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Abstract

We present icTCP, an “information and control” TCP implemen-
tation that exposes key pieces of internal TCP state and allows
certain TCP variables to be set in a safe fashion. The primary
benefit of icTCP is that it enables a variety of TCP extensions
to be implemented at user-level while ensuring that extensions
are TCP-friendly. We demonstrate the utility of icTCP through
a collection of case studies. We show that by exposing infor-
mation and safe control of the TCP congestion window, we can
readily implement user-level versions of TCP Vegas, TCP Nice,
and the Congestion Manager; we show how user-level libraries
can safely control the duplicate acknowledgment threshold to
make TCP more robust to packet reordering or more appropri-
ate for wireless LANs; we also show how the retransmission
timeout value can be adjusted dynamically. Finally, we find that
converting a stock TCP implementation into icTCP is relatively
straightforward; our prototype requires approximately 300 lines
of new kernel code.

1 Introduction

Years of networking research have suggested a vast num-
ber of modifications to the standard TCP/IP protocol
stack [3, 8, 11, 13, 14, 23,27, 31, 40, 47, 50, 52, 57]. Un-
fortunately, while some proposals are eventually adopted,
many suggested modifications to the TCP stack do not be-
come widely deployed [44].

In this paper, we address the problem of deployment
by proposing a small but enabling change to the network
stack found in modern operating systems. Specifically,
we introduce icTCP (pronounced “I See TCP”), a slightly
modified in-kernel TCP stack that exports key pieces of
state information and provides safe control to user-level
libraries. By exposing state and safe control over TCP
connections, icTCP enables a broad range of interesting
and important network services to be built at user-level.

User-level services built on icTCP are more deploy-
able than the same services implemented within the OS
TCP stack: new services can be packaged as libraries and
easily downloaded by interested parties. This approach
is also inherently flexible: developers can tailor them to

the exact needs of their applications. Finally, these ex-
tensions are composable: library services can be used to
build more powerful functionality in a lego-like fashion.
In general, icTCP facilitates the development of many ser-
vices that otherwise would have to reside within the OS.

One key advantage of icTCP compared to other ap-
proaches for upgrading network protocols [41, 44] is the
simplicity of implementing the icTCP framework on a
new platform. Simplicity is a virtue for two reasons. First,
given that icTCP leverages the entire existing TCP stack,
it is relatively simple to convert a traditional TCP imple-
mentation to icTCP; our Linux-based implementation re-
quires approximately 300 new lines of code. Second, the
small amount of code change reduces the chances of in-
troducing new bugs into the protocol; previous TCP mod-
ifications often do not have this property [43, 45].

Another advantage of icTCP is the safe manner in
which it provides new user-level control. Safety is an is-
sue any time users are allowed to modify the behavior of
the OS [48]. With icTCP, users are allowed to control
only a set of limited virtual TCP variables (e.g., cwnd,
dupthresh, and RTO). Since users cannot download arbi-
trary code, OS safety is not a concern. The remaining con-
cern is network safety: can applications implement TCP
extensions that are not friendly to competing flows [38]?
By building on top of the extant TCP Reno stack and by
restricting virtual variables to a safe range of values, ic-
TCP ensures that extensions are no more aggressive than
TCP Reno and thus are friendly.

In addition to providing simplicity and safeness, a
framework such as icTCP must address three additional
questions. First, are the overheads of implementing vari-
ants of TCP with icTCP reasonable? Our measurements
show that services built on icTCP scale well and incur
minimal CPU overhead when they use appropriate icTCP
waiting mechanisms.

Second, can a wide range of new functionality be im-
plemented using this conservative approach? We demon-
strate the utility of icTCP by implementing six exten-
sions of TCP. In the first set of case studies, we focus on
modifications that alter the behavior of the transport with
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regard to congestion: TCP Vegas [14], TCP Nice [52],
and Congestion Manager (CM) [8]. In our second set,
we focus on TCP modifications that behave differently in
the presence of duplicate acknowledgments: we build a
reodering-robust (RR) extension that does not misinter-
pret packet reordering as packet loss [11, 57] and an ex-
tension with efficient fast retransmit (EFR) [50]. In our
third set, we explore TCP Eifel [36] which adjusts the
retransmit timeout value.

Finally, can these services be developed easily within
the framework? We show that the amount of code re-
quired to build these extensions as user-level services on
icTCP is similar to the original, native implementations.

The rest of this paper is structured as follows. In Sec-
tion 2 we compare icTCP to related work on extensible
network services. In Section 3 we present the design of
icTCP and in Section 4 we describe our methodology. In
Section 5 we evaluate five important aspects of icTCP:
the simplicity of implementing icTCP for a new platform,
the network safety ensured of new user-level extensions,
the computational overheads, the range of TCP extensions
that can be supported, and the complexity of developing
those extensions. We conclude in Section 6.

2 Related Work

In this section, we compare icTCP to other approaches
that provide networking extensibility.

Upgrading TCP: Four recent projects have proposed
frameworks for providing limited extensions for transport
protocols; that is, they allow protocols such as TCP to
evolve and improve, while still ensuring safety and TCP
friendliness. We compare icTCP to these proposals.

Mogul et al. [41] propose that applications can “get”
and more radically “set” TCP state. In terms of getting
TCP state, icTCP is similar to this proposal. The greater
philosophical difference arises in how internal TCP state
is set. Mogul et al. wish to allow arbitrary state setting and
suggest that safety can be provided either with a crypto-
graphic signature of previously exported state or by re-
stricting this ability to the super-user. However, icTCP is
more conservative, allowing applications to alter param-
eters only in a restricted fashion. The trade-off is that
icTCP can guarantee that new network services are well
behaved, but Mogul et al.’s approach is likely to enable a
broader range of services (e.g., session migration).

The Web100 and Net100 projects [39] are developing a
management interface for TCP. Similar to the information
component of icTCP, Web100 instruments TCP to export
a variety of per-connection statistics; however, Web100
does not propose exporting as detailed information as ic-
TCP (e.g., Web100 does not export timestamps for every
message and acknowledgment). The TCP-tuning daemon
within Net100 is similar to the control component of ic-
TCP; this daemon observes TCP statistics and responds

by setting TCP parameters [18]. The key difference from
icTCP is that Net100 does not propose allowing a com-
plete set of variables to be controlled and does not en-
sure network safety. Furthermore, Net100 appears suit-
able only for tuning parameters that do not need to be
set frequently; icTCP can frequently adjust in-kernel vari-
ables because it provides per-message statistics as well as
the ability to block until various in-kernel events occur.
STP [44] also addresses the problem of TCP deploy-
ment. STP enables communicating end hosts to remotely
upgrade the other’s protocol stack. With STP, the au-
thors show that a broad range of TCP extensions can
be deployed. We emphasize two major differences be-
tween STP and icTCP. First, STP requires more inva-
sive changes to the kernel to support safe downloading
of extension-specific code; support for in-kernel extensi-
bility is fraught with difficulty [48]. In contrast, icTCP
makes minimal changes to the kernel. Second, STP re-
quires additional machinery to ensure TCP friendliness;
icTCP guarantees friendliness by its very design. Thus,
STP is a more powerful framework for TCP extensions,
but icTCP can be provided more easily and safely.
Finally, the information component of icTCP is derived
from INFOTCP, proposed as part of the infokernel [7];
this previous work showed that INFOTCP enables user-
level services to indirectly control the TCP congestion
window, cwnd. We believe that icTCP improves on INFO-
TCP in three main ways. First, icTCP exposes informa-
tion from a more complete set of TCP variables. Second,
icTCP allows services to directly set cwnd inside of TCP;
thus, applications do not need to perform extra buffer-
ing nor incur as many sleep/wake events. Finally, icTCP
allows TCP variables other than cwnd to be controlled.
Thus, icTCP not only allows more TCP extensions to be
implemented, but is also more efficient and accurate.
User-Level TCP: Researchers have found it useful to
move portions of the conventional network stack to user-
level [19, 20, 46]. User-level TCP can simplify protocol
development in the same way as icTCP. However, a user-
level TCP implementation typically struggles with per-
formance, due to extra buffering or context switching or
both; further, there is no assurance of network safety.
Application-Specific Networking: A large body of re-
search has investigated how to provide extensibility of
network services [22, 28, 37, 51, 53, 54]. These projects
allow network protocols to be more specialized to ap-
plications than does icTCP, and thus may improve per-
formance more dramatically. However, these approaches
tend to require more radical restructuring of the OS or net-
working stack and do not guarantee TCP friendliness.
Protocol Languages and Architectures: Network
languages [1, 35] and structured TCP implementa-
tions [10] simplify the development of network protocols.
Given the ability to replace or specialize modules, it is
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Figure 1: icTCP Architecture. The diagram shows the icTCP
architecture. At the base of the stack is icTCP, a slightly modified TCP
stack that exports information and limited control. On top of icTCP,
we have built a number of user-level libraries that implement various
pieces of functionality suggested by the literature. The libraries can be
composed (where applicable), thus enabling the construction of more
powerful services in a plug-and-play fashion. Applications sit at the
top of the stack and can choose the libraries that match their needs or
directly use the kernel transport.

generally easier to extend existing TCP implementations.

3 icTCP Design

The icTCP framework exposes information and provides
control over key parameters in the TCP protocol imple-
mentation. In this section, we give a high-level overview
of how user-level network services are deployed with ic-
TCP. We then describe the classes of information and con-
trol exported by icTCP.

3.1 System Architecture

Figure 1 presents a schematic of the icTCP framework.
As illustrated, user-level libraries implementing variants
of TCP are built on top of icTCP. The user-level libraries
can be transparently used by applications with standard
interfaces. Different TCP connections can use different
icTCP libraries. The design of icTCP is such that only the
sending side needs to have icTCP deployed; receivers can
be running icTCP or an unmodified kernel stack.

To simplify the implementation, icTCP uses the BSD
socket interface, exporting information and providing
control with a few new socket options. Although this ap-
proach minimized our implementation work, it imposes
unnecessary run-time overhead: obtaining state requires a
copy from the kernel to user space. Our evaluation shows
that user-level network services that naively poll icTCP
frequently for state information can incur a significant in-
crease in CPU overhead.

To minimize this overhead, icTCP provides both a
polling and an interrupt-based interface. Given that most
TCP variables are updated only when an acknowledgment
arrives or at the end of a round (i.e., when one round-
trip time has elapsed), applications can receive an inter-
rupt for either condition. In our case studies, the icTCP
user-level libraries are structured to use two threads; one
thread injects packets into the kernel while the other per-
forms sleep/wait and get/set operations.

3.2 Information

The first goal of icTCP is to expose information that is tra-
ditionally internal to TCP. The challenge is to determine
which information should be exposed: if too little infor-
mation is exposed, it may not be possible to build interest-
ing extensions; if too much information is exposed, then
future kernel implementations of TCP may be constrained
by an undesirable, expanded interface.

Given that TCP implementations are constrained to ad-
here to the TCP specification [29], many internal variables
are already specified and required. Therefore, icTCP ex-
plicitly exports all variables that are part of the TCP spec-
ification, such as the next sequence number to be sent
(snd.nxt), the oldest unacknowledged sequence number
(snd.una), the congestion window (cwnd), and the slow
start threshold (ssthresh). Exposing this information from
any TCP implementation should be straightforward.

However, we have found that for more interesting ser-
vices, access to more information is needed. For example,
libraries such as icTCP-Nice and icTCP-RR must exam-
ine information about a particular message. Therefore,
icTCP exposes “standard” information about each packet.
A message list provides a history of recent packets, re-
porting for each packet its sequence number, round-trip
time, and whether it is being sent for a time-out or a fast
retransmit. An ack list provides a history of recent ac-
knowledgments, recording for each packet its acknowl-
edgment number and type (e.g., normal ACK, duplicate
ACK, SACK, or DSACK).

Exposing per-packet and per-ack information may not
be trivial for those TCP implementations where it does
not already exist. Given that TCP Reno does not track the
round-trip time of each packet, we add a high resolution
timer to icTCP to record this information. An additional
complexity is that recording new per-message informa-
tion requires additional memory; therefore, icTCP creates
these lists only when enabled by user-level services.

3.3 Control

The second goal of icTCP is to allow variables that are in-
ternal to TCP to be externally set in a safe manner. A new
challenge is to determine not only which variables can be
modified, but also to what values, while still ensuring that
the resulting behavior is TCP-friendly. Our philosophy is
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Variable Description Safe Range Example usage
cwnd Congestion window 0<wv<zx Limit number of sent packets
cwnd.cnt Linear cwnd increase 0<v<z Increase cwnd less aggressively
ssthresh Slow start threshold 1<v<zx Move to SS from CA
rcv.wnd Receive window size 0<v<x Reject packet; limit sender
rcv.nxt Next expected seq num r <wv < x+ vrcv.wnd Reject packet; limit sender
snd.nxt Next seq num to send vsnduna < v < z Reject ack; enter SS

snd.una Oldest unacked seq num xr < v < vsnd.nxt Reject ack; enter FRFR
dupthresh Duplicate threshold 1 < v < vewnd Enter FRFR

RTO Retransmission timeout exp.backoff  (srtt + rttvar) < v  Enter SS

retransmits  Number of consecutive timeouts 0 < v < threshold Postpone killing connection

Table 1: Safe Setting of TCP Variables. The table lists the 10 TCP variables which can be set in icTCP. We specify the range each variable
can be safely set while ensuring that the result is less aggressive than the baseline TCP implementation. We also give an example usage or some
intuition on why it is useful to control this variable. Notation: x refers to TCP’s original copy of the variable and v refers to the new virtual copy
being set; SS is used for slow start, CA for congestion avoidance, and FRFR for fast retransmit/fast recovery; finally, srtt, rttvar, and exp.backoff
represent smoothed round-trip time, round-trip time variance, and the RTO exponential backoff, respectively.

that icTCP must be conservative: control is only allowed
when it is known to not cause aggressive transmission.

The basic idea is that for each variable of interest, ic-
TCP adds a new limited virtual variable. Our terminology
is as follows: for a TCP variable with the original name
foo, we introduce a limited virtual variable with the name
vfoo. However, when the meaning is clear, we simply use
the original name. We restrict the range of values that
the virtual variable is allowed to cover so that the result-
ing TCP behavior is friendly; that is, we ensure that the
new TCP actions are no more aggressive than those of
the original TCP implementation. Given that the accept-
able range for a variable is a function of other fluctuat-
ing TCP variables, it is not possible to check at call time
that the user has specified a valid value and reject invalid
settings. Instead, icTCP accepts all settings and coerces
the virtual variable into a valid range. For example, the
safe range for the virtual congestion window, vewnd, is
0 < vewnd < cwnd. Therefore, if vewnd rises above
cwnd the value of cwnd is used instead.

Converting a variable to a virtual variable within the ic-
TCP stack is not as trivial as it may appear; one cannot
simply replace all instances of the original variable with
the new virtual one. One must ensure that the virtual value
is never used to change the original variable. The simplest
case is the statement cwnd = cwnd+1, which clearly can-
not be replaced with cwnd = vewnd + 1. More complex
cases of control flow currently require careful manual in-
spection. Therefore, we limit the extent to which the orig-
inal variable is replaced with the virtual variable.

Given that our foremost goal with icTCP is to ensure
that icTCP cannot be used to create aggressive flows, we
are conservative in the virtual variables we introduce. Al-
though it would be interesting to allow all TCP variables
to be set, the current implementation of icTCP only al-
lows control of ten variables that we are convinced can
be safely set from our analysis of the Linux TCP imple-
mentation. We do not introduce virtual variables when

the original variable can already be set through other in-
terfaces (e.g., sysctl of tcp_retries1 or user_mss) or when
they can be approximated in other ways (e.g., we set RTO
instead of srtt, mdev, rttvar, or mrtt). We do not claim
that these ten variables represent the complete collection
of settable values, but that they do form a useful set. These
ten variables and their safe ranges are summarized in Ta-
ble 1. We briefly discuss why the specified range of values
is safe for each icTCP variable.

The first three variables (i.e., cwnd, cwnd.cnt, and
ssthresh) have the property that it is safe to strictly lower
their value. In each case, the sender directly transmits
less data, because either its congestion window is smaller
(i.e., cwnd and cwnd.cnt) or slow-start is entered instead
of congestion avoidance (i.e., ssthresh).

The next set of variables determine which packets or
acknowledgments are accepted; the constraints on these
variables are more complex. On the receiver, a packet is
accepted if its sequence number falls inside the receive
window (i.e., between rcv.nxt and rcv.nxt + rcv.wnd);
thus, increasing rcv.nxt or decreasing rcv.wnd has the ef-
fect of rejecting incoming packets and forces the sender
to reduce its sending rate. On the sender, an acknowl-
edgment is processed if its sequence number is between
snd.una and snd.nxt; therefore, increasing snd.una or de-
creasing snd.nxt causes the sender to discard acks and
again reduce its sending rate. In each case, modifying
these values has the effect of dropping additional packets;
thus, TCP backs-off appropriately.

The final set of variables (i.e., dupthresh, RTO, and re-
transmits) control thresholds and timeouts; these variables
can be set independently of the original values. For exam-
ple, both increasing and decreasing dupthresh is believed
to be safe [57]. Changing these values can increase the
amount of traffic, but does not allow the sender to trans-
mit new packets or to increase its congestion window.
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Information LOC | Control LOC
States 25 | cwnd 15
Message List 33 | dupthresh 28
Ack List 41 | RTO 13
High-resolution RTT 12 | ssthresh 19
Wakeup events 50 | cwnd_cnt 14
retransmits 6
rcv_nxt 20
rcv_wnd 14
snd_una 12
snd_nxt 14
Info Total 161 | Control Total 155
icTCP Total 316

Table 2: Simplicity of Environment. The table reports the num-
ber of C statements (counted with the number of semicolons) needed to
implement the current prototype of icTCP within Linux 2.4.

4 Methodology

Our prototype of icTCP is implemented in the
Linux 2.4.18 kernel. Our experiments are performed
exclusively within the Netbed network emulation en-
vironment [56]. A single Netbed machine contains an
850 MHz Pentium 3 CPU with 512 MB of main memory
and five Intel EtherExpress Pro 100Mb/s Ethernet ports.
The sending endpoints run icTCP, whereas the receivers
run stock Linux 2.4.18.

For almost all experiments, a dumbbell topology is
used, with one or more senders, two routers intercon-
nected by a (potential) bottleneck link, and one or more
receivers. In some experiments, we use a modified Nist-
Net [16] on the router nodes to emulate more complex be-
haviors such as packet reordering. In most experiments,
we vary some combination of the bottleneck bandwidth,
delay, or maximum queue size through the intermediate
router nodes. Experiments are run multiple times (usually
30) and averages are reported; variance is low in those
cases where it is not shown.

5 Evaluation

To evaluate whether or not icTCP is a reasonable frame-
work for deploying TCP extensions at user-level, we an-
swer five questions. First, how easily can an existing TCP
implementation be converted to provide the information
and safe control of icTCP? Second, does icTCP ensure
that the resulting network flows are TCP friendly? Third,
what are the computation overheads of deploying TCP
extensions as user-level processes and how does icTCP
scale? Fourth, what types of TCP extensions can be built
and deployed with icTCP? Finally, how difficult is it to
develop TCP extensions in this way? Note that we spend
the bulk of the paper addressing the fourth question con-
cerning the range of extensions that can be implemented
and discussing the limitations of our approach.

// set internal TCP variables
tep_setsockopt (option, val) {
switch (option) {
case TCP_USE_VCWND:
use_vewnd = val;
case TCP_SET_VCWND:
vewnd = val;

}
}

/I check if data should be put on the wire
tep_snd_test () {
if (use_vewnd)
min_cwnd = min (vewnd, cwnd);
else
min_cwnd = cwnd;
// if okay to transmit
if ((tep-_packets_in_flight < min_cwnd) &&
/* ... other rules .... */)
return 1;
else
return 0;
}

Figure 2: In-kernel Modification. Adding vewnd into the TCP
stack requires few lines of code. icTCP applications set the virtual vari-
ables through the BSD setsockopt() interface. Based on the congestion
window, tcp_snd_test checks if data should be put on the wire. We show
that adding a virtual cwnd into the decision-making process is simple
and straightforward: instead of using cwnd, icTCP uses the minimum of
vewnd and cwnd.

5.1 Simplicity of Environment

We begin by addressing the question of how difficult
it is to convert a TCP implementation to icTCP. Our
initial version of icTCP has been implemented within
Linux 2.4.18. Our experience is that implementing icTCP
is fairly straightforward and requires adding few new lines
of code. Table 2 shows that we added 316 C statements
to TCP to create icTCP. While the number of statements
added is not a perfect indicator of complexity, we believe
that it does indicate how non-intrusive these modifications
are. Figure 2 gives a partial example of how the vewnd
variable can be added to the icTCP stack.

5.2 Network Safety

We next investigate whether icTCP flows are TCP
friendly. To perform this evaluation, we measure the
throughput available to default TCP flows that are com-
peting with icTCP flows. Our measurements show that
icTCP is TCP friendly; as desired, the default TCP flows
obtain at least as much bandwidth when competing with
icTCP as when competing with other default TCP flows.
We also show the need for constraining the values into
a valid range within icTCP. To illustrate this need, we
have created an unconstrained icTCP that allows virtual
variables to be set to any value. When default TCP flows
compete with unconstrained icTCP flows, the throughput
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Figure 3: Network Safety of icTCP. Each graph shows two lines: the first line ((D)=Default) uses the default icTCP that enforces parameters
to values within their safe range; the second line ((U)=Unconstrained) uses icTCP that allows parameters to be set to any value. The dupthresh
graph uses the unconstrained icTCP for both lines. The metric is the ratio of throughput achieved by the default TCP flows when competing with
the icTCP flows versus when competing with other default TCP flows. Across the graphs, we vary which icTCP parameters are set; in each case, we
set the variable to an unsafe value: cwnd to four packets larger, cwnd.cnt to four times larger, ssthresh to two times larger, snd.una to eight packets
lower, dupthresh fo random values below and above three (the default), and RTO remaining at an initial sttt + rttvar as packets are dropped. The
topology used is a dumbbell with four senders and four receivers. For all experiments, except the RTO experiments, the bottleneck bandwidth is 100
Mbps with no delay; the RTO experiments use a bottleneck bandwidth of 2 Mbps with 15 percents drop rate.

of the default TCP flows is reduced.

Our measurements are shown in Figure 3. Across
graphs, we evaluate different icTCP parameters, explicitly
setting each parameter to a value outside of its safe range.
Along the x-axis of each graph, we increase the number
of competing icTCP and TCP flows. Each graph shows
two lines: one line has icTCP flows matching our pro-
posal, in which virtual variables are limited to their safe
range; the other line has unconstrained icTCP flows. Our
metric is the ratio of throughput achieved by the default
TCP flows when competing with the icTCP flows versus
when competing with other default TCP flows. Thus, if
the throughput ratio is around or above one, then the ic-
TCP flows are friendly; if it is below one, then the icTCP
flows are unfriendly.

The cwnd, cwnd.cnt, and ssthresh experiments show
that these variables must be set within their safe range to
ensure friendliness. As expected, icTCP flows that are not
allowed to increase their congestion window beyond that
of the default TCP remain TCP friendly. Unconstrained
icTCP flows that allow larger congestion windows are
overly aggressive; as a result, the competing TCP flows
obtain less than their fair share of the bandwidth.

We next evaluate the variables that control which ac-
knowledgments or packets are accepted. The behavior
for snd.una is shown in the fourth graph. The snd.una
variable represents the highest unacknolwedged packet.

When the virtual snd.una is set below its safe range of the
actual value, then unconstrained icTCP over-estimates the
number of bytes acknowledged and increases the conges-
tion window too aggressively. However, when icTCP cor-
rectly constrains snd.una, the flow remains friendly. The
results for the other three variables (i.e., rcv.wnd, rcv.nxt,
and snd.nxt) are not shown. In these cases, the icTCP
flows remain friendly, as desired, but the unconstrained
icTCP flows can fail completely. For example, increasing
the rcv.wnd variable beyond its safe range can cause the
receive buffer to overflow.

The final two graphs explore the dupthresh and RTO
thresholds. We do not experiment with the retransmits
variable since it is only used to decide when a connection
should be terminated. As expected for dupthresh, both de-
creasing and increasing its value from the default of three
does not cause unfriendliness; thus, dupthresh does not
need to be constrained. In the case of RTO, the graph
shows that if RTO is set below exp.backoff * (srtt + rttvar)
then the resulting flow is too aggressive.

These graphs represent only a small subset of the exper-
iments we have conducted to investigate TCP friendliness.
We have experimented with setting the icTCP variables to
random values outside of the safe range and have con-
trolled each of the icTCP parameters in isolation as well
as sets of the parameters simultaneously. In all cases, the
TCP Reno flows competing with icTCP obtain at least as
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Figure 4: CPU Overhead and Throughput in Scaling icTCP.
We connect one sender host to four receiver hosts through different net-
work interfaces. All links are 100 Mbps with no delay links, thus in
aggregrate the sender host can send data outward at 400 Mbps. Along
the x-axis, we increase the number of connections on the sender host.
These connections are spread evenly across the four receivers. The first
figure compares the overall CPU utilization of Reno, icTCP with per-ack
and per-round interrupt. The second figure shows the icTCP throughput
degradation when the sender load is high.

much bandwidth as they do when competing with other
TCP Reno flows, as desired. In summary, our results em-
pirically demonstrate that icTCP flows require safe vari-
able settings to be TCP friendly. Although these exper-
iments do not prove that icTCP ensures network safety,
these measurements combined with our analysis give us
confidence that icTCP can be safely deployed.

5.3 CPU Overhead

We evaluate the overhead imposed by the icTCP frame-
work in two ways. First, we explore the scalability of
icTCP using synthetic user-level libraries; these experi-
ments explore ways in which a user-level library can re-
duce CPU overhead by minimizing its interactions with
the kernel. Second, we implement TCP Vegas [14] at
user-level on top of icTCP; these experiments also allow
us to directly compare icTCP to INFOTCP.

5.3.1 Scaling icTCP

We evaluate how icTCP scales as the number of connec-
tions is increased on a host. Different user-level exten-
sions built on icTCP are expected to get and set differ-
ent pieces of TCP information at different rates. The two
factors that may determine the amount of overhead are
whether the user process requires per-ack or per-round in-
terrupts and whether or not the user process needs the ic-
TCP message list and ack list data structures.

To show the scaling properties of user libraries built on
icTCP, we construct three synthetic libraries that mimic
the behavior of our later case studies. The first synthetic
library uses per-ack interrupts (representing icTCP-EFR
and icTCP-Eifel); the second library uses per-round inter-
rupts (icCM); the final library uses per-round interrupts
and also gets the message or ack list data structures (ic-
TCP-Vegas, icTCP-Nice, and icTCP-RR).

The two graphs in Figure 4 show how icTCP and TCP
Reno scale as the number of flows is increased on a host;
the first figure reports CPU utilization and the second fig-
ure reports throughput. The first figure shows that icTCP
with per-ack and per-round interrupts reaches 100% CPU
utilization when there are three and four connections, re-
spectively; the additional CPU overhead of also getting
the icTCP message list is negligible. In comparison, TCP
Reno reaches roughly 80% utilization with four connec-
tions, and then slowly increases to 100% at roughly 16
connections.

The second figure shows that throughput for icTCP
starts to degrade when there are four or eight connections,
depending upon whether they use per-ack or per-round in-
terrupts, respectively. With 96 flows, the icTCP through-
put with per-ack and per-round interrupts is lower than
TCP Reno by about 30% and 12%, respectively. Thus,
icTCP CPU overhead is noticeable but not prohibitive.

To measure the extent to which a user-level library can
accurately implement TCP functionality, we measure the
interrupt miss rate, defined as how frequently the user
misses the interrupt for an ack or the end of a round. In
the scaling experiments above with 96 connections, we
observed a worst-case miss rate of 1.3% for per-ack inter-
rupts and 0.4% for per-round interrupts. These low miss
rates imply that functionality can be placed at the user-
level that is responsive to current network conditions.

5.3.2 icTCP-Vegas

To further evaluate icTCP, we implement TCP Vegas con-
gestion avoidance as a user-level library. TCP Vegas re-
duces latency and increases overall throughput, relative to
TCP Reno, by carefully matching the sending rate to the
rate at which packets are being drained by the network,
thus avoiding packet loss. Specifically, if the sender sees
that the measured throughput differs from the expected
throughput by more than a fixed threshold, it increases or
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Figure 5: icTCP-Vegas CPU Overhead. The figure compares the

overall CPU utilization of Reno, INFOVEGAS, and the three versions of

icTCP-Vegas. We vary bottleneck-link bandwidth along the x-axis.

decreases its congestion control window, cwnd, by one.
Implementation: Our implementation of the Vegas con-
gestion control algorithm, icTCP-Vegas, is structured as
follows. The operation of Vegas is placed in a user-level
library. This library simply passes all messages directly to
icTCP, i.e., no buffering is done at this layer. We imple-
ment three different versions that vary the point at which
we poll icTCP for new information: every time we send a
new packet, every time an acknowledgment is received, or
whenever a round ends. After the library gets the relevant
TCP state, it calculates its own target congestion window,
vewnd. When the value of vewnd changes, icTCP-Vegas
sets this value explicitly inside icTCP.

We note that the implementation of icTCP-Vegas is

similar to that of INFOVEGAS, described as part of an
infokernel [7]. The primary difference between the two
is INFOTCP must manage its own vewnd, as it does not
provide control over TCP variables. When INFOVEGAS
calculates a value of vewnd that is less than the actual
cwnd, INFOVEGAS must buffer its packets and not trans-
fer them to the TCP layer; INFOVEGAS then blocks until
an acknowledgment arrives, at which point, it recalculates
vewnd and may send more messages.
Evaluation: We have verified that icTCP-Vegas behaves
like the in-kernel implementation of Vegas. Due to space
constraints we do not show these results; we instead focus
our evaluation on CPU overhead.

Figure 5 shows the total (user and system) CPU utiliza-
tion as a function of network bandwidth for TCP Reno,
the three versions of icTCP-Vegas, and INFOVEGAS. As
the available network bandwidth increases, CPU utiliza-
tion increases for each implementation. The CPU uti-
lization (in particular, system utilization) increases sig-
nificantly for INFOVEGAS due to its frequent user-kernel
crossings. This extra overhead is reduced somewhat for
icTCP-Vegas when it polls icTCP on every message send
or wakes on the arrival of every acknowledgment, but is
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Figure 6: icTCP-Nice: Link Capacity vs. Latency. A fore-
ground flow competes with many background flows. Each line corre-
sponds to a different run of the experiment with a protocol for back-
ground flows (i.e., icTCP, TCP Nice, Reno, or Vegas). The y-axis shows
the average document transfer latency for the foreground traffic. The
foreground traffic consists of a 3-minute section of a Squid proxy trace
logged at U.C. Berkeley. The background traffic consists of long-running
Sflows. The topology used is a dumbbell with 6 sending nodes and 6 re-
ceiving nodes. The foreground flow is alone on one of the sender/receiver
pairs while 16 background flows are distributed across the remaining 5
sender/receiver pairs. The bottleneck link bandwidth is varied along the
X-axis.

still noticeable. Since getting icTCP information through
the getsockopt interface incurs significant overhead, ic-
TCP-Vegas can greatly reduce its overhead by getting in-
formation less frequently. Because Vegas adjusts cwnd
only at the end of a round, icTCP-Vegas can behave accu-
rately while still waking only every round. The optimiza-
tion results in CPU utilization that is higher by only about
0.5% for icTCP-Vegas than for in-kernel Reno.

5.4 TCP Extensions

Our fourth axis for evaluating icTCP concerns the range
of TCP extensions that it allows. Given the importance
of this issue, we spend most of the remaining paper on
this topic. We address this question by first demonstrating
how five more TCP variants can be built on top of icTCP.
These case studies are explicitly not meant to be exhaus-
tive, but to instead illustrate the flexibility and simplicity
of icTCP. We then briefly discuss whether icTCP can be
used to implement a wider set of TCP extensions.

54.1 icTCP-Nice

In our first case study, we show that TCP Nice [52] can be
implemented at user-level with icTCP. This study demon-
strates that an algorithm that differs more radically from
the base icTCP Reno algorithm can still be implemented.
In particular, icTCP-Nice requires access to more of the
internal state within icTCP, i.e.the complete message list.
Overview: TCP Nice provides a near zero-cost back-
ground transfer; that is, a TCP Nice background flow
interferes little with foreground flows and reaps a large
fraction of the spare network bandwidth. TCP Nice is
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similar to TCP Vegas, with two additional components:
multiplicative window reduction in response to increasing
round-trip times and the ability to reduce the congestion
window below one. We discuss these components in turn.

TCP Nice halves its current congestion window when
long round-trip times are measured, unlike Vegas which
reduces its window by one and halves its window only
when packets are lost. To determine when the window
size should be halved, the TCP Nice algorithm monitors
round-trip delays, estimates the total queue size at the bot-
tleneck router, and signals congestion when the estimated
queue size exceeds a fraction of the estimated maximum
queue capacity. Specifically, TCP Nice counts the num-
ber of packets for which the delay exceeds minRTT +
(maxRTT — minRTT) « t (where t = 0.1); if the frac-
tion of such delayed packets within a round exceeds f
(where f = 0.5), then TCP Nice signals congestion and
decreases the window multiplicatively.

TCP Nice also allows the window to be less than one;

to effect this, when the congestion window is below two,
TCP Nice adds a new timer and waits for the appropriate
number of RTTs before sending more packets.
Implementation: The implementation of icTCP-Nice is
similar to that of icTCP-Vegas, but slightly more complex.
First, icTCP-Nice requires information about every packet
instead of summary statistics; therefore, icTCP-Nice ob-
tains the full message list containing the sequence number
(seqno) and round trip time (usrtf) of each packet. Second,
the implementation of windows less than one is tricky but
can also use the vewnd mechanism. In this case, for a win-
dow of 1/n, icTCP-Nice sets vewnd to 1 for a single RTT
period, and to O for (n — 1) periods.
Evaluation: To demonstrate the effectiveness of the ic-
TCP approach, we replicate several of the experiments
from the original TCP Nice paper (i.e., Figures 2, 3, and 4
in [52]).

Our results show that icTCP-Nice performs almost
identically to the in-kernel TCP Nice, as desired.

Figure 6 shows the latency of the foreground connec-
tions when it competes against 16 background connec-
tions and the spare capacity of the network is varied. The
results indicate that when icTCP-Nice or TCP Nice are
used for background connections, the latency of the fore-
ground connections is often an order of magnitude faster
than when TCP Reno is used for background connections.
As desired, icTCP-Nice and TCP Nice perform similarly.

The two graphs in Figure 7 show the latency of fore-
ground connections and the throughput of background
connections as the number of background connections in-
creases. The graph on the top shows that as more back-
ground flows are added, document latency remains essen-
tially constant when either icTCP-Nice or TCP Nice is
used for the background flows. The graph on the bot-
tom shows that icTCP-Nice and TCP Nice obtain more
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Figure 7: icTCP-Nice: Impact of Background Flows. The two
graphs correspond to the same experiment; the first graph shows the av-
erage document latency for the foreground traffic while the second graph
shows the number of bytes the background flows manage to transfer dur-
ing the 3 minutes period. Each line corresponds to a different protocol

for background flows (i.e., TCP Reno, icTCP-Nice, or TCP Nice). The

number of background flows is varied along the x-axis. The bottleneck
link bandwidth is set to 840 kbps with a 50 ms delay. The experimental
setup is identical to Figure 6.

throughput as the number of flows increases. As desired,
both icTCP-Nice and TCP Nice achieve similar results.

54.2 icCM
We now show that some important components of the
Congestion Manager (CM) [8] can be built on icTCP. The
main contribution of this study is to show that informa-
tion can be shared across different icTCP flows and that
multiple icTCP flows on the same sender can cooperate.
Overview: The Congestion Manager (CM) architec-
ture [8] is motivated by two types of problematic behav-
ior exhibited by emerging applications. First, applications
that employ multiple concurrent flows between sender and
receiver have flows that compete with each other for re-
sources, prove overly aggressive, and do not share net-
work information with each other. Second, applications
which use UDP-based flows without sound congestion
control do not adapt well to changing network conditions.
CM addresses these problems by inserting a module
above IP at both the sender and the receiver; this layer
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maintains network statistics across flows, orchestrates
data transmissions with a new hybrid congestion control
algorithm, and obtains feedback from the receiver.
Implementation: The primary difference between icCM
and CM is in their location; icCM is built on top of the
icTCP layer rather than on top of IP. Because icCM lever-
ages the congestion control algorithm and statistics al-
ready present in TCP, icCM is considerably simpler to
implement than CM. Furthermore, icCM guarantees that
its congestion control algorithm is stable and friendly to
existing TCP traffic. However, the icCM approach does
have the drawback that non-cooperative applications can
bypass icCM and use TCP directly; thus, icCM can only
guarantee fairness across the flows for which it is aware.

The icCM architecture running on each sending end-
point has two components: icCM clients associated with
each individual flow and an icCM server; there is no com-
ponent on the receiving endpoint. The icCM server has
two roles: to identify macroflows (i.e., flows from this
endpoint to the same destination), and to track the aggre-
gate statistics associated with each macroflow. To help
identify macroflows, each new client flow registers its pro-
cess ID and the destination address with the icCM server.

To track statistics, each client flow periodically obtains
its own network state from icTCP (e.g., its number of out-
standing bytes, snd.nxt - snd.una) and shares this state
with the icCM server. The icCM server periodically up-
dates its statistics for each macroflow (e.g., sums together
the outstanding bytes for each flow in the macroflow).
Each client flow can then obtain aggregate statistics for
the macroflow for different time intervals.

To implement bandwidth sharing across clients in the
same macroflow, each client calculates its own window to
limit its number of outstanding bytes. Specifically, each
icCM client obtains from the server the number of flows in
this macroflow and the total number of outstanding bytes
in this flow. From these statistics, the client calculates the
number of bytes it can send to obtain its fair share of the
bandwidth. If the client is using TCP for transport, then
it simply sets vewnd in icTCP to this number. Thus, ic-
CM clients within a macroflow do not compete with one
another and instead share the available bandwidth evenly.
Evaluation: We demonstrate the effectiveness of using
icTCP to build a congestion manager by replicating one
of the experiments performed for CM (i.e., Figure 14 in
[8]). In the experiments shown in Figure 8, we place
four flows within a macroflow. As shown in the first
graph, when four TCP Reno flows are in a macroflow,
they do not share the available bandwidth fairly; the per-
formance of the four connections varies between 39 KB/s
and 24 KB/s with standard deviation of 5.5 KB/s. In con-
trast, as shown in the second graph, when four icCM flows
are in a macroflow, the connections progress at similar and
consistent rates; all four icCM flows achieve throughputs
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Figure 8: icCM Fairness. The two graphs compare the perfor-
mance of four concurrent transfers from one sender to one receiver, with
the bottleneck link set to 1 Mb/s and a 120 ms delay. In the first graph,
stock Reno is used; in the second graph, icCM manages the four TCP
Sflows.

of roughly 30 KB/s with a standard deviation of 0.6 KB/s.

54.3 icTCP-RR

TCP’s fast retransmit optimization is fairly sensitive to
the presence of duplicate acknowledgments. Specifically,
when TCP detects that three duplicate acks have arrived,
it assumes that a loss has occurred, and triggers a retrans-
mission [5, 30]. However, recent research indicates that
packet reordering may be more common in the Internet
than earlier designers suspected [3, 9, 11, 57]. When fre-
quent reordering occurs, the TCP sender receives a rash
of duplicate acks and wrongly concludes that a loss has
occurred. As a result, segments are unnecessarily retrans-
mitted (wasting bandwidth) and the congestion window is
needlessly reduced (lowering client performance).
Overview: A number of solutions for handling dupli-
cate acknowledgments have been suggested in the liter-
ature [11, 57]. At a high level, the algorithms detect the
presence of reordering (e.g., by using DSACK) and then
increase the duplicate threshold value (dupthresh) to avoid
triggering fast retransmit. We base our implementation
on that of Blanton and Allman’s work [11], which limits
the maximum value of dupthresh to 90% of the window
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Figure 9: Avoiding False Retransmissions with icTCP-RR.
On the top is the number of false retransmissions and on the bottom
is throughput, as we vary the fraction of packets that are delayed (and
hence reordered) in our modified NistNet router. We compare three dif-
ferent implementations, as described in the text. The experimental setup
includes a single sender and receiver; the bottleneck link is set to 5 Mb/s
and a 50 ms delay. The NistNet router runs on the first router, intro-
ducing a normally distributed packet delay with mean of 25 ms, and
standard deviation of 8 ms.

size and, when a timeout occurs, sets dupthresh back to
its original value of 3.

Implementation: The user-level library implementation,
icTCP-RR, is straight-forward. The library keeps a his-
tory of acks received; this list is larger than the kernel
exported ack list because the kernel may be aggressive in
pruning its size, thus losing potentially valuable informa-
tion. When a DSACK arrives, icTCP places the sequence
number of the falsely retransmitted packet into the ack
list. The library consults the ack history frequently, look-
ing for these occurrences. If one is found, the library
searches through past history to measure the reordering
length and sets dupthresh accordingly.

Evaluation: Figure 9 shows the effects of packet reorder-
ing. We compare three different implementations: stock
Linux 2.4 without the DSACK enhancement, Linux 2.4
with DSACK and reordering avoidance built into the ker-
nel, and our user-level icTCP-RR implementation. In the
first graph, we show the number of “false” fast retransmis-
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Figure 10: Aggressive Fast Retransmits with icTCP-EFR.
On the top is the number of retransmitted packets for both Reno and ic-
TCP-EFR — due to both retransmission timeouts (TO) and fast retrans-
mits (FR) — and on the bottom is the achieved bandwidth. Along the
x-axis, we vary the loss rate so as to mimic a wireless LAN. A single
sender and single receiver are used, and the bottleneck link is set to 600
Kb/s and a 6 ms delay.

sions that occur, where a false retransmission is one that
is caused by reordering. One can see that the stock ker-
nel issues many more false retransmits, as it (incorrectly)
believes the reordering is actual packet loss. In the sec-
ond graph, we observe the resulting bandwidth. Here, the
DSACK in-kernel and icTCP-RR versions perform much
better, essentially ignoring duplicate acks and thus achiev-
ing much higher bandwidth.

5.4.4 icTCP-EFR

Our previous case study showed that increasing dupthresh
can be useful. In contrast, in environments such as wire-
less LANS, loss is much more common and duplicate acks
should be used a strong signal of packet loss, particularly
when the window size is small [50]. In this case, the op-
posite solution is desired; the value of dupthresh should
be lowered, thus invoking fast retransmit aggressively so
as to avoid costly retransmission timeouts.

Overview: We next discuss icTCP-EFR, a user-level li-
brary of implementation of EFR (Efficient Fast Retrans-
mit) [50]. The observation underlying EFR is simple: the
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Figure 11: Adjusting RTO with icTCP-Eifel. The graph on
the top shows three versions of icTCP-Eifel. For each experiment, the
measured round-trip time is identical; however, the calculated RTO dif-
fers. The first line shows when the Karn-Partridge RTO algorithm [33]
is disabled in the kernel that it can be implemented at user-level with
icTCP. In the second experiment, we remove two lines of TCP code that
were added to fix the RTO spike; we show that this same fix can be eas-
ily provided at user-level. In the third experiment, we implement the
full Eifel RTO algorithm at user-level. In these experiments, we emulate
a bandwidth of 50 kbps, 1 second delay, and a queue size of 20. The
graph on the bottom shows the full adaptive Eifel RTO algorithm with a
bandwidth of 1000 kbps, 100 ms delay, and a queue size of 12.

sender should adjust dupthresh so as to match the number
of duplicate acks it could receive.

Implementation: The icTCP-EFR implementation is
also quite straightforward. For simplicity, we only mod-
ify dupthresh when the window is small; this is where the
EFR scheme is most relevant. When the window is small,
the library frequently checks the message list for duplicate
acks; when it sees one, it computes and sets a new value
for dupthresh.

Evaluation: Figure 10 shows the behavior of icTCP-
EFR versus the in-kernel Reno as a function of loss rate
in an emulated wireless network. Because icTCP-EFR
interprets duplicate acknowledgments as likely signs of
loss, the number of fast retransmits increases (as shown
in the graph on top) and more importantly, the number of
costly retransmission timeouts is reduced. The graph on
the bottom shows that bandwidth increases as a result.

54.5 icTCP-Eifel

The retransmission timeout value (RTO) determines how
much time must elapse after a packet has been sent until
the sender considers it lost and retransmits it. Therefore,
the RTO is a prediction of the upper limit of the mea-
sured round-trip time (mRTT). Correctly setting RTO can
greatly influence performance: an overly aggressive RTO
may expire prematurely, forcing unnecessary spurious re-
transmission; an overly-conservative RTO may cause long
idle times before lost packets are retransmitted.

Overview: The Eifel RTO [36] corrects two problems
with the traditional Karn-Partridge RTO [33]. First, im-
mediately after mRTT decreases, RTO is incorrectly in-
creased; only after some period of time does the value
of RTO decay to the correct value. Second, the “magic
numbers” in the RTO calculation assume a low mRTT
sampling rate and sender load; if these assumptions are
incorrect, RTO incorrectly collapses into mRTT.

Implementation: We have implemented the Eifel
RTO algorithm as a user-level library, icTCP-Eifel. This
library needs access to three icTCP variables: mRTT,
ssthresh, and cwnd; from mRTT, it calculates its own val-
ues of srtt (smoothed round-trip) and rttvar (round-trip
variance). The icTCP-Eifel library operates as follows: it
wakes when an acknowledgment arrives and polls icTCP
for the new mRTT; if mRTT has changed, it calculates
the new RTO and sets it within icTCP. Thus, this library
requires safe control over RTO.

Evaluation: The first graph of Figure 11 shows a pro-
gression of three improvements in icTCP-Eifel; these ex-
periments approximately match those in the Eifel RTO pa-
per (i.e., Figure 6 in [36]). In the first implementation,
we disable the Karn-Partridge RTO algorithm in the ker-
nel and instead implement it in icTCP-Eifel; as expected,
this version incorrectly increases RTO when mRTT de-
creases. The second implementation corrects this problem
with two additional lines of code at user-level; however,
RTO eventually collapses into mRTT. Finally, the third
version of icTCP-Eifel adjusts RTO so that it is more con-
servative and avoids spurious retransmissions. The sec-
ond graph of Figure 11 is similar to Figure 10 in the Eifel
paper and shows that we have implemented the full Eifel
RTO algorithm at user-level: this algorithm allows RTO to
become increasingly aggressive until a spurious timeout
occurs, at which point it backs off to a more conservative
value.

5.4.6 Summary

From our case studies, we have seen a number of strengths
of the icTCP approach. First, icTCP easily enables TCP
variants that are less aggressive than Reno to be imple-
mented simply and efficiently at user-level (e.g., TCP
Vegas and TCP Nice); thus, there is no need to push
such changes into the kernel. Second, icTCP is ideally
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suited for tuning parameters whose optimal values depend
upon the environment and the workload (e.g., the value of
dupthresh). Third, icTCP is useful for correcting errors in
parameter values (e.g., the behavior of RTO).

Our case studies have illustrated limitations of icTCP
as well. From icCM, we saw how to assemble a frame-
work that shares information across flows; however, any
information that is shared across flows can only be done
voluntarily. Furthermore, congestion state learned from
previous flows cannot be directly inherited by later flows;
this limitation arises from icTCP’s reliance upon the in-
kernel TCP stack, which cannot be forcibly set to a start-
ing congestion state.

5.4.7 Implementing New Extensions

We evaluate the ability of icTCP to implement a wider
range of TCP extensions by considering the list discussed
for STP [44]. Of the 27 extensions, 9 have already
been standardized in Linux 2.4.18 (e.g., SACK, DSACK,
FACK, TCP for high performance, ECN, New Reno, and
SYN cookies) and 4 have been implemented with icTCP
(i.e., RR-TCP, Vegas, CM, and Nice). We discuss some of
the challenges in implementing the remaining 14 exten-
sions. We place these 14 extensions into three categories:
those that introduce new algorithms on existing variables,
those that modify the packet format, and those that modify
the TCP algorithm structure or mechanisms.

Existing Variables: We classify three of the 14 exten-
sions as changing the behavior of existing variables: ap-
propriate byte counting (ABC) [2], TCP Westwood [55]),
and equation-based TCP (TFRC) [26]. Other recently
proposed TCP extensions that fall into this category in-
clude Fast TCP [17], Limited Slow-Start [25], and High-
Speed TCP [24].

These extensions are the most natural match with ic-
TCP and can be implemented to the extent that they are no
more aggressive than TCP Reno. For example, equation-
based TCP specifies that the congestion window should
increase and decrease more gradually than Reno; icTCP-
Eqn allows cwnd to increase more gradually, as desired,
but forces cwnd to decrease at the usual Reno rate. We
believe that conservative implementations of these exten-
sions are still beneficial. For example, ABC implemented
on icTCP cannot aggressively increase cwnd when a re-
ceiver delays an ack, but icTCP-ABC can still correct for
ack division. In the case of HighSpeed TCP, the exten-
sion cannot be supported in a useful manner because it is
strictly more aggressive, specifying that cwnd should be
decreased by a smaller amount than TCP Reno does.

One issue that arises with these extensions is how ic-
TCP enforces TCP friendliness: icTCP constrains each
TCP virtual variable within a safe range, which may be
overly conservative. For example, icTCP does not allow
small increases in TCP’s initial congestion window [4],

even though over a long time period these flows are
generally considered to be TCP friendly. Alternatively,
STP [44] uses a separate module to enforce TCP friend-
liness; this module monitors the sending rate and veri-
fies that it is is below an upper-bound determined by the
state of the connection, the mean packet size, the loss
event rate, round-trip time, and retransmission timeout.
Although icTCP could use a similar modular approach,
we believe that the equation-based enforcer has an im-
portant drawback: non-conforming flows must be termi-
nated, since packets cannot be buffered in a bounded size
and then sent at a TCP-friendly rate. Rather than termi-
nate flows, icTCP naturally modulates agressive flows in
a manner that is efficient in both space and time.

Packet Format: We classify six of the 14 extensions as
changing the format or the contents of packets; for ex-
ample, extensions that put new bits into the TCP reserved
field, such as the Eifel algorithm [31] or robust congestion
signaling [21]. These extensions cannot be implemented
easily with icTCP in its current form; therefore, we be-
lieve that it is compelling to expand icTCP to allow vari-
ables in the packet header to be set. However, it may be
difficult to ensure that this is done safely.

We can currently approximate this behavior by encap-

sulating extra information in application data and requir-
ing both the sender and receiver to use an icTCP-enabled
kernel and an appropriate library; this technique allows
extra information to be passed between protocol stacks
while remaining transparent to applications. With this
technique, we have implemented functionality similar to
that of DCCP [34]; in our implementation, a user-level
library that transmits packets with UDP obtains network
information from an icTCP flow between the same sender
and receiver. We are currently investigating this approach
in more detail.
Structure and Mechanism: Approximately five of the
14 extensions modify fundamental aspects of the TCP al-
gorithm: some extensions do not follow the existing TCP
states (e.g., T/TCP [13] and limited transmit [3]) and some
define new mechanisms (e.g., the SCTP checksum [49]).
Given that these extensions deviate substantially from the
base TCP Reno algorithm, we do not believe that icTCP
can implement such new behavior.

An approach for addressing this limitation, as well as
for modifying packet headers, may be for icTCP to pro-
vide control underneath the kernel stack with a packet fil-
ter [42]. In this way, users could exert control over their
packets, perhaps changing the timing, ordering, or alto-
gether suppressing or duplicating some subset of packets
as they pass through the filter. Again, such control must
be meted out with caution, since ensuring such changes
remain TCP friendly is a central challenge.

In summary, icTCP is not as powerful as STP [44] and
thus can implement a smaller range of TCP extensions.
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Composing icTCP-RR and icTCP-Vegas
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Figure 12: Composing icTCP-Vegas and icTCP-RR. The fig-
ure shows the strength of composing multiple icTCP libraries in an en-
vironment where reordering occurs and the available space in the bot-
tleneck queue is low. When both libraries are used at the same time in
this particular environment, the throughput is higher compared to when
only one of the libraries is used. The experimental setup includes a sin-
gle sender and receiver; the bottleneck queue size is set to 5 and the link
is set to 2 Mb/s and a 50 ms delay. The NistNet router runs on the first
router, introducing a normally distributed packet delay with mean of 25
ms, and standard deviation of 8. On the x-axis we vary the percentage
of delayed packets.

However, we believe that the simplicity of providing an ic-
TCP layer on a real system may outweigh this drawback.

5.5 Ease of Development

For our fifth and final question we address the complex-
ity of using the icTCP framework to develop TCP exten-
sions. We answer this question first by showing the ease
with which user-level libraries on icTCP can be combined
to perform new functionality. We then directly compare
the complexity of building TCP extensions at user-level
to building them directly in the kernel.

The icTCP framework enables functional composition:
given that each user-level library exports the same inter-
face as icTCP, library services can be stacked to build
more powerful functionality. In the simplest case, the
stacked libraries control disjoint sets of icTCP variables.
For example, if the icTCP-Vegas and icTCP-RR libaries
are stacked, then the combination controls the values of
both cwnd and dupthresh. Figure 12 shows the advantage
of stacking these two libraries: flows running in an envi-
ronment with both packet reordering and small bottleneck
queues exhibit higher throughput with both libraries than
with either libary alone. Alternatively, the stacked libaries
may control overlapping sets of icTCP variables. In this
case, each layer further constrains the range of safe values
for a virtual variable.

To quantify the complexity of building functionality ei-
ther on top of icTCP or within the kernel, we count the
number of C statements in the implementation (i.e., the
number of semicolons), removing those that are used only
for printing or debugging. Table 3 shows the number of

Case Study icTCP Native
icTCP-Vegas 162 140
icTCP-Nice 191 267
icCM 438  1200*
icTCP-RR 48 26

Table 3: Ease of Development with icTCP. The table reports
the number of C statements (counted with the number of semicolons)
needed to implement the case studies on icTCP compared to a native ref-
erence implementation. For the native Vegas implementation, we count
the entire patch for Linux 2.2/2.3 [15]. For TCP Nice, we count only
statements changing the core transport layer algorithm. For CM, quan-
tifying the number of needed statements is complicated by the fact that
the authors provide a complete Linux kernel, with CM modifications dis-
tributed throughout; we count only the transport layer. (*) However,
this comparison is still not fair given that CM contains more function-
ality than icCM. For RR, we count the number of lines in Linux 2.4 to
calculate the amount of reordering. In-kernel RR uses SACK/DSACK,
whereas icTCP-RR traverses the ack list.

C statements required for the four case studies with refer-
ence implementations: Vegas, Nice, CM, and RR. Com-
paring the icTCP user-level libraries to the native imple-
mentations, we see that the number of new statements
across the two is quite comparable. We conclude that de-
veloping services using icTCP is not much more complex
than building them natively and has the advantage that de-
bugging and analysis can be performed at user-level.

6 Conclusions

We have presented the design and implementation of ic-
TCP, a slightly modified version of Linux TCP that ex-
poses information and control to applications and user-
level libraries above. We have evaluated icTCP across five
axes and our findings are as follows.

First, converting a TCP stack to icTCP requires only
a small amount of additional code; however, determin-
ing precisely where limited virtual parameters should be
used in place of the original TCP parameters is a non-
trivial exercise. Second, icTCP allows ten internal TCP
variables to be safely set by user-level processes; regard-
less of the values chosen by the user, the resulting flow
is TCP friendly. Third, icTCP incurs minimal additional
CPU overhead relative to in-kernel implementations as
long as icTCP is not polled excessively for new informa-
tion; to help reduce overhead, icTCP allows processes to
block until an acknowledgment arrives or until the end of
a round. Fourth, icTCP enables a range of TCP exten-
sions to be implemented at user-level. We have found that
icTCP framework is particularly suited for extensions that
implement congestion control algorithms that are less ag-
gressive than Reno and for adjusting parameters to better
match workload or environment conditions. To support
more radical TCP extensions, icTCP will need to be devel-
oped further, such as by allowing TCP headers to be safely
set or packets and acknowledgments to be reordered or
delayed. Fifth, and finally, developing TCP extensions
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on top of icTCP is not more complex than implementing
them directly in the kernel and are likely easier to debug.

We believe that exposing information and control over
other layers in the network stack will be useful as well.
For example, given the similarity between TCP and
SCTP [6], we believe that SCTP can be extended in a
straight-forward manner to icSCTP. An icSCTP frame-
work will allow user-level libraries to again deal with
problems such as spurious retransmission [12] as well as
implement new functionality for network failure detection
and recovery [32].

Our overall conclusion is that icTCP is not quite as
powerful as other proposals for extending TCP or other
networking protocols [41, 44]. However, the advantage of
icTCP is in its simplicity and pragmatism: it is relatively
easy to implement icTCP, flows built on icTCP remain
TCP friendly, and the computational overheads are rea-
sonable. Thus, we believe that systems with icTCP can,
in practice and not just in theory, reap the benefits of user-
level TCP extensions.
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