opened to obtain each object, the probability of
a network SYN drop grows with the number of objects in
the pageview. For a page download of 10 objects, there
is a 30% chance of incurring the 3 second retransmission
delay, a 60% chance for 20 objects and a 90% chance for
30 objects.
ksniffer uses a simple technique for capturing this un-
detectable connection delay (type ‘A’ SYN packet loss).
Three counters are kept for each subnet. One of the three

counters is incremented whenever a SYN/ACK packet is
retransmitted from the server to the client (which indi-
cates that the SYN/ACK packet was lost in the network).
The counter that gets incremented depends on how many
times the SYN/ACK has been transmitted. Every time a
SYN/ACK is sent twice, the first counter is incremented,
every time a SYN/ACK packet is sent 3 times, the second
counter is incremented, and every time a SYN/ACK is
sent 4 times, the third counter is incremented. Whenever
a SYN packet arrives for a new connection, if one of the
three counters is greater than zero, then ksniffer subtracts
the appropriate amount of time from the start time of the
connection and decrements the counter (round robin is
used to break ties). Assuming that a SYN packet will
be dropped as often as a SYN/ACK, this gives ksniffer a
reasonable estimate for the number of connections which
are experiencing a 3 s, 9 s, or 21 s connection delay.
The same retransmission delays are incurred when

SYNs are dropped by the server (type ‘C’). In this case,
ksniffer is able to capture and detect that the SYNs were
dropped by the server, and distinguish these connection
delays, which are due to server overload, from those pre-
viously described, which are due to network congestion.
ksniffer also determines when a client is unable to con-
nect to the server. If the client reattempts access to the
Web site in the next six seconds after a connection fail-
ure, ksniffer considers the time associated with the first
failed connection attempt as part of the connection la-
tency for the reattempt; otherwise the failed connection
attempt is reported under the category “frustrated client”.
Similar undetected latency occurs when a GET request

is dropped in the network before reaching ksniffer or the
server, then retransmitted by the client. An undetected
GET request drop differs from an undetected SYN drop
in two ways. First, unlike SYN drops, TCP determines
the retransmission timeout period based on RTT and a
number of implementation dependent parameters. ksnif-
fer implements the standard RTO calculation [28] using
Linux TCP parameters, and adjusts for this undetectable
time in the same manner as mentioned above. Second, a
dropped GET request will only affect the measurement
of the overall pageview response time if the GET request
is for a container page and is not the first request over the
connection. Otherwise, the start of the transaction will
be indicated by the start of connection establishment, not
the time of the container page request.
As mentioned earlier, ksniffer often expects to cap-

ture the packet containing the sequence number of the
last byte of data for a particular request. To capture re-
transmissions, ksniffer uses a timer along with the finish
queue on each flow to capture retransmitted packets and
update the end of response time appropriately. Suppose
the last packet of a response is captured by ksniffer at
time tk, at which point ksniffer identifies it as containing
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the sequence number for the last byte of the response,
and moves the wj,i

k request object from the flow’s re-
quest queue to the flow’s finish queue. The packet is then
dropped in the network before reaching the client (type
‘B’). At time tk+h, ksniffer will capture the retransmitted
packet and, using its sequence number, determine that it
is a retransmission for wj,i

k , which is located on the fin-
ish queue. The completion time of wj,i

k is then set to the
timestamp of this packet.

5 Experimental Results
We implemented ksniffer as a set of Linux kernel mod-
ules and installed it on a commodity PC to demonstrate
its accuracy and performance under a wide range of Web
workloads. We report an evaluation of ksniffer in a con-
trolled experimental setting as well as an evaluation of
ksniffer tracking user behavior at a live Internet Web site.
Our experimental testbed is shown in Figure 6. We
used a traffic model based on Surge [3] but made some
minor adjustments to reflect more recent work [14, 31]
done on characterizing Web traffic: the maximum num-
ber of embedded objects in a given page was reduced
from 150 to 100 and the percentage of base, embedded,
and loner objects were changed from 30%, 38% and 32%
to 42%, 48% and 10%, respectively. The total number of
container pages was 1041, with 959 unique embedded
objects. 49% of the embedded objects are embedded by
more than one container page. We also fixed a bug in the
modeling code and included CGI scripts in our experi-
ments, something not present in Surge.
For traffic generation, we used an updated version
of WaspClient [25], which is a modified version of the
client provided by Surge. Virtual clients on each ma-
chine cycle through a series of pageview requests, first
obtaining the container page then all its embedded ob-
jects. A virtual client can open 2 parallel TCP connec-
tions for fetching pages, mimicking the behavior of Mi-
crosoft IE. Requests on a TCP connection are serialized,
so that the next request is not sent until the current re-
sponse on that connection is obtained. In addition, each
virtual client binds to a unique IP address using IP alias-
ing on the client machine. This lets each client machine
appear to the server as a collection of up to 200 unique
clients from the same subnet.
To emulate wide-area conditions, we extended the
rshaper [30] bandwidth shaping tool to include packet
loss and round trip latencies. We installed this software
on each client traffic generator machine, enabling us to
impose packet drops as well as the RTT delays between
20 to 200 ms as specified in Figure 6.
To quantify the accuracy of the client perceived re-

sponse times measured by ksniffer, we ran fifteen dif-
ferent experiments with different traffic loads under non-
ideal and high-stress operating conditions and compared
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Figure 6: Experimental environment.
ksniffer’s measurements against those obtained by the
traffic generators executing on the client machines. We
measured with two different Web servers, Apache and
TUX, used both HTTP 1.0 without Keep-Alive and per-
sistent HTTP 1.1, and included a combination of static
pages and CGI programs for Web content. We also mea-
sured in the presence of network and server packet loss,
missing referer fields, client caching, and near gigabit
traffic rates. Table 1 summarizes these experimental re-
sults. In all cases, the difference between the mean re-
sponse time as determined by ksniffer, and that measured
directly on the remote client was less than 5%. Further-
more, the absolute time difference between ksniffer and
client-side instrumentation was in some cases less than 1
ms and in all cases less than 50 ms.
All tests (except Tests S1 and S2) were done un-

der non-ideal conditions found in the Internet with 2%
packet loss and 20% missing referer fields. Each client
requested the same sequence of pageviews, but since
each traffic generator machine was configured with a
different RTT to the Web server as shown in Figure 6,
the clients took different amounts of time to obtain all
of their pages, resulting in a variable load on the Web
server over time. For example, Figure 7 shows results
from Test F comparing ksniffer against client-side instru-
mentation in measuring pageviews/s over time. There
are two lines in the figure, but they are hard to distin-
guish because ksniffer’s pageview count is so close to
direct client-side instrumentation. Figure 8 shows results
from Test F comparing ksniffer against client-side instru-
mentation in measuring mean client perceived pageview
response time for each 1 second interval. ksniffer results
are very accurate and hard to distinguish from client-side
instrumentation. As indicated by Figure 7, the variable
response time is due to the completion of clients. During
the initial 250 s, clients from each of the four subnets are
actively making requests. At around 250 s, the clients
from subnet 10.4.0.0 with RTT 20 ms have completed,
while clients from the other subnets remain active. At
around 300 s, the clients from subnet 10.3.0.0 with RTT
of 80 ms have completed, leaving clients from subnets
10.2.0.0 and 10.1.0.0 active. At time 475 s, clients from
subnet 10.2.0.0 with RTT of 140 ms have completed,
leaving only those clients from subnet 10.1.0.0 with RTT
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Virtual Web HTTP PV/s URL/s Mbps Client ksniffer diff % elapsed
Clients Server RT RT (ms) diff time

A 120 Apache 1.0 5-140 5-625 1-60 1.528s 1.498s -29 -1.9 133m
B 120 Apache 1.0 5-160 10-660 1-60 1.513s 1.483s -30 -2.0 133m
C 120 Apache 1.1 10-180 30-730 3-70 1.003s 0.981s -22 -2.2 79m
D 120 Apache 1.1 10-400 40-1520 3-140 0.726s 0.699s -27 -3.7 72m
E 800 TUX 1.0 65-750 260-3000 15-270 1.556s 1.506s -49 -3.2 20m
F 800 TUX 1.1 125-1370 500-5300 35-455 0.815s 0.782s -33 -4.1 11m
G 500 Apache 1.0 35-500 140-2000 10-200 1.537s 1.489s -48 -3.1 32m
H 400 Apache 1.1 60-690 250-2880 15-250 0.792s 0.825s -33 -4.0 22m
I 500 Apache 1.1 60-700 260-3000 20-265 0.884s 0.929s -45 -4.8 18m
S1 16 TUX 1.0 1909 8,007 690 7.8ms 7.7ms -0.17 -2.2 210s
S2 80 TUX 1.1 2423 10,164 878 30.5ms 29.7ms -0.83 -2.7 165s
V 800 TUX 1.0 0-2410 0-10,000 0-850 0.574s 0.571s -3 -0.5 29m
O1 800 Apache 1.0 419 1756 152 1.849s 1.806s -42 -2.3 16m
O2 240 Apache 1.1 728 3054 264 .328s .318s -10 -3.1 9m
X 800 Apache 1.0 2174 9120 462 .365s .363s -1.7 -0.5 184s

Table 1: Summary of results.

subnets RTT Client ksniffer diff % ksniffer
(ms) RT RT (ms) diff RTT(ms)

10.1.0.0 200 1.424s 1.391s -33 -2.3 199.8
10.2.0.0 140 1.099s 1.073s -26 -2.4 139.8
10.3.0.0 80 0.824s 0.806s -18 -2.3 79.7
10.4.0.0 20 0.666s 0.656s -10 -1.6 19.9

Table 2: Mean RT per subnet, Test C.

of 200 ms. Note that, although the pageview request rate
decreases, the mean response time increases because the
remaining clients have larger RTTs to theWeb server and
thus incur larger response times.
Table 2 shows results for Test C obtained by imple-
menting a longest prefix matching algorithm based on
[5] in ksniffer to categorize RTT and response time on
a per subnet basis. These results show that ksniffer pro-
vides accurate pageview response times as compared to
client-side instrumentation even on a per subnet basis
when different subnets have different RTTs to the Web
server. ksniffer RTT measurements are also very accu-
rate as compared to the actual RTT used for each sub-
net. The results show how this mechanism can be very
effective in differentiating performance and identifying
problems across different subnets.
Tests S1 and S2 were done under high bandwidth con-
ditions to show results at the maximum bandwidth rate
possible in our testbed. This was done by using the faster
TUX Web server and by imposing no packet loss or net-
work delay. For HTTP 1.1, 80 virtual clients generated
the greatest bandwidth rate, but under HTTP 1.0 only 16
clients generated the highest bandwidth rate. ksniffer is
within 3% of client-side measurements, even under rates
of 690 Mbps and 878 Mbps of HTTP content. The abso-
lute time difference between ksniffer and client response
time measurements was less than 1 ms. We note that the

resolution of the packet timer on ksniffer is only 1 ms,
due to the Linux clock timer granularity. Under HTTP
1.0 without Keep-Alive, each object retrieved requires
its own TCP connection. The TCP connection rate un-
der Test S1 was 8,000 connections/s. The results demon-
strate ksniffer’s ability to track TCP connection estab-
lishment and termination at high connection rates.
Test V was done with severe variations in load alter-

nating between no load and maximum bandwidth load
by switching the clients between on and off modes every
50 s. Figure 9 compares ksniffer response time with that
measured at the client, and Figure 10 compares the dis-
tribution of the response time. This indicates ksniffer’s
accuracy under extreme variations in load.
Tests O1 and O2 were done with the Web server ex-

periencing overload and therefore dropping connections.
We configured Apache to support up to 255 simultane-
ous connections, then started 240 virtual clients. Since
each client opens two connections to the server to ob-
tain a container page and its embedded objects, this over-
whelmed Apache. During Test O1 and O2, the Web
server machine reported a connection failure rate of 27%
and 12%, respectively. Table 1 shows that ksniffer’s
pageview response time for these tests were only 3% less
than those from the client-side. These results show ksnif-
fer’s ability to measure response times accurately in the
presence of both server overload and network packet loss
Test X was done to show ksniffer performance with

caching clients by modifying the clients so that 50% of
the embedded objects requested were obtained from a
zero latency local cache. Figure 11 compares ksniffer
and client-side instrumentation in measuring pageview
response time over the course of the experiment. The
results show that ksniffer can provide very accurate
response time measurements in the presence of client

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 343

 



0 200 400 600
0

200

400

600

800

1000

1200

1400
pa

ge
vi

ew
s/

s

interval (s)

clients
ksniffer

Figure 7: Test F, pageviews.

0 200 400 600
0

0.5

1

1.5

2

2.5

m
ea

n 
re

sp
on

se
 ti

m
e 

(s
)

interval (s)

clients
ksniffer

Figure 8: Test F, response time.
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Figure 9: Test V, response time.
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Figure 11: Text X, response time.
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Figure 12: Live Internet Web site.

caching as well.
We deployed ksniffer in front of a live Internet Web

site, GuitarNotes.com, which is hosted in NYC. Figure
12 depicts results for tracking a single user during a lo-
gon session from Hawthorne, NY. Using MS IE V6, and
beginning with an empty browser cache, the user first
accessed the home page and then visited a dozen pages
within the site including the product review section, dis-
cussion forum, FAQ, classified ads, and performed sev-
eral site searches for information. This covered a range
of static and dynamically generated pageviews. The
number of embedded objects for each page varied be-
tween 5 and 30, and is indicated by the dotted line, which
is graphed against the secondary Y axis on the right.
These objects included .gif, .css and .js objects.
PageDetailer [15] was executing on the client machine

monitoring all socket level activity of IE. PageDetailer
uses a Windows socket probe to monitor and timestamp
each socket call made by the browser: connect(), select(),
read() and write(). By parsing the HTTP requests and
replies, it is able to determine the response time for a
pageview, as well as for each embedded object within a
page. The pageview response time is calculated as the
difference between the connect() system call entry and
the return from the read() system call for the last byte of
data of the last embedded object. As shown in Figure
12, the response time which ksniffer calculates in NYC
at the Web server is nearly identical to that measured
by PageDetailer running on the remote client machine.
For each of the twelve pages downloaded by the client,

ksniffer is within 5% of the response time recorded by
PageDetailer.
ksniffer provides excellent performance scalability

compared to common user-space passive packet capture
systems. Almost all existing passive packet capture sys-
tems in use today are based on libpcap [33]. Libpcap is
a user space library that opens a raw socket to provide
packets to user space monitor programs. As a scalability
test, we wrote a libpcap based traffic monitor program
whose only function was to count TCP packets. Execut-
ing on the same physical machine as ksniffer, the libpcap
packet counter program began to drop a large percentage
of packets when the traffic rate was roughly 325 Mbps.
In contrast, ksniffer performs complex pageview analysis
at near gigabit traffic rates without such packet loss.

6 Related Work
There are a number of approaches currently being taken
to address the problem of obtaining response time in
the context of Web services. A number of companies
[8, 20, 24, 32] provide active probing of aWeb site by pe-
riodically measuring response times at a geographically
distributed set of monitors. There are several limitations
with this approach. First, no real Web traffic by the actual
clients is measured; only the response time for transac-
tions generated by the monitors are reported. Second,
any approach based on coarsed-grained sampling may
suffer from statistical biases. Third, monitors are lim-
ited to performing transactions that do not affect other
users or modify state in backend databases. For exam-
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ple, it would be unwise to configure a monitor to actu-
ally purchase an airline ticket or trade stock on an open
exchange. Fourth, the information gathered by monitors
is generally not available at the Web server in real-time,
limiting the ability of a Web server to respond to changes
in response time to meet delay bound guarantees. Lastly,
CDN providers are known to place servers near monitors
used by these companies to artificially improve their own
performance measurements [7].
A second approach involves instrumenting Web pages

with client-side scripting that gathers client response
time statistics [29]. This approach can be used to track
actual client transactions. However, client-side script-
ing is a ‘post-connection’ approach and therefore does
not account for delays due to TCP connection setup
or waiting in kernel queues on the Web server, which
can be significant when network and server resources
are overloaded. Client-side scripting cannot be applied
to non-HTML files that cannot be instrumented, such
as PDF and Postscript files. It may also not work for
older browsers or browsers with scripting capabilities
disabled, such as mobile devices. Client browser mea-
surements cannot accurately decompose the response
time into server and network components, providing no
insight into whether server or network providers are re-
sponsible for problems.
A third approach requires the Web server to track
when requests arrive and complete service, either at
the application-level [2, 18, 21, 22] or at the kernel-
level [27]. This approach has the desirable properties
that it only requires information available at the Web
server and can be used for non-HTML content. How-
ever, application-level approaches do not account for net-
work interactions or delays due to TCP connection setup
or waiting in kernel queues on the Web server. Previ-
ous results demonstrate that application-level Web server
measurements can under estimate response time by more
than an order of magnitude [27]. Two of the authors of
this paper previously developed Certes [27], a kernel-
level approach that accounts for TCP connection setup
time and time spent waiting in kernel queues in mea-
suring response time at a per connection level. ksnif-
fer extends this work by measuring response time per
pageview without any modifications to the Web server.
A fourth approach is to simply log network packets to

disk, and then use the log files to reconstruct the client
response time [1, 4, 9, 11, 12]. This kind of analysis is
performed offline, using multiple passes and limited to
analyzing only reasonably sized log files [31]. ksniffer’s
correlation algorithm differs from EtE [11] in that it does
not require multiple passes and offline operation, uses
file extensions and refer host names in addition to the
filename in the refer field, handles multiple requests for
the same Web page from the same client, and accounts

for connection setup time and packet loss in determining
response time. [9] describes many of the issues involved
in TCP/HTTP reconstruction, but does not consider the
problem of measuring response time.
Other approaches exist which can provide mecha-

nisms for filtering and analyzing packet traces online,
such as GigaScope [6], Nprobe [12], NetQoS [26], libp-
cap [33], and BPF [23]. However, these systems do
not provide any higher-level functionality to determine
pageview response times from live Web traffic. Most of
this work has focused on improving packet filtering per-
formance, which is not particularly applicable when all
traffic into and out of a Web server is of interest, rather
than a narrow subset.
Note that ksniffer shares certain limitations that are

present in all network traffic monitors. Response time
components due to processing on the remote client ma-
chines cannot be directly measured from server-side net-
work traffic. Examples include times for DNS query res-
olution and HTML parsing and rendering on the client.
Embedded objects obtained from locations other than the
monitored servers may have an impact on accuracy as
well, but only if their download completion time exceeds
that of the last object obtained from the monitored server.

7 Conclusions and Future Work
We have designed, implemented and evaluated ksniffer,
a kernel-based traffic monitor that can be colocated with
Web servers to measure their performance as perceived
by remote clients in real-time. As a passive network
monitor, ksniffer requires no changes to clients or Web
servers, and does not perturb performance in the way
that intrusive instrumentation methods can. ksniffer de-
termines client perceived pageview response times using
novel, online mechanisms that take a “look once, then
drop” approach to packet analysis to reconstruct TCP
connections and learn client pageview activity.
We have implemented ksniffer as a set of loadable

Linux kernel modules and validated its performance us-
ing both a controlled experimental testbed and a live
Internet Web site. Our results show that ksniffer’s in-
kernel design scales much better than common user-
space approaches, enabling ksniffer to monitor gigabit
traffic rates using only commodity hardware, software,
and network interface cards. More importantly, our re-
sults demonstrate ksniffer’s unique ability to accurately
measure client perceived response times even in the pres-
ence of network and server packet loss, missing HTTP
referer fields, client caching, and widely varying static
and dynamic Web content.
Future work includes integrating ksniffer with a clus-

ter management system and developing mechanisms that
manage resources to achieve specified response time
goals. Such a management system would base resource
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allocation decisions on the response time as perceived
by the remote client instead of the response time as re-
ported by other means. This may raise some interesting
scheduling and allocation problems, particularly in the
context of resource constrained Web sites. We expect
to combine machine learning techniques with models of
TCP/IP and client behavior to achieve our goals.
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