USENIX Association

Proceedings of the
5th Symposium on Operating Systems
Design and Implementation

Boston, M assachusetts, USA
December 9-11, 2002

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using Model Checking to Debug Device Firmware

Sanjeev Kumar*
Department of Computer Science
Princeton University
skumar @s. pri ncet on. edu

Abstract

Device firmware is a piece of concurrent software that
achieves high performance at the cost of software complexity.
They contain subtle race conditions that make them difficult
to debug using traditional debugging techniques. The prob-
lem is further compounded by the lack of debugging support
on the devices. This is a serious problem because the device
firmware is trusted by the operating system.

Model checkers are designed to systematically verify prop-
erties of concurrent systems. Therefore, model checking is
a promising approach to debugging device firmware. How-
ever, model checking involves an exponential search. Conse-
quently, the models have to be small to allow effective model
checking.

This paper describes the abstraction techniques used by
the ESP compiler to extract abstract models from device
firmware written in ESP. The abstract models are small be-
cause they discard some of the details in the firmware that
is irrelevant to the particular property being verified. The
programmer is required to specify the abstractions to be per-
formed. The ESP compiler uses the abstraction specification
to extract models conservatively. Therefore, every bug in the
original program will be present in the extracted model.

This paper also presents our experience with using Spin
model checker to develop and debug VMMC firmware for
the Myrinet network interfaces. An earlier version of the
ESP compiler yielded models that were too large to check
for system-wide properties like absence of deadlocks. The
new version of the compiler generated abstract models that
were used to identify several subtle bugs in the firmware. So
far, we have not encountered any bugs that were not caught
by Spin.

1 Introduction

Device firmware has to be reliable because it is trusted by the
operating system. It has the ability to write directly into the
physical memory. A stray memory write resulting from a bug
can corrupt critical data structures in the operating system and
crash the entire machine.

*Now at Microprocessor Research Labs, Intel Corp.

Kai Li
Department of Computer Science
Princeton University
i @s. princeton. edu

Writing reliable firmware for devices is a challenging prob-
lem for three reasons. First, the firmware is implemented
using concurrency [25]. And concurrent programs are in-
herently hard to write correctly. Often, they have unfore-
seen interactions between the different sequential flows of
control resulting in race conditions. Second, event-driven
state machines are used to express the concurrency because
of their low performance overhead. However, programming
with event-driven state machines in languages like C is dif-
ficult because they are not designed to support event-driven
state-machines programming. Event-driven state-machines
programs can be written in these languages using an explicit
interface [25] which requires state machines to be specified
explicitly using function pointers. The resulting programs are
difficult for the programmer to understand and for the com-
piler to compile efficiently. To get good performance, the
programmer is forced to perform some optimizations manu-
ally. This introduces subtle bugs in the program. Third, very
limited debugging support is available on the devices. Often
it is limited to a few memory locations to which the device
can write. The programmer has to diagnose the bugs by ob-
serving these memory locations on the host machine.

The earlier version of the Virtual Memory-Mapped Com-
munication (VMMC) firmware [14] for Myrinet network in-
terface cards® was implemented using event-driven state ma-
chines in C. Since the VMMC architecture [5] delivers high-
performance on gigabit networks by migrating as much func-
tionality as possible from the operating system to the net-
work interface card, the network interface firmware is fairly
complex. Our experience with implementing the VMMC
firmware in C has been that while good performance could
be achieved, the source code was difficult to write, maintain,
and debug. Even after several man-years of debugging, bugs
due to race conditions remain and occasionally cause system
crashes.

Model checking is a promising approach to building reli-
able firmware. Model checkers take a model of the system
and explore all possible interleaved executions of the concur-

1The network interface card has a programmable 33-MHz LANai4.1 pro-
cessor, 1-Mbyte SRAM memory.

rent system. Since the number of possible executions grows
exponentially with the size of the model, abstract models that
hide details in the original system are necessary. In addition,
often only a fraction of the model can be explored. In spite
of these limitations, the systematic search performed by the
model checker results in much more extensive testing than
traditional methods.

ESP [25] is a language for writing firmware for pro-
grammable devices. It uses a model checker to aid in de-
veloping and debugging the programs. The language is de-
signed so that its compiler can extract models that can be
used by a model checker like Spin [21] to debug the firmware.
In the software community, model checking has tradition-
ally been used to find hard-to-find bugs in working sys-
tems [7, 15, 27, 30, 18, 17, 22, 11]. In contrast, Spin is used
throughout the firmware development process. Usually, the
program is developed and debugged entirely using Spin be-
fore it is ever run on the device. This is because developing
firmware on the device is a slow and painstaking process

Since the version of the VMMC firmware implemented
in C was buggy, the firmware was reimplemented using
ESP [25]. The ESP compiler extracted models that were very
useful in implementing the firmware. A model was used to
develop and debug a retransmission protocol in the firmware.
It was also used to verify memory safety in the firmware.
However, in both of these cases, the models were small be-
cause the properties being verified were local and involved
only a few ESP processes. The model extracted by this ver-
sion of the ESP compiler was too big to check for system-
wide properties like the absence of deadlocks in the firmware.
Since the system-wide bugs are especially difficult for the
programmer to find precisely because they are nonlocal, this
was a significant limitation of that compiler.

This paper presents techniques used by the new version
of the ESP compiler that extracts abstract models. Instead
of generating a single model, the compiler now extracts sev-
eral different models depending on the property that is being
checked. These abstract models are significantly smaller be-
cause they omit (i.e. abstract away) certain details in the ESP
program that are not relevant to the property being verified.
This paper also presents our experience with using abstract
model to find deadlock bugs in the VMMC firmware. Our
main conclusions are as follows:

e The compiler can be used to extract conservative abstract
models. In ESP, the abstractions are specified by the pro-
grammer. The compiler uses these abstractions conser-
vatively to generate models. Therefore, even if a pro-
grammer makes a mistake in specifying the abstraction,
every bug in the program will be present in the model.
The novelty of this approach is that it gives the program-
mer control over the abstraction process without relying
on the programmer to be correct.

e Abstraction was necessary to generate models that could
be used to check for system-wide properties in the

VMMC firmware. Using the abstract models, the model
checker uncovered seven bugs that would cause the
firmware to deadlock. These were subtle bugs that were
not caught even after careful code inspection and months
of testing and debugging.

o Partial explorations by model checkers can be very ef-
fective for debugging. Even using the abstract models,
Spin could not exhaustively check the VMMC firmware
for deadlocks because of resource constraints. However,
in ESP, the model checker is meant to be used as a de-
bugging tool and not to certify correctness. A partial
exploration by the model checker uncovered the seven
bugs mentioned in the previous paragraph. In addition,
we have not encountered any bugs (that were not caught
by Spin) while running the firmware on the device.

The rest of the paper is organized as follows. Section 2
presents a brief description of model checkers. Section 3
presents our approach. Section 4 discusses the techniques
used by the compiler to generate tractable models. Section 5
describes our experience with using the Spin model checker
to develop and debug VMMC firmware. Section 6 discusses
related work. Finally, Section 7 presents our conclusions.

2 Model Checking

Model checking is a technique for verifying a system com-
posed of concurrent finite-state machines. Given a concurrent
finite-state system, a model checker explores all possible in-
terleaved executions of the state machines and checks if the
property being verified holds. A global state in the system is
a snapshot of the entire system at a particular point in execu-
tion. The state space of the system is the set of all the global
states reachable from the initial global state. Since the state
space of such systems is finite, the model checkers can, in
principle, exhaustively explore the entire state space.

Model checkers can check for a variety of properties.
These properties are traditionally divided into safety and live-
ness properties. Safety properties are properties that have to
be satisfied in specific global states of the system. Assertion
checking and deadlock are safety properties. Assertions are
predicates that have to hold at a specified point in one of the
state machines. This corresponds to the set of global states
where that state machine is at the specified point and the pred-
icate holds. A deadlock situation corresponds to the set of all
the global states that do not have a valid next state. Liveness
properties are ones that refer to sequence of states. Absence
of livelocks is a liveness property because it corresponds to
a sequence of global states where no useful work gets done.
Liveness properties are specified using temporal logic.

The advantage of using model checking is that it is au-
tomatic. Given a specification for the system and the prop-
erty to be verified, model checkers automatically explore the
state space. If a violation of the property is discovered, it can
produce an execution sequence that causes the violation and
thereby helps in finding the bug.

There are two problems with using model checkers. First,
the state space to be explored is exponential in the number of
processes and the amount of memory used. So the resources
required (CPU as well as memory resources) by the model
checker to explore the entire state space can quickly grow
beyond the capacity of modern machines. Second, the spec-
ification language supported by the model checkers provides
limited functionality. So, it is not straightforward to translate
concurrent programs written in traditional programming lan-
guages into the specification language of the model checkers.

Abstraction is the key to addressing both these problems.
Depending on the property be verified, a model that captures
only the details relevant to that property needs to be extracted.
For properties involving small subsystems, detailed models
can be used. However, for properties involving large subsys-
tems, abstract models have to be used.

Models are usually extracted by hand. This process can
be time consuming. In addition, it is hard to be sure that the
model accurately captures the actual system. Worse yet, as
the system evolves, the model has to be independently up-
dated to reflect the changes. Therefore, the use of model
checkers is greatly simplified when the models can be ex-
tracted automatically[22, 11].

3 Our Approach

Event-driven State-machine Programming (ESP) [25] is a
language for programming devices. ESP adopts several struc-
tures from the CSP [19] language and has C-style syntax. The
basic components of the language are processes and chan-
nels. Each process represents a sequential flow of control in a
concurrent program and communicates with other processes
using rendezvous channels.

ESP is designed to meet three goals. First, ESP should pro-
vide language support that makes it easier to develop device
firmware. Second, it should allow the use of model check-
ers like Spin [21] to extensively test and debug the firmware.
Third, the compiler should be able to generate efficient exe-
cutables to run a single processor.

In traditional languages like C, event-driven state-
machines programs can achieve high performance by giving
up ease of development and reliability. Therefore, they meet
only one of the three goals.

To meet all three design goals, the ESP language is de-
signed so that it can not only be used to generate an exe-
cutable but also be translated into models that can be used by
the Spin model checker (figure 1). The ESP compiler takes an
ESP program (pgm ESP) and generates 2 types of files. The
generated C file (pgm C) can then be compiled together with
the C code provided by the programmer (hel p. C) to gen-
erate the executable. The programmer-supplied C code im-
plements simple system-specific functionality like accessing
device registers to check for network message arrivals. The
Spin files (pgni 1- N] . SPI N) generated by the ESP com-
piler can be used together with programmer-supplied Spin
code (t est[1- N] . SPI N) to verify different properties of

the system. The programmer-supplied Spin code generates
external events such as network message arrival as well as
specifies the properties to be verified.

For each property to be verified, the programmer has to
provide test code written in Spin (test[1-N].SPIN in Figure 1).
This code is usually fairly small (around 100 lines). Once the
test code is written, it can be used to check the ESP program
for bugs every time the program is modified.

The earlier version of the ESP compiler [25] generated a
single Spin model that included all the details in the ESP
program. However, while these models were very useful
for checking properties of subsystems consisting of 1-2 pro-
cesses, they could not be used to check for system-wide prop-
erties such as absence of deadlocks. This was due to state-
space explosion. Since the hard-to-find bugs are often due
to race conditions involving several different processes, ESP
now supports automatic extraction of abstract models. Us-
ing an abstract model (Section 4), we were able to check for
system-wide deadlocks. We found several bugs that resulted
in deadlocks (section 5.1).

The ESP approach differs from the previous efforts as fol-
lows:

Domain-specific Language ESP is designed not only to
simplify the task of programming devices but also to
make it easier to extract models. Consequently, any
detail in the ESP program that is necessary to check
a particular property can be retained in the extracted
model. In contrast, general-purpose languages like C,
C++, and Java have language features (complex pointer
manipulation, exceptions etc.) that are difficult to trans-
late into the specification language of the model check-
ers [18, 22, 11, 26].

Support for Abstraction Other domain-specific lan-
guages [8, 3, 4] extract a single model from the
program and use it for model checking. To avoid the
state-space explosion associated with detailed models,
these languages have been designed to encode only the
control structure of the program—the data manipulation
is implemented externally in C. In contrast, the ESP
language provides support for both control structure
and data manipulation. The ESP compiler uses new
abstraction techniques to discard some unnecessary
details and generate more tractable models.

This paper presents the abstraction techniques used by the
new version of the ESP compiler. These techniques are gen-
eral enough to be applicable to general-purpose languages
like C and Java. However, the design of the ESP language
makes them particularly effective on ESP programs. For in-
stance, each object in an ESP program can be pointed to by
only one of the processes in the program. This limits the
amount of pointer aliasing that can occur. Consequently, the
increase in state space during abstraction due to aliasing is
small (Section 4.2).

R) e

|:> Verify Property 1
pgm1.SPIN test1.SPIN using SPIN
[)
[]
[]
|:“> Verify Property N
pgmN.SPIN testN.SPIN using SPIN
|:“> Generate Firmware
pgm.C help.C using C Compiler

Figure 1: The ESP approach. The shaded regions represent code that has to be provided by the programmer.

3.1 Spin Model Checker

Currently, ESP used the Spin model checker [21]. Spin is a
flexible and powerful model checker designed for software
systems. Spin supports high-level features like processes,
rendezvous channels, arrays, and records. Most other model
checkers target hardware systems. Although ESP can be
translated into these languages, additional state would have
to be introduced to implement features like the rendezvous
channels using primitives provided in the specification lan-
guage. This would make the state explosion problem worse.
In addition, the semantic information lost during translation
would make it harder for the model checker to optimize the
state-space search. Spin allows verification of safety as well
as liveness properties.

Spin is a on-the-fly model checker and does not build the
global state machine before it can start checking for the prop-
erty to be verified. So, in cases where the state space is too
big to be explored completely, it can do partial searches. It
provides 3 different modes for state-space exploration. The
entire state space is explored in the exhaustive mode. For
larger systems, the bit-state hashing mode performs a partial
search using significantly less memory. It exploits the fact
that state spaces are usually sparse and uses a hash function to
obtain a much more compact representation for a state. How-
ever, since the hash function can map two states onto the same
hash, a part of the state space may not be explored. This tech-
nique often allows very high coverage (> 98 %) while using
an order of magnitude less memory. The simulation mode ex-
plores single execution sequence in the state space. A random
choice is made between the possible next states at each stage.
Since it does not keep track of the states already visited, it
requires very little memory. However, it could explore some
states multiple times while never exploring some other states.

4 Extracting Models Using a Compiler

The ESP compiler generates three types of models: detailed,
memory-safety, and abstract. The detailed models contain all
the details from the original ESP program. These detailed
models often have too much state to be able to perform ef-
fective state-space exploration. However, these models are

useful during the development and debugging of the firmware
using the simulation mode in Spin. They can also be used to
check for properties in small subsystems.

The memory-safety models generated are used to check for
memory allocation bugs in the program. These models are
essentially detailed models with some additional Spin code
inserted to check for validity of memory accesses. They con-
tain even more state than the detailed models. In spite of this,
these models can be usually used to exhaustively explore the
state space for allocation bugs. This is because the memory
safety of each individual process can be checked separately
using the model checker.

The abstract models generated by the ESP compiler omit
some of the details that are irrelevant to the particular prop-
erty being verified. These models can have significantly
smaller state than the detailed models. These models can
be used to check for system-wide properties like absence of
deadlocks. This class of bugs usually involves several differ-
ent processes. These bugs are especially hard to find.

Earlier papers [25, 23] described how detailed and
memory-safety models are extracted from ESP programs by
the ESP compiler.? Extracting abstract models requires addi-
tional techniques that allow it to abstract away some irrelevant
details in the ESP program. These techniques are described in
the rest of this section. The simple ESP program in Figure 2
will be used to illustrate the model-extraction process.

In ESP, the programmer specifies the abstractions. The ad-
vantage of this approach is that it gives the programmer con-
trol over the abstraction process. It allows the programmers
to use their understanding about the program and the property
being verified to choose the appropriate abstraction. This can
result in a better abstraction than ones that can be obtained
through static analysis by a compiler.

The ESP compiler uses the abstractions specified by the
programmer conservatively when generating the abstract
models. Consequently, a bug in the ESP program will always

2Briefly, ESP processes and channels are translated into Spin processes
and synchronous channels respectively. Since Spin does not support pointers
and dynamic allocation while ESP supports them, ESP objects cannot be
directly be translated into Spin objects. However, the details of the translation
are not necessary for following the rest of this paper.

be present in the abstract model. Our approach is based on a
well-known technique® of using nondeterminism to broaden
the scope of model checking [21, 11, 10]. However, earlier
efforts have focused on abstracting simple types like inte-
gers. This paper demonstrates how these techniques can be
extended to handle complex data types like records, unions,
and arrays. This requires addressing additional problems that
arise due to pointer aliasing.

4.1 Specifying Abstractions

The abstractions to be performed by the compiler have to be
specified by the programmer. The ESP compiler currently
allows the programmer to specify two types of abstractions.

Replacing Types. It allows a complex type to be replaced by
a much simpler type. This can be done either by specifying an
alternative type for the variables individually or by specifying
an alternative type in a type declaration. For instance, if the
original program contained the following type declaration:

type replyT = record of {
caller: int,
last: bool,
addr: int,
size: int

}
then the programmer can specify the following abstraction:

replace type replyT = record of {
caller: int,
last: bool

}

Currently, ESP requires the replacement type to be a su-
pertype of the original type. Essentially, it allows fields from
records and unions to be dropped.

Replacing a complex type by a simpler type can signifi-
cantly reduce the amount of state in the model. For instance,
the code to implement the retransmission protocol accepts
packets that are implemented as a union of the different types
of packets that have to be sent. However, as the content of
the packet makes little difference to the correctness of the re-
transmission code, the complex datatype representing packets
can often be replaced by a simple type in the abstract model.
Another simplification that can reduce the amount of state is

SWhen performing abstractions, some of the values in the model might
become undeterminable. For instance, the value of a variable in the model
that depended on another variable in the original program that was discarded
during abstraction will become undeterminable. The compiler keeps track
of these values and makes sure that the abstract model only broadens the
scope of model checking. For example, when the value of a condition in a
conditional statement cannot be determined, it can be replaced by a nonde-
terministic choice in the model. During model checking, both the branches
of the conditional statement will be explored. Broadening the scope of model
checking can introduce spurious bugs (false positives) in the abstract model.
However, all the bugs that were present in the program will be retained in the
model.

to use smaller arrays than used in the original program. Of-
ten, the size of arrays affects only the performance and not
the correctness of the program.

Dropping Variables. Some variables that do not affect the
validity of a property being checked can be dropped alto-
gether. For instance, a table that keeps track of the mapping
between virtual and physical addresses in the main memory
might not be relevant when checking the firmware for dead-
locks. The variable t abl e in process pageTabl e can be
dropped by specifying the following abstraction:

drop pageTable $table

4.2 Extracting Abstract Models

The ESP compiler uses programmer-specified abstractions to
generate abstract models. First the compiler performs a type-
checking phase during which the compiler determines a type
for every expression in the original program (without taking
the abstractions into account). The model generator phase
can apply the abstractions to each of the statements of this
fully-typed program independently.

The abstractions specified can cause some of the expres-
sions in a statement to have an indeterminable value. In
these situations, the ESP compiler uses nondeterminism to
make conservative approximations that strictly generalizes
the scope of model checking. The various expressions in
a statement can be classified into two classes: left-exp and
right-exp. They are handled as follows:

left-exp. A left-exp is an expression that is used to determine
a memory location to which a value will be stored. These ex-
pressions appear on the left side of the assignment statements
and in i n operations on channels. Consider the following
statements:

a = b;
a[i]-last = d;

where variable a has the type

type tableT = #array of #record of {
first: int, last: int

}

In the simplest cases, when a left-exp becomes undeter-
minable, the statement can be simply discarded during model
extraction. For instance, if the variable a is dropped by the
abstraction, the first statement a = b; becomes irrelevant
and can be discarded. This is because the only side effect of
that statement is to the variable a. Similarly, if the | ast field
is dropped from the type t abl eT, the second statement can
be discarded during model extraction. This is because all ob-
jects of that type no longer have the | ast field. As a result,
the statement has no remaining side effect in the generated
model.

The most general case that has to be handled occurs in the
second statement when variable a or variable i is dropped.

#define TABLE_SIZE 100

#define PAGE_SIZE 4096

#define PAGE(a) ((&) / PAGE_SIZE)
#define OFFSET(a) ((a) % PAGE_SIZE)
#define ADDR(p) ((p) * PAGE_SIZE)

type redqT = record of { caller: int, addr: int, size: int}

type replyT = record of { caller: int, last: bool, addr: int, size: int}
channel reqC : reqT

channel replyC : replyT

process pageTable {
$table : #array of int = #{ TABLE_SIZE 7> 0 ...3};
// Omitted : Code to initialize the table
while (true) {
in(reqC, { $caller, $vaddr, $size}); // Get the next request
assert(YOFFSET(vaddr)); /] Assumes wvaddr is page aligned
$done: bool = false;
while(!done) {
$paddr : int = ADDR(table[PAGE(vaddr)]); // Lookup physical address
$chunk : int = PAGE_SIZE; // Calculate the size
if (size < PAGE_SIZE) chunk = size;
size = size - chunk;
done = (size == 0);
out(replyC, { caller, done, paddr, size}); // Send a reply
¥

}
}

process transfer {
while (true) {
// Omitted : Code that generates wvalues for wvariables ‘vaddr’ and ‘size’
out(reqC, { @transfer, vaddr, size});
$last : bool = false;
while('last) {
in(replyC, { @transfer, last, $paddr, $chunk});
// Omitted : Code to transfer ‘chunk’ bytes at ‘paddr’
}
}
}

NOTES

1. Process pageTabl e translates virtual addresses into physical addresses. It maintains a table that maps virtual page
numbers into physical page numbers. It accepts translation requests on channel r eqC and sends replies on channel
r epl yC. Since a region of contiguous virtual memory can map onto a set of noncontiguous physical pages, each request
sent on channel r eqC can yield multiple replies on channel r epl yC. The last reply is identified by the | ast field in the
reply.

2. Process t r ansf er computes a pair of vaddr and si ze that identifies a region in virtual memory. It sends a request
on r eqCto translate it into physical addresses. It then receives the physical addresses on channel r epl yCand uses it to
transfer data.

3. Since other processes might be sending requests on channel r eqC, the caller field on the channels r eqCand r epl yC
is used to match the replies with the request. @ r ansf er is a constant that represents the process id for the process
transfer.

Figure 2: A ESP program.

In this case, the object pointed to by a[i] is being mutated,
and the change would be visible to any other pointer that was
pointing to the same object. To handle this case, the compiler
has to determine a list of pointers to which a[i] could be
aliased. For each of these pointers, the generated model has
to include a nondeterministic statement that either updates the
object to which it points or does not update that object.

Nondeterministically updating a large set of objects can
dramatically increase the amount of state space that has to
be explored. It can also result in false-positive bugs being in-
troduced into the model. A number of techniques can be used
to narrow the list of pointers to which a[i] can be aliased.
First, only pointers of the same typeas a[i] have to be con-
sidered. Second, only pointers within the same process can be
aliasedto a[i], since processes in ESP do not share objects.
Third, in the case where only variable i is dropped, only ob-
jects pointed to by an entry in array a needs to be considered.
Finally, alias analysis can be used to further reduce the list
of pointers. If compile-time analysis can determine that the
pointer a[i] is not aliased to any other pointer, the situa-
tion reduces to the simple case where the statement is simply
discarded.

Pattern matching also needs to be performed conserva-
tively. We will illustrate this using code shown in Figure 3.
In ESP, a pattern can appear on the left-hand side of an as-
signment statement or in an i n statement. For instance, the
i n operation on channel pat t er nCin process A uses a pat-
tern. The pattern specifies that it expects the value 5 in the
cal | er field of the record it receives on the channel. Con-
sequently, the pair of i n and out operations will succeed
only if the out operation in process B supplies the value 5 in
the cal | er field.

Suppose the programmer uses the abstraction in Figure 3
on the ESP program in the same figure. The abstraction
drops the cal | er field on the channel. In the absence of
the cal | er field in the extracted model, there is no way to
determine if the pattern matching on the channel should suc-
ceed. Therefore, a nondeterministic statement is inserted in
process A before the i n operation on the channel. The i n
operation will succeed only if the variable mat ch is set to
OK. This captures both cases: the case in which the i n oper-
ation on channel pat t er nCwould have succeeded and the
case in which it would not have succeeded.

Being conservative on patterns ensures that a deadlock
state is represented in the extracted model. A deadlock state
could get translated into a live state if an exit transition is
added to that state during model extraction. ESP avoids this
by ensuring that each state in the program in which a process
could be blocked on a particular channel is represented by a
state in the extracted model where that process is blocked on
that channel.

right-exp. All expressions that are not left-exp expressions
are right-exp expressions. These generate values to be used
at various points in the programs. They appear on the right

| ESP Program

type patternT = record of {
int caller, int count

}

channel patternC :

process A {
in(patternC, { 5, $count});

}

process B {
// Omitted : code to declare and initialize 'caller’
out(patternC, { caller, 45});

3

patternT

| Abstraction

replace type patternT = record of {
int count

3

| Extracted Spin Model |

mtype = { OK, DONT_SEND, DONT_RECV};
typedef patternT { int nil; int count; };
chan patternC = [0] of { mtype, patternT };
proctype AQ {

mtype match; int count;

// Nondeterministically pick a wvalue for 'match’

if

:: skip -> match = OK

:: skip -> match = DONT_RECV

fi;

patternC ? eval(match), 0, count
}

proctype B {
patternC ! OK, 0, 45

3

Figure 3: A program to illustrate the handling of patterns. For
simplicity, some details that are unnecessary to understand
this example have been omitted.

side of the assignment statements, in conditionals of i f and
whi | e statements, and in out operations on channels.

During abstraction, the value of a right-exp expression can
become undeterminable. Ideally, these expressions should
be replaced by one that nondeterministically returns a valid
value of the type of the expression. This will cause the model
checker to try all possible valid values during the state space
exploration.

For boolean expressions, only two values are possible and
a nondeterministic choice between the two can be made. So,
a boolean expression in a conditional statement (like an i f
statement) whose value can no longer be computed is re-
placed by a nondeterministic statement [21]. During model
checking, both the branches of the conditional statement will
be explored.

For nonboolean expressions, trying all possible valid val-
ues would be computationally very expensive during model
checking. It is also usually unnecessary because a small set
of values can effectively cover the entire space. However,
there is no general way for the ESP compiler to determine the
set of values that would be sufficient to cover the entire state
space. Therefore, the ESP compiler relies on the programmer
to supply the right set of values. For each variable in the pro-
gram (except boolean variables) for which the abstract model
needs a nondeterministic value, a channel is generated in the
abstract model. When a value is needed, the model performs
a read operation on the channel. The programmer is respon-
sible for supplying values on the channel using a nondeter-
ministic statement. For instance, the following code executes
an infinite do loop and nondeterministically supplies either
of the three values (5, 6, and 9).

do

od
For nonscalar types like arrays and records, the set of val-
ues that the programmer has to provide on these channels not

only includes new objects but also all existing objects in the
model to which it could be aliased.

4.3 Discussion and Limitations

Size of State Space. In principle, an abstract model gener-
ated can have more states than the corresponding detailed
model. This is because two different things happen during
abstraction. First, some details in the program are discarded.
This will reduce the number of states. Second, the compiler
uses the abstractions specified conservatively by translating
some of the deterministic statements in the program into non-
deterministic statements. This can increase the number of
states that have to be explored.

In practice, the abstract model has significantly fewer
states. This is because only a small number of nondetermin-
istic statements get introduced. In addition, since the pro-
grammer specifies the abstraction in ESP, the programmer
can pick the abstraction carefully so as to minimize the num-
ber of states. For instance, if the packet sequence number in
the implementation of a network retransmission protocol is
unnecessary to verify a particular property, the programmer
can specify that all variables and fields of records that store
sequence numbers in the program should be discarded from
the abstract model. Then, the model will no longer have any
statement that uses the sequence number. Consequently, no
new nondeterministic statements will be introduced into the
model due to this abstraction.

Bugs. By being conservative, ESP ensures that all bugs in the
original program are present in the extracted model. How-
ever, this does not guarantee that all bugs will be caught dur-

| Abstraction 1

replace type reqT = record of {
caller: int

}

replace type replyT = record of {
caller: int,
last: bool

}

drop pageTable $table, $vaddr, $size

drop pageTable $paddr, $chunk

drop transfer $vaddr, $size, $paddr

drop transfer $chunk

| Abstraction 2

replace type reqT = record of {
caller: int

}

replace type replyT = record of {
caller: int

}

drop pageTable $table, $vaddr, $size

drop pageTable $paddr, $chunk, $done

drop transfer $vaddr, $size, $paddr

drop transfer $chunk, $last

Figure 4: Two Abstractions for the ESP program in Figure 2

ing model checking. First, the model checker might not be
able to check the entire state space because of resource con-
straints. Second, ESP relies on the programmer to provide
test code (Section 3) as well as code that generates values on
some channels (Section 4.2). A mistake by the programmer
can result in bugs being missed during model checking.

The techniques described in this paper help reduce and iso-
late the portion of Spin code where mistakes can be made by
a programmer. This is analogous to type-safe languages that
rely on C to implement unsafe portions of a program. In this
case, a program can have type-safety errors. However, these
errors are isolated in the portion of the program that is imple-
mented in C.

4.4 Example

In this section, we will use an example to illustrate the use of
abstraction to check for a property. We will check for absence
of deadlocks in the ESP program in Figure 2.

’Abstraction 1’ in Figure 4 can be used to check the pro-
gram for the absence of deadlocks. Using the abstraction, the
ESP compiler generates an abstract model (Figure 5). The
abstraction drops all variables except cal | er and done in
process pageTabl e and | ast in process t ransfer. It
also replaces the types of the two channels. During abstrac-
tion, the value of the boolean variable done becomes indeter-
minate because its value depends on the value of the variable
si ze that was dropped. The compiler translates the state-

ment
done = (size == 0);

into Spin code that nondeterministically assigns either values
true orfal setoitas follows:

if
:: skip -> done
:: skip -> done
fi

I
=

The Spin model checker can exhaustively explore the entire
state space (12 states!) and determine that there are no dead-
locks. In contrast, if a detailed model was used, the model
checker would have to potentially explore a large number of
states (by trying all possible values for vaddr and si ze) to
determine that there were no deadlocks.

Since the compiler makes conservative approximations
when generating abstract models, the model checker will not
miss a deadlock because of a programmer error in specify-
ing an abstraction. However, a programmer error can cause a
spurious deadlock to be flagged. For instance, *Abstraction 2’
in Figure 4 will detect a spurious deadlock because the pro-
grammer dropped the variable done by mistake. These will
have to be double checked by the programmer.

Finally, we can introduce a deadlock in the program by
replacing the line

$done: bool false;

by the line
$done: bool = (size == 0);

This will cause a deadlock if the si ze specified on channel
reqCis 0. The model checker will find the bug using either
of the two abstractions.

5 Debugging VMM C Firmware

The VMMC firmware was reimplemented using ESP. The
earlier implementation in C includes about 15600 lines of C
code. In contrast, the new implementation using ESP required
500 lines of ESP code together with around 3000 lines of C
code. The C code implements simple tasks like initialization,
initiating DMA, packet marshalling and unmarshalling and
shared data structures with code running on the host proces-
sor (in the VMMC library and the VMMC driver). All the
complex state machine interactions are restricted to the ESP
code, which uses 8 processes and 19 channels. This is a sig-
nificant improvement over the earlier implementation where
the complex interactions were spread throughout the 15600
lines of hard-to-read code.

The previous version the compiler was used to extract de-
tailed and memory-safety models that were useful in check-
ing for local properties involving 1-2 processes [25, 23]. First,
Spin was used throughout the development process. In the
software community, model checking has traditionally been

File Lines of Code

ESP Program 453
Abstraction Specification 108
Test Code 128

Abstract Model Extracted 2202

Table 1: Sizes (in lines) of the various files used to debug the
VMMC firmware. The first three files have to be provided by
the programmer while the last one is generated by the ESP
compiler.

used to find hard-to-find bugs in working systems. However,
since developing firmware on the network interface card in-
volves a slow and painstaking process, Spin was often used
to develop code. For instance, the retransmission code, which
uses a simple sliding window protocol with piggyback ac-
knowledgement, was developed and debugged entirely us-
ing the Spin simulator. Once debugged, the firmware was
ported to the network interface card with little effort. Sec-
ond, Spin was used to verify memory safety in the VMMC
firmware. Instead of supporting safety through garbage col-
lection, ESP provides an explicit mal | oc/ f r ee-style in-
terface to support dynamic memory management. Although
this interface is unsafe, the Spin model checker can be used
to verify memory safety. To facilitate this, ESP uses a novel
scheme that makes memory safety a local property of each
process. This allows each process to be verified separately
resulting in smaller models. Consequently, memory safety of
the VMMC firmware could be checked exhaustively.

The size of the models generated by the previous version
of the ESP compiler was too large to check for system-wide
properties like absence of deadlocks. In the rest of this sec-
tion, we describe our experience with using the abstract mod-
els generated by the new version of the compiler to check for
deadlocks in the VMMC firmware.

5.1 Deadlocksin VMMC Firmware

System-wide deadlocks are often a result of complex inter-
actions in the program and can be difficult for programmers
to find. Therefore, the use of model checking to find these
bugs is important. We used an abstract model to find bugs
that would cause the firmware to deadlock.

Table 1 shows the sizes of the various files that were used
to find bugs with the abstract model. The abstraction specifi-
cation specifies 63 variables to be dropped (1 line each in the
specification), replaces the type of one variable by a simpler
type, and replaces 18 types by simpler types. It is fairly easy
for the programmer to identify the parts of the program that
should be abstracted away. In the VMMC implementation,
only a handful of the variables required closer examination
to decide whether or not they needed to be abstracted. The
entire abstraction specification took a few hours to write.

Using the abstract model, Spin found several subtle bugs in
the VMMC firmware that would cause the firmware to dead-

>

mtype = { OK, DONT_SEND, DONT_RECV};

typedef reqT { int nil; int caller; };

typedef replyT { int nil; int caller; bool last; };

chan reqC [NUM_PROCESSES] = [0] of { mtype, reqT };
chan replyC [NUM_PROCESSES] = [0] of { mtype, replyT };

proctype pageTable(int pid) {
int caller; bool done;
atomic {
do
i1 >4
reqC[pid] ? OK, 0, caller;
done = O;
do
2 (ldone) -> {
// Nondeterministically assign a wvalue to 'done’
if
:: skip -> done
:: skip -> done
fi;
replyC[pid] ! OK, 0, caller, done
}
:: else -> break
od

0
1

by
od
by

}
proctype transfer(int pid) {

bool last;
atomic {
do
i1 > {
reqC[pid] ! OK, 0, 1;
last = 0;
do
2o ("last) -> replyC[pid] ? OK, 0, 1, last
oI else -> break
od
b
od
by
b

Spin NOTES

"?" and’ !’ are used to receive and send messages on channels. Constants specified in a receive operation has to match
the corresponding values in the send operation for the data to be successfully transferred on a channel.

i f and do are nondeterministic statements. They differ in that an i f is executed only once while a do is executed
repeatedly until a br eak statement is executed in the body. These statements become deterministic (and turn into regular
i f and do) statements when there is only one choice or when there are two choices and one of them is an el se statement.
nt ype is like enumin C.

@ ansf er in Figure 2 gets translated into the constant 1.

Some details like the at om ¢ statement, the nt ype field, and the ni | fields can be ignored. They are not needed to
understand this example.

Figure 5: Abstract Spin model generated from the ESP program in Figure 2 using *Abstraction 1” in Figure 4

10

Spin Search Mode Exhaustive | Bit-state hashing
Limiting Resource Memory CPU Time
No. of | Stored 117351 22574700
States | Matched 265492 77165900
Time (hr:min:sec) 0:01:24 3:57:30
Memory (in MBytes) 268.35 167.92

Table 2: Checking for the absence of deadlocks in the VMMC
firmware using Spin. In both Spin modes, the state-space ex-
ploration could not be completed because of resource con-
straints. The stored column shows the number of unique
states encountered while the matched column shows the num-
ber of states encountered that had already been visited before.

lock. However, even with the abstract model, an exhaustive
search of the state space was not possible because of resource
constraints. Therefore, only partial searches were performed.
After the bugs that were found were fixed, further state-space
exploration using Spin did not uncover any more bugs. Ta-
ble 2 presents the amount of state space that could be ex-
plored using the resources available. In the exhaustive mode,
Spin had to abort the search after 84 seconds because it ran
out of memory. In the bit-state hashing mode, Spin ran for
3 hours and 57 minutes before the search was terminated by
the user.# Since Spin only could perform a partial search, we
cannot conclude that there are no more bugs in the VMMC
firmware. However, we have not encountered any bugs while
running the firmware on the device that were not caught by
Spin.®

Even using a partial search, Spin found seven bugs in the
firmware. These were subtle bugs that were not caught even
after careful code inspection and months of testing and de-
bugging. The VMMC firmware in ESP was designed to avoid
the bugs encountered in the earlier implementation of the
firmware in C. In addition, the ESP language allowed the
complex interactions in the system to be implemented con-
cisely (around 500 lines). In spite of this, the model checker
uncovered several bugs that could deadlock the system. This
highlights the limitations of careful code inspection and tra-
ditional testing, and the benefits of using tools like model
checker that explore the various possible scheduling scenar-
ios systematically.

The first bug was due to a circular dependency involving
3 processes that resulted in a deadlock. Once identified, the
deadlock was avoided by eliminating the cycle.

The second bug involved a situation when the sliding win-
dow in the retransmission protocol was full and, therefore, not
accepting any new messages to be sent to the network. This
eventually led to no new data packets being accepted from the

4The Spin model checker was run overnight on a shared machine for over
12 hours. 3 hours and 57 minutes was the processor time that the model
checker was allocated during this period.

5The firmware was used to run a number of microbenchmarks and appli-
cations on a 16 processor (4x4) cluster [24].

11

network. Since incoming messages were delivered in FIFO
order, an explicit acknowledgement message that could un-
lock the system was trapped behind a data packet resulting in
a deadlock. To fix this problem, packets have to be dropped
occasionally to allow the explicit acknowledgements to get
through.

Two other bugs uncovered were similar to the bug that was
discussed in the example in Section 4.4. They would result in
deadlocks if applications requested zero-byte data transfers.

The remaining bugs discovered involved receiving unex-
pected messages or not receiving expected messages. The
first bug involved receiving acknowledgments with invalid
acknowledgement numbers. This was fixed by first checking
for the validity of the acknowledgement numbers before us-
ing them. The second bug involved receiving an unexpected
import reply message. These messages are usually received
in response to an import request. An unexpected reply would
deadlock the system. The problem was fixed by adding code
that discarded these unexpected messages. The final bug in-
volved not receiving a reply to an import request. We had
been aware of this bug but had not fixed it yet. This bug can
be eliminated using a timeout.

5.2 Discussion and Limitations

The model checker is very effective in finding bugs. Spin
was used to develop and debug the VMMC firmware imple-
mentation in ESP before running it on the device. So far, we
have not encountered any bugs that were not caught by Spin.
This is in contrast with our earlier firmware implementation
in C where we encountered new bugs every time we tried a
different class of applications or ran on a bigger cluster.

Model checking allows bugs to be uncovered early in the
debugging process. This is highlighted by the fact that several
bugs found by Spin would not have been discovered using
conventional testing as long as our VMMC implementation
was used on all the machines in the network. These bugs
could only be triggered when the firmware was used to com-
municate with other VMMC implementations that generated
unexpected messages because they were either malicious or
buggy.

Partial searches are very effective in finding bugs in the
concurrent programs. This is because the state machine be-
ing explored is usually much larger than necessary in which
each state of the minimal state machine is represented multi-
ple times. Techniques like abstraction and optimizations like
partial-order reduction [20] try to eliminate some of this re-
dundancy. However, significant redundancy remains because
the size of the state space is exponential in the size of the
model. For instance, a variable i whose value ranges from
one to ten but has no bearing on the property can result in
each state of the minimal state machine being explored ten
times. So even a partial search that explores a small fraction
of the state space can cover a significant fraction of the mini-
mal state machine.

The effectiveness of using abstract models to check larger

systems is demonstrated by the fact it could be used to find
bugs in the VMMC firmware. Unfortunately, it is difficult
to quantify the actual reduction in the size of the state space
that resulted from abstraction or the fraction of the state space
that was explored by the partial search. This is because the
actual size of the state space can only be determined by ex-
ploring the entire state space. It is possible to compute an
upper bound on the size of the state space.® However, this
grossly overestimates the size of the state space because the
state space tends to be very sparse.

One of the limitations of model checking is that it requires
test code to be provided for each property to be verified. The
test code is responsible for simulating the environment (exter-
nal events like network message arrivals) as well as specifies
the property to be verified. A mistake in the test code can re-
sult in the wrong property being checked or, more commonly,
failing to explore a part of the state space for bugs. The lat-
ter happens when the environment is over constrained. For
instance, when debugging the retransmission protocol, our
initial code simulated a well-behaved environment that only
generated network packets with the expected sequence num-
bers. Later, we found bugs when the test code was modified
to generate unexpected messages. Another problem that we
encountered when looking for deadlocks was that a deadlock
that involved only a few processes in the model could go un-
detected. This is because a deadlock in Spin is a state out
of which there are no transitions. When a deadlock involves
only a few processes, the remaining processes can sometimes
make progress. Consequently, there are always transitions
out of the current state. Therefore, the state machine is not
technically deadlocked. For instance, this happens when a
deadlock in one part of the system prevents messages from
being sent while another part of the system responsible for
receiving messages from the network continues to function
correctly. To avoid this, the test code can be changed to en-
sure that no part can inactive for long periods of time (by
maintaining activity counters).

6 Reated Work
6.1 Model Extraction Approaches

Model extraction by hand. Several researchers have veri-
fied various aspects of Operating Systems using model check-
ers. These efforts involved extracting an abstract model of
the system by hand. Spin was used to verify the Interpro-
cess Communication Subsystem in Harmony [7] (a real time
operating system) and RUBIS microkernel [15]. The latter
study found that significant effort was needed in extracting
the model. Spin was also used to develop and verify a syn-
chronization protocol for Plan 9 [27]. More recently, Spin
was used to verify the IPC system of the Fluke OS [30]. All
these studies found that the model checker was able to find
some hard to find race conditions.

81f n is the number of bits needed to encode a state, then 2 is an upper
bound.

12

Automatic Model Extraction. To avoid the problems with
model extraction by hand, some researchers have extracted
the models automatically from the source code. Teapot [8] is
a domain-specific language for implementing software cache
coherence. It extracts a model that can be used by the Mur-
phi model checker [13]. Promela++ [3] is a language for im-
plementing layered protocol. Its compiler generates model
that can be used by the Spin model checker. Esterel [4] is a
language for specifying synchronous reactive systems and is
primarily used in hardware design. The Esterel programming
environment includes verification tools like model checkers
that can be used to test the programs. Esterel was used to im-
plement a subset of the TCP protocol [6]. They showed that
esterel could be used to generate efficient code. However,
they did not report any experience with the verification tools.

In all these cases, the domain-specific language is used to
encode the control structure of the program. The rest of the
program (data handling) is handled using a different language
(typically C). The compiler for these languages extracts a sin-
gle model that reflects the control structure of the program.

Java PathFinder [18] translates Java programs into Spin
specifications. It handles significant subset of the Java in-
cluding dynamic object allocation, object reference, excep-
tion processing and inheritance. However, they do not handle
features like method overriding and overloading. Also, they
do not provide a way to abstract details so that a tractable
model can be extracted.

Verisoft [17] uses a different approach to perform model
checking on a concurrent system. Instead of trying to extract
a model, it explores the state-space of the system by replac-
ing the scheduler of the concurrent system. By controlling the
scheduler, it can force the concurrent program to execute all
possible interleavings. This allows it to apply model check-
ing to actual programs written in traditional languages like C
(instead of a model). The problem is that it can explore much
smaller state spaces because some of the techniques used by
model checkers like Spin to optimize the exploration cannot
be applied.

Automatic model extraction with support for abstraction.
More recent efforts have focused on extracting several ab-
stract models to verify different properties in the system.

FeaVer [22] extracts Spin models from programs written
in a C dialect that has simple extensions to support event-
driven state machines. The system allows the programmer to
specify pairs of C and Spin code patterns. When the C pat-
tern is encountered during translation, the corresponding Spin
code is generated. This approach automates the extraction of
abstract models. However, the translator does not have any
semantic information to check the validity of the translation.
The system was used to debug the call processing software
for Lucent’s Pathstar access server.

Lie et. al. [26] use an approach similar to FeaVer [22] to
extract Murphi [13] models from C programs. It requires the
programmer to specify two things: a set of patterns that iden-

tify the C code that has to be captured in the extracted model,
and transformations that translate the identified C code into
Murphi code. Unlike FeaVer, it uses program slicing [31, 29]
to extract additional code that affects the identified code.
However, the standard slicing algorithms have problems with
C constructs like pointers, unions and unstructured control
flow. Like FeaVer, it cannot check the validity of the gener-
ated model.

Bandera [11] allows automatic extraction of finite state
models from Java programs. It uses techniques like program
slicing [31, 29] and data abstraction to allow more tractable
models to be extracted. ESP and Bandera differ in how non-
determinism is used during model extraction. In Bandera,
nondeterminism is used only when an undeterminable value
flows into a test of a conditional statement. In ESP, nondeter-
minism is used to assign values to all variables and fields that
are not dropped by the abstraction but whose values become
undeterminable. Another difference between ESP and Ban-
dera is that the ESP language was designed to permit model
checking. In contrast, Bandera targets Java that has a number
of language features that are difficult to translate efficiently
into models. So far, Bandera has been used to verify proper-
ties in only simple programs.

The SLAM project [1, 2] extracts a predicate abstraction
to check assertions in sequential programs written in C. A
predicate abstraction is a model with only boolean variables
that correspond to conditions in the original program. The as-
sertion is checked in the predicate abstraction using a model
checker. Since the checker may generate false positives, sym-
bolic execution is used to verify the counter examples gener-
ated by the model checker. If the counter example is invalid,
the predicate abstraction is refined to eliminate the counter
example. This approach has not yet been extended to handle
concurrent programs.

6.2 Debugging System Software

A vast amount of research has focused on the problem of
debugging system software. The techniques used span lan-
guage design, model checking, compiler analysis, and run-
time methods. In this section, we discuss some of the related
work in this area.

As described in Section 6.1, model checkers have been
used to debug system software. Some [7, 15, 27, 30, 18, 17,
22, 11] have focused on debugging programs written in gen-
eral purpose languages like C, C++ and Java. Others have
proposed domain-specific languages [8, 3, 4] that have been
designed with model checking in mind, and therefore, allow
model checking to be more effective.

Meta-level Compilation [9, 16] provides a framework for
extending a compiler with application-specific code that can
be used to statically check certain properties of that applica-
tion. It was used to look for bugs in several systems including
the cache coherence protocols for the FLASH multiprocessor
and the Linux kernel. This technique requires little change
to the source code and was very effective in finding several

13

hundred bugs in these systems. The compiler extensions look
for violations of properties like proper buffer allocation and
deallocation, and absence of deadlocks. However, these ex-
tensions perform only intra-procedural analysis. In some in-
stances, a separate global pass was used to combine data gath-
ered by the intra-procedural analysis of the different functions
to check a global property. Since the static analysis is inex-
act, it can generate false-positives. The bugs reported have
to be double-checked by the programmer. In addition, the
limited scope of intraprocedural analysis can generate false-
negatives.

Eraser [28] detects data races in multithreaded programs.
It instruments the program binary to check at runtime that a
lock protects each shared variable access. It does not impose
any constraints on the programs, and therefore works on ex-
isting programs with little modifications. However, the tool
can detect only the data races that occur during the debug-
ging runs; it is the programmer’s responsibility to ensure that
the program is run with several different inputs so that it is
tested thoroughly. In addition, the instrumentation results in
a factor of 10 to 30 slowdown in program execution. This
can prevent some data races in the program from occurring
during debugging.

Programming language features can often prevent an en-
tire class of bugs. Safe programming languages prevent a
program from accessing a dynamically allocated object after
it has been freed. The Vault [12] language uses an expres-
sive type system to enforce high-level protocols in system
software. The type system allows a module writer to spec-
ify properties like “a read system call to read from a file can
be called only after that file has been opened using the open
system call”.

7 Conclusions

ESP allows abstract models to be extracted from the pro-
grams. These models are smaller because they omit details
that are irrelevant to the property being checked. In ESP,
the programmer specifies the abstraction and therefore has
control over the abstraction process. The ESP compiler uses
the abstractions specified by the programmer conservatively
when generating an abstract model. This ensures a bug in
the ESP program will be in the generated model even when a
programmer makes a mistake in specifying the abstraction.

Abstraction was essential for obtaining models that could
be used to check for system-wide properties like absence of
deadlocks. The earlier version of the compiler [25] was un-
able to find deadlock bugs in the VMMC firmware. The new
version of the ESP compiler generated an abstract model that
was successfully used to uncover seven deadlock bugs. Even
with these models, only a partial search was possible. In spite
of this, we have not encountered any new bugs while running
the firmware on the device.

The use of model checker is greatly simplified when the
models could be automatically extracted from the ESP pro-
grams by the compiler. Other studies [22, 11] have shown

that automatic extraction is possible even for traditional lan-
guages like C and Java. This not only increases our confi-
dence that the model accurately reflects the program but also
allows the system to be rechecked with little effort whenever
changes are made to it.

A model checker is very effective as a debugging tool.
Sometimes, only a partial state-space exploration is possi-
ble due to resource constraints. However, this is acceptable
because the goal is to identify bugs and not to certify correct-
ness. Even a partial systematic search by the model checker
results in more extensive testing than traditional testing meth-
ods and can be invaluable in debugging concurrent firmware.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation (CDA-9624099,E1A-9975011,ANI-
9906704,E1A-9975011), the Department of Energy (DE-
FC02-99ER25387), California Institute of Technology
(PC-159775, PC-228905), Sandia National Lab (AO-
5098.A06), Lawrence Livermore Laboratory (B347877),
Intel Research Council, and the Intel Technology 2000
equipment grant.

References

[1] T.Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auto-
matic Predicate Abstraction of C Programs. In Programming
Languages Design and Implementation, 2001.

T. Ball and S. K. Rajamani. Bebop: A Symbolic Model
Checker for Boolean Programs. In International Spin Work-
shop, 2000.

A. Basu, T. von Eicken, and G. Morrisett. Promela++: A Lan-
guage for Correct and Efficient Protocol Construction. In In-
focom, 1998.

G. Berry and G. Gonthier. The ESTEREL synchronous pro-
gramming language: design, semantics, implementation. Sci-
ence of Computer Programming, 19(2), 1992.

M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten,
and J. Sandberg. Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer. In International Symposium
on Computer Architecture, 1994.

C. Castelluccia, W. Dabbous, and S. O’Malley. Generating
Efficient Protocol Code from an Abstract Specification. In
S GCOMM, 1996.

T. Cattel. Modeling and Verification of a Multiprocessor Re-
altime OS Kernel. In International Conference on Formal De-
scription Techniques, 1994.

S. Chandra, B. E. Richards, and J. R. Larus. Teapot: Lan-
guage Support for Writing Memory Coherence Protocols. In
Programming Languages Design and Implementation, 1996.
A. Chou, B. Chelf, D. Engler, and M. Heinrich. Using Meta-
level Compilation to Check FLASH Protocol Code. In Archi-
tectural Support for Programming Languages and Operating
Systems, 2000.

C. Colby, P. Godefroid, and L. J. Jagadeesan. Automati-
cally Closing Open Reactive Programs. In Programming Lan-
guages Design and Implementation, 1998.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, R. Shawn,
and L. Hongjun. Bandera: Extracting finite-state models from

(2]

(3]

(4]

5]

(6]

[7]

(8]

9]

[10]

[11]

14

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Java source code. In International Conference on Software
Engineering, 2000.

R. DeLine and M. Fahndrich. Enforcing High-Level Protocols
in Low-Level Software. In Programming Languages Design
and Implementation, 2001.

D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Proto-
col Verification as a Hardware Design Aid. In |IEEE Interna-
tional Conference on Computer Design: VLS in Computers
and Processors, 1992.

C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and
K. Li. VMMC-2: Efficient Support for Reliable, Connection-
Oriented Communication. In Hot Interconnects, 1997.

G. Duval and J. Julliand. Modeling and verification of the
RUBIS p-Kernel with Spin. In International Spin Workshop,
1995.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking Sys-
tem Rules Using System-Specific, Programmer-Written Com-
piler Extensions. In Operating Systems Design and I mplemen-
tation, 2000.

P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In Principles of Programming Languages,
1997.

K. Havelund and T. Presshurger. Model checking Java pro-
grams using Java PathFinder. In International Journal on Soft-
ware Tools for Technology Transfer, 1999.

C. A. R. Hoare. Communicating Sequential Processes. Com-
munications of the ACM, 21(8):666-677, Aug. 1978.

G. Holzmann and D. Peled. An Improvement in Formal Ver-
ification. In International Conference on Formal Description
Techniques, 1994.

G. J. Holzmann. The Spin Model Checker. |EEE Transactions
on Software Engineering, 23(5):279-295, May 1997.

G. J. Holzmann and M. H. Smith. A Practical Method for
Verifying Event-Driven Software. In International Conference
on Software Engineering, 1999.

S. Kumar and K. Li. Dynamic Memory Management for Pro-
grammable Devices. In International Symposium of Memory
Management, 2002.

S. Kumar and K. Li. Performance Impact of Using ESP to
Implement VMMC Firmware. In Workshop on Novel Uses of
System Area Networks (SAN-1), 2002.

S. Kumar, Y. Mandelbaum, X. Yu, and K. Li. ESP: A Lan-
guage for Programmable Devices. In Programming Lan-
guages Design and Implementation, 2001.

D. Lie, A. Chou, D. Engler, and D. Dill. A Simple Method
for Extracting Models from Protocol Code. In International
Symposium on Computer Architecture, 2001.

R. Pike, D. Pressoto, K. Thompson, and G. Holzmann. Pro-
cess sleep and wakeup on shared-memory multiprocessors. In
EurOpen Conference, 1991.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A Dynamic Data Race Detector for Mul-
tithreaded Programs. Transactions on Computer Systems,
15(4):391-411, 1997.

F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 3:121-189, 1995.

P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chit-
turi, and G. Back. Formal methods: A practical tool for OS
implementors. In Hot Topicsin Operating Systems, 1997.

M. Weiser. Program slicing. |EEE Transactions on Software
Engineering, 10:352-357, 1984.

