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Abstract attack can make portions of the information space inac-

. _— . cessible.
It is becoming increasingly common to construct net-

. . : Given a sufficiently widespread distribution of servers,
work services using redundant resources geographmallé

distributed the Int ¢ Content Distribution Net DNs use several, sometimes conflicting, factors to de-
Istributed across the Internet. t.ontent istribution Net-o; 4 6y 10 distribute client requests. For example, to

: . ninimize response time, a server might be selected based
client requests to an appropriate server based on a V&, its network proximity. In contrast, to improve the
riety of factors—e.g., server load, network proximity, j

X . . verall system throughput, it is desirable to eveldy-
cache locality—in an effort to reduce response time antgn y ghp

. . . ce the load across a set of servers. Both through-
increase the system capacity under load. This paper e ut and response time are improved if the distribution
plores the design space of strategies employe'd to redj; echanism takdscality into consideration by selecting
rect requests, and defines a class of new algorithms th%t server that is likely to already have the page being re-
carefully balance load, locality, and proximity. We use uested in its cache

large-scale detailed simulations to evaluate the varioug Although the exaét combination of factors employed
strategies. These simulations clearly demonstrate the eB—y commercial systems is not clearly defined in the lit-
fectiveness ofpur new algorithms, whichyield a 60'91.%erature, evidence suggests that the scale is tipped in fa-
|mprovement.|n system capacity when compared V.V't or of reducing response time. This paper addresses the
the best published CDN technology, yet user-perceive

lat ins | dth ¢ | oblem of designing a request distribution mechanism
response fatency remains flow and the system Scales We o+ js poth responsive across a wide range of loads, and
with the number of servers.

robust in the face of flash crowds and DDoS attacks.
] Specifically, our main contribution is to explore the de-
1 Introduction sign space of strategies employed by the request redirec-
As the Internet becomes more integrated into our everylrs, and to define a class of new algorithms that care-
day lives, the availability of information services built fully balance load, locality, and proximity. We use large-
on top of it becomes increasingly important. However,Scale detailed simulations to evaluate the various strate-
overloaded servers and congested networks present ch&li€s. These simulations clearly demonstrate the effec-
lenges to maintaining high accessibility. To alleviate iveness of our new algorithms: they produce a 60-91%
these bottlenecks, it is becoming increasingly commorMmpProvement in system capacity when compared with
to construct network services using redundant resource8Ublished information about commercial CDN technol-
so-called Content Distribution Networks (CDN) [1, 13, 09, user-perceived response latency remains low, and
21]. CDNs deploy geographically-dispersed server surihe system scales well with the number of servers. We
rogates and distribute client requests to an “appropriate@/S0 discuss several implementation issues, but evaluat-
server based on various considerations. ing a specific implementation is beyond the scope of this
CDNss are designed to improve two performance metP2Per.
rics: response time and system throughput. Response -
time, usually reported as a cumulative distribution of2 Building Blocks
latencies, is of obvious importance to clients, and rep-The idea of a CDN is to geographically distribute a col-
resents the primary marketing case for CDNs. Systenfection of server surrogates that cache pages normally
throughput, the average number of requests that can bmaintained in some set bbckend servers. Thus, rather
satisfied each second, is primarily an issue when the syghan let every client try to connect to the original server,
tem is heavily loaded, for example, when a flash crowdit is possible to spread request load across many servers.
is accessing a small set of pages, or a Distributed DenidVloreover, if a server surrogate happens to reside close
of Service (DDoS) attacker is targeting a particular siteto the client, the client’s request could be served without
[15]. System throughput represents the overall robusthaving to cross a long network path. In this paper, we
ness of the system since either a flash crowd or a DDo®bserve this general model of a CDN, and assume any



of the server surrogates can serve any request on behatfrs operate independently. Our experiments show that
of the original server. Where to place these surrogateghese assumptions—in particular, the imperfect informa-
and how to keep their contents up-to-date, has been adion about server load—do not have a significant impact
dressed by other CDN research [1, 13, 21]. Here, weon the results.

make no particular assumptions about servers’ strategic )
locations. 2.2 Hashing Schemes

Besides a large set of servers, CDNs also need to pr@ur geographically dispersed redirectors cannot eas-
vide a set ofrequest redirectors, which are middleware jly adapt the request routing schemes suited for more
entities that forward client requests to appropriate servergightly-coupled LAN environments [17, 25], since the
based on one of the strategies described in the next segitter can easily obtain instantaneous state about the en-
tion. To help understand these strategies, this section firgire system. Instead, we construct strategies that use
outlines various mechanisms that could be employed t¢ashing to deterministically map URLs into a small
implement redirectors, and then presents a set of hashinginge of values. The main benefit of this approach is
schemes that are at the heart of redirection. that it eliminates inter-redirector communication, since

. . the same output is produced regardless of which redirec-
2.1 Redirector Mechanisms tor receives the URL. The second benefitis that the range
Several mechanisms can be used to redirect requests [3]f resulting hash values can be controlled, trading preci-
including augmented DNS servers, HTTP-based redision for the amount of memory used by bookkeeping.
rects, and smart intermediaries such as routers or proxies. The choice of which hashing style to use is one com-

A popular redirection mechanism used by currentponent of the design space, and is somewhat flexible.
CDNs is to augment DNS servers to return differentThe various hashing schemes have some impact on com-
server addresses to clients. Without URL rewriting thatputational time and request reassignment behavior on
changes embedded objects to point to different serversiode failure/overload. However, as we discuss in the
this approach has site-level granularity, while schemesext section, the computational requirements of the vari-
that rewrite URLs can use finer granularity and thusous schemes can be reduced by caching.
spread load more evenly. Client-side caching of DNS Modulo Hashing — In this “classic” approach, the
mappings can be avoided using short expiration times. URL is hashed to a number modulo the number of

Servers can perform the redirection process themservers. While this approach is computationally efficient,
selves by employing the HTTP “redirect” response.it is unsuitable because the modulus changes when the
However, this approach incurs an additional round-tripserver set changes, causing most documents to change
time, and leaves the servers vulnerable to overload bgerver assignments. While we do not expect frequent
the redirection task itself. Server bandwidth is also conchanges in the set of servers, the fact that the addition of
sumed by this process. new servers into the set will cause massive reassignment

The redirection function can also be distributed acrosss undesirable.
intermediate nodes of the network, such as routers or Consistent Hashing [19, 20] — In this approach, the
proxies. These redirectors either rewrite the outboundJRL is hashed to a number in a large, circular space, as
requests, or send HTTP redirect messages back to thae the names of the servers. The URL is assigned to the
client. If the client is not using explicit (forward mode) server that lies closest on the circle to its hash value. A
proxying, then the redirectors must be placed at chokeearch tree can be used to reduce the search to logarith-
points to ensure traffic in both forward and reverse di-mic time. If a server node fails in this scheme, its load
rections is handled. Placing proxies closer to the edgshifts to its neighbors, so the addition/removal of a server
yields well-confined easily-identifiable client popula- only causes local changes in request assignments.
tions, while moving them closer to the server can result Highest Random Weight [31] — This approach is the
in more accurate feedback and load information. basis for CARP [8], and consists of generating a list of

To allow us to focus on redirection strategies and tohash values by hashing the URL and each server’s name
reduce the complexity of considering the various com-and sorting the results. Each URL then has a determin-
binations outlined in this section, we make the follow- istic order to access the set of servers, and this list is tra-
ing assumptions: redirectors are located at the edge ofersed until a suitably-loaded server is found. This ap-
a client site, they receive the full list of server surro- proach requires more computation than Consistent Hash-
gates through DNS or some other out-of-band communiing, but has the benefit that each URL has a different
cation, they rewrite outbound requests to pick the approserver order, so a server failure results in the remain-
priate server, and they passively learn approximate serveéng servers evenly sharing the load. To reduce compu-
load information by observing client communications. tation cost, the top few entries for each hash value can be
We do not rely on any centralization, and all redirec-cached.



3 Strategies 3.2.1 Replicated Consistent Hashing

This section explores the design space for the requesh the Replicated Consistent Hashirlg-CHash) strat-
redirection strategies. As a quick reference, we summaegy, each URL is assigned to a set of replicated servers.
rize the properties of the different redirection algorithmsThe number of replicas is fixed, but configurable. The
in Table 1, where the strategies are categorized based a¥RL is hashed to a value in the circular space, and

how they address locality, load and proximity. the replicas are evenly spaced starting from this origi-
' _ nal point. On each request, the redirector randomly as-

Category | Strategy Hashing | Dynamic | Load signs the request to one of the replicas for the URL.
Scheme | Server Set| Aware hi L. ded del th hani d

Random 1 Random No T is strategy is intended to model the mechanism use
Static R-CHash CHash No No in published content distribution networks, and is virtu-

_ R-HRW HRW No No ally identicat to the scheme described in [19] and [20]
Static LR-CHash CHash No Yes with the network treated as a single geographic region.
+Load LR-HRW HRW No Yes

CDR HRW Yes Yes . . .
Dynamic | FDR ARW Yes Yes 3.22 Replicated Highest Random Weight
FDR-Global HRW Yes Yes . . .
Network— T NPR-CHash T CHash No No The Repllcated Highest Random WeigRtH RW) strat-
Proximity [ NPLR-CHash| CHash No Yes egy is the counterpart to R-CHash, but with a different
NP-FDR HRW Yes Yes hashing scheme used to determine the replicas. To the

. o _ best of our knowledge, this approach is not used in any

Table 1: Properties of Request Redirection Strategies gyisting content distribution network. In this approach,
the set of replicas for each URL is determined by us-

i . . ing the topN servers from the ordered list generated by
Th.e first cate.goryz Random, con'talns asingle Str,"’ltegw-lighest Random Weight hashing. Versus R-CHash, this
?nd ISt L:_sedlprlr_r:snly as ahpasellneh l}/\éeLthen d'scudsgcheme is less likely to generate the same set of repli-
our static aigorithms, in which eac IS MapPed .5 for two different URLs. As a result, the less-popular
onto a fixed set of server replicas—the Static categor)(JRLS that may have some overlapping servers with pop-

mcludes twp schemes baseq on the best-known p.Ul{]Iar URLs are also likely to have some other less-loaded
lished algorithms, and the Static+Load category Comam%odes in their replica sets

two variants that are aware of each replica’s load. The

four algorithms in these two static categories pay in-3 3 Load-Aware Static Server Set
creasing attention to locality. Next, we introduce two

new algorithms—denote@DR and FDR—that factor ~ The Static Server Set schemes randomly distribute re-
both load and locality into their decision, and each URLduests across a set of replicas, which shares the load but
is mapped onto a dynamic set of server replicas. WaVithout any active monitoring. We extend these schemes
call this the Dynamic category. Finally, we factor net- Py introducing load-aware variants of these approaches.
work proximity into the equation, and present anotherTo perform fine-grained load balancing, these schemes
new algorithm—denotedlP-FDR—that considers all Mmaintain local estimates of server load at the redirectors,
aspects of network proximity, server |Oca|ity' and load. and use this information to ple the least-loaded member
of the server set. The load-balanced variant of R-CHash
3.1 Random is calledL R-CHash, while the counterpart for R-HRW

In the random policy, each request is randomly sent tdS calledLR-HRW.
one of the server surrogates. We use this scheme as a )
baseline to determine a reasonable level of performance-4 Dynamic Server Set

since we expect the approach to scale with the number ofe now consider a new category of algorithms that dy-
servers and to not exhibit any pathological behavior dugyamically adjust the number of replicas used for each
to patterns in the assignment. It has the drawback thayRL in an attempt to maintain both good server locality

adding more servers does not reduce the working set Gdnd load balancing. By reducing unnecessary replica-

each server. Since serving requests from main memory igon, the working set of each server is reduced, resulting
faster than disk access, this approach is at a disadvantagepetter file system caching behavior.

versus schemes that exploit URL locality.

1 - . . .
. The scheme described in these papers also includes a mechanism
3.2 Static Server Set to use coarse-grained load balancing via virtual server names. When

We now consider a set of strategies that assign a fixederver overload is detected, the corresponding content is replicated
across all servers in the region, and the degree of replication shrinks

numbe_r of server repli_cas to each URL. This has the efyer time. However, the schemes are not described in enough detail to
fect of improving locality over the Random strategy. replicate.



3.4.1 CoarseDynamic Replication 3.4.2 FineDynamic Replication

Coarse Dynamic ReplicatiorCDR) adjusts the num- A Second dynamic algorithm—Fine Dynamic Repli-
ber of replicas used by redirectors in response to servéfdlion FDR)—addresses the problem of unnecessary
load and demand for each URL. Like R-HRW, CDR replication in CDR by keeping information on URL pop-
uses HRW hashing to generate an ordered list of server§|arity and using it to more precisely adjust the number
Rather than using a fixed number of replicas, however?f replicas. By controlling the replication process, the

the request target is chosen using coarse-grained servBf’-Server working sets should be reduced, leading to
load information to select the first “available” server on Petter server locality, and thereby better response time
the list. and throughput.

, i . The introduction of finer-grained bookkeeping is an
Figure 1 shows how a request redirector picks the desgitempt to counter the possibility of a “ripple effect” in

tination server for each request. This decﬁsion Process igpR, which could gradually reduce the system to round-
done at each rgdlrectorlndependently, using the load stagpin under heavy load. In this scenario, a very popu-
tus of the possible servers. Instead of relying on heavy,, yr| causes its primary server to become overloaded,
communications between servers and reque;t redlregtogusing extra load on other machines. Those machines,
to get server load status, we use local load information, y,rn “a1s0 become overloaded, causing documents des-
observed by each redirector as an approximation. Weneq for them to be served by their secondary servers.
currently use the number of active connections 1o inferqer heavy load, it is conceivable that this displacement

th_e load level, but we can alsq combine this.informationprocess ripples through the system, reducing or eliminat-
with response latency, bandwidth consumption, €tc. g the intended locality benefits of this approach.

find_server@rl, S) { findservergurl, 5) {
foreach serves; in server ses, walk entry — walkLenHash{r);
weight; = hashrl, addressy()); w_len «— Walk_entry.length;
sortweight; foreac_:h serves; in server sef,
foreach serves; in decreasing order abeight; { weight; = hash@rl, addressy));
if satisfyload_criteria(s;) then{ sortweight;
targetServer — s;; Scandidate Ieast—.loaQed server of tap_len servers;
stop search; if satisfy_load_criteria(scandidate) then{
} targetServer < Scandidate,
} if (wlen >1&&
if targetServer is not valid then timenow()— walk_entry.lastUpd> chgT hresh)
targetServer — server with highest weight; walk-entry.length——;
route requestri to targetServer; } else{ _ _ _
} foreach rest servey; in decreasing weight ordgr
if satisfy_load_criteria(s;) then{
Figure 1: Coarse Dynamic Replication targetServer — s,
stop search;
}

As the load increases, this scheme changes fromusing  }
only the first server on the sorted list to spreading re- walk_entry.length— actual search steps;
guests across several servers. Some documents normally }
handled by “busy” servers will also start being handled if walk_entry.length changed then
by less busy servers. Since this process is based on ag- walk_entry.lastUpd— timenow();
gregate server load rather than the popularity of individ- if targetServer is not valid then
ual documents, servers hosting some popular documents  targetServer < server with highest weight;
may find more servers sharing their load than servers route requestri to targetServer;
hosting collectively unpopular documents. In the pro-}
cess, some unpopular documents will be replicated in
the system simply because they happen to be primarily Figure 2: Fine Dynamic Replication
hosted on busy servers. At the same time, if some doc-
uments become extremely popular, it is conceivable that To reduce extra replication, FDR keeps an auxiliary
all of the servers in the system could be responsible fostructure at each redirector that maps each URL to a
serving them. “walk length,” indicating how many servers in the HRW



list should be used for this URL. Using a minimum loaded nodes in their replica sets. Therefore, in this pa-
walk length of one provides minimal replication for most per, we will only present CDR and FDR based on HRW.
URLSs, while using a higher minimum will always dis- Lo

tribute URLSs over multiple servers. When the redirector3-2  Network Proximity

receives a request, it uses the current walk length for th&lany commercial CDNs start server selection with net-
URL and picks the least-loaded server from the curreniyork proximity matching. For instance, [19] indicates
set. If even this server is busy, the walk length is in-that CDN’s hierarchical authoritative DNS servers can
creased and the least-loaded server is used. map a client’s (actually its local DNS server's) IP ad-
This approach tries to keep popular URLs from over-dress to a geographic region within a particular network
loading servers and displacing less-popular objects in thand then combine it with network and server load infor-
process. The size of the auxiliary structure is capped bynation to select a server separately within each region.
hashing the URL into a range in the thousands to mil-Other research [18] shows that in practice, CDNs suc-
lions. Hash collisions may cause some URLs to haveceed not by always choosing the “optimal” server, but by
their replication policies affected by popular URLs. As avoiding notably bad servers.
long as the the number of hash values exceeds the num- For the sake of studying system capacity, we make
ber of servers, the granularity will be significantly bet- a conservative simplicifaction by treating the entire net-
ter than the Coarse Dynamic Replication approach. Thevork topology as a single geographic region. We could
redirector logic for this approach is shown in Figure 2.also simply take the hierarchical region approach as
To handle URLs that become less popular over time, within [19], however, to see the effect aftegrating prox-
each walk length, we also keep the time of its last modifi-imity into server selection, we introduce three strate-
cation. We decrease the walk length if it has not changedies that explicitly factor intra-region network proximity
in some period of time. into the decision. Our redirector measures servers’' geo-
As a final note, both dynamic replication approachesgraphical/topological location information througimg,
require some information about server load, specificallytraceroute or similiar mechanisms and uses this infor-
how many outstanding requests can be sent to a servenation to calculate an “effective load” when choosing
by a redirector before the redirector believes it is busyservers.
We currently allow the redirectors to have 300 outstand- To calculate theffective load, redirectors multiply the
ing requests per server, at which point the redirector loraw load metric with a normalizedlandard distance be-
cally decides the server is busy. It would also be possitween the redirector and the server. Redirectors gather
ble to calibrate these values using both local and globatlistances to servers using round trip time (RTT), rout-
information—using its own request traffic, the redirectoring hops, or similar information. These raw distances
can adjust its view of what constitutes heavy load, andare normalized by dividing by the minimum locally-
it can perform opportunistic communication with other observed distance, yielding the standard distance. In our
redirectors to see what sort of collective loads are besimulations, we use RTT for calculating raw distances.
ing generated. The count of outstanding requests already FDR with Network Proximity (NP-FDR) is the
has some feedback, in the sense that if a server becomesunterpart of FDR, but it uses effective load rather than
slow due to its resources (CPU, disk, bandwidth, etc.yaw load. Similarly, NPLR-CHash is the proximity-
being stressed, it will respond more slowly, increasingaware version of LR-CHash. The third stratetyPR-
the number of outstanding connections. To account foiCHash, adds network proximity to the load-oblivious
the inaccuracy of local approximation of server load atR-CHash approach by assigning requests such that each
each redirector, in our evaluations, we also include a refsurrogate in the fixed-size server set of a URL will get
erence strategf;DR-Global, where all redirectors have a share of total requests for that URL inversely propor-
perfect knowledge of the load at all servers. tional to the surrogate’s distance from the redirector. As
Conceivably, Consistent Hashing could also be used result, closer servers in the set get a larger share of the
to implement CDR and FDR. We tested a CHash-basetbad.
CDR and FDR, but they suffer from the “ripple effect”  The use of effective load biases server selection in fa-
and sometimes yield even worse performance than loadtor of closer servers when raw load values are compa-
aware static replication schemes. Part of the reason igble. For example, in standard FDR, raw load values
that in Consistent Hashing, since servers are mappetgflect the fact that distant servers generate replies more
onto a circular space, the relative order of servers foislowly, so some implicit biasing exists. However, by ex-
each URL will beeffectively the same. This means the plicitly factoring in proximity, NP-FDR attempts to re-
load migration will take an uniform pattern; and the duce global resource consumption by favoring shorter
less-popular URLs that may have overlapping serversietwork journeys.
with popular URLs are unlikely to have some other less- Although we currently calculate effective load this



inside a server node

way, other options exist. For example, effective load
can take other dynamic load/proximity metrics into ac-
count, such as network congestion status through real
time measurement, thereby reflecting instantaneous load

conditions. Req

4 Evaluation M ethodology

The goal of this work is to examine how these strategies
respond under different loads, and especially how robust | L
they are in the face of flash crowds and other abnormal : "7 , Node Abstraction
workloads that might be used for a DDoS attack. Attacks Figure 3: Logsim Simulator

may take the form of legitimate traffic, making them dif-

ficult to distinguish from flash crowds.

Evaluating the various algorithms described in Sec- We combined Logsim with NS-2 as follows. We keep
tion 3 on the Internet is not practical, both due to theNS-2’s event engine as the main event manager, wrap
scale of the experiment required and the impact a flaskeach Logsim event as a NS-2 event, and insert it into the
crowd or attack is likely to have on regular users. Sim-NS-2 event queue. All the callback functions are kept
ulation is clearly the only option. Unfortunately, there unchanged in Logsim. When crossing the boundary be-
has not been (up to this point) a simulator that considtween the two simulators, tokens (continuations) are used
ers both network traffic and server load. Existing simu-to carry side-specific information. To speed up the sim-
lators either focus on the network, assuming a constaniilation time, we also re-implemented several NS-2 mod-
processing cost at the server, or they accurately modelles and performed other optimizations.
server processing (including the cache replacement strat- on the NS-2 side, all packets are stored and for-
egy), but use a static estimate for the network transfefyarded, as in a real network, and we use two-way TCP.
time. In the situations that interest us, both the networkpe currently use static routing within NS-2, although we
and the server are important. may run simulations with dynamic routing in the future.

To remedy this situation, we developed a new sim-  On the Logsim side, the costs for the basic request pro-
ulator that combines network-level simulation with cessing were derived by performing measurements on a
OS/server simulation. Specifically, we combine the NS300MHz Pentium Il machine running FreeBSD 2.2.5 and
simulator with Logsim, allowing us to simulate net- the Flash web server [24]. Connection establishment and
WOI’k bOttleneCkS, round-trip de|ayS, and OS/Server per‘[ear_down costs are set at Mwh"e transmit process_
formance. NS-2 [23] is a packet-level simulator that haqng incurs 4Qus per 512 bytes. Using these numbers, an
been widely-used to test TCP implementations. How-g.kByte document can be served from the main mem-
ever, it does not simulate much server-side behaviolgry cache at a rate of approximately 1075 requests/sec.
Logsim is a server cluster simulator used in previous reyyhen disk access is needed, reading a file from the disk
search on LARD [25], and it provides detailed and accuas a latency of 28ms. The disk transfer time isifer
rate simulation of server CPU processing, memory usz KBytes. For files larger than 44 KBytes, and additional
age, and disk access. This section describes how Weams is charged for every 44 KBytes of file length in ex-
combine these two simulators, and discusses how Wgess of 44 KBytes. The replacement policy used on the
configure the resulting simulator to study the algorithmsggpyers is Greedy-Dual-Size (GDS)[5], as it appears to be
presented in Section 3. the best known policy for Web workloads. 32MB mem-

. ory is available for caching documents on each server
4.1 Simulator and every server node has one disk. This server is inten-
A model of Logsim is shown in Figure 3. Each server tionally slower than the current state-of-the-art (it is able
node consists of a CPU and locally attached disk(s), witH0 service approximately 600 requests per second), but
separate queues for each. At the same time, each senviis allows the simulation to scale to a larger number of
node maintains its own memory cache of a configurabldodes.
size and replacement policy. Incoming requests are first The final simulations are very heavy-weight, with over
put into the holding queue, and then moved to the activea thousand nodes and a very high aggregate request rate.
gueue. The active queue models the parallelism of th&Ve run the simulator on a 4-processor/667MHz Alpha
server, for example, in multiple process or thread servewith 8GB RAM. Each simulation requires 2-6GB of
systems, the maximum number of processes or thread®AM, and generally takes 20-50 hours of wall-clock
allowed on each server. time.

active holding
queue queue




4.2 Network Topology 4.3 Workload and Stability

It is not easy to find a topology that is both realistic andWe determine system capacity using a trace-driven sim-
makes the simulation manageable. We choose to usalation and gradually increase the aggregate request rate
a slightly modified version the NSFNET backbone net-until the system fails. We use a two month trace of
work T3 topology, as shown in Figure 4. server logs obtained at Rice University, which contains
In this topology, the round-cornered boxes represen.3 million requests for 37,703 files with a total size of
backbone routers with the approximate geographical 104,418MB [25], and has properties similar to other pub-
cation label on it. The circles, tagged as R1, R2..., ardished traces.
regional routerg;small circles with “C” stand for client The simulation starts with the clients sharing the trace
hosts; and shaded circles with “S” are the server surroand sending requests at a low aggregate rate in an open-
gates. In the particular configuration shown in the figure,gueue model. Each client gets the name of the docu-
we put 64 servers behind regional routers RO, R1, R7ment sequentially from the shared trace when it needs to
R8, R9, R10, R15, R19, where each router sits in frontsend a request, and the timing information in the trace
of 8 servers. We distribute 1,000 client hosts evenly beis ignored. The request rate is increased by 1% every
hind the other regional routers, yielding a topology of simulated six seconds, regardless of whether previous re-
nearly 1,100 nodes. The redirector algorithms run on thejuests have completed. This approach gradually warms
regional routers that sit in front of the clients. the server memory caches and drives the servers to their
limits over time. We configure Logsim to handle at most
© L 512 simultaneous requests and queue the rest. The sim-
KL & () lation i inated when the offered load hel
& C? & @& @ ulation is terminated when the offered load overwhelms
© (7o) the servers.
Flash crowds, or DDoS attacks in bursty legitimate
@ © traffic form, are simulated by randomly selecting some
@% Ol clients asintensive requesters and randomly picking a
T certain number of hot-spot documents. These intensive
e requesters randomly request the hot documents at the
. same rate as normal clients, making them look no dif-
3y € ferent than other legitimate users. We believe that this
= (R19 random distribution of intensive requesters and hot doc-
uments is a quite general assumption since we do not
require any special detection or manual intervention to
= (e signal the start of a flash crowd or DDoS attack.
©-© ©-© We define a server as being overloaded when it can no
Figure 4: Network Topology longer satisfy the rate of incoming requests and is un-
likely to recover in the future. This approach is designed
The latencies of servers to regional routers are set rang determine when service is actually being denied to
domly between 1ms to 3ms; those of clients to regionakjients, and to ignore any short-term behavior which may
routers are between 5ms and 20ms; those of region@de only undesirable, rather than fatal. Through exper-
routers to backbone routers are between 1 to 10ms; Iamentation, we find that when a server’s request gueue
tencies between backbone routers are set roughly accorgmws beyond 4 to 5 times the number of simultane-
ing to their geographical distances, ranging from 8ms tayys connections it can handle, throughput drops and the
28ms. server is unlikely to recover. Thus, we define the thresh-
To simulate high request volume, we deliberately pro-old for a serverfailure to be when the request queue
vision the network with high link bandwidth by setting |ength exceeds five times the simultaneous connection
the backbone links at 2,488Mbps, and links between reparameter. Since we increase the offered load 1% every
gional routers and backbone routers at 622Mbps. Linkg seconds, we record the request load exactly 30 seconds
between servers and regional routers are 100Mbps angkfore the first server fails, and declare this to be the sys-
those between clients and their regional servers are ralem’s maximum capacity.
domly between 10Mbps and 45Mbps. All the queues at  Ajthough we regard any single server failure as a sys-
routers are drop tail, with the backbone routers haVingem failure in our simu|a‘[i0n, the Strategies we evalu-
room to buffer 1024 packets, and all other routers able tgyte all exhibit similar behavior—significant numbers of
buffer 512 packets. servers fail at the same time, implying that our approach

2These can also be thought of as edge/site routers, or the boundatt;? deciding system capacity is not biased toward any par-
to an autonomous system ticular scheme.




5.1.2 System Capacity
N A The maximum aggregate throughput of the various

400004
30000] T strategies with 64 servers are shown in Figure 5. Here
2sgor  zsaor | L L, we do not plot all the strategies and variants, but fo-
cus on those impacting throughput substantially. Ran-
dom shows the lowest throughput at 9,300 req/s before
overload. The static replication schemes, R-CHash and
””””””””””””””””” R-HRW, outperform Random by 119% and 99%, respec-
tively. Our approximation of static schemes’ best behav-
O Random R-CHash RIHRW LR-CHash LRHRW cbR  FDR FBroiosal 10rS, LR-CHash and LR-HRW, yields 173% better ca-
. ) SChe’f‘eS pacity than Random. The dynamic replication schemes,
Figure 5: Capacity Comparison under Normal Load cpR and FDR, show over 250% higher throughput than
Random, or more than a 60% improvement over the
static approaches and 28% over static schemes with fine-
5 Results grained load control.

This section evaluates how the different strategies in Ta- The difference between Raqdom anq the static ap-
ble 1 perform, both under normal conditions and unde'progches stems from the locality pgneﬁts of the hgsh-
flash crowds or DDoS attacks. Network proximity and N9 in the static schemes. By partitioning the working

other factors that affect the performance of these strate>€l: More docEmentS arr:a serveclzl from r'nerrlwryl'by the
gies are also addressed. servers. Note, however, that absolute minimal replication

can be detrimental, and in fact, the throughput for only
two replicas in in Section 5.1.1 is actually lower than the
5.1 Normal Workload throughput for Random. The difference in throughput
Before evaluating these strategies under flash crowds detween R-CHash and R-HRW is 10% in our simulation.
other attack, we first measure their behavior under norHowever, this difference should not be over emphasized,
mal workloads. In these simulations, all clients gener-Pecause changes in the number of servers or workload
ate traffic similar to normal users and gradually increas&an cause their relative ordering to change. Consider-
their request rates as discussed in Section 4.3. We coniad load helps the static schemes gain about 25% better
pare aggregate system capacity and user-perceived I#roughput, but they still do not exceed the dynamic ap-

tency under the different strategies, using the topologyproaches.
shown in Figure 4. The performance difference between the static (in-

cluding with load control) and dynamic schemes stems
. . o from the adjustment of the number of replicas for the
511 Optimal Static Replication documents. FDR also shows 2% better capacity than
The static replication schemes (R-CHash, R-HRW, andCDR.

their variants) use a configurable (but fixed) number of Interestingly, the difference between our dynamic
replicas, and this parameter’s value influences their perschemes (with only local knowledge) and the FDR-
formance. Using a single replica per URL perfectly par-Global policy (with perfect global knowledge) is mini-
titions the file set, but can lead to early failure of serversmal. These results suggest that request distribution poli-
hosting popular URLs. Using as many replicas as availcies not only fare well with only local information, but
able servers degenerates to the Random strategy. To ditat adding more global information may not gain much
termine an appropriate value, we varied this parametein system capacity.

between 2 and 64 replicas for R-CHash when there are Examination of what ultimately causes overload in
64 servers available. Increasing the number of replicashese systems reveals that, under normal load, the
per URL initially helps to improve the system’s through- server’s behavior is the factor that determines the perfor-
put as the load gets more evenly distributed. Beyond amance limit of the system. None of the schemes suffers
certain point, throughput starts decreasing due to the fadtom saturated network links in these non-attack simu-
that each server is presented with a larger working setations. For Random, due to the large working set, the
causing more disk activity. In the 64-server case—thedisk performance is the limit of the system, and before
scenario we use throughout the rest of this section—1@ystem failure, the disks exhibit almost 100% activity
server replicas for each URL achieves the optimal syswhile the CPU remains largely idle. The R-CHash, R-
tem capacity. For all of the remaining experiments, weHRW and LR-CHash and LR-HRW exhibit much lower
use this value in the R-CHash and R-HRW schemes andisk utilization at comparable request rates; but by the
their variants. time the system becomes overloaded, their bottleneck
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Utilization CPU (%) DI (%)
Scheme Mean | Stddev| Mean | Stddev
Random 21.03 1.36 | 100.00 0.00
R-CHash 57.88 18.36 99.15 3.89
R-HRW 47.88 15.33 99.74 1.26
LR-CHash 59.48 18.85 97.83 12.51
LR-HRW 58.43 16.56 99.00 5.94
CDR 90.07 11.78 36.10 25.18
FDR 93.86 7.58 33.96 20.38
FDR-Global | 91.93 11.81 17.60 15.43

Table 2: Server Resource Utilization at Overload

benefit from upgrading server capacities. The throughput
of our simulated machines is lower than what can be ex-
pected from state-of-the-art machines, but this decision
to scale down resources was made to keep the simula-
tion time manageableWith faster simulated machines,

we expect the gap between the dynamic schemes and the
othersto grow even larger.

5.1.3 ResponseLatency

Along with system capacity, the other metric of interestis
user-perceived latency, and we find that our schemes also
perform well in this regard. To understand the latency

also becomes the disk and the CPU is roughly 50-60%ehavior of these systems, we use the capacity measure-
utilized on average. In the CDR and FDR cases, at sysments from Figure 5 and analyze the latency of all of the
tem overload, the average CPU is over 90% busy, whilsschemes whenever one category reaches its performance
most of the disks are only 10-70% utilized. Table 2 sum-limit. For schemes with similar performance in the same
marizes resource utilization of different schemes beforecategory, we pick the lower limit for the analysis so
server failures (not at the same time point).
These results suggest that the CDR and FDR schemesheme. In all cases, we present the cumulative distri-
are the best suited for technology trends, and can modtution of all request latencies as well as some statistics

that we can include numbers for the higher-performing



Req Rate 9,300 reg/s 18,478 req/s 25,407 reg/s 32,582 reg/s
Latency o 50% 90% o o 50%  90% o o 50% 90% o o 50%  90% o
Random 395 178 11.32 6.99

R-CHash 0.79 0.53 1.46 267 1.01 057 1.98 3.58
R-HRW 0.81 053 1.49 283 1.07 057 228 322
LR-CHash | 0.68 0.44 1.17 2500 0.87 051 182 274/ 119 060 247 3.79
LR-HRW 0.68 0.44 1.18 250 0.90 051 1.89 3.13 1.27 0.64 284 3.76
CDR 116 0.52 1.47 596 1.35 055 175 6.63 1.86 0.63 449 6.62 237 112 519 7.21
FDR 110 0.52 1.48 549 135 054 164 6.700 1.87 0.62 3.49 6.78 222 0.87 4.88 7.12
FDR-Global | 0.78  0.50 1.42 2.88 097 054 158 569 111 056 186 570 135 066 235 6.29

Table 3: Response Latency of Different Strategies under Normal Load Mean,oc — Standard Deviation.

about the distribution. 80000

70000

Figure 6 plots the cumulative distribution of latencies
at four request rates: the maximums for Random, R-
HRW, LR-HRW, and CDR (the algorithm in each cate-
gory with the smallest maximum throughput). The
axis is in log scale and shows the time needed to com-
plete requests. Thg-axis shows what fraction of all re-
guests finished in that time. The data in Table 3 gives ~ 10000 |
mean, median, 90th percentile and standard deviation de-
tails of response latencies at our comparison points.
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Figure 7: System Scalability under Normal Load

The response time improvement from exploiting lo-
cality is most clearly seen in Figure 6a. At Random’s
capacity, most responses complete under 4 seconds, but -
a few responses take longer than 40 seconds. In contrast,1-4 ~ Scalability

all other strategies have median times almost Qne'fourtpeobustness not only comes from resilience with certain
thatlof R?]ndoI;n, e:jnd even ghew Q_P;h percenltlle resmlte?gsources, but also from good scalability with increasing
are less t 1an Random's median. These resu ts, couple@sy rces. We repeat similar experiments with different
with the disk utilization information, suggest that most number of servers. from 8 to 128. to test how well these
requests in the Random scheme are suffering from d',sgtrategies scale. The number of server-side routers is not

delays, and that the IocaIiFy i_mprovemem techniques 'nchanged, but instead, more servers are attached to each
the other schemes are a significant benefit. server router as the total number of servers increases.

The benefit of FDR over CDR is visible in Figure 6d, We plot system capacity against the number of servers
where the plot for FDR lies to the left of CDR. The statis- in Figure 7. They all display near-linear scalability, im-
tics also show a much better median response time, in ad?lying all of them are reasonably good strategies when
dition to better mean and 90th percentile numbers. FDRthe system becomes larger. Note, for CDR and FDR
Global has better numbers in all cases than CDR antvith 128 servers, our original network provision is a
FDR, due to its perfect know|edge of server load Status_"tﬂe small. The bottleneck in that case is the link be-

tween the server router and backbone router, which is

An interesting observation is that when compared to622Mbps. In this scenario, each server router is handling
the static schemes, dynamic schemes have worse mea® servers, giving each server on average only 39Mbps
times but comparable/better medians and 90th percentilef traffic. At 600 regs/s, even an average size of 10KB
results. We believe this behavior stems from the timerequires 48Mbps. Under this bandwidth setup, CDR and
required to serve the largest files. Since these files arEDR yield similar system capacity as LR-CHash and LR-
less popular, the dynamic schemes replicate them leddRW, and all these 4 strategies saturate server-router-to-
than the static schemes do. As a result, these files afgackbone links. To remedy this situation, we run sim-
served from a smaller set of servers, causing them to belations of 128 servers for all strategies with doubled
served more slowly than if they were replicated morebandwidth on both the router-to-backbone and backbone
widely. We do not consider this behavior to be a sig-links. Performance numbers of 128 servers under these
nificant drawback, and note that some research explicitlfaster links are plotted in the graph instead. This problem
aims to achieve this effect [10, 11]. We will revisit large can also be solved by placing fewer servers behind each
file issues in section 5.4.2. pipe and instead spreading them across more locations.



5.2 Behavior Under Flash Crowds Random, R-HRW'’s and LR-HRW's failure points; and

Having established that our new algorithms perform well.R-CHash and LR-HRW yields slightly better latency
than R-CHash and R-HRW.

under normal workloads, we now evaluate how they be- g ) )
have when the system is under a flash crowd or DDoS AS We explained earlier, CDR and FDR adjust the
attack. To simulate a flash crowd, we randomly selec€rVer replica set in response to request volume. The
25% of the 1,000 clients to batensiverequesters, where number of replicas that serve attack URLs increases as
each of these requesters repeatedly issues requests fré§ attack ramps up, which may adversely affect serving
a small set of pre-selected URLS with an average size dfon-attack URLs. However, the differences in the mean,

about 6KB. median, and 90-percentile are not large, and all are prob-
ably acceptable to users. The small price paid in response
5.21 System Capacity time for CDR and FDR brings us higher system capacity,

Figure 8 depicts the system capacity of 64 servers un@nd thus, stronger resilience to various loads.

der a flash crowd with a set of 10 URLs. In general ™

) L ’5.2.3 Scalabilit

it exhibits similar trends as the no-attack case shown in y N

Figure 5. Importantly, the CDR and FDR schemes still e also repeat the scalability test under flash crowd or
yield the best throughput, making them most robust toattack, where 250 clients aietensive requesters that
flash crowds or attacks. Two additional points deservé€peatedly request 10 URLs. As shown in Figure 10,
more attention. all strategies scale linearly with the number of servers.

First, FDR now has a similar capacity with CDR, but Again, in the 128-server cases, we use doubled band-
still is more desirable as it provides noticeably better la-Width on the router-to-backbone and backbone links.

tency, as we will see later. FDR’s benefit over R-CHash

80000

and R-HRW has grown to 91% from 60% and still out- " FDR v

performs LR-CHash and LR-HRW by 22%. g 7 L;{zéag:wx 3;
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Figure 10: System Scalability under Flash Crowds

Random R-CHash R'HRW LR-CHash LR-HRW CDR FDR FDR-Global
Schemes

Figure 8: Capacity Comparison Under Flash Crowds 524 VariousFlash Crowds
Throughout our simulations, we have seen that a differ-
Second, the absolute throughput numbers tend to bent number ofntensive requesters, and a different num-
larger than the no-attack case, because the workload izer of hot or attacked URLs, have an impact on system
also different. Here, 25% of the traffic is now concen- performance. To further investigate this issue, we carry
trated on 10 URLs, and these attack URLSs are relativelyout a series of simulations by varying both the number of
small, with an average size of 6KB. Therefore, relativeintensive requesters and the number of hot URLs. Since
difference among different strategies within each sceit is impractical to exhaust all possible combinations, we
nario yields more useful information than simply com- choose two classes of flash crowds. One class has a sin-
paring performance numbers across these two scenariogle hot URL of size 1KB. This represents a small home
page of a website. The other class has 10 hot URLs aver-
5.2.2 Responsel atency aging 6KB, as before. In both cases, we vary the percent-
The cumulative distribution of response latencies for allage of the 1000 clients that are intensive requesters from
seven algorithms under attack are shown in Figure 910% to 80%. The results of these two experiments with
Also, the statistics for all seven algorithms and FDR-32 servers are shown in Figures 11 and 12, respectively.
Global are given in Table 4. As seen from the figure and In the first experiment, as the portion iotensive re-
table, R-CHash, R-HRW, LR-CHash, LR-HRW CDR questers increases, more traffic is concentrated on this
and FDR still have far better latency than Random, andne URL, and the request load becomes more unbal-
static schemes are a little better than CDR and FDR aanced. Random, CDR and FDR adapt to this change
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Figure 9: Response Latency Distribution under Flash Crowds

well and yield increasing throughput. This benefit comesservers. In the event that the URLs are invalid, and the
from their ability to spread load across more serversservers are actually reverse proxies (as is typically the
However, CDR and FDR behave better than Randontase in a CDN), then these invalid URLs are forwarded
because they not only adjust the server replica set oto the server-of-origin, effectively overloading it. Servers

demand, but also maintain server locality for less pop-must address this possibility by throttling the number of
ular URLs. In contrast, R-HRW, R-CHash, LR-HRW URL-misses they forward.

and LR-CHash suffer with more intensive requesters or To summarize, under flash crowds or attacks, CDR
attackers, since their fixed number of replicas for eachand FDR sustain very high request volumes, making
URL cannot handle the high volume of requests for oneoverloading the whole system significantly harder and
URL. In the 10-URL case, the change in system cathereby greatly improving the CDN system’s overall ro-

pacity looks similar to the 1-URL case, except that duebustness.

to more URLs being intensively requested or attacked,

FDR, CDR and Random cannot sustain the same high.3 Proximity

throughput. We continue to mvest'lgate the effects ofye previous experiments focus on system capacity un-
more attack URLs and other strategies. der different loads. We now compare the strategies that

Another possible DDoS attack scenario is to randomlyfactor network closeness into server selection—Static
select a wide range of URLSs. In the case that these URLSNPR-CHash), StatictLoad (NPLR-CHash), and Dy-
are valid, the dynamic schemes “degenerate” into onsamic (NP-FDR)—with their counterparts that ignore
server for each URL. This is the desirable behavior forproximity. We test the 64-server cases in the same sce-
this attack as it increases the cache hit rates for all thearios as in Section 5.1 and 5.2.



Req Rate 11,235 reqg/s 19,811 reqg/s 31,000 reg/s 37,827 reg/s
Latency o 50% 90% o o 50% 90% o o 50% 90% o o 50%  90% o
Random 237 064 857 5.29

R-CHash 0.73 053 145 210 0.81 053 157 2.59
R-HRW 073 052 145 211 076 052 151 251
LR-CHash | 062 045 115 170/ 0.67 045 123 242 096 052 186 3.55
LR-HRW 0.63 045 118 1.80 0.67 046 126 2.65 1.07 053 219 3.52
CDR 119 055 172 540 125 055 186 551 180 0.76 435 6.08 229 150 420 6.4]
FDR 122 055 181 571 118 055 183 527/ 1.64 066 357 595 218 114 415 6.63
FDR-Global | 091 055 166 409 090 053 160 459 098 054 174 508 120 056 199 553

Table 4: Response Latency of Different Strategies under Flash CrewesMean,c — Standard Deviation.

40000 T T T T T T 40000

35000 35000

30000 30000

25000 25000

20000 20000
15000 so==222mX 7T 15000 -7

10000 R 10000 &

Capacity (Requests Per Second)
Capacity (Requests Per Second)

5000 [ E .

5000 g BT s i
O0.1 012 0:3 014 015 0:6 017 0.8 O0.1 012 0:3 014 015 0:6 017 0.8
Fraction of Intensive Requesters Fraction of Intensive Requesters
Figure 11: 1 Hot URL, 32 Servers, 1000 Clients Figure 12: 10 Hot URL, 32 Servers, 1000 Clients
cat < System C?\lpacnyl(reqslsehc)c _ are not loaded, all schemes with network proximity
ategory cheme orma as rowds . . . . ~ _
Static. | NPRCHaS 14409 14300 taken into cons!deratlon NPR-CHash, NPLR-CHash
R-CHash 50411 19811 and NP-FDR—yield better latency. When these schemes
Static | NPLR-CHash 24173 30090 reach their limit, NPR-CHash and NP-FDR still demon-
D+'-°ad_ hﬁ'ggg 2?38(7) giggg strate significant latency advantage over R-CHash and
ynamic - :
FOR 557 e FDR, respectively.

Interestingly, NPLR-CHash underperforms LR-
Table 5: Proximity’s Impact on Capacity CHash in response latency at its limit of 24,173 reqg/s
and 30,090 reg/s. NPLR-CHash is basically LR-CHash
using effective load. When all the servers are not
loaded, it redirects more requests to nearby servers,
Table 5 shows the capacity numbers of these stratethus shortening the response time. However, as the load
gies under both normal load and flash crowds of 250 inincreases, in order for a remote server to get a share of
tensive requesters with 10 hot URLs. As we can seeload, a local server has to be much more overloaded than
adding network proximity into server selection slightly the remote one, inversely proportional to their distance
decreases systems capacity in the case of NPLR-CHaghtio. Unlike NP-FDR, there is no load threshold
and NP-FDR. However, the throughput drop of NPR-control in NPLR-CHash, so it is possible that some
CHash compared with R-CHash is considerably largeclose servers get significantly more requests, resulting
Part of reason is that in LR-CHash and FDR, serverin slow processing and longer responses. In a summary,
load information already conveys the distance of a serverconsidering proximity may benefit latency, but it can
However, in the R-CHash case, the redirector randomlyalso impact capacity. NP-FDR, however, achieves a
choosing among all replicas causes the load to be evengood balance of both.
distributed, while NPR-CHash puts more burden on
closer servers, resulting in unbalanced server load. 5.4  Other Factors

We further investigate the impact of network prox- >-41 Heterogeneity
imity on response latency. In Table 6 and 7, we showTo determine the impact of network heterogeneity on
the latency statistics under both normal load and flastour schemes, we explore the impact of non-uniform
crowds. As before, we choose to show numbers aserver network bandwidth. In our original setup, all first-
the capacity limits of Random, NPR-CHash, NPLR- mile links from the server have bandwidths of 100Mbps.
CHash and NP-FDR. We can see that when serverge now randomly select some of the servers and re-



Req Rate 9,300 reg/s 14,409 req/s 24,173 reg/s 31,000 reg/s
Latency o 50% 90% o o 50% 90% o o 50% 90% o o 50%  90% o
Random 395 178 11.32  6.99

NPR-CHash | 0.66  0.42 121 2.20| 0.76 044 151 2.30
R-CHash 0.79  0.53 1.46 2.67| 0.82 056 1.63 250
NPLR-CHash| 0.57  0.36 0.93 2.000 0.68 039 133 234 134 055 263 4.73
LR-CHash 0.68 0.44 1.17 250, 0.71 048 143 219 1.04 050 195 3.44
NP-FDR 0.70 0.50 1.42 163 0.67 049 133 156 0.80 049 155 282 1.08 053 196 3.54
FDR 1.10 0.52 1.48 549 125 054 171 587 1.60 057 210 6.84 1.88 059 372 7.25

Table 6: Proximity’s Impact on Response Latency under Normal Lpag. Mean,c — Standard Deviation.

Req Rate 11,235 reqg/s 14,409 req/s 30,090 reg/s 34,933 reg/s

Latency I 50%  90% o n 50%  90% o I 50%  90% o n 50%  90% o
Random 237 064 857 529
NPR-CHash | 0.61 042 115 176 0.63 041 108 2.34
R-CHash 0.73 053 145 210 073 052 1.38 250
NPLR-CHash| 053 0.36 0.90 175 0.55 035 091 229 129 061 265 3.94
LR-CHash 0.62 045 115 1.70| 0.64 044 113 256/ 090 049 173 3.44
NP-FDR 0.70 050 145 168 0.66 045 134 1.63 081 047 164 255 099 051 192 3.26
FDR 122 055 181 571 107 054 167 547/ 160 066 349 590 1.84 078 415 6.31

Table 7: Proximity’s Impact on Response Latency under Flash Crowels Mean,oc — Standard Deviation.

duce their link bandwidth by an order of magnitude, to 99% of the files are smaller than 530KB, so we use this
10Mbps. We want to test how different strategies re-value as a threshold to trigger special large file treatment.
spond to this heterogeneous environment. We pick repFor these large files, there are two simple ways to redi-
resentative schemes from each category: Random, Rect requests for them. One is to redirect these requests
CHash, LR-CHash and FDR and stress them under botto a random server, which we call T-R (tail-random). The
normal load and flash crowd similar to network proxim- other is to redirect these requests to a least loaded mem-
ity case. Table 8 summarizes our findings on system caber in a server set of fixed size (larger than one), which

pacities with 64 servers. we call T-S (tail-static). Both of these approaches enlarge

the server set serving large files. We repeat experiments

Portion of Slower Links of 64 server cases in Section 5.1 and 5.2 using these two

Redirection Normal Load Flash Crowds new approaches, where T-S employs a 10-replica server
Schemes 0% 10% 30% 0% 10% 30%

Random 9300 8010 Boiol 11235 8429 8449 set for large files in the distribution tail. Handling the
RCHash | 20411 7471 7a71 19811 7110 7110, tail specially yields slightly better capacity than standard
LR-CHash [ 25407 23697 19421 31000 26703 225477  CDR or FDR, but the latency improves significantly. Ta-
FDR 33237 31000 25407 37827 34933 29499  ple 9 summarizes latency results under normal load. As
Table 8: Capacity (regs/sec) with Heterogeneous Server . can 8¢ the TR and T-S versions of CDR and FDR
Bandwiath Usually generate better latency numbers than LR—_CI-_|ash
' and LR-HRW. Results under flash crowds are similar.

This confirms our assertion about large file effects.

From the table we can see, under both normal load
and flash crowds, Random and R-CHash are hurt badl . .
because they are load oblivious and keep assigning reé- Related Work and Discussion

quests to servers with slower links thereby overload thenTluster Schemes: Approaches for request distribution
early. In contrast, LR-CHash and FDR only suffer slightin clusters [8, 12, 17] generally use a switch/router
performance downgrade. However, FDR still maintainsthrough which all requests for the cluster pass. As a re-
advantage over LR-CHash, due to its dynamic expandingult, they can use various forms of feedback and load
of server set for hot URLSs. information from servers in the cluster to improve sys-

. tem performance. In these environments, the delay be-
54.2 LargeFileEffects tween the redirector and the servers is minimal, so they
As we discussed at the end of section 5.1.3, the worsean have tighter coordination [2] than in schemes like
mean response times of dynamic schemes come fromurs, which are developed for wide-area environments.
serving large files with a small server set. Our first at-We do, however, adapt the fine-grained server set ac-
tempt to remedy this situation is to handle the largestounting from the LARD/R approach [25] for our Fine
files specially. Analysis of our request trace indicates thaDynamic Replication approach.




Req Rate 9,300 reg/s 18,478 req/s 25,407 reg/s 32,582 reg/s
Latency o 50%  90% o o 50% 90% o o 50%  90% o o 50% 90% o
LR-CHash | 0.68 0.44 1.17 250 0.87 051 1.82 274 119 0.60 247 3.79
LR-HRW | 0.68 044 118 2500 090 051 189 3.13 127 064 284 3.76
CDR 116 052 147 596 135 055 175 6.63 186 063 449 6.62 237 112 519 7.2
CDR-T-R | 0.78 052 143 277/ 076 052 140 280 1.05 057 190 3.06/ 1.58 094 3.01 355
CDR-T-S | 0.74 052 143 217/ 0.72 052 138 244/ 101 056 193 296 153 068 3.69 4.8
FDR 110 052 148 549 135 054 164 6.70 1.87 0.62 349 6.78 222 0.87 4.88 7.12
FDR-T-R | 0.78 052 143 277/ 075 052 140 282 101 057 187 298 139 077 282 3.68
FDR-T-S | 0.74 052 143 217 072 052 137 255 098 056 184 295 141 063 288 3.88

Table 9: Response Latency with Special Large File Handling, Normal Load Mean,c — Standard Deviation.

Distributed Servers. In the case of geographically can serve as a substrate to build other services. Most of
distributed caches and servers, DNS-based systems cémese peer-to-peer networks use a distributed hash-based
be used to obliviously spread load among a set of serverscheme to combine object location and request routing
as in the case of round-robin DNS [4], or it can be used tcand are designed for extreme scalability up to hundreds
take advantage of geographically dispersed server replef thousands of nodes and beyond. We also use a hash-
cas [6]. More active approaches [9, 14, 16] attempt tabased approach, but we are dealing one to two orders of
use load/latency information to improve overall perfor- magnitude fewer servers than the peers in these systems,
mance. We are primarily focused on balancing load, lo-and we expect relatively stable servers. As aresult, much
cality and latency, meanwhile, we also demonstrate a feasf the effort that peer-to-peer networks spend in discov-
sible way to incorporate network proximity into server ery and membership issues is not needed for our work.
selection explicitly. Also, we require fewer intermediaries between the client

Web Caches: We have discussed proxy caches asand server, which may translate to lower latency and less
one deployment vehicle for redirectors, and these plataggregate network traffic.
forms are also used in other content distribution schemes.

The simplest approach, the static cache hierarchy [7]/ Conclusions

performs well in small environments but fails to scale Thjs paper demonstrates that improved request redirec-
to much larger populations [32]. Other schemes in-jon strategies can effectively improve CDN robustness
volve overlapping meshes [33] or networks of caches in gy palancing locality, load and proximity. Detailed end-
content distribution network [19], presumably including to-end simulations show that even when redirectors have
commercial CDNs such as Akamai. imperfect information about server load, algorithms that
DDoS Detection and Protection: DDoS attacks have dynamically adjust the number of servers selected for a
become an increasingly serious problem on the Intergiven object, such as FDR, allow the system to support a
net [22]. Researchers have recently developed tech60-91% greater load than best published CDN systems.
niques to identify the source of attacks using variousMoreover, this gain in capacity does not come at the ex-
traceback techniques, such as probabilistic packet marksense of response time, which is essentially the same
ing [28] and SPIE [29]. These approaches are effechoth when the system is under flash crowds and when
tive in detecting and confining attack traffic. With their operating under normal conditions.
success in deterring spoofing and suspicious traffic, at- These results demonstrate that the proposed algorithm
tackers have to use more disguised attacks, for examplesults in a system with significantly greater capacity
by taking control of large number of slave hosts and in-than published CDNs, which should improve the sys-
structing them to attack victims with legitimate requests.tem’s ability to handle legitimate flash crowds. The re-
Our new redirection strategy is effective in providing sults also suggest a new strategy in defending against
protection against exactly such difficult-to-detect attacks DDoS attacks: each server added to the system multi-
Peer-to-Peer Networks: Peer-to-peer systems pro- plicatively increases the number of resources an attacker
vide an alternative infrastructure for content distribution.must marshal in order to have a noticeable affect on the
Typical peer-to-peer systems involve a large number ofystem.
participants acting as both clients and servers, and they Although we believe this paper identifies important
have the responsibility of forwarding traffic on behalf trends, much work remains to be done. We have con-
of others. Given their very large scale and massive reducted the largest detailed simulations as current simu-
sources, peer-to-peer networks could provide a poterlation environment allows. We also find that approxi-
tial robust means of information dissemination or ex-mate load information works well. We expect our new
change. Many peer-to-peer systems, such as CAN [26Rlgorithms scale to very large systems with thousands
Chord [30], and Pastry [27] have been proposed and thegf servers, but it requires a lot more resources and time



to evaluate. We would like to run simulations at an[14]
even larger scale, with faster, more powerful simulated
servers. We would also like to experiment with more
topologies such as those generated by power-law basé(ljs]
topology generators, use more traces, real or synthetigg)
(such as SPECweb99). Finally, we plan to deploy our
new algorithms on a testbed and explore other implemeni7]
tation issues.
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