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Abstract

This paper describes a toolkit to help improve the ro-
bustness of code against DoS attacks. We observe that
when developing software, programmers primarily fo-
cus on functionality. Protecting code from attacks is
often considered the responsibility of the OS, firewalls
and intrusion detection systems. As a result, many
DoS vulnerabilities are not discovered until the system
is attacked and the damage is done. Instead of reacting
to attacks after the fact, this paper argues that a bet-
ter solution is to make software defensive by system-
atically injecting protection mechanisms into the code
itself. Our toolkit provides an API that programmers
use to annotate their code. At runtime, these anno-
tations serve as both sensors and actuators: watching
for resource abuse and taking the appropriate action
should abuse be detected. This paper presents the de-
sign and implementation of the toolkit, as well as eval-
uation of its effectiveness with three widely-deployed
network services.

1 Introduction

Denial-of-Service (DoS) attacks are a major source of
concern in the Internet. Unlike security break-ins that
obtain privileged access, DoS attacks are designed to
consume a disproportionate amount of resources on
the target system by exploiting weakness in the net-
work software. When successful, such attacks make
the system unavailable to well-behaved users.

Common defenses against DoS attacks include us-
ing firewalls and Intrusion Detection Systems (IDS) to
monitor network links for offending traffic, as well as
applying software patches to fix known vulnerabilities.
However, such defensive practices burden the system
administrator with making sure all systems have the
up-to-date patches installed and all firewalls are prop-
erly configured. To make matters worse, even after a
new attack is recognized, it is not until the vulnera-
bilities exploited by the attack are determined that a
patch can be developed.

We observe that many DoS vulnerabilities can be
attributed to the separation of software functionality
and protection. When developing software, program-
mers primarily focus on functionality. Protection from
attacks is often considered the responsibility of the OS,
firewalls, and IDS, and thus not an immediate concern.
As a result, many vulnerabilities in the code are not

discovered until the system is hit by an attack that ex-
ploits the weakness, that is, after the damage is done.

Instead of reacting to attacks, we propose a new
approach to DoS protection: defensive programming,
by which we mean programmers embed general mech-
anisms into their software to provide systematic and
proactive protection against DoS attacks. Ideally, de-
fensive software guarantees availability even under a
previously unknown DoS attack. An important as-
pect of this approach is that it should be designed to
thwart common DoS attack characteristics; program-
mers should not have to scan their code for a specific
implementation vulnerabilities and fix them, as they
do when writing a software patch.

Towards this end, this paper describes our experi-
ence developing mechanisms to help programmers sys-
tematically build robust software. The key idea is to
insert annotations that monitor and control the exe-
cution of the program at runtime. These annotations
serve both as sensors that detect anomalies and actu-
ators that change the control flow of a program when
they detect that defensive measures are necessary. The
advantage of annotations is that they allow us to ad-
just the program’s behavior at a very fine granularity,
thereby making it possible to confine the damage of
an attack without negatively affecting other aspects of
the program.

We have developed a toolkit consisting of a set
of annotation primitives, a runtime library, and
a set of compiler extensions. As a means of
specifying a resource management policy, a pro-
grammer inserts annotation primitives into code
so that the annotations mark where resources
are acquired/released/consumed, where the program
branches into independent functionalities, and what
principals are holding resources. The compiler exten-
sions check consistency among annotations by analyz-
ing the control flow graph of the program and gen-
erating necessary code to be executed at annotated
points. At runtime, appropriate monitor and control
functions are invoked as control flow passes through
these annotations.

The toolkit helps programmers reason about DoS
problems in a more structured way. Rather than focus
on implementation details, they are asked to identify
the services provided and the resources consumed by
their program at a high level. For example, if the pro-



grammer annotates a certain function as performing
an identifiable service, the toolkit will confine a DoS
attack on that service to requests of the same service,
rather than letting the attack bring down the program
as a whole. The flip-side, of course, is that the toolkit
is not a panacea. Like any mechanism, the effective-
ness of the toolkit depends on whether a good defen-
sive policy can be specified, which is ultimately the
responsibility of the programmer.

The paper makes two contributions. First, it stud-
ies the general question of how to develop defensive
code that protects itself from DoS attacks. In the pro-
cess, the paper identifies a class of attacks that exploits
a vulnerability existing in many network servers, but
that has not received attention in the literature. Sec-
ond, it describes a specific mechanism—the annotation
toolkit—that evolved from this study. We have imple-
mented the toolkit in Linux, and demonstrated how
to annotate widely deployed software, including the
Linux IP protocol stack, the Flash web server [10], and
the Linux NIS servers [8]. Our experience shows that
we can significantly improve the robustness of software
against DoS attacks with relatively low programming
effort.

2 Redated Work

Our approach to writing defensive code draws on pre-
vious research in several areas. This section explains
how our work fits in this larger design space.

2.1 Intrusion Detection Systems

Anomaly detection uses statistics of normal behavior
as a baseline, and treats changes in these patterns as
an indication of an attack. Researchers have demon-
strated that examining the sequence of system-calls
made by an application is a viable approach to de-
tecting security violations due to bugs in the program
(mainly buffer overflows) [6, 14, 18].

However, current anomaly detection techniques have
difficulty detecting resource-exhausting attacks, be-
cause a DoS attacker can request the same service
as a legitimate user. Our approach has the flavor of
anomaly detection, but with a focus on resource usage
rather than security. Since the target of a DoS attack
is some resource on the victim system, we instrument
the program to look for irregularities in resource usage
and actively participate in resource management. In a
way, we do not have to distinguish DoS attacks from
other activities, the rationale being that as long as re-
sources are properly managed, the damage any DoS
attack can cause is limited.

2.2 Performance Monitoring

Resource-exhausting DoS attacks often cause perfor-
mance degradation on the target, making it possible to
detect such attacks by monitoring the profiling data.

In general, however, we found profiling-based detec-
tion insufficient for the following reasons. First, pro-
filing does not cover all the important aspects of a
program’s behavior. The target resource of a DoS at-
tack is not necessarily CPU cycles; sometimes it can
be application-level objects. Second, getting the aver-
age behavior from profiling data is not enough because
even perfectly legitimate users can deviate significantly
from the average without attacking the system. To in-
fer the behavior distribution from profiling data is a
hard problem that does not have a good solution for
the general case.

In order to collect comprehensive data for analysis
and extract meaningful information from the data, it
is necessary to know what resources a program con-
sumes, as well as where and how they are being used.
Our annotation interface allows a program to provide
such information.

In performance assertion checking [11], the original
program is instrumented to generate an execution log,
which is then checked offline for performance viola-
tions. The assertions and logging facilities are the
counter parts of our resource sensors. Being inde-
pendent of the original program, assertions can be de-
clared in a more expressive language. In contrast, our
resource sensors and actuators are part of the original
program being annotated, monitoring resource usage
and changing the program control flow at runtime.

In addition, our goal is not only detection, but also
protection. Since an appropriate defensive action is
highly dependent on the functionality and architecture
of the program, the action has to be specified at the
source code level. Watching profiling data can some-
times tell us the system is being attacked, but without
a defense mechanism built into the program, the only
available response is to kill the victim process, which
is a DoS attack in its own right.

2.3 Static Code Analysis

There has recently been much work in automatic de-
tection of software errors and security bugs through
static code analysis. Recent work by Engler et al.
[4, 5] introduced the technique of meta-level compi-
lation. The idea is that the software must obey cer-
tain rules for correctness, such as “kernel code cannot
call blocking functions with interrupts disabled” and
“message handlers must free their buffer before com-
pleting”. System programmers specify the rules in a
high-level language, and an extensible compiler then
applies the rules throughout the program source to
check for violations. Meta-level compilation is very
successful in finding errors in OS code, as well as a
wide range of security bugs using rules such as “do
not dereference user pointers without checking valid-
ity”. The authors found several DoS possibilities in
the kernel code they examined, but the result is lim-
ited to a special case in which an attacker controls the



iterations of a kernel loop.

Static analysis alone is not sufficient for detecting
DoS attacks since such attacks do not necessarily rely
on software bugs. It is often the cumulative pressure
on resources that puts a system in peril, even though
the software itself is bug-free. Thus, besides exam-
ining how the software is implemented, we must also
watch how it is exzecuted. Such information can be only
collected at runtime with additional application or OS
support. Previous work in detecting race conditions in
concurrent programs [12] seems to support this point
of view. Our approach differs from previous work of
static analysis mainly in that we check for possible
“rule” violations at runtime, with a focus on resource
usage.

2.4 OS Mechanisms

There has been an ongoing effort to build new OS
mechanisms and specialized OSs to provide service dif-
ferentiation and guarantees. For example, Resource
Containers [3] are an abstraction that takes over the
process’ role as the primary resource principal. It
allows multiple cooperating processes to bind to the
same container, as well as a process to change its re-
source and schedule binding dynamically when it ex-
ecutes on behalf of another activity. The Scout op-
erating system [9, 15] uses a similar abstraction—the
path—as the primary resource and schedule principal.
Both systems have been shown to be able to defend
against certain flooding DoS attacks. The improve-
ment results from more accurate resource accounting
and service isolation.

An important contribution of resource containers is
the separation of resource principals and execution do-
mains, but as an OS approach, resource management
policies are ultimately enforced via process schedul-
ing among execution domains. In case an execution
domain multiplexes among a set of resource princi-
pals, resource containers reduce to a passive account-
ing facility. However, many functionality-rich services,
such as web servers and routing daemons, are single-
process-event-driven. Intra-process protection is more
important for these applications, since we do not want
to penalize the entire process when just one of its func-
tions is being abused. This calls for a finer-grain re-
source protection than what can be provided by an OS
approach. Using annotations inserted by the program-
mer to monitor and control the execution path within
a process, our approach offers a finer-grain protection
than OS approaches.

Another system-level approach, SEDA [19], pro-
poses a programming model in which a program is
divided into stages and each stage enforces its own re-
source management policy by controlling threads run-
ning in that stage. This model differs from the tra-
ditional process-based resource protection in that re-
source allocation not only depends on the process, but

also on the stage in which the process is running. From
this perspective, our approach is similar to SEDA. On
the other hand, SEDA is not intended for DoS pro-
tection, and does not protect resources that cannot be
protected by scheduling.

Finally, our toolkit is intended to improve the ro-
bustness of existing software. Annotating code is
more programmer-friendly than imposing a new OS
architecture or abstraction, which often requires re-
architecting code. This is especially true with Scout
and SEDA.

3 DoS Attack Characterization

Researchers have studied many DoS attacks [13, 7].
What is lacking, however, is an analysis of their com-
mon characteristics: what they attack and how they
attack it. Such a characterization would help us under-
stand the signature of DoS attacks, and shed light on
how to systematically and proactively write defensive
software.

There are several well-known attacks on network
software, including the ICMP flood attack (send a
large number of ICMP echo packets at the target),
TCP SYN attack (flood the target with connection-
open requests), and Christmas Tree packets (over-
whelm a target with packets that have exceptional bits
turned on in the header—e.g., IP options—dictating
the packet receive special processing). A less well-
known attack, which we refer to as route cache poison-
ing, involves an attacker flooding a router with packets
carrying a sequence of nonsensical TP addresses (e.g.,
“17, “27, “3”, and so on), thereby blowing the router’s
first level route cache. This causes the router’s control
processor to spend all its time building new microcode
and loading it into the switch engine. This happens at
the expense of the router responding to its neighbors’
routing probes, which causes the neighbors to believe
the router is down.

These examples illustrate that DoS attacks abuse a
legitimate service by sending it a large volume of re-
quests, suggesting that rate limiting [17] and load con-
ditioning [19] would be an effective defense. However,
DoS attacks can also be carried out in a way that ren-
ders rate limiting strategies ineffective. The following
example illustrates this possibility.

3.1 Sow TCP Attacks

Many TCP-based services follow the request-reply
paradigm. Since a server must set aside resources while
a client request is being processed, it is possible to ex-
haust the server’s resource by manipulating the oper-
ation of TCP. The idea behind the attack is for the
client to make the TCP connection as slow as possi-
ble. This simple idea can be realized in three different
ways.

First, a client can send the request very slowly. Since



TCP is a byte-stream protocol without record bound-
aries, the server cannot interpret the client’s request
until all the data is received. Suppose a request con-
tains 2000 bytes, and the TCP MSS is 1000 bytes.
Under normal operation, the client would send the re-
quest in two packets. If, instead, the client sends the
request one byte at a time, which does not violate any
protocol and application requirements, it would take
2000 RTTs before the server can start to process the
request. The client can insert additional delays be-
tween packets to further extend the duration.

Second, once the server starts to send results back,
the client can read the data very slowly. The server
side TCP would interpret the closed TCP advertised
window in the acknowledgment packet as a signal that
the client application is temporarily busy, thus pause
sending.! The server will not be able to send more data
until the window is opened again. Thus by abusing
TCP’s flow control mechanism the client can pace the
rate of data sent by the server.

Third, the client can acknowledge the response very
slowly by pretending the packet was lost. Without
seeing an acknowledgment, the server will retransmit.
Similar to the slow receiver, the client can pace the
sending rate of the server by controlling when to ac-
knowledge a packet. In this scenario, the client abuses
TCP’s reliable transmission feature.

One target of the Slow TCP attack is web servers.
Being a slow sender, an attacker can construct an
extremely long HTTP request (e.g., copy the header
“User-Agent: Slow TCP Sender \r\n” 5000 times)
and send it at a very low rate (e.g. 1 byte every 50
seconds). Being a slow receiver or ACKer, an attacker
just requests a big file then nibbles at the server’s out-
put. The goal of the attacker is to keep the connection
alive as long as possible. Since the number of concur-
rent connections a web server can maintain is limited,
given sufficient number of slow attackers, the server’s
available connections will be exhausted, and all subse-
quent requests will be denied.

We verified this idea experimentally by implement-
ing a HTTP request generator that uses slow TCP,
and tested it against two popular web servers: Apache
[2] and Flash [10]. The attack proves to be extremely
effective. Despite the fact that TCP has a keep-alive
timer, the Linux TCP implementation limits the num-
ber of retransmission attempts to 12, and both Apache
and Flash have built-in mechanisms to time-out idle
connections, all three forms of slow attacks are able tie
up a connection for several days, causing the servers
to disappear from the net. We were also able to attack
NIS servers in a similar way.

In general, we believe such attacks are not limited to
TCP servers. For example, an attacker could disable a

L After some time, the server TCP will send a 1-byte packet
to test if the client has consumed any data.

firewall that provides NAT or Proxy services by repet-
itively sending packets from all available ports to a
random set of destinations. Once the translation table
on the firewall is filled up, other users are effectively
cut off from the rest of the Internet.

3.2 Attacks Revisited

When characterizing DoS attacks, it is helpful to dis-
tinguish between two types of resources: renewable re-
sources, such as CPU cycles, the bandwidth of net-
work, disks, and buses; and non-renewable resources,
such as processes, ports, buffers, PCBs, and locks. To
attack a renewable resource, the attacker continually
consumes the resource so that legitimate services do
not receive enough of the resource over time. This
is usually achieved by flooding the server with mas-
sive number of requests in order to keep the target
system busy. In contrast, if the target resource is non-
renewable, the attacker tries to acquire as many re-
source as possible and does not release them. This
form of attack does not require flooding to make the
target busy.

In the rest of the paper we denote an attack target-
ing a renewable resource a busy attack, and an attack
targeting a non-renewable resource a claim-and-hold
attack. However, we note that some attacks cannot be
clearly placed in one category. For instance, the target
resource of SYN flooding attack is half-open connec-
tions, which is a non-renewable resource, but to ex-
haust this particular resource, the attacker must keep
the system busy with a flood of new requests. In an-
other example, router cache poisoning succeeds when
the router’s CPU is overwhelmed, thus it is a busy at-
tack, yet it works by directly attacking the route cache,
which is a non-renewable resource.

These “exceptions” are not special cases, but in
fact, phenomenon due to the duality between busy and
claim-and-hold attacks. Often in mending one vulner-
ability, we open the system to another vulnerability.
For example, the Apache web server sets a limit of
150 connections to protect itself from runaway resource
consumption, yet by enforcing this limit, connections
become a “scarce” resource and the program is po-
tentially vulnerable to claim-and-hold attacks. On
the other hand, to protect non-renewable resources,
the system must perform a recycling function when
the resource becomes unavailable. This function it-
self could become an accessory in a busy attack if it
is not resource-controlled. This is the weakness ex-
ploited by the route cache poisoning attack. Clearly,
a general defense mechanism must protect the system
from both types of vulnerabilities at the same time;
watching only one type of attacks is not sufficient.



4 Defensive Strategies

Our overall strategy is to separate resources among ac-
tivities in a program along two dimensions. For renew-
able resources, we balance resource usage among pro-
gram functionalities, thereby confining the impact of
an attack to the individual service being attacked. For
non-renewable resources, we identify principals that
hold non-renewable resources and reclaim resources
from principals that are not making minimal progress.
These two aspects of our strategy are discussed in turn.

4.1 Busy Attack Defense

The strategy is to balance resource usage among pro-
gram functionalities, thereby confining the impact of
an attack to the individual service being attacked. To-
wards this end, we introduce the concept of service and
propose a resource control mechanism with actuators
at service entries and sensors at resource access points.

41.1 Servicesand Resources

We define a service to be a program component that
provides an independent functionality. Each service, in
turn, consumes some amount of renewable resources.
Figure 1 shows the conceptual model of a server pro-
gram divided into services. Client requests are served
by different services, as they execute a code path
through the program, and multiple services share var-
ious resources.

There is often a clear correspondence between ser-
vices and program code paths, and in many cases, a
service is implemented by a particular function and as-
sociated subroutines. For example, in the Linux ker-
nel, each ICMP service is handled by a distinct func-
tion with name icmp_<service> (e.g. icmp_echo).
Thus, a program can be divided into services accord-
ing to code paths. To expose the service structure of a
program, we ask programmers to annotate the service
entry functions in their programs. We have also built
a set of compiler tools to help user check coverage and
consistency of service annotations.

i
.
i
Client i
Request T
'

Resources

Services

Figure 1: Service View of a Program

We assume each service is performed by a function.
When this is not the case, the programmer must ex-
tract the part of code that performs the service and
wrap it in a separate function. Our experience with
the Flash web server and the Linux TCP/IP code sug-
gests that there are few places we need to do the ex-

traction and all of them are straightforward. The ben-
efit of marking functions instead of arbitrary code re-
gions as services is that the user need only annotate
service entry points. Our compiler can then automat-
ically annotate the corresponding service exit points,
thereby reduce the overall programmer workload and
the chance of inconsistent marking. Also, the service
hierarchy structure is clearly represented by the func-
tion call graph.

Services can be disjoint or nested. For example, in
the Linux IP stack (Figure 2), TCP-recv and UDP-recv
are disjoint services, while the service of IP options
processing is nested inside IP processing. Nested ser-
vices allow the programmer to divide a coarse-grain
service into finer-grain sub-services. Dividing services
in this way has the advantage of confining the damage
of an attack within a smaller range. When a nested
service tries to over-use some resource, action is taken
only on the inner-most service that directly uses the
resource, for fear that doing anything to the parent
services may over-penalize sibling services. For exam-
ple, if we further divide the service of IP option han-
dling into a sub-service for every type of IP option,
then when the code dealing with one type of option is
attacked, all other IP options can be still be handled
normally.

ip_recv

i p_l ocal _deliver ip_forward

TCP-recv UDP-r ecv | CMP-r ecv

| P options

Figure 2: Services in Linux IP Stack

As services correspond to code paths, we can con-
trol resource usage of a service by rate-limiting exe-
cution on its code paths, especially the “expensive”
ones. For example, the Linux kernel checks a rate
limit when deciding whether to send out an ICMP
packet. We can view the act of changing from one
execution path to another, based on resource usage,
as intra-process “scheduling” among services. How-
ever, since we do not know which code path will be
attacked, and it is hard to precisely tell how expen-
sive code paths are, there are two interesting questions
in rate-limiting code paths: 1) where to place sensors
that monitor resource usage and actuators that change
the program execution path; and 2) at what rates code
paths should be limited, or how to decide whether or
not to switch out of the current code path each time
execution reaches the actuators.

412 Sensorsand Actuators

We need a systematic way to place sensors and actua-
tors in the program, because placing them in an ad hoc
way may leave holes to be exploited—the code path



being attacked might not have an annotation on it.
On the other hand, we want to minimize the number
of annotations, especially actuators, because switching
out of a code path needs to be handled in a program-
specific way, and it takes programmer’s effort to write
such a handler.

Rate limiters found in existing software, such as the
Linux kernel, are actually a composite component that
consists of both a sensor and an actuator: the sensor
monitors the execution rate on the code path, and the
actuator deflects the execution to another code path
when the rate limit is violated. This approach works
well because we know which potential attacks we want
to defend against and therefore can put rate limiters
on the right code path. In our case, we do not assume
that we know about any particular attack. With this
different assumption, we found that actuators and sen-
sors need to be placed at different locations in the pro-
gram, in order that (1) actuation happens at the right
place, and (2) resource usages to be properly limited.
The following discusses the placement of actuators and
sensors, in turn.

For actuators that control the execution path, we
argue that service entry points are the right place for
them to be placed. This is for three reasons. First,
a service is the unit of fault isolation, and activities
within the same service share fate. Therefore, it is
better to not begin processing a service request if it
cannot acquire enough resources to complete. Sec-
ond, it is easier to abort or delay processing a service
request at the entry point than in the midst of pro-
cessing. Third, each service needs only one actuator,
thus the total number of actuators depends only on
the number of services.

A potential trade-off here is that sometimes at the
service entrance we may not be able to precisely pre-
dict whether a request can get enough resource. How-
ever, in all busy attacks we know of, a service must
be invoked at a high rate in order to exhaust system
resource. Therefore, the effect of this inaccuracy is mi-
nor, because it matters only when the service is about
to reach its resource quota. In other words, rate pre-
cision is not so important in DoS defense, as we are
not making QoS guarantees. Finally, the programmer
may define finer-grained services to achieve better pre-
cision.

For sensors that monitors resource usage, we argue
that they should be put at resource access points, for
example, where a system call is invoked to transmit a
packet. If we were to put sensors together with actua-
tors at service entries, it would require much effort and
experience to set an appropriate rate limit for each ser-
vice because it is unclear how service rate limits would
map onto actual resource usage. As we try to set the
limits for services before knowing which service will be
attacked, there is a risk of being either too conservative
or too optimistic. Also, the choice is often host-specific
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Figure 3: Managing Renewable Resources

and cannot be easily shared or reused. In contrast, it
is straightforward to measure the resource usage at the
point the resource is accessed, and it is relatively easy
for the programmer to specify an overall rate limit for
each type of resource.

Taken together, the sensors monitor both the over-
all resource usage and usages by individual services,
thereby affecting admission decisions at actuators
placed at service entry points. (See Figure 3(a)). Ac-
tuators control admission to any service that tries to
consume disproportional amount of resource. Further
details about the actual mechanism is discussed in Sec-
tion 5.3.

4.1.3 Controlling Continuous Resource

The discussion to this point assumes that resources are
always consumed at particular locations of the pro-
gram. We further distinguish between two types of
renewable resources: discrete resources, which include
almost all renewable resource except CPU time (e.g.
network/disk bandwidth); and continuous resources,
which include CPU time. Unlike discrete resources,
CPU time is spent continuously as the program exe-
cutes, so we can no longer monitor resource on some
particular code paths. Therefore it needs to be man-
aged differently.

There are mainly two questions: how to detect CPU
overload and how to locate the service being exploited.
Our approach is to ask the user to specify time limits
on some high-level functions for each invocation, and
we control admission to the downstream service that
violates the deadline, as shown in Figure 3(b). Again,
more details are given in Section 5.3.

4.2 Claim-and-Hold Attack Defense

In order to consume renewable resources, the attack-
ing activity must be active, i.e., executing code on the
CPU. This observation has greatly simplified our so-
lution to defend busy attacks—basically we need to
control the execution frequency and duration of differ-
ent code paths. Protecting non-renewable resources,
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Figure 4: Managing Non-renewable Resources in an Event-driven Web Server

however, is a different story. Attackers holding the re-
source do not necessarily have to remain active once
the resource is acquired.

Protecting non-renewable resources is essentially a
process of specifying a replacement policy: when the
resource becomes exhausted, which ones should be re-
claimed. Resources can be reclaimed either periodi-
cally or when some event indicates recycling is nec-
essary. Thus, the problem boils down to one of de-
ciding: (1) what resources to reclaim, and (2) when
to reclaim them. We introduce two metrics—progress
and pressure—that characterize these two aspects of
a replacement policy, respectively. Our defense strat-
egy involves annotating a program with sensors and
actuators that set and react to these two metrics.

421 Progressand Pressure

In the Slow TCP attack against web servers, the
resource in question is the server connection. Nei-
ther Apache or Flash implements an explicit replace-
ment policy. When connections are exhausted, the
server simply rejects new requests. The connection
resource is returned when the client request is com-
pleted. It is also reclaimed by timers. In Flash, there
are two build time parameters, CGI_TIMELIMIT and
IDLEC_TIMELIMIT. The former caps the maximum run-
ning time of a CGI program forked by a client request,
and the latter controls the maximum period a client
can be idle. When either limit is exceeded, the con-
nection is dropped and resources associated with this
connection are freed.

The weakness of this simple mechanism lies in the
fact that an attacker can trick the server into thinking
it is still in the middle of a request, thereby holding re-
source without triggering the timers. Alternatively, to
guarantee availability, we could choose to tear down
the oldest connection when the connection table be-
comes full. The problem with this approach is that it
is biased against clients on a slow link or those down-
loading a large file.

A better solution is to measure how well a client is

making use of the resources it has acquired, and com-
bine this information with other metrics such as age. A
client should be allowed to hold resources longer than
others, as long as it has a good reason. We use progress
to denote such a metric. The exact form of progress
depends on the resource and application in question,
but in general, a proper progress metric should reflect
how the principal holding a resource is making use of
it. Progressis expected to increase proportionally with
time. In the web server example, how many bytes the
server has sent to the client could be used to construct
the progress metric.

A replacement policy also has to specify when to re-
claim resources. Since recycling itself could be an ex-
pensive operation, uncontrolled invocations also open
up the possibility of busy attacks, which is what we
saw in the route cache poisoning attack. We define
a pressure metric to control the invocation of the re-
claim function. Intuitively, resources should be recy-
cled when the pressure on it exceeds a certain thresh-
old, which could be caused either by too many clients
requesting the resource, or no clients releasing the re-
source.

Programmers can develop other metrics tailored to
the application. As a general toolkit, we currently
only support interfaces to keep track of progress and
pressure, on top of which a variety of policies can be
built.

4.2.2 Placing Sensorsand Actuators

Figure 4 illustrates how sensors and actuators can be
placed in an event-driven web server such as Flash.
Sensors are inserted into a program to track (record)
progress in two ways. If the principal in question gen-
erates output of some kind, the unit of the output
is a natural measure of progress; e.g., one can anno-
tate a program with a progress sensor that records how
many bytes have been read or written, how many pack-
ets have been forwarded, and so on. In a second sce-
nario, an entire task can be broken into stages, where
progress is recorded when the task moves from one



stage to the next. For example, the Flash web server
breaks client request processing into three stages: re-
quest reading and parsing, back-end processing, and
result sending. Some stages can be further divided
depending on the operations required by a particular
request (e.g, requesting a static page vs. dynamic con-
tent). A stage is represented by a unique “handler” as-
sociated with a connection. In this example, progress
sensors can be placed where the connection handler is
changed.

It is usually obvious how to insert sensors into a pro-
gram to track pressure: there are often well-defined
points in the program where non-renewable resources
are accessed; e.g., inside resource allocators and deallo-
cators. Pressure sensors can be placed at these points.
Some abstract non-renewable resources are not ac-
cessed via an explicit function interface, in which case
we need the programmer to annotate the points at
which the resource is acquired and released.

Turning to the actuator side, there is a single recla-
mation actuator that is a function of both metrics: it
decides to reclaim resources if the pressure metric is
greater than some threshold, and should this be the
case, it uses the progress metric to decide which in-
stance of the resource to reclaim. Reclamation actu-
ators are placed in two types of locations. First, the
trigger role of the pressure sensor suggests that a recla-
mation actuator should be placed immediately after a
pressure sensor. In fact, we we envision a combined
pressure annotation marking the point where resources
are claimed and released.

In addition, however, pressure also needs to be ex-
amined periodically, as it could build up even in the
absence of activity. This implies that we also need to
insert a reclamation actuator—which we call a recla-
mation checkpoint to distinguish it from the combined
pressure sensor/actuator—that is periodically visited
by the control flow. For most server programs this is
not a problem as they are iterative by nature. For ex-
ample in Flash, we could place such an actuator inside
its main event loop, as shown in Figure 4. An impor-
tant issue however, is that when an action is taken,
it must not leave the server in an inconsistent state;
e.g., not free all resources associated with an activity,
or continue to reference a principal that is no longer
valid due to the reclamation. We do not have a gen-
eral solution to the problem, except that by impos-
ing transaction semantics the risk of inconsistency can
be reduced. In other words, the checkpoint should be
placed outside all functions that are considered atomic.

Finally, when placing a reclamation checkpoint we
need to consider how often it is visited by the program
control flow. If the interval is not properly bounded,
we effectively lose control on the resource. One way to
preserve granularity is to use the techniques presented
in the previous section, such as the time-sensor, to
limit the branches leaving the checkpoint. But under

extreme situations, for instance an attacker causing
the program to enter an infinite loop, we could still lose
control. We considered other alternatives, such as us-
ing a timer signal to perform resource checking, but it
is extremely hard to perform resource reclamation in a
signal handler while still guaranteeing such operations
do not lead to inconsistencies. We consider this as one
limitation of intra-process protection—sometimes we
need to depend on inter-process protection provided
by the OS. In other words, there is a trade-off between
absolute control and preserving the original program
structure.

5 Annotation Toolkit

This section describes our annotation toolkit in detail,
focusing first on the annotations themselves, and then
on the underlying implementation.

5.1 Renewable Resource Management

The toolkit includes annotations that are used to de-
note admission control upon service entry, plus anno-
tations that serve as sensors for monitoring rate and
time limits. We consider each in turn.

e SERVICE_ADMISSION(min_rate)

The user marks a function as a service entry point,
specifying the minimum rate at which that service
is allowed to proceed. For example, the following is
from the service that satisfies cold cache requests in
the Flash web server:

SRCode
ProcessColdRequest (httpd_conn* hc)
{
if (!SERVICE_ADMISSION(3))
return SR_PLEASE_TRY_AGAIN_LATER;
/* rest of the function ... */

This annotation does not directly change the ex-
ecution path of the program, but returns a hint on
whether the service should be admitted based on its
resource usage, allowing the program to (1) do neces-
sary cleanup before aborting, (2) delay servicing the
request, or (3) ignore the hint. The annotation takes
parameter min_rate and always returns 1 when the
service is invoked below the minimal rate, regardless
whether the service has used up its resource quota.
This allows users to guarantee service rate for some
important services under resource contention.

e RATE_SENSOR (max._rate, weight)

This annotation is used to specify the maximal
weighted rate for a particular code path. For exam-
ple, in order to rate-limit the packet and byte rates of
ICMP, we may annotate the code with the following
lines before ICMP pushes a packet to IP:

if (!RATE_SENSOR (sysctl_icmp_max_msg_rate, 1))

icmp_msg_rate_violation++;
if (!RATE_SENSOR (sysctl_icmp_max_byte_rate, msg_size))

icmp_byte_rate_violation++;
ip_build_xmit(...);



RATE_SENSOR can be placed any where in the pro-
gram, unlike SERVICE_ADMISSION which must be put
at function entries. It returns a hint on whether the
current measured rate of the code path is within the
specified maximal rate. However, it is completely le-
gitimate for programmer to ignore the hint (as in the
example above) if the limit is not strict. This is be-
cause the annotation sends feed-back to the service
admission point, thereby eventually limiting resource
usage to the specified rate.

e TIME_SENSOR (max_time)

This annotation is used to monitor the execution time
of a function (and its subroutines) on each invoca-
tion. It is applied on functions in the same way as
SERVICE_ADMISSION. For example, to control the exe-
cution time of an event handler in Flash web server,
we extract the invocation of the event handler into
a separate function and annotate the function with
TIME_SENSOR so that admission to services invoked by
event handlers will be bounded by the time limit.

static void LaunchHandler(...)

{
TIME_SENSOR(handlerTimeLimit) ;
handler (tempConn, i, do_what);

5.2 Non-renewable Resource M anagement

The toolkit also includes a set of annotations that both
demark the allocation and freeing of non-renewable re-
sources, and check to see if resources need to be re-
claimed.

o RESOURCE_DECL (resid)

This annotation declares a non-renewable resource
that needs protection, where resid is a unique identi-
fier. The annotation initializes a data structure to rep-
resent the resource. This annotation should be placed
in the initialization part of a program.

e RESOURCE_ACQUIRED(resid, p, amt)
e RESOURCE_RELEASED(resid, p, amt)

These two annotations take an opaque pointer and the
amount of resource being accessed. The pointer serves
to identify the principal; it is usually an application-
specific data structure. The annotation also records
the timestamp of the operation in order to calculate
the duration of resource being held by the principal.

e PRESSURE_SENSOR(resid, s)

This annotation records pressure on the resource
caused by discrete events, such as a new request be-
ing denied due to the lack of resources. The second
argument can be used to express the severity of the
situation.

e RESOURCE_UNAVAILABLE(resid)
e RESOURCE_AVAILABLE(resid)

Some applications disable new requests as soon as the
resource is used. In this scenario, pressure cannot be
tracked in a discrete fashion. Instead, pressure accu-
mulates continually over time when no resources are
released. These two annotations are used in such sit-
uations.

e PROGRESS_SENSOR(resid, p, prog)

This annotation updates the progress metric of a prin-
cipal by prog. The use of the opaque pointer p should
be consistent with that in RESOURCE_ACQUIRED and
RESOURCE_RELEASED.

e RECLAMATION_CHECKPOINT (resid, cb, min_pres,
min_prog)

This annotation is the actuator that performs resource
recycling. By default, it takes resources back from
the principal making the least progress. Programmers
can configure the operation with two additional pa-
rameters: min_pres specifies that actions should be
taken only when the pressure exceeds certain thresh-
old; min_prog restricts the actions to be taken only
upon principals making less progress than the param-
eter. By setting different thresholds, a programmer
can control the frequency of recycling and give prin-
cipals that have already made significant progress an
allowance to finish the task. Programmers also need
to specify a callback function c¢b that is invoked by the
actuator. It should free resources associated with a
principal (identified by the opaque pointer), but can
also be used to log activity for offline analysis.

5.3 Implementation Details

Each annotation is implemented as a C-macro, and is
linked with an instance of a corresponding data struc-
ture. Key data structures in our toolkit include ser-
vice, rate sensor, time sensor, resource, and principal,
with each maintaining a different set of counters.

A service structure contains a rate counter for ser-
vice entry rate so that it can tell whether the entry
rate is below the minimal rate given in the annota-
tion. It also contains flags to indicate resource or time
limit violation by the service. The rate counter is re-
set to zero at the end of every period (a period lasts
for one second in our prototype). The violation flag is
also adjusted periodically.

To account resource usage of services, global vari-
able current_service points to the service currently be-
ing executed. As services can be nested, the variable
is updated on each service entry and exit. (Our com-
piler extension inserts service exit calls corresponding
to SERVICE_ADMISSION annotations.) The following
gives pseudo-code for service admission and exit:

do_service_admission (svc_id, min_rate) {
if (at the end of period)
adjust rate and time violation;
update service entry counter;
check_deadline();



set current_service to svc_id;

if (service within min_rate || there is no violation)
return 1;

return O;

}

do_service_exit () {
check_deadline();
set current_service to parent service;

The rate sensor structure contains a rate counter for
each service that uses the rate sensor and a counter
for the overall rate. In addition, it maintains a shared
rate limit for services: whenever a rate counter of any
service exceeds the shared rate limit, the service is
marked with a rate-limit violation flag, and its subse-
quent admissions will be rejected until the end of the
period (with the exception of services that are admit-
ted because they are below the minimal service rate).
The shared rate limit is adjusted at the end of each
period with additive increase / multiplicative decrease
(AIMD) depending on whether the overall rate exceeds
the given limit on the sensor. Below is the pseudo-code
for rate sensor:

do_rate_sensor(rate_id, max_rate) {
if (at the end of period)
adjust shared limit AIMD (total rate counter, max_rate);
update per service and total rate counters;
if (per service counter > shared limit) {
set rate violation on current_service;
return O;
}

return (rate_counter(rate_id) <= max_rate);

Adjusting the shared rate limit dynamically allows
more flexible rate control than computing the limit
with min-max algorithm, which assumes that every
service obeys the shared limit. The programmer may
allow some service to use more resources than the com-
mon share—by overriding it with minimal service rate
or ignoring the result of SERVICE_ADMISSION —but the
shared rate limit is adjusted to a level so that the over-
all rate still matches the specified limit. This allows
users to make application-specific decision on resource
allocation other than purely “fair” sharing.

Like the SERVICE_ADMISSION annotation, the scope
of a TIME_SENSOR annotation includes the current func-
tion and all its subroutines. At entry TIME_SENSOR
computes and stores a deadline in global variable cur-
rent_deadline. When TIME_SENSOR is applied in a user-
space process, the time-stamp is obtained by getting
process usage time (which is process time plus sys-
tem time on behalf on the process) in order to ex-
clude the impact of process scheduling. (In contrast,
SERVICE_ADMISSION and RATE_SENSOR uses wall time.)
Within the scope of time-limit, the current time is
compared against current_deadline (see the pseudo-
code for check time_limit below) at each service en-
try and exit. If the deadline is missed, the current
service is marked as the violating service and follow-
ing services will not check the deadline any more. The

service being marked as the violating service will be
rejected admission for some penalty period (with the
same exception of minimal service rate), at which time
violation flag on the service is reset to 0. The duration
of the penalty period depends on by how much time
the service violates the time limit.

do_time_sensor (max_time) {
current_deadline = current_usage_time + max_time;
passed_deadline = 0;

check_deadline() {
if (!passed_deadline && current_usage_time > current_deadline) {
time_violation(current_service) +=
penalty(current_usage_time - current_deadline);
passed_deadline = 1;
}
}

The implementation of the interface for non-
renewable resource management is straight-forward.
Most macros simply update the pressure or progress
counter in the data structure representing a resource
or a principal. As an example, we give pseudo-code
for RECLAMATION_CHECKPOINT:

do_reclamation_checkpoint(resid, cb, min_pres, min_prog) {
update pressure on resid;
if (pressure(resid) > min_pres) {
for (each pri holding the resource) {
usage(pri) += (time_now - last_timestamp) * held_amt(pri);
normalized_prog(pri) = absolute_prog(pri) / usage(pri);
update worst_pri by comparing normalized_prog counters;
}
/* worst_pri records the pri making the least progress */
if (normalized_prog(worst_pri) < min_prog)
(*cb) (worst_pri);
}
}

The only trick in the code is that comparisons are
made in normalized progress, rather than absolute
progress, as reported directly by the application via
the PROGRESS_SENSOR macro. The reason is that com-
paring absolute progress is not fair to young princi-
pals that have not yet received enough time to make
progress. Intuitively, a principal holding resources
for a longer period of time should have made better
progress.

54 Compiler Support

Because code path annotations are tightly coupled
with program control flow structure, we instrumented
GCC and built some small tools to help users anno-
tate their code. In general, the compiler automatically
adds auxiliary annotations to complete those marked
by user, and links the code annotation with the toolkit
data structures. It also checks consistency of annota-
tions and gives warning on potential discrepencies.
GCC builds a syntax tree for each function body
after parsing. We added our extension to a hook be-
tween parsing and intermediate language (RTL) gen-
eration. The compiler extension traverses syntax trees
to look for service admission/time sensor annotations
and function exit points. When a function is marked



with a service admission/time sensor annotation, the
compiler inserts a call to the corresponding service
exit/time sensor exit functions before each function
exit.

The instrumented GCC also writes the control flow
graph to a file. Our code path analyzer then reads this
file and gives warnings for following cases: (1) there is
a path from an entry function to a rate-sensor anno-
tation that does not go through any service admission
annotation, and (2) there are some expensive opera-
tions (e.g. loops and library function calls) enclosed
by a time-sensor annotation and not enclosed by any
service admission annotation.

6 Evaluation

We experimentally tested our toolkit on widely de-
ployed software: the Flash web server, Linux kernel
networking code, and NIS (yellow page) server. For
each example, we annotate the code by asking our-
selves the same set of questions—what services need
to be separated and what resources need protection.
We then tested the robustness of both the unmodi-
fied and annotated servers under various attacks. We
found that both busy and claim-and-hold attack vul-
nerabilities exist in all test cases, and that by exploit-
ing these vulnerabilities, an attacker could either dis-
able, or seriously degrade the level of service. The
annotated servers are much more resilient under the
attacks, which demonstrates the generality and effec-
tiveness of our toolkit. We also found situations where
our toolkit has difficulty in providing protection to the
desirable level. We identify some as implementation
issues that can be improved by extending our toolkit,
while others are fundamental limitations of our ap-
proach.

6.1 Flash Web Server
6.1.1 Annotating Flash Web Server

Flash [10] is a web server with a single-process-event-
driven architecture. The main loop launches connec-
tion handlers on I/O events. We first annotate ev-
ery handler function called in main loop as a ser-
vice entry point. Since some of these handlers im-
plement more than one independent functions—e.g., it
may either read a file or execute a CGI program—
we mark nested services in top-level services by func-
tionality (e.g., CGIStuff). There are also some func-
tions that contain loops or make system calls (and
thus have potential to be attacked). One such exam-
ple is MakeCrossedString, which concatenates parts
of a cross-buffer string. Such functions are also
marked as separate services for fault isolation. A
fourth class of functions perform non-critical tasks—
e.g., ReduceCacheIfNeeded—which we also mark as
services. Altogether, 46 services are annotated.

To limit time spent in each event handler func-
tion invocation, we extract the handler function call
in main loop and place it in a separate function,
called LaunchHandler, and annotate this function
with TIME_SENSOR .

All non-renewable resources in Flash are consumed
on behalf of a connection, which is itself a non-
renewable resource. Flash disables new requests
when numConnects reaches the upper limit. The
following code illustrates how we annotated function
AcceptConnections—we insert two sensors to track
usage and pressure on the connection resource. Note
the pointer to the http_conn data structure is used as
the principal identifier.

int AcceptConnections(int cnum, int acceptMany) {
httpd_conn* c;
do {
PrepareConnOnAccept (¢, newConnFD, &sin);
numConnects++;
RESOURCE_ACQUIRED (HTTPCONN, c, 1);
} while (numConnects < maxConnects && acceptMany) ;
if (numConnects >= maxConnects) {
DisallowNewClients();
RESOURCE_UNAVAILABLE (HTTPCONN) ;

A typical HTTP connection goes through three
phases: request reading and parsing, back-end pro-
cessing (fetch a file from disk or execute a CGI
program), and result sending. A connection makes
progress when it moves to the next phase or sends out
bytes. Thus, progress sensors are inserted where the
“state” of a connection changes and data is sent out:
DoConnReadingBackend and DoSingleReadBackend
are two examples of functions with embedded progress
Sensors.

DoConnReadingBackend (httpd_conn* c, int fd, int doRegReading)

switch(ProcessRequestReading(c)) {
case PRR_DONE:
/* end of request reading */
PROGRESS_SENSOR (HTTPCONN, c, 10000);
break; /* switch connection to the next phase */

o
}

DoSingleWriteBackend (httpd_conn* c, int fd, int testing)
sz = writev(c->hc_fd, ioBufs, numIOBufs);

/* Ok, we wrote something. */
PROGRESS_SENSOR (HTTPCONN, c, sz);
}

Finally, we explicitly declare the connection resource
before entering the server loop and insert a checkpoint
inside the loop. The annotated main loop is shown
below. DoneWithConnection is a Flash-provided re-
source deallocator, here conveniently used as the call-
back function for connection recycling. The choice of
the parameters min_pres and min_prog are explained
in Section 6.1.3.



void MainLoop(void) {
RESOURCE_DECL (HTTPCONN) ;
for (5;5) {
RECLAMATION_CHECKPOINT (HTTPCONN, DoneWithConnection, 5, 500);
for (each I/0 event) {
Launchhandler (handler, tempConn, ...);

if (!newClientsDisallowed) AcceptConnections(-1, TRUE);
}
}

6.1.2 Slash Attack

Flash is a very robust program: disk operations and
CGI jobs are separated into helper processes rather
than performed by the main process, thereby allow-
ing the OS to protect the main process. Flash also
has some built-in mechanisms to control its resource
consumption; e.g. calls to fork() are already rate-
limited. However, it is extremely difficult to write a
program free of vulnerabilities, and Flash is not an
exception. We found the following code in function
ExpandSymlinks, which parses a “cold” URL that is
not in server’s hot URL cache:

/* Remove any leading slashes. */
while ( rest[0] == >/’ )
{

(void) strcpy( rest, &(rest[1]) );
--restlen;

}

The loop has time complexity quadratic in number
of leading slashes. As Flash does not limit the length
of a URL, a URL with many leading slashes takes a
lot time to parse: it takes 150 ms on a PIII 700 ma-
chine to remove 10,000 leading slahes from a URL;
7 such requests per second is enough to saturate an
un-annotated server.

Our attacker is a simple program that sends HTTP
request “GET /////...//id” to the Flash server, where
id = 1,2,3,... to avoid duplicate URLs. Under at-
tack, the un-annotated server soon reaches the maxi-
mum number of connections. Subsequent connection
requests enter a connection queue waiting to be ac-
cepted. The server will accept a connection every 150
ms. Thus server response time is greater than the con-
nection request queue length x 150 ms.

Slash attack serves our purpose well because it
shows that implementation inefficiencies that lead to
DoS vulnerability may appear at unexpected locations
in the source code. Ad hoc protection is not likely to
cover such a vulnerability and we need a systematic ap-
proach for DoS defense. Importantly, we knew about
this problem to formulate the attack, but we did not
need to have knowledge of this bug when annotating
the code.

For a Flash server that is annotated with service ad-
missions and a time sensor with a limit of 20 ms on
LaunchHandler, the attack has no effect on requests
of hot URLs. The annotations recognizes that service
ProcessColdRequestBackend2 (see Figure 5) takes
too much time on each invocation and rate limits the
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Figure 5: Position of ExpandSymlinks in Flash service
hierarchy

service depending on how much time it takes for each
invocation. The connection is closed on service admis-
sion rejection, so that connections do not accumulate
over time. Service ProcessColdRequestBackend?2 is
not invoked for “hot” URLs. By limiting CPU spent
for cold URLs, we insure access to hot pages under
slash attack.

no attacker 4.3 ms
attacker #slash = 0 4.3 ms
attacker #slash = 10000, original 25,000 ms
attacker #slash = 10000, annotated 5.1 ms

Table 1: Flash response time under slash attack

Table 1 compares the average response time for a
“hot” 10KB file for both original Flash and annotated
Flash, when the server is under slash attack. The slash
attacker sends 10 requests per second to saturate the
Flash server. We first measure response time to a sin-
gle client without any attacker present. We then mea-
sure response time to client when there is a competing
client; i.e. the attacker sends ten requests per second
but with no leading slashes in the URL. The third
row shows response time from an unprotected Flash
server under attack, a 5000x slow down. The last
row shows the response time from an annotated Flash
server. The small increase of response time for anno-
tated Flash under attack is because Flash processes a
cold URL periodically and thus delays the hot request
for up to 150 ms. Despite this small fluctuation, the
response time from an annotated Flash server does not
change by much on average under slash attack.

On the other hand, access to cold URLs is limited
for annotated Flash under slash attack. The probabil-
ity of success for a cold request is linear to the ratio
between the user request rate and the attack request
rate. For example, if an attacker sends ten requests
per second (which is enough to saturate an unpro-
tected server) and the user sends one request per sec-
ond, then with probability 50% it takes no more than
than log0.5/10og0.9 = 6.57 requests to access a cold



URL. However, since nothing prevents the attacker
from sending requests at a higher rate, clients may not
be able to access “cold” pages in many attempts. This
phenomenon shows that the effectiveness of fault iso-
lation depends on service granularity, and sometimes
depends on program classification granularity. If Flash
were to further classify requests into ones with short
URLs and those with long URLs, the impact of a slash
attack would be further limited.

6.1.3 Slow TCP Attack

In unmodified Flash, the connection resource is recy-
cled by an idle timer associated with each connection.
The default time-out value IDLEC_TIMELIMIT is 500
seconds. The timer is reset by any event on the socket,
such as data arrival or TCP send buffer becoming
available. Thus, to launch a successful claim-and-hold
attack, an attacker needs to generate an event before
the 500 second timer expires. Once the available con-
nections run out, the unmodified Flash server enters
the “denial-of-service” mode, disallowing new clients.
Our Slow TCP based clients can easily cause the situ-
ation to persist for days without generating very much
network traffic.

By comparison, the annotated Flash server is able to
recover from the “denial-of-service” mode by recycling
connections. Our current toolkit implementation uses
a sliding window to record pressure history. Setting
min_pres to 5 instructs the server to reclaim resources
from unproductive connections after it has been disal-
lowing new clients for about 5 seconds. The progress
of each client is tracked as follows: when a connection
moves from one stage to another the absolute progress
of the connection is incremented by a numerical value
of 10000; when the connection is in the final result
sending stage, its absolute progress increases as the
bytes being successfully written. In conjunction with
the min_prog of 500, the server enforces the following
policy: a client should not stay in one stage (other than
the last one) for more than 20 seconds, otherwise its
normalized progress will drop below 10000/20 = 500
and be considered “unproductive”. Once in the final
stage, the client should read at least 500 bytes of the
server’s response per second. With these resource lim-
its, well-behaved clients including those on slow links
go largely unaffected, but claim-and-hold attackers are
no longer able to tie up server resources for unreason-
ably long periods of time.

Note that by specifying a single progress-and-
pressure threshold, we may not be able to completely
eliminate the vulnerability to Slow TCP attacks. At-
tackers can still open many connections and make each
request proceed slowly while staying just above the
acceptable progress threshold. To solve this problem,
the programmer can specify a more refined defensive
policy with the toolkit: for example, under resource
pressure, at most one third of the connections can be

“very slow”, another one third can be “slow”, while
the rest have to be “fast” connections. This can be ac-
complished by putting more than one checkpoint with
multi-level progress-and-pressure thresholds, so that
the server will recycle resources more aggressively un-
der higher pressure.

6.1.4 Overhead

Regarding programming overhead, we add in total 57
annotations into Flash source, which has more than
12,000 lines of code. 46 of the annotations are ser-
vice admission primitives that divide the program into
fine-grain services. The rest are annotations on indi-
vidual kinds of resources; e.g., CPU time and HTTP
connections. As the annotations specify general re-
source policies, they should be able to defend against
not only the attacks in the experiments, but also other
potential attacks targeting the annotated services and
resources.

In terms of request response time or server band-
width we did not observe any performance degradation
caused by annotation in our measurements. Table 2
reports the number of annotation primitives invoked
on a typical HTTP request and the general cost of
each annotation. The number of annotations executed
varies depending on the file’s size and whether it is in
server cache, which affects the call graph, the num-
ber of server iterations, and the number of outgoing
packets. The cost of each annotation is given in the
number of instructions and “timestamp” operations.
The exact cost of timestamp depends on whether the
code being annotated is in kernel or user-space.

Primitives Invocations | Instructions/
per HTTP timestamps
connection per call

SERVICE Entry/Exit 13 — 31 63/2

RATE_SENSOR n/a 25/1

TIME_SENSOR iterations 36/2

RESOURCE_ACQUIRED 1 62/1

RESOURCE_RELEASED 1 42/0

PROGRESS_SENSOR 2 + pkts 23/0

RECLAMATION_CHECKPOINT | iterations 121/1

per principal

Table 2: Annotation Overhead

Note the 121 instructions are the worst-case cost of
RECLAMATION_CHECKPOINT when the pressure is high
and each connection is checked. Also not shown in the
table is certain background processing of the toolkit
library, which executes once per second for each anno-
tation and contains less than 20 instructions per invo-
cation.

6.2 Linux Networking Code
6.2.1 Annotating Linux Network Code

We annotate part of Linux 2.4 network code to protect
network outgoing bandwidth. Our goal is to insure
that no single network activity can monopolize outgo-



ing network bandwidth. (For incoming network band-
width, protection on local host may not be enough,
however, we may want to limit CPU time spent on in-
coming packets for hosts with high-bandwidth network
connections.)

Initially, we mark service entry points at the “send
message” function of each protocol; e.g. udp_sendmsg.
This gives us protocol isolation. However, icmp_reply
is an interesting case since it is called by multiple func-
tions for sending different types of ICMP messages,
e.g. icmp_echo and icmp_timestamp. To have fault
isolation between different types of ICMP messages,
we push the service entry at icmp_reply into functions
for every type of ICMP message that calls icmp_reply.
For example, icmp_echo is now a service entry func-
tion, while icmp_reply is no longer marked as a ser-
vice. icmp_send presents another interesting case: it
is called at 13 locations to report different network er-
rors. To prevent one type of error from suppressing
others, we wrap each call site as a service. In total, we
mark 27 services.

Since we may not be able to get notification about
delivery of packets for protocols like ICMP, we can-
not apply congestion control to manage bandwidth, as
the Congestion Manager does [1]. Instead, we simply
rate-limit messages from all protocols except TCP.2
On code paths that call ip_.build xmit, we insert a
call to ip_rate_control, which includes RATE_SENSOR
annotations:

static __inline_
{
int res = 1;
if (!RATE_SENSOR (sysctl_ip_max_msg_rate, 1)) {
res = 0; ip_msg_rate_violation++;
}
if (!RATE_SENSOR (sysctl_ip_max_byte_rate, msg_size)) {
res = 0; ip_byte_rate_violation++;

int ip_rate_control(int msg_size)

return res;

The user can adjust sysctl_ip-max msg rate and
sysctl_ ip-max byte_rate through the /proc file sys-
tem.

6.2.2 |ICMP-Echo Flood Attack

To simulate ICMP-echo flood attack, the attacker
sends a flood of ICMP-echo packets to the victim using
the *ping -f’ command. The attack has a 100Mbps
network link and the victim is on a 10Mbps link. The
victim also runs a Flash web server so that we can
measure how it is affected by the attack.

Without protection, access to the Flash server on
the victim machine is virtually blocked by the ICMP
flood. However, the attack has almost no effect on a
target system with annotated Linux code, except for
the high loss rate for ICMP-echo messages.

2Including TCP in rate-limiting does not work because TCP
will automatically back-off while other services are trying their
hardest to grab bandwidth.

6.3 NISServer

This section studies ypserv—the yellow page server
available on most UNIX systems. Even though the
server program itself is simple, it is interesting because
it illustrates how different software architectures affect
robustness. ypserv is built on top of the RPC protocol
[16]. Most RPC programs are built with RPC library
and tools like rpcgen, which handles complex tasks
such as packaging a call into a message, sending it
over the network, and server side message decoding.
With the RPC library, the programmer only needs to
provide a function that is called when a request ar-
rives. The RPC package is valuable for constructing
distributed systems, but it also comes with a poten-
tial disadvantage: its virtualization gives programmers
less control on the execution of the program.

Linux ypserv-2.2 is a typical RPC server built us-
ing these tools. It starts by calling C lib functions
svcudp_create, svctcp_create, svc_register and
svc_run, which create transport channels, register YP
services, and start a server loop that waits for re-
quests. The main service routine ypprog_2 is passed
to svc_register as the callback function. ypprog 2
dispatches incoming calls to second level routines
such as ypprocmatch 2_svc and ypproc_all 2_svc,
and sends results back by calling C lib function
svc_sendreply.

6.3.1 Claim-and-Hold Attacks

A client program like ypcat requests the entire con-
tent of a database from the server. The server handles
the request by calling ypproc_all_2_svc. When ship-
ping bulk data over the network, ypserv uses TCP
as the transport protocol. We found the same vul-
nerability to Slow TCP attacks also exists in ypserv.
To verify this, we built a customized version of ypcat
that uses Slow TCP as its transport. We set up a
different number of ypcat attackers, each requesting
a database of 150K bytes. While the attack is in
progress, we test the server’s availability by issuing
“rpcinfo -[tu] server ypserv” and normal ypcat
commands from a different machine. In addition to
the latest version ypserv-2.2, we also tested an ear-
lier version (ypserv-1.3). The main difference be-
tween the two versions is that ypserv-1.3 executes
ypproc_all 2 svc in a forked child process, and keeps
the number of children process below 40. The results
are summarized in Table 3, where “Yes” means the
normal client successfully gets a response from the
server and “No” means the server is unable to reply.
The results show that ypserv-2.2 becomes unrespon-
sive under the presence of any slow ypcat attackers.
This is not surprising since it is an iterative server
that handles only one call at a time. Interestingly,
version 1.3 with concurrency support also failed with
just 1 slow sender, and damage was done to not only



ypserv-2.2 ypserv-1.3
rpcinfo | ypcat | rpcinfo | ypcat
1 slow sender No No No No
1 slow reader No No Yes Yes
40 slow readers No No Yes No

Table 3: Server Availability under Slow ypcat attacks

TCP but UDP services as well. The reason is that
svc_run essentially implements a poll loop as in Flash,
but using synchronous I/O. When data arrives on a
registered channel, the RPC library tries to decode the
request message. If the request message is sent slowly,
the main server process blocks on a read system call
until the entire message arrives. During this time, the
server is unable to reply to new requests. The con-
currency, however, does help the server survive slow
reader attacks, as they are handled by children pro-
cesses. When the number of slow readers reaches the
limit, ypcat starts to fail, but the main process contin-
ues to respond to rpcinfo and other YP clients such
as ypmatch.

We found that merely annotating ypserv does not
give us resilience to Slow TCP attack because the ac-
tivities we would like to monitor actually occur in-
side the RPC library rather than the application.
Therefore, we really need to annotate the RPC li-
brary. However, the effectiveness of doing so is ham-
pered by the library’s use of synchronous I/O. We
suggest that a more robust RPC library implementa-
tion should employ the architecture of the Flash web
server, in which (1) low-level stub functions are pro-
cessed in non-blocking handlers, and (2) user applica-
tions like ypserv are invoked as helper processes. If
these changes were made, our annotation toolkit would
effectively protect the RPC library.

6.3.2 Busy Attacks

There is an easy way to busy attack a ypserv-2.2
NIS server when there is a big database: simply in-
voke many “ypcat <big database>” simultaneously
to ask the service to send the whole database over
network. For a database of size 1.7MB, it takes about
20 ms for server to complete the transmission, during
which the server does not process any other requests
because of RPC’s mutual exclusion property. Attack-
ing a NIS server with ypcat flood virtually blocks all
NIS operations using TCP, e.g. rpcinfo. Operations
that use UDP still go through because they are in a
different queue than TCP in select ().

We annotated the NIS server by wrapping each NIS
operation as a service so that YP_ALL requests (sent
by ypcat) will not consume all the resources. An an-
notated NIS server continues to respond to other YP
requests under a ypcat attack, except access to YP_ALL
is very slow. However, this is not satisfactory because
YP_ALL access to database group is required for each

log-in. Since group is usually a very small database, it
is not vulnerable to a ypcat attack. Generally, we do
not want to let ypcat attacks on large databases affect
access to small databases. Since there are usually only
a small number of databases on a NIS server, we can
solve this problem by associating a “dynamic” service
for each type of operation on each database, so that
“ypcat group” and “ypcat passwd’ belong to sepa-
rate services. To support dynamic service, we need to
add one new primitive, DYN_SERVICE_ADMISSION (svc_
id, min_rate), which is same as SERVICE_ADMISSION
except it takes an extra parameter svc_id for service
id.

7 Limitations

Our approach has several limitations. First, in many
cases our approach limits only the scope of damage be-
cause it cannot distinguish between “good” and “bad”
requests that happen to follow the same code path.
In other words, annotations simply augment the clas-
sification mechanisms already embedded in the code;
they do not add any new ones of their own. To further
differentiate between “good” requests and “bad” re-
quests, additional classification mechanisms must be
added to the program so that these requests effec-
tively follow different code paths. For cases where sep-
arating services according code paths is not fine-grain
enough, as we saw in the experiment on the NIS server,
we believe that adding DYN_SERVICE_ADMISSION to the
toolkit will be necessary. We are currently extending
the toolkit to support such a facility.

Second, the current toolkit is only applicable within
a single process because the sensors and actuators need
to share state, and thus, they work only within a single
memory space. This means our toolkit will not work
with the current implementation of Apache, for exam-
ple. It is not clear that an IPC facility can help extend
the mechanism to multi-process programs because IPC
overhead will likely hinder fine-grain protection. How-
ever, for multi-process programs, it is also possible to
apply the protection separately for each process. We
need more experience to say how effective that will be.

Third, rate-limiting controls only the quantity of re-
sources consumed by each service, but not the order
that resources are consumed. Sometimes it is desir-
able to change the order that we allocate resources,
especially when some resource consumers are latency-
sensitive. For example, in addition to specifying a rate
for all non-TCP packets, we may want to bump TCP
packets to the front of the transmission queue. Not
being able to schedule resource sometimes forces the
user to be more conservative in specifying resource lim-
its. To be able to schedule resource allocation would
require support for concurrency within a process, so
that the program execution can save the state of the
current service task and switch to another service.



8 Conclusions

This paper presents defensive programming as a new
approach to offer proactive DoS attack protection. Af-
ter first identifying two basic types of DoS attacks—
busy and claim-and-hold—we build a toolkit that pro-
vides an interface programmers use to annotate their
code. With compiler assistance, annotations are trans-
lated into runtime sensors and actuators that watch for
resource abuse and take the appropriate action should
abuse be detected. The main strengths of this ap-
proach are that it offers fine-grained intra-process pro-
tection, can be systematically applied to existing code,
protects software from unknown attacks, and puts a
minimal burden on the programmer.

Like any mechanism, however, the effectiveness of
our approach depends on whether a good defensive
policy can be specified, which is the responsibility of
the programmer. Our experience with DoS attacks
and applications has greatly influenced the design of
the annotation interface in order to accommodate the
most common policies, but the interface is by no means
complete. Also, even with the help of our toolkit, non-
trivial programming effort is still required: (1) pro-
grammers need to mark service entry points and iden-
tify where their programs acquire/release/consume re-
sources, and (2) system administrators need to set
system-dependent parameters (e.g., rate limits). Our
view is that just as programmers are responsible for
making their programs correct, they should also be
responsible for making them defensive; we merely pro-
vide a set of tools to help simplify this task. Prelim-
inary experience suggests that the programming bur-
den is modest, but we expect to extend and refine the
tools as we gain more experience.
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