
conference

proceedings

NSDI ’11:
8th USENIX
Symposium
on Networked
Systems
Design and
Implementation

Boston, MA, USA
March 30–April 1, 2011

Proceedings of N
SDI ’11: 8th U

SEN
IX Sym

posium
 on N

etw
orked System

s Design and Im
plem

entation

Boston, M

A
, USA

M
arch 30–April 1, 2011

Sponsored by

USENIX
in cooperation with
ACM SIGCOMM and
ACM SIGOPS

© 2011 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-931971-84-3

USENIX Association

Proceedings of NSDI ’11:

8th USENIX Symposium on Networked

Systems Design and Implementation

March 30–April 1, 2011
Boston, MA, USA

Conference Organizers
Program Co-Chairs
David G. Andersen, Carnegie Mellon University
Sylvia Ratnasamy, Intel Labs Berkeley

Program Committee
Aditya Akella, University of Wisconsin—Madison
Katerina Argyraki, École Polytechnique Fédérale de

Lausanne (EPFL)
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
Hari Balakrishnan, Massachusetts Institute of Technol-

ogy
Andrew Birrell, Microsoft Research
Byung-Gon Chun, Intel Labs Berkeley
Jason Flinn, University of Michigan
Rodrigo Fonseca, Brown University
Paul Francis, Max Planck Institute for Software Systems
Brad Karp, University College London
Dina Katabi, Massachusetts Institute of Technology
Eddie Kohler, University of California, Los Angeles,

and Meraki
Jinyang Li, New York University
Bruce Maggs, Duke University and Akamai Technolo-

gies
Ratul Mahajan, Microsoft Research

David Maltz, Microsoft Research
David Mazières, Stanford University
Jitendra Padhye, Microsoft Research
KyoungSoo Park, KAIST (Korea Advanced Institute of

Science and Technology)
Jennifer Rexford, Princeton University
Alex C. Snoeren, University of California, San Diego
Lakshminarayanan Subramanian, New York University
Helen Wang, Microsoft Research
Bill Weihl, Google

Poster Session Chair
Michael Walfish, The University of Texas at Austin

Steeering Committee
Thomas Anderson, University of Washington
Brian Noble, University of Michigan
Jennifer Rexford, Princeton University
Mike Schroeder, Microsoft Research
Chandu Thekkath, Microsoft Research
Amin Vahdat, University of California, San Diego
Ellie Young, USENIX Association

The USENIX Association Staff

External Reviewers
Sharad Agarwal
Shuchi Chawla
Weidong Cui
Chuanxiong Guo
Dan Halperin
Srikanth Kandula
Aman Kansal
Changhoon Kim
Katrina LaCurts
Julio Lopez
Jay Lorch

David Molnar
Radhika Niranjan Mysore
Calvin Newport
Evdokia Nikolova
Bryan Parno
Milo Polte
Lucian Popa
Raluca Ada Popa
Russell Power
Bodhi Priyantha
Shravan Rayanchu

Michael Schapira
Sayandeep Sen
Deian Stefan
Martin Suchara
Cedric Westphall
Keith Winstein
Alec Wolman
Ming Zhang

NSDI ’11: 8th USENIX Symposium on
Networked Systems Design and Implementation

March 30–April 1, 2011
Boston, MA, USA

Message from the Program Co-Chairs . vii

Wednesday, March 30

Speed, Speed, and More Speed

SSLShader: Cheap SSL Acceleration with Commodity Processors .1
Keon Jang and Sangjin Han, KAIST; Seungyeop Han, University of Washington; Sue Moon and Kyoungsoo
Park, KAIST

ServerSwitch: A Programmable and High Performance Platform for Data Center Networks 15
Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui Gao,
and Yongguang Zhang, Microsoft Research Asia

TritonSort: A Balanced Large-Scale Sorting System .29
Alexander Rasmussen, George Porter, and Michael Conley, University of California, San Diego; Harsha V.
Madhyastha, University of California, Riverside; Radhika Niranjan Mysore, University of California, San
Diego; Alexander Pucher, Vienna University of Technology; Amin Vahdat, University of California, San Diego

Performance Diagnosis

Diagnosing Performance Changes by Comparing Request Flows .43
Raja R. Sambasivan, Carnegie Mellon University; Alice X. Zheng, Microsoft Research; Michael De Rosa,
Google; Elie Krevat, Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu, and Gregory R.
Ganger, Carnegie Mellon University

Profiling Network Performance for Multi-tier Data Center Applications .57
Minlan Yu, Princeton University; Albert Greenberg and Dave Maltz, Microsoft; Jennifer Rexford, Princeton
University; Lihua Yuan, Srikanth Kandula, and Changhoon Kim, Microsoft

Nothing but Net

Efficiently Measuring Bandwidth at All Time Scales .71
Frank Uyeda, University of California, San Diego; Luca Foschini, University of California, Santa Barbara;
Fred Baker, Cisco; Subhash Suri, University of California, Santa Barbara; George Varghese, University of
California, San Diego

ETTM: A Scalable Fault Tolerant Network Manager .85
Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane Brandon, Thomas Anderson, and Arvind
Krishnamurthy, University of Washington

Design, Implementation and Evaluation of Congestion Control for Multipath TCP .99
Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley, University College London

Wednesday, March 30 (continued)

Data-Intensive Computing

Ciel: A Universal Execution Engine for Distributed Data-Flow Computing . 113
Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and Steven
Hand, University of Cambridge Computer Laboratory

A Semantic Framework for Data Analysis in Networked Systems .127
Arun Viswanathan, University of Southern California Information Sciences Institute; Alefiya Hussain,
University of Southern California Information Sciences Institute and Sparta Inc.; Jelena Mirkovic, University
of Southern California Information Sciences Institute; Stephen Schwab, Sparta Inc.; John Wroclawski,
University of Southern California Information Sciences Institute

Paxos Replicated State Machines as the Basis of a High-Performance Data Store . 141
William J. Bolosky, Microsoft Research; Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and
Peng Li, Microsoft

Thursday, March 31

Security and Privacy

Bootstrapping Accountability in the Internet We Have . 155
Ang Li, Xin Liu, and Xiaowei Yang, Duke University

Privad: Practical Privacy in Online Advertising . 169
Saikat Guha, Microsoft Research India; Bin Cheng and Paul Francis, MPI-SWS

Bazaar: Strengthening User Reputations in Online Marketplaces . 183
Ansley Post, MPI-SWS and Rice University; Vijit Shah and Alan Mislove, Northeastern University

Energy and Storage

Dewdrop: An Energy-Aware Runtime for Computational RFID .197
Michael Buettner, University of Washington; Benjamin Greenstein, Intel Labs Seattle; David Wetherall,
University of Washington and Intel Labs Seattle

SSDAlloc: Hybrid SSD/RAM Memory Management Made Easy . 211
Anirudh Badam and Vivek S. Pai, Princeton University

Debugging and Correctness

Model Checking a Networked System Without the Network .225
Rachid Guerraoui and Maysam Yabandeh, EPFL

Fate and Destini: A Framework for Cloud Recovery Testing .239
Haryadi S. Gunawi, University of California, Berkeley; Thanh Do, University of Wisconsin, Madison; Pallavi
Joshi, Peter Alvaro, and Joseph M. Hellerstein, University of California, Berkeley; Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau, University of Wisconsin, Madison; Koushik Sen, University of California,
Berkeley; Dhruba Borthakur, Facebook

SliceTime: A Platform for Scalable and Accurate Network Emulation .253
Elias Weingärtner, Florian Schmidt, Hendrik vom Lehn, Tobias Heer, and Klaus Wehrle, RWTH Aachen
University

Thursday, March 31 (continued)

Mobile Wireless

Accurate, Low-Energy Trajectory Mapping for Mobile Devices .267
Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Samuel Madden, and Lewis Girod, MIT
Computer Science and Artificial Intelligence Laboratory

Improving Wireless Network Performance Using Sensor Hints . 281
Lenin Ravindranath, Calvin Newport, Hari Balakrishnan, and Samuel Madden, MIT Computer Science and
Artificial Intelligence Laboratory

Friday, April 1

Datacenters Learning to Share

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center .295
Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica, University of California, Berkeley

Sharing the Data Center Network .309
Alan Shieh, Microsoft Research and Cornell University; Srikanth Kandula, Microsoft Research; Albert
Greenberg and Changhoon Kim, Windows Azure; Bikas Saha, Microsoft Bing

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types .323
Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica, University of
California, Berkeley

Wireless and More

PIE in the Sky: Online Passive Interference Estimation for Enterprise WLANs . 337
Vivek Shrivastava, Shravan Rayanchu, and Suman Banerjee, University of Wisconsin—Madison; Konstantina
Papagiannaki, Intel Labs, Pittsburgh

SpecNet: Spectrum Sensing Sans Frontières . 351
Anand Padmanabha Iyer, Krishna Chintalapudi, Vishnu Navda, Ramachandran Ramjee, and Venkata N.
Padmanabhan, Microsoft Research India; Chandra R. Murthy, Indian Institute of Science

Towards Street-Level Client-Independent IP Geolocation .365
Yong Wang, UESTC and Northwestern University; Daniel Burgener, Marcel Flores, and Aleksandar
Kuzmanovic, Northwestern University; Cheng Huang, Microsoft Research

Message from the Program Co-Chairs

NSDI in 2011 carries on the conference’s tradition of presenting the very best work in the area of networked sys-
tems. As in previous years, we take a broad view of the NSDI charter, selecting papers from across the range of the
USENIX, SIGCOMM, and SIGOPS communities, rather than their intersection. The result is an exciting program
with papers spanning topics from high-performance systems to security and privacy, from mobile wireless systems
to tools for testing and model checking.

We received 157 paper submissions. All submissions that met the formatting and basic quality standards (three
did not) were reviewed by several members of the program committee, and in a small number of cases we used
external reviewers to complement the expertise of the program committee. The 26 members of the program com-
mittee completed 700 reviews. Each paper received at least 3 reviews; on average, the committee completed 4.5
reviews per paper, with some papers receiving as many as 9 reviews. These written reviews laid the groundwork
for the program committee meeting in Berkeley, California, on December 3, 2010. All 26 members of the program
committee attended the meeting to weigh the 56 papers selected for discussion. Papers selected for discussion had
received an average of 5.9 reviews, and the meeting led to our final program of 27 papers. Because of the special
role conferences play in our field, all papers were shepherded by a program committee member.

We are grateful to everyone whose hard work made this conference possible. Most of all, we are indebted to all of
the authors who submitted their work to this conference. We thank the program committee for their dedication and
hard work in reviewing papers and participating in the extensive discussions at the PC meeting, as well as in shep-
herding the final versions. We thank our external reviewers for lending their expertise on short notice. We extend
special thanks to ICSI for hosting the program committee meeting in Berkeley. We are grateful to the conference
sponsors for their support and to the USENIX staff for handling the conference logistics, marketing, and proceed-
ings publication; it is a pleasure to work with them. Eddie Kohler and Geoff Voelker continue to provide invaluable
service to the community by providing and supporting their HotCRP reviewing system and Banal format checker.
Finally, we thank the NSDI ’11 attendees and future readers of these papers: in the end, it is your interest in this
work that makes all of these efforts worthwhile.

David G. Andersen, Carnegie Mellon University
Sylvia Ratnasamy, Intel Labs Berkeley

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 1

SSLShader: Cheap SSL Acceleration with Commodity Processors

Keon Jang+, Sangjin Han+, Seungyeop Han*, Sue Moon+, and KyoungSoo Park+

+KAIST *University of Washington

Abstract
Secure end-to-end communication is becoming increas-
ingly important as more private and sensitive data is
transferred on the Internet. Unfortunately, today’s SSL
deployment is largely limited to security or privacy-
critical domains. The low adoption rate is mainly at-
tributed to the heavy cryptographic computation over-
head on the server side, and the cost of good privacy on
the Internet is tightly bound to expensive hardware SSL
accelerators in practice.

In this paper we present high-performance SSL accel-
eration using commodity processors. First, we show that
modern graphics processing units (GPUs) can be easily
converted to general-purpose SSL accelerators. By ex-
ploiting the massive computing parallelism of GPUs, we
accelerate SSL cryptographic operations beyond what
state-of-the-art CPUs provide. Second, we build a trans-
parent SSL proxy, SSLShader, that carefully leverages
the trade-offs of recent hardware features such as AES-
NI and NUMA and achieves both high throughput and
low latency. In our evaluation, the GPU implementation
of RSA shows a factor of 22.6 to 31.7 improvement over
the fastest CPU implementation. SSLShader achieves
29K transactions per second for small files while it trans-
fers large files at 13 Gbps on a commodity server ma-
chine. These numbers are comparable to high-end com-
mercial SSL appliances at a fraction of their price.

1 Introduction

Secure Sockets Layer (SSL) and Transport Layer Secu-
rity (TLS) have served as de-facto standard protocols
for secure transport layer communication for over 15
years. With endpoint authentication and content encryp-
tion, SSL delivers confidential data securely and prevents
eavesdropping and tampering by random attackers. On-
line banking, e-commerce, and Web-based email sites
typically employ SSL to protect sensitive user data such
as passwords, credit card information, and private con-

tent. Operating atop the transport layer, SSL is used for
various application protocols such as HTTP, SMTP, FTP,
XMPP, and SIP, just to name a few.

Despite its great success, today’s SSL deployment is
largely limited to security-critical domains or enterprise
applications. A recent survey shows that the total num-
ber of registered SSL certificates is slightly over one
million [18], reflecting less than 0.5% of active Internet
sites [19]. Even in the SSL-enabled sites, SSL is often
enforced only for a fraction of activities (e.g., password
submission or billing information). For example, Web-
based email sites such as Windows Live Hotmail1 and
Yahoo! Mail2 do not support SSL for the content, mak-
ing the private data vulnerable for sniffing in untrusted
wireless environments. Popular social networking sites
such as Facebook3 and Twitter4 allow SSL only when
users make explicit requests with a noticeable latency
penalty. In fact, few sites listed in Alexa top 500 [2]
enable SSL by default for the entire content.

The low SSL adoption is mainly attributed to its heavy
computation overhead on the server side. The typical
processing bottleneck lies in the key exchange phase
involving public key cryptography [22, 29]. For in-
stance, even the latest CPU core cannot handle more
than 2K SSL transactions per second (TPS) with 1024-
bit RSA while the same core can serve over 10K plain-
text HTTP requests per second. As a workaround, high-
performance SSL servers often distribute the load to a
cluster of machines [52] or offload cryptographic opera-
tions to dedicated hardware proxies [3, 4, 6, 13] or accel-
erators [9, 10, 14, 15]. Consequently, user privacy in the
Internet still remains an expensive option even with the
modern processor innovation.

Our goal is to find a practical solution with commodity
processors to bring the benefits of SSL to all private In-

1http://explore.live.com/windows-live-hotmail/
2http://mail.yahoo.com/
3http://www.facebook.com/
4http://www.twitter.com/

2 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ternet communication. In this paper, we present our ap-
proach in two steps. First, we exploit commodity graph-
ics processing units (GPUs) as high-performance crypto-
graphic function accelerators. With hundreds of stream-
ing processing cores, modern GPUs execute the code
in the single-instruction-multiple-data (SIMD) fashion,
providing ample computation cycles and high memory
bandwidth to massively parallel applications. Through
careful algorithm analysis and parallelization, we accel-
erate RSA, AES and SHA-1 cryptographic primitives
with GPUs. Compared with previous GPU approaches
that take hundreds of milliseconds to a few seconds to
reach the peak RSA performance [37,56], our implemen-
tation produces the maximum throughput with one or
two orders of magnitude smaller latency, which is well-
suited for interactive Web environments.

Second, we build SSLShader, a GPU-accelerated SSL
proxy that transparently handles SSL transactions for
existing network servers. SSLShader selectively of-
floads cryptographic operations to GPUs to achieve high
throughput and low latency depending on the load level.
Moreover, SSLShader leverages the recent hardware fea-
tures such as multi-core CPUs, the non-uniform memory
access (NUMA) architecture, and the AES-NI instruc-
tion set.

Our contributions are summarized as follows:

(i) We provide detailed algorithm analysis and paral-
lelization techniques to scale the performance of RSA,
AES and SHA-1 in GPUs. To the best of our knowl-
edge, our GPU implementation of RSA shows the high-
est throughput reported so far. On a single NVIDIA
GTX580 card, our implementation shows 92K RSA op-
erations/s for 1024-bit keys, a factor of 27 better perfor-
mance over the fastest CPU implementation with a single
2.66 GHz Intel Xeon core.

(ii) We introduce opportunistic workload offloading
between CPU and GPU to achieve both low latency and
high throughput. When lightly loaded, SSLShader uti-
lizes low-latency cryptographic code execution by CPUs,
but at high load it batches and offloads multiple crypto-
graphic operations to GPUs.

(iii) We build and evaluate a complete SSL proxy sys-
tem that exploits GPUs as SSL accelerators. Unlike prior
GPU work that focuses on microbenchmarks of crypto-
graphic operations, we focus on systems interaction in
handling the SSL protocol. SSLShader achieves 13 Gbps
SSL large-file throughput handling 29K SSL TPS on a
single machine with two hexa-core Intel Xeon 5650’s.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a brief background on SSL, popular
cryptographic operations, and the modern GPU. In Sec-
tions 3 and 4 we explain our optimization techniques for
RSA, AES and SHA-1 implementations in a GPU. In

Client Server

Session Key
Derivation

Session Key
Derivation

Client ServerTCP 3-way handshake

ClientHello

ServerHello

ServerFinished

Encrypted pre-master secretRSA encryption
RSA decryption

Encrypted dataSender:
HMAC +
AES encryption

Receiver:
AES decryption
+ HMAC

…
Figure 1: SSL handshake and data

Sections 5 and 6, we show the design and evaluation of
SSLShader. In Sections 7 and 8 we discuss related work
and conclude.

2 Background

In this section, we provide a brief introduction to
SSL and describe the cryptographic algorithms used in
TLS RSA WITH AES 128 CBC SHA, one of the most
popular SSL cipher suites. We also describe the ba-
sic architecture of modern GPUs and strategies to ex-
ploit them for cryptographic operations. In this paper
we use TLS RSA WITH AES 128 CBC SHA as a ref-
erence cipher suite, but we believe our techniques to be
easily applicable to other similar algorithms.

2.1 Secure Sockets Layer
SSL was developed by Netscape in 1994 and has been
widely used for secure transport layer communication.
SSL provides three important security properties in pri-
vate communication: data confidentiality, data integrity,
and end-point authentication. From SSL version 3.0, the
official name has changed to TLS and the protocol has
been standardized by IETF. SSL and TLS share the same
protocol structure, but they are incompatible, since they
use different key derivation functions to generate session
and message authentication code (MAC) keys.

Figure 1 describes how the SSL protocol works. A
client sends a ClientHello message to the target server
with a list of supported cipher suites and a nonce. The
server picks one (asymmetric cipher, symmetric cipher,
MAC algorithm) tuple in the supported cipher suites, and
responds with a ServerHello message with the chosen ci-
pher suite, its own certificate and a server-side nonce.
Upon receiving the ServerHello message, the client ver-
ifies the server’s certificate, generates a pre-master se-
cret and encrypts it with the server’s public key. The en-
crypted pre-master secret is delivered to the server, and
both parties independently generate two symmetric ci-
pher session keys and two MAC keys using a predefined
key derivation function with the pre-master key and the
two nonces as input. Each (session, MAC) key pair is

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 3

used for encryption and MAC generation for one direc-
tion (e.g., client to server or server to client).

In the Web environment where most objects are small,
the typical SSL bottleneck lies in decrypting the pre-
master secret with the server-side private key. The client-
side latency could increase significantly if the server is
overloaded with many SSL connections. When the size
of an object is large, the major computation overhead
shifts to symmetric cipher execution and MAC calcula-
tion.

2.2 Cryptographic Operations
TLS RSA WITH AES 128 CBC SHA uses RSA, AES,
and a Secure Hash Algorithm (SHA) based HMAC. Be-
low we sketch out each cryptographic operation.

2.2.1 RSA
RSA [53] is an asymmetric cipher algorithm widely used
for signing and encryption. To encrypt, a plaintext mes-
sage is first transformed into an integer M, then turned
into a ciphertext C with:

C := Me mod n (1)

with a public key (n, e). Decryption with a private key
(n, d) can be done with

M :=Cd mod n (2)

C, M, d, and n are k-bit large integers, typically 1,024,
2,048, or even 4,096 bits (or roughly 300, 600, or 1,200
decimal digits). Since e is chosen to be a small number
(common choices are 3, 17, and 65,537), public key en-
cryption is 20 to 60 times faster than private key decryp-
tion. RSA operations are compute-intensive, especially
for SSL servers. Because servers perform expensive pri-
vate key decryption for each SSL connection, handling
many concurrent connections from clients is a challenge.
In this paper we focus on private key RSA decryption,
the main computation bottleneck on the server side.

2.2.2 AES
Advanced Encryption Standard (AES) [32] is a popular
symmetric block cipher algorithm in SSL. AES divides
plaintext message into 128-bit fixed blocks and encrypts
each block into ciphertext with a 128, 192, or 256-bit
key. The encryption algorithm consists of 10, 12, or
14 rounds of transformations depending on the key size.
Each round uses a different round key generated from the
original key using Rijndael’s key schedule.

We implement AES encryption and decryption in
cipher-block chaining (CBC) mode. In CBC mode, each
plaintext block is XORed with a random block of the
same size before encryption. The i-th block’s random
block is simply the (i− 1)-th ciphertext block, and the
initial random block, called the Initialization Vector (IV),

is randomly generated and is sent in plaintext along with
the encrypted message for decryption.

2.2.3 HMAC
Hash-based Message Authentication Code (HMAC) is
used for message integrity and authentication. HMAC
is defined as

HMAC(k,m) = H((k⊕opad)‖H((k⊕ ipad)‖m)) (3)

H is a hash function, k is a key, m is a message, and ipad
and opad are predefined constants. Any hash function
can be combined with HMAC and we use SHA-1 as it is
the most popular.

2.3 GPU
Modern GPUs have hundreds of processing cores that
can be used for general-purpose computing beyond
graphics rendering. Both NVIDIA and AMD provide
convenient programming libraries to use their GPUs for
computation or memory-intensive applications. We use
NVIDIA GPUs here, but our techniques are applicable to
AMD GPUs as well.

A GPU executes code in the SIMD fashion that shares
the same code path working on multiple data at the same
time. For this reason, a GPU is ideal for parallel appli-
cations requiring high memory bandwidth to access dif-
ferent sets of data. The code that the GPU executes is
called a kernel. To make full use of massive cores in a
GPU, many threads are launched and run concurrently
to execute the kernel code. This means more parallelism
generally produces better utilization of GPU resources.

GPU kernel execution takes the following four steps:
(i) the DMA controller transfers input data from host
memory to GPU (device) memory; (ii) a host program
instructs the GPU to launch the kernel; (iii) the GPU ex-
ecutes threads in parallel; and (iv) the DMA controller
transfers the result data back to host memory from de-
vice memory.

The latest NVIDIA GPU is the GTX580, codenamed
Fermi [20]. It has 512 cores consisting of 16 Stream-
ing Multiprocessors (SMs), each of which has 32 Stream
Processors (SPs or CUDA cores). In each SM, 48 KB
shared memory (scratchpad RAM), 16 KB L1 cache,
and 32,768 4-byte registers allow high-performance pro-
cessing. To hide the hardware details, NVIDIA provides
Compute Unified Device Architecture (CUDA) libraries
to software programmers. CUDA libraries allow easy
programming for general-purpose applications. More
details about the architecture can be found in [47, 48].

The fundamental difference between CPUs and GPUs
comes from how transistors are composed in the pro-
cessor. A GPU devotes most of its die area to a large
array of Arithmetic Logic Units (ALUs). In contrast,
most CPU resources serve a large cache hierarchy and

4 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a control plane for sophisticated acceleration of a single
thread (e.g., out-of-order execution, speculative loads,
and branch prediction), which are not much effective
in cryptography. Our key insight of this work is that
compute-intensive cryptographic operations can benefit
from the abundant ALUs in a GPU, given enough paral-
lelism (intra- and inter-flow).

3 Optimizing RSA for GPU

For RSA implementation on GPUs, the main challenge
is to achieve high throughput while keeping the la-
tency low. Naı̈ve porting of CPU algorithms to a GPU
would cause severe performance degradation, wasting
most GPU computational resources. Since a single GPU
thread runs at 10x to 100x slower speed than a CPU
thread, the naı̈ve approach would yield unacceptable la-
tency.

In this section, we describe our approach and design
choices to maximize performance of RSA decryption on
GPUs. The key point in maximizing RSA performance
lies in high parallelism. We exploit parallelism in the
message level, in modular exponentiation, and finally in
the word-size modular multiplication. We show that our
parallel Multi-Precision (MP) algorithm obtains a signif-
icant gain in throughput and curbs latency increase to a
reasonable level.

3.1 How to Parallelize RSA Operations?
Our main parallelization idea is to batch multiple RSA
ciphertext messages and to split those messages into
thousands of threads so that we can keep all GPU cores
busy. Below we give a brief description of each level.

Independent Messages: At the coarsest level, we pro-
cess multiple messages in parallel. Each message is in-
herently independent of other messages; no coordination
between threads belonging to different messages is re-
quired.

Chinese Remainder Theorem (CRT): For each mes-
sage, (2) can be broken into two independent modular
exponentiations with CRT [51].

M1 =Cd mod (p−1) mod p (4a)

M2 =Cd mod (q−1) mod q (4b)

where p and q are k/2-bit prime numbers chosen in pri-
vate key generation (n = p× q). All four parameters, p,
q, d mod (p−1), and d mod (q−1), are part of the RSA
private key [38].

With CRT, we perform the two k/2-bit modular expo-
nentiations in parallel. Each of which requires roughly
8 times less computation than k-bit modular exponenti-
ation. Obtaining M from M1 and M2 adds only small

overheads, compared to the gain from two k/2-bit mod-
ular exponentiations.

Large Integer Arithmetic: Since the word size of a
computer is usually 32 or 64-bit, large integers must
be broken into small multiple words. We can run mul-
tiple threads, each of which processes a word. How-
ever, we need carry-borrow processing or base extension
in order to coordinate the outcome of per-word opera-
tions between threads. We consider two algorithms, stan-
dard Multi-Precision (MP) and Residue Number System
(RNS), to represent and compute large integers. These
algorithms are commonly used in software and hardware
implementations of RSA.

3.2 Optimization Strategies
In our MP implementation we exploit the following two
optimization strategies: (i) reducing the number of mod-
ular multiplications with the Constant Length Nonzero
Windows (CLNW) partitioning algorithm; (ii) adopting
Montgomery’s reduction algorithm to improve the effi-
ciency of each modular multiplication routine performed
at each step of the exponentiation. These optimization
techniques are also helpful for both serial software and
hardware implementations, as well as for our GPU par-
allel implementations.

CLNW: With the binary square-and-multiply method,
the expected number of modular multiplications is 3k/2
for k-bit modular exponentiation [41]. For example, the
expected number of operations for 512-bit modular ex-
ponentiation (used for 1024-bit RSA with CRT) is 768.
The number can be reduced with sliding window tech-
niques that scan multiple bits, instead of individual bits
of the exponent.

We have implemented CLNW and reduced the number
of modular multiplications from 768 to 607, achieving a
21% improvement [28]. One may instead use the Vari-
able Length Nonzero Window (VLNW) algorithm [26],
but it is known that VLNW does not give any perfor-
mance advantage over CLNW on average [50].

Montgomery Reduction: In a modular multiplication
c = a · b mod n, an explicit k-bit modulo operation fol-
lowing a naı̈ve multiplication should be avoided. Mod-
ulo operation requires a trial division by modulus n for
the quotient, in order to compute the remainder. Divi-
sion by a large divisor is very expensive in both software
and hardware implementations and is not easily paral-
lelizable, and thus inappropriate especially for GPUs.

Montgomery’s algorithm allows a modular multiplica-
tion without a trial division [45]. Let

a = a ·R mod n (5)

be the montgomeritized form of a modulo n, where R and
n are coprime and n < R. Montgomery multiplication

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 5

Algorithm 1 MMUL: Montgomery multiplication
Input: ā, b̄
Output: ā · b̄ ·R−1 mod n
Precomputation: R−1 such that R ·R−1 ≡ 1 (mod n)

n′ such that R ·R−1 −n ·n′ = 1
1: T ← ā · b̄
2: M ← T ·n′ mod R
3: U ← (T +M ·n)/R
4: if U ≥ n then
5: return U −n
6: else
7: return U
8: end if

is defined as in Algorithm 1. If we set R to be 2k, the
division and modulo operations with R can be done very
efficiently with bit shifting and masking.

Note that the result of Montgomery multiplication of
a and b is still a ·b ·R−1 mod n = a ·b mod n, the mont-
gomeritized form of a ·b. For a modular exponentiation,
we convert a ciphertext C into C, get Cd with successive
Montgomery multiplication operations, and invert it into
Cd mod n. In this process, expensive divisions or mod-
ulo operations with n are eliminated.

The implementation of Montgomery multiplication
depends on data structures used to represent large inte-
gers. Below we introduce our MP implementation.

3.3 MP implementation
The standard Multi-Precision algorithm is the most
convenient way to represent large integers in a com-
puter [41]. A k-bit integer A is broken into s = �k/w�
words of ai’s, where i = 1, . . . ,s and w is typically set to
the bit-length of a machine word (e.g., 32 or 64). Here we
describe our MP implementation of Montgomery multi-
plication and various optimization techniques.

3.3.1 Multiplication
In Algorithm 1, the multiplication of two s-word integers
appear three times in lines 1, 2, and 3. The time complex-
ity of the serial multiplication algorithm that performs a
shift-and-add of partial products is O(s2) (also known
as the schoolbook multiplication). Implementation of
an O(s) parallel algorithm with linear scalability is not
trivial due to carry processing. We have implemented
an O(s) parallel algorithm on s processors (threads) that
works in two phases. In Figure 2, hiword and loword are
high and low w bits of a 2w-bit product respectively, and
gray cells represent updated words by s threads. This
parallelization scheme is commonly used for hardware
implementation.

In the first phase, we accumulate s×1 partial products
in 2s steps (s steps for each loword and hiword), ignoring
any carries. Carries are accumulated in a separate array
through the processing. Each step is simple enough to be

6 4 9

7 4 2 6

2 1 0 1

6 3 2 5

6 4 9

7 2 8 3

2 2 8 8

6 6 4 4

hiword of ai·bj

loword of ai·bj

0 0 0 0 0 0

0 0 0 2 8 3

0 0 2 0 6 3

0 6 6 4 6 3

0 6 0 6 2 3

0 7 0 7 2 3

3 9 5 7 2 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 1 1 2 0 0

0 1 1 2 0 0

0 1 1 2 0 0

Intermediate results Accumulated carries

3 0 6 9 2 3

4 0 6 9 2 3

1 0 0 0 0 0

0 0 0 0 0 0

Phase 1:
parallel accumulation

Phase 2: deferred
carry processing

Figure 2: Parallel multiplication example of 649 × 627 =
406,923. For simplicity, a word holds a decimal digit rather
than w-bit binary in the example.

translated into a small number of GPU instructions since
it does not involve cascading carry propagation.

The second phase repeatedly adds the carries to the
intermediate result and renews the carries. This phase
stops when all carries become 0, which can be checked
in one instruction with the any() voting function in
CUDA [48]. The number of iterations is s − 1 in the
worst case, but for most cases it takes one or two iter-
ations since small carries (less than 2s) rarely produce
additional carries.

Our simple O(s) algorithm is a significant improve-
ment over the prior RSA implementation on GPUs. Har-
rison and Waldron parallelize s×s multiplications as fol-
lows [37]: Each of s threads independently performs
s×1 multiplications in serial. Then s partial products are
summed up in additive reduction in logn steps, each of
which is done in serial as well. The resulting time com-
plexity is O(s logs), and most of the threads are under-
utilized during the final reduction phase.

We also implemented RNS-based Montgomery multi-
plications. We adopt Kawamura’s algorithm [40]. Even
with extensive optimizations, the RNS implementation
performs significantly slower than MP, and we use only
the MP version in this paper. For future reference, we
point out two main problems that we have encountered.
First, CUDA does not support native integer division and
modulo operations, on which the RNS Montgomery mul-
tiplication heavily depends. We have found that the per-
formance of emulated operations is dependent on the size
of a divisor and degrades significantly if the length of a
divisor is longer than 14 bits. Second, since the num-
ber of threads is not a power of two, warps are not fully
utilized and array index calculation becomes slow.

6 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4054 6620 13281 9891 10146 6627 21041

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

GTX580

Throughput (operations/s)

Naїve (1)

(2)

(3) Warp
Utilization

(4)

(5) (6) 64-bit words
(7) Avoiding bank

conflicts
(8) Instruction-level

Optimization CLNW (9) Post-exponentiation offloading

Figure 3: 1024-bit RSA performance with various optimization techniques. Sub-bars are placed in the same order as the techniques
shown in Section 3.3.2, except for CLNW.

3.3.2 Optimizations

On top of CRT parallelization, CLNW, Montgomery
reduction, modular exponentiation, and square-and-
multiply optimization techniques, we conduct further op-
timizations as below. Figure 3 demonstrates how the
overall throughput of the system increases as each op-
timization technique is applied. The naı̈ve implementa-
tion includes CRT parallelization, basic implementation
of Montgomery multiplication, and square-and-multiply
modular exponentiation. For a 1024-bit ciphertext mes-
sage with CRT, each of two 512-bit numbers (a cipher-
text message) spans across 16 threads, each of which
holds a 32-bit word, and those 16 threads are grouped
as a CUDA block.

(1) Faster Calculation of M ·n: In Algorithm 1, the cal-
culation of M and M ·n requires two s× s multiplication
operations. We reduce these into one s×1 and one s× s
multiplication and interleave them in a single loop. This
technique was originally introduced in [45], and we ap-
ply it for the parallel implementation.

(2) Interleaving T +M ·n: We interleave the calculation
of T +M · n in a single multiplication loop. This opti-
mization effectively reduces the overhead of loop con-
struction and carry processing. This technique was used
in the serial RSA implementation on a Digital Signal
Processor (DSP) [34], and we parallelize it.

(3) Warp Utilization: In CUDA, a warp (a group of 32
threads in a CUDA block), is the basic unit of schedul-
ing. Having only 16 threads in a block causes under-
utilization of warps, limiting the performance. We avoid
this behavior by having blocks be responsible for multi-
ple ciphertext messages, for full utilization of warps.

(4) Loop Unrolling: We unrolled the loop in Mont-
gomery multiplication, by using the #pragma unroll
feature supported in CUDA. Giving more optimization
chances to the compiler is more beneficial than in CPU
programming, due to the lack of out-of-order execution
capability in GPU cores.

(5) Elimination of Divergency: Since threads in a warp
execute the same instruction in lockstep, code-path di-
vergency in a warp is expensive (all divergent paths must
be taken in serial). For example, we minimize the diver-
gency in our code by replacing if statements with flat
arithmetic operations.

(6) Use of 64-bit Words: The native support for inte-
ger multiplication on GPUs, which is the basic building
block of large integer arithmetic, has recently been added
and is still evolving. GTX580 supports native single-
cycle instructions that calculate hiword or loword of the
product of two 32-bit integers.

Use of 64-bit words instead of 32-bit introduce a new
trade-off on GPUs. While the multiplication of two 64-
bit words takes four GPU cycles [48], it can halve the
required number of threads and loop iterations depicted
in Figure 2. We find that this optimization is highly ef-
fective when applied.

(7) Avoiding Bank Conflicts: The 64-bit access pattern
to the intermediate results and carries in Figure 2 causes
bank conflicts in shared memory between independent
ciphertext messages in the same warp. We avoid this
bank conflict by padding the arrays to adjust access pat-
tern in shared memory.

(8) Instruction-Level Optimization: We have manually
inspected and optimized the core code (about 10 lines)
inside the multiplication loop, which is the most time-
consuming part in our GPU code. We changed the code
order at the CUDA C source level, until we got the de-
sired assembly code. This includes the elimination of re-
dundant instructions and pipeline stalls caused by Read-
After-Write (RAW) register dependencies [47].

(9) Post-Exponentiation Offloading: Fusion of two par-
tial modular exponentiation results from (4) is done on
the CPU with the Mixed-Radix Conversion (MRC) algo-
rithm as follows [27]:

M := M2 +[(M1 −M2) · (q−1 mod p)] ·q (6)

Although this processing is much lighter than modular
exponentiation operations, the relative cost has become
significant as we optimize the modular exponentiation
process extensively. We have offloaded the above equa-
tion to the GPU, parallelizing at the message level. We
also offload other miscellaneous processing in decryp-
tion such as integer-to-octet-string conversion and PKCS
#1 depadding [38].

3.4 RSA Microbenchmarks
We compare our parallel RSA implementation to a se-
rial CPU implementation. We use Intel Integrated Per-

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 7

0
3
6
9
12
15
18
21

0
10000
20000
30000
40000
50000
60000
70000
80000

1 2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
)

Number of ciphertext messages

GTX580 throughput
GTX580 latency

CPU throughput

3301

(a) 1024-bit

0

10

20

30

40

50

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 128 256 512

L
at

en
cy

 (m
s)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s)

Number of ciphertext messages

GTX580 throughput
GTX580 latency

CPU throughput
438

(b) 2048-bit

Figure 4: RSA MP performance on a GTX580. A single core (Xeon X5650 2.66 GHz) is used for CPU performance.

Processor 512 1024 2048 4096

Latency CPU core 0.07 0.3 2.3 14.9
(ms) GTX580, MP 1.1 3.8 13.83 52.46
Throughput CPU core 13,924 3,301 438 67
(ops/s) GTX580, MP 906 263 72 19
Peak CPU core 13,924 3,301 438 67
(ops/s) GTX580, MP 322,167 74,732 12,044 1,661

Table 1: RSA performance with various key sizes

formance Primitives (IPP) [8] as a CPU counterpart. IPP
is the fastest implementation we have tried, outperform-
ing other publicly available libraries for all key sizes. It
performs 3,301 RSA decryption operations/s for a 1024-
bit key on a 2.66 GHz CPU core. Since this number is
higher than what Kounavis et al. recently report (2,990
operations/s on a 3.00 GHz CPU core) in [43], we believe
its CPU reference implementation is a fair comparison to
our GPU code.

Table 1 summarizes the performance of RSA on the
CPU (a single 2.66 GHz core) and GTX580. With only
one ciphertext message per launch, the GPU’s perfor-
mance shows an order of magnitude worse throughput
(operations per second) and latency (the execution time).
Given enough parallelism, however, the GPU produces
much higher throughput than the CPU. The MP imple-
mentation on the GTX580 shows 23.1x, 22.6x, 27.5x,
and 31.7x speedup compared with a single CPU core, for
512-bit, 1024-bit, 2048-bit, and 4096-bit RSA, respec-
tively. The performance gains are comparable to what
we expect from three hexa-core CPUs.

Figure 4 shows the correlation between latency and
throughput of our MP implementation. The throughput
improves as the number of concurrent messages grows,
but reaches a plateau beyond 512 messages. The latency
increases very slowly, but grows linearly with the number
of messages beyond the point where the GPU is fully
utilized. Even at peak throughput the latency stays below
7 to 13.7 ms for more than 70,000 operations/s for 1024-
bit RSA decryption on a GTX580 card.

Many cipher algorithms, such as DSA [5], Diffie Hell-
man key exchange [33], and Elliptic Curve Cryptography
(ECC) [42], depend on modular exponentiation as well

as RSA. Our optimization techniques presented in Sec-
tion 3 are applicable to those algorithms and can offer an
efficient platform for their GPU implementation.

We summarize our RSA implementation on GPUs.
First, the parallel RSA implementation on a GPU brings
significant throughput improvement over a CPU. Second,
we need many ciphertext messages in a batch for full
utilization of GPUs with enough parallelism, in order to
take a performance advantage over CPUs. In Section 5.4
we introduce the concept of asynchronous concurrent
execution, which allows smaller batch sizes and thus
shorter queueing and processing latency, while yielding
even better throughput. Lastly, while the GPU imple-
mentation shows reasonable latency, it still imposes per-
ceptible delay for SSL clients. This problem is addressed
in Section 5.2 with opportunistic offloading, which ex-
ploits the CPU for low latency when under-loaded and
offloads to the GPU for high throughput when a suffi-
cient number of operations are pending.

4 Accelerating AES and HMAC-SHA1

4.1 GPU-accelerated AES

Since CBC mode encryption has a dependency on the
previous block result, AES encryption in the same flow is
serialized. On the other hand, decryption can be run con-
currently as the previous block result is already known
at decryption time. Therefore, AES-CBC decryption in
a GPU runs much faster than AES-CBC encryption.

We have implemented AES for a GPU with the fol-
lowing optimizations. As shown in [36], on-chip shared
memory offers two orders of magnitude faster access
time than global memory on GPU. To exploit this fact,
at the beginning of the AES cipher function, each thread
copies part of the lookup table into shared memory. Ad-
ditionally, we have chosen to derive the round key at each
round, instead of using pre-expanded keys from global
memory. Though it incurs more computation overhead,
it avoids expensive global memory access and reduces
the total latency.

8 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
10
20
30
40
50
60
70
80
90

0

4000

8000

12000

16000

20000

32 64 128 256 512 1024 2048 4096

L
at

en
cy

 (m
s)

T
hr

ou
gh

pu
t (

M
bp

s)

Number of flows

Throughput
Throughput (w/o copy)
Latency(ms)

1217

5048
CPU Throughput (AES-NI on)

CPU Throughput

(a) 128-bit AES-CBC encryption

0

10

20

30

40

50

60

70

0

5000

10000

15000

20000

25000

30000

35000

32 64 128 256 512 1024 2048 4096
Number of flows

1351

15006
CPU Throughput (AES-NI on)

CPU Throughput

(b) 128-bit AES-CBC decryption

0
3
6
9
12
15
18
21
24

0

20000

40000

60000

80000

100000

120000

140000

32 64 128 256 512 1024 2048 4096
Number of flows

3343

CPU Throughput

(c) HMAC-SHA1

Figure 5: AES and HMAC-SHA1 performance on GTX580. A single core (Xeon X5650 2.66 GHz) is used for CPU performance.

4.2 AES-NI
Intel has recently added the AES instruction set (AES-
NI) to the latest lineup of x86 processors. AES-NI runs
one round of AES encryption or decryption with a sin-
gle instruction (AESENC or AESDEC), and its perfor-
mances for AES-GCM and AES-CTR are 2.5 to 6 times
faster than a software implementation [7,39]. AES-NI is
especially useful for handling large files since data trans-
fer overhead between host and device memory quickly
becomes the bottleneck for GPU-accelerated AES. How-
ever, GPU-based symmetric cipher offloading still pro-
vides a benefit, if (i) CPUs do not support AES-NI, (ii)
CPUs become the bottleneck handling the network stack
and other server code, or (iii) other cipher functions (such
as RC4 and 3DES) are needed.

4.3 GPU-accelerated HMAC-SHA1
The performance of HMAC-SHA1 depends on SHA1.
Thus, we focus on the SHA1 algorithm. SHA1 takes 512
bits at each round and generates a 20-byte digest. Each
round uses the previous round’s result; thus SHA1 can
not be run in parallel within a single message. Our SHA1
optimization in a GPU is divided into two parts: (i) re-
ducing memory access by processing data in the register,
and (ii) reducing required memory footprint to fit in the
GPU registers.

Each round of SHA-1 is divided into four different
steps, and at each step it processes 20 32-bit words; in
total, 80 intermediate 32-bit values are used. A typical
CPU implementation pre-calculates all 80 words before
processing, which requires a 320-byte buffer. However,
the algorithm only depends on the previous 16 words
at any time. We calculate each intermediate data on
demand, thus reducing the memory requirement to 64
bytes, which fits into the registers.5

To avoid global memory allocation, we unroll all loops
and hardcode the buffer access with constant indices.
This way the compiler register-allocates all the necessary

5The idea to reduce the memory footprint is from a Web post
in an NVIDIA forum: http://forums.nvidia.com/index.php?
showtopic=102349

16 words. With this approach we see about 100% perfor-
mance improvement over the naı̈ve implementation.

4.4 Microbenchmarks
Figure 5 compares the throughput and latency results of
AES and HMAC-SHA1 with one GTX580 card and one
2.66 GHz CPU core. For the CPU implementations,
we use Intel IPP, which shows the best performance of
AES and SHA-1 as of writing this paper. We fix the
flow length to 16 KB, the largest record size in SSL,
and vary the number of flows from 32 to 4,096. Our
AES-CBC implementation shows the peak performance
of 8.8 Gbps and 10.0 Gbps for encryption and decryption
respectively when we consider the data transfer cost, but
the numbers go up to 21.9 Gbps and 33.9 Gbps with-
out the copy cost. AES-NI shows 5 Gbps and 15 Gbps
even with a single CPU core and thus one or two cores
would exceed our GPU performance. Our GPU version
matches 6.5 and 7.4 CPU cores without AES-NI support
for encryption and decryption. For HMAC-SHA1, our
GPU implementation shows 31 Gbps with the data trans-
fer cost and 124 Gbps without, and matches the perfor-
mance of 9.4 CPU cores.

Our findings are summarized as follows. (i) AES-NI
shows the best performance per dollar, (ii) the data trans-
fer cost in GPU reduces the performance by a factor of
3.39 and 4 in AES and HMAC-SHA1, and (iii) the GPU
helps in offloading HMAC-SHA1 and AES workloads
when CPUs do not support AES-NI. Since a recent hard-
ware trend shows that the GPU cores are being integrated
into the CPU [16, 54], we expect the impact of the data
transfer overhead will decrease in the near future.

5 SSLShader

We build a scalable SSL reverse proxy, SSLShader, to
incorporate the high-performance cryptographic opera-
tions using a GPU into SSL processing. Though proxy-
ing generally incurs redundant I/O and data copy over-
heads, we choose transparent proxing because it pro-
vides the SSL acceleration benefit to existing TCP-based

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 9

Push Pop

Push Pop

Push Pop

Output
queues

GPU

Proc.

Proc.

Proc.

Input
queue

GPU
queue Single crypto

Batched crypto

Figure 6: Overview of SSLShader

servers without code modification. SSLShader interacts
directly with the SSL clients while communicating with
the back-end server in plaintext. We assume that the
SSLShader-to-server communication takes place in a se-
cure environment, but one can encrypt the back-end traf-
fic with a shared symmetric key in other cases.

The design goal of SSLShader is twofold. First, the
performance should scale well to the number of CPU and
GPU cores. Second, SSLShader should curb the latency
to support interactive environments while improving the
throughput at high load. In this section we outline the
key design features of SSLShader.

5.1 Basic Design
Figure 6 depicts the overall architecture of SSLShader.
SSLShader is implemented in event-driven threads. To
scale with multi-core CPUs, it spawns one worker thread
per CPU core and each thread accepts and processes
client-side SSL connections independently. Each con-
nection is accepted and processed by the same thread to
avoid cache bouncing between CPU cores. SSLShader
also creates one GPU-interfacing thread per GPU that
launches GPU kernel functions to offload cryptographic
operations.

Each cryptographic operation type (RSA, AES,
HMAC-SHA1) has its own request input queue per
worker thread. Cryptographic operations of the same
type are inserted into the same queue, and are moved
to a queue in the GPU-interfacing thread when the in-
put queue size exceeds a certain threshold value. GPU-
interfacing threads simply offload the requested opera-
tions in a batch by launching GPU kernels. The results
are placed back on a per-worker thread output queue so
that the worker thread can resume the execution of the
next step in SSL processing.

5.2 Opportunistic Offloading
In order to fully exploit the parallelism, we should batch
multiple cryptographic operations and offload them to
the GPU. On the GTX580, the peak 1024-bit RSA per-
formance is achieved when batching 256-512 operations,
that is, handling 256-512 concurrent SSL connections.

Cryptographic operation Minimum Maximum

RSA (1024-bit) 16 512
AES128-CBC Decryption 32 (2,048) 2,048
AES128-CBC Encryption 128 (2,048) 2,048

HMAC-SHA1 128 2,048

Table 2: Thresholds for GPU cryptographic operations per sin-
gle kernel launch. Numbers in parenthesis are thresholds when
AES-NI is used.

While batching generally improves the GPU throughput,
a naı̈ve approach of batching a fixed number of opera-
tions would increase processing latency when the load
level is low.

We propose a simple GPU offloading algorithm that
reduces response latency when lightly loaded and im-
proves the overall throughput at high load. When a
worker thread inserts a cryptographic request to an in-
put queue, it first checks the number of the same type of
requests in all workers’ queues, and its minimum batch-
ing threshold (the number of queued requests required
for GPU offloading). If the number of requests is above
the threshold, SSLShader moves all the requests in the
worker thread queue to a GPU-interfacing thread queue.
The batching thresholds are determined based on the
GPU’s throughput. The minimum threshold is set when
the GPU performs better than a single CPU core, and
the maximum is set when the maximum throughput is
achieved. We limit maximum batch size since pushing
too many requests into a queue in the GPU-interfacing
thread could result in long delay without throughput im-
provement. The thresholds can be drawn automatically
from benchmark tests at configuration time. For AES,
thresholds are different when AES-NI is enabled. If
AES-NI is available, we set the minimum threshold to
be the same as the maximum threshold, hoping to ben-
efit from extra processing power only when the CPU is
overloaded. Table 2 shows the thresholds we use with
the GTX580.

For low latency and high parallelism, the worker
thread prioritizes I/O events, and processes crypto-
graphic operations when it has no I/O event. Worker
threads handle cryptographic operations in the first-in
first-out (FIFO) manner. We put a timestamp on each
cryptographic request as it arrives, and use the times-
tamp to find the earliest arrived operation. The GPU also
uses FIFO scheduling for processing cryptographic op-
erations. The GPU-interfacing thread looks at the head
timestamp of requests by the type, and processes the ear-
liest request’s type in a batch. Sometimes it takes too
long for the worker thread to drain the cryptographic
operations in its queue and this can lead to I/O star-
vation. To prevent this, we have worker threads peri-
odically check for I/O events while processing crypto-
graphic operations.

We also tested priority-based scheduling by having the

10 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

20000

40000

60000

80000

100000

1 4 16 64 256 1024

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s)

Number of ciphertext messages

SYNC
ASYNC 16 streams

(a) 1024-bit RSA decryption

0

2000

4000

6000

8000

10000

12000

32 64 128 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

bp
s)

Number of flows

(b) 128-bit AES-CBC encryption

0
5000

10000
15000
20000
25000
30000
35000
40000

32 64 128 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

bp
s)

Number of flows

(c) HMAC-SHA1

Figure 7: Performance improvement from asynchronous concurrent execution with 16 streams, independent CUDA contexts of
commands that execute in order asynchronously. Each flow size is 16KB for (b) and (c).

CPU prioritize HMAC-SHA1 and AES encryption, and
the GPU prioritize RSA and AES decryption. This strat-
egy often improves the peak throughput, but we reject
this idea because lower-priority cryptographic operations
could suffer from starvation, and we noticed unstable
throughput and longer latency in many cases.

5.3 NUMA-aware GPU Sharing
NUMA systems are becoming commonplace in server
machines. In NUMA systems, the communication cost
between CPU cores varies greatly, depending on the
number of NUMA hops. For high scalability, it is nec-
essary to reduce inter-core communication by careful
NUMA-aware data placement.

When we use a GPU, we should consider the follow-
ing issues: (i) GPUs are known to perform badly when
used by multiple threads simultaneously due to high
context switching overhead [48]; (ii) gathering crypto-
graphic operations from multiple cores brings more par-
allelism and helps to exploit the full GPU capacity; and
(iii) memory access or synchronization across NUMA
nodes is much more expensive than intra-NUMA node
operation. For these reasons, we limit the sharing of
GPUs to the threads in the same NUMA node.

For intra-NUMA node communication we choose
threads over processes for faster sharing of the queues as
offloading cryptographic operations requires data move-
ment between worker and GPU-interfacing threads. For
inter-NUMA node communication, we choose processes
for ease of connection handling without kernel lock con-
tention at socket creation and closure.

5.4 Asynchronous Concurrent Execution
The most recent CUDA device with Compute Capability
2.0 provides concurrent GPU kernel execution and data
copy for better utilization of the GPU. On the GTX580,
up to sixteen different kernels can run simultaneously
within a single GPU, and copies from device to host
and host to device can overlap with each other as well

as with kernel execution To benefit from concurrent ex-
ecution and copy, SSLShader launches all GPU trans-
actions asynchronously. With asynchronous concurrent
execution, we see up to 1,399%, 731%, and 890% per-
formance improvements over synchronous execution in
RSA, AES encryption and HMAC-SHA1, respectively.
Figure 7 depicts the effect of asynchronous concurrent
execution by varying the batch size. When the batch size
is small, asynchronous concurrent execution improves
performance greatly as idle GPU cores can be better uti-
lized. But even for a large batch size such as 2,048,
we see 30 ∼ 60% performance improvement in HMAC-
SHA1 and AES. The overlap of DMA data copy and
kernel execution improves the performance even when
all cores in the GPU are already utilized. In RSA, the
performance improvement in the batch size of 1024 is
fairly small compared to those of AES or HMAC-SHA1
because the data copy time in RSA is relatively smaller
than the execution time and the GPU is sufficiently uti-
lized with large batch sizes.

We believe our design and implementation strategies
in this section are not limited to only SSLShader, and can
be applied to any applications that want to exploit the
massive parallelism of GPUs. While none of the tech-
niques are ground-breaking, their combination brings a
drastic difference in the utilization of GPUs, latency re-
duction, and throughput improvement.

6 Evaluation

In this section we evaluate the effectiveness of
SSLShader using HTTPS, the most popular protocol that
uses SSL. We show that SSLShader achieves high perfor-
mance in connection handling and large-file data transfer
with small latency overhead.

6.1 System Configuration
Our server platform is equipped with two Intel Xeon
X5650 (hexa-core 2.66 GHz) CPUs, 24 GB memory,
and two NVIDIA GTX580 cards (512 cores, 1.5 GHz,

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 11

21,819

19,548

13,554

27,752

29,056

23,444

3,632

3,602

3,625

11,322

11,377

11,532

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

16000

4000

1000

16000

4000

1000

20
48

 b
its

10
24

 b
its

HTTPS transactions per second

of

 c
on

cu
rr

en
t c

lie
nt

s

 lighttpd
 SSLShader

Figure 8: Transactions per second

1.5 GB RAM). We install Ubuntu Linux 10.04, NVIDIA
CUDA Driver v256.40, and Intel ixgbe6 driver v2.1.4
on the server. As back-end web server software, we run
lighttpd7 v1.4.28 with 12 worker processes to match
the number of CPU cores. In all experiments, we run
lighttpd and SSLShader on the same machine.

We compare SSLShader against lighttpd with
OpenSSL. For fair comparison, we spent a fair amount
of time to patch OpenSSL 1.0.0 to use IPP 7.0 which
has AES-NI support as well as the latest RSA and
SHA-1 optimizations. We find that IPP 7.0 improves
the RSA, AES, and HMAC performance by 55%, 10%,
and 22% respectively from the OpenSSL 1.0.0 default
implementation. As our goal is to offload SSL compu-
tation overhead, we focus on static content to prevent
the back-end web server from becoming a bottleneck.
To generate HTTP requests, we run the Apache HTTP
server benchmark tool (ab) [1] on seven 2.66 GHz Intel
Nehalem quad-core client machines. We modified ab
to support rate-limiting and to report latency for each
connection.

6.2 SSL Handshake Performance
To evaluate the performance of connection handshake,
we measure the number of SSL transactions per second
(TPS) for a small HTTP object (43 bytes including HTTP
headers). Figure 8 shows the maximum TPS achieved by
varying the number of concurrent connections. For 1024-
bit RSA keys, SSLShader achieves 29K TPS, which
is 2.5 times faster than 11.2K TPS for lighttpd with
OpenSSL. SSLShader achieves 21.8K TPS, for 2048-
bit RSA, which is 6 times higher than 3.6K TPS of
lighttpd. Given that 768-bit RSA was cracked early
in 2010 [12] and that NIST recommends 2048-bit RSA
for secure operations as of 2011 [46], the large perfor-
mance improvement with 2048-bit RSA is significant.
In SSLShader, the throughput increases as the concur-
rency increases because the GPU can exploit more par-
allelism. In 2048-bit RSA, 21.8K is close to the peak

6http://sourceforge.net/projects/e1000/files/ixgbe%20stable/
7http://www.lighttpd.net/

Image Name CPU Usage (%)
Kernel NIC device driver 2.32
Kernel (including TCP/IP stack) 60.35
SSLShader 5.31
libc (memory copy and others) 9.88
IPP + libcrypto (cryptographic operations) 12.89
lighttpd (back-end web server) 4.90
others 4.35

Table 3: CPU usage breakdown using oprofile

throughput of 24.1K msg/s with two GTX580s, mean-
ing that the GPUs are almost fully utilized. However,
the performance of RSA 1024-bit is much less than the
peak throughput of a single GPU, which implies that the
GPUs have idle computing capacity.

We run oprofile to analyze the bottleneck for the
RSA 1024-bit case with 16,000 concurrent clients. Ta-
ble 3 summarizes where the CPU cycles are spent. We
see that more than 60% of CPU time is spent in the ker-
nel for accepting connections and networking I/O; 13%
of the CPU cycles are spent for cryptographic operations,
mostly for the Pseudo Random Function (PRF) used for
generating session keys from the master secret in the
handshake step. We chose not to offload PRF to GPUs
because it is run only once in the handshake step and
its computation overhead is less than 1/10th of the RSA
decryption overhead. We conclude that the performance
bottleneck is in the Linux kernel that does not scale to
multi-core CPUs for connection acceptance, as is also
observed in [57].

6.3 Response Time Distribution
Naı̈vely using a GPU for cryptographic operations could
lead to high latency when the load level is low. Oppor-
tunistic offloading guards against this problem, minimiz-
ing the latency when the load is light and maximizing
the throughput when the load is high. To evaluate the ef-
fectiveness of our opportunistic offloading algorithm, we
measure the response time for both heavy and light load
cases. We control the load by rate-limiting the clients.
For lighttpd, we set the limits to 1K TPS for light
load and 11K TPS for heavy load. For SSLShader, we
further increase the heavy load limit to 29K TPS. For
heavy load experiments, we vary the maximum number
of clients from 1K to 4K. Clients repeatedly request the
small HTTP objects as in the handshake experiment.

Figure 9 shows the cumulative distribution functions
(CDFs) of response times. When the load level is low,
both lighttpd and SSLShader handle most of the con-
nections in a few milliseconds (ms), which shows that the
opportunistic offloading algorithm intentionally uses the
CPU to benefit from its low latency. SSLShader shows
a slight increase in response time (2 ms vs. 3 ms on
median) due to the proxying overhead. At heavy load

12 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2

14

76

260

167

3,229

3

5

39

64

74

518

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

C
D

F
(%

)

latency (ms)

lighttpd(1K,1K)
lighttpd(11K,1K)
lighttpd(11K,4K)
SSLShader(1K,1K)
SSLShader(29K,1K)
SSLShader(29K,4K)

Figure 9: Latency distribution in the overloaded case. Num-
bers in parenthesis represent the maximum requests rate and
the maximum concurrency.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

4 16 64 256 1024 4096 16384 65536

Th
ro

ug
hp

ut
 (M

bp
s)

Content size (KB)

lighttpd
SSLShader
lighttpd w/ AES-NI
SSLShader w/ AES-NI

Figure 10: Bulk transfer throughput

with 1K concurrent connections, SSLShader’s latency is
lower than that of lighttpd because CPUs are over-
loaded and lighttpd produces longer response times.
In contrast, SSLShader reduces the CPU overhead by
offloading the majority of cryptographic operations to
GPUs. SSLShader shows 39 ms and 64 ms for 50th and
99th percentiles while lighttpd shows 76 ms and 260
ms each even at the much lower TPS load level. Even
if we increase the load with 4K concurrent clients, 70%
of SSLShader response times remain similar to those of
lighttpd with 1K clients at the 11K TPS level.

6.4 Bulk Data Encryption Performance
We measure bulk data encryption performance by vary-
ing the file size from 4 KB to 64 MB with and with-
out AES-NI support, and show the results in Figure 10.
When AES-NI is enabled, the SSLShader throughput
peaks at 13 Gbps while lighttpd peaks at 16.0 Gbps.
We note that increasing the content size above 64 MB
does not increase lighttpd’s throughput. For contents
smaller than 4 MB, SSLShader performs 1.3 to 2.2x bet-
ter than lighttpd while lighttpd shows 1.1x to 1.2x
better performance for contents larger than 4 MB. As the
content size grows and throughput increases, the proxy-
ing overhead increases accordingly, and eventually be-
comes the performance bottleneck. With oprofile, we
find that 30% of CPU time is spent on data copying,
and 20% is spent on handling interrupts for SSLShader,

leaving only 50% for use in cryptographic operation and
other processing. Without AES-NI, SSLShader achieves
8.9 Gbps, while lighttpd achieves 9.6 Gbps. The peak
throughput of SSLShader is slightly lower due to the
copying overhead as well.

Considering typical Web objects and email contents
are smaller than 100 KB [21, 23], we believe that the
performance gain in small content size and the benefit
of transparent proxying outweigh the small performance
loss in large files in many real-world scenarios. Also,
the GPU is starting to be integrated into the CPU as in
AMD’s Fusion [16], and we expect that such technology
will mitigate the performance problem by eliminating the
data transfer between GPU and CPU.

7 Discussion & Related Work

SSL Performance: SSL performance analysis and ac-
celeration have drawn much attention in the context of
secure Web server performance. Earlier, Apostolopou-
los et al. analyzed the SSL performance of Web servers
using the SpecWeb96 benchmark tool [22]. They ob-
serve that the SSL-enabled Web servers are up to two
orders of magnitude slower than plaintext Web servers.
For small HTTP transactions, the main bottleneck lies
in SSL handshaking while data encryption takes up sig-
nificant CPU cycles when the content gets larger. Later,
Coarfa et al. reported similar results and estimated the
upper bound in the performance improvement with each
SSL operation optimization [29]. To improve the SSL
handshake performance, Boneh et al. proposed client-
side caching of server certificates to reduce the SSL
round-trip overhead [25]. Another approach is to pro-
cess multiple RSA decryptions in a batch using Fiat’s
batch RSA [55]. They report a 2.5x speedup on their Web
server experiments by batching four RSA operations.

Recently, Kounavis et al. improve the SSL perfor-
mance with general-purpose CPUs [43]. They opti-
mize the schoolbook big number multiplication and ben-
efit from AES-NI for symmetric cipher. To reduce the
CPU overhead for MAC algorithms, they use the Ga-
lois Counter Mode (GCM) which combines the AES en-
cryption with the authentication. In comparison, we ar-
gue that GPUs bring extra computing power in a cost-
effective manner, especially for RSA and HMAC-SHA1.
By parallelizing the schoolbook multiplication and vari-
ous optimizations, our 1024-bit RSA implementation on
a GPU shows 30x improvement over their 3.0 GHz CPU
core. Further, we focus on TLS 1.0 which is widely used
in practice, whereas GCM is only supported in TLS 1.2,
which is not popular yet.

AES Implementations on GPU: Modern GPUs are at-
tractive for computation-intensive AES operations [30,
31,36,44,49,58]. Most GPU-based implementations ex-

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 13

ploit shared memory and on-demand round key calcula-
tion to reduce the global memory access. However, we
find few references that evaluate the AES performance in
the CBC mode. Unlike electronic codebook (ECB) mode
or counter (CTR) mode, the CBC mode is hard to paral-
lelize but is most widely used. Also, most of them report
the numbers without data copy overhead, but we find the
copy overhead severely impairs the AES performance.

Manavski et al. report 8.28 Gbps AES performance on
GTX 280 (240 cores, 1.296 GHz) [44], while Osvik et
al. report 30.9 Gbps on half of a GTX 295 (2 x 240
cores, 1.242 GHz) [49]. Both of them use the ECB mode
without data copy overhead. In the same setting, our im-
plementation shows 32.8 Gbps on GTX 285 (240 cores,
1.476 GHz). Direct comparison is hard due to differ-
ent GPUs, but our number is comparable to these results
(3.48x that of Manavski’s, 0.89x that of Osvik’s) by the
cycles per byte metric.

RSA Implementations on GPU: Szerwinski and
Güneysu made the first implementation of RSA on
the general-purpose GPU computation framework [56].
They reported two orders of magnitude lower perfor-
mance than ours, but it should not be directly compared
because they used a relatively old NVIDIA 8800GTS
card with a different GPU architecture.

Harrison and Waldron report on 1024-bit key RSA
implementation on an NVIDIA GPU [37], and to the
best of our knowledge theirs is the fastest implemen-
tation before our work. They compare serial and MP
parallel approaches in Montgomery multiplication and
conclude that the parallel implementation shows worse
performance at scale due to GPU thread synchronization
overhead. We have run their serial code on an NVIDIA
GTX580 card, and found that their peak throughput
reaches 31,220 operations/s at a latency of 131 ms
with 4,096 messages per batch. Our throughput on the
same card shows 74,733 operations/s at a latency of
13.7 ms with 512 messages per batch, 2.3x improvement
in throughput and 9.6x latency reduction.

Comparison with H/W Acceleration Cards: Many
SSL cards support OpenSSL engine API [11] so that
their hardware can easily accelerate existing software.
Current hardware accelerators support 7K to 200K RSA
operations/s with 1024-bit keys [10, 14]. Our GPU im-
plementation is comparable with these high-end hard-
ware accelerators, running at up to 92K RSA opera-
tions/s at much lower cost. Moreover, GPUs are flexible
for adoption of new cryptographic algorithms.

Other Protocols for Secure Communication: Bittau et
al. propose tcpcrypt as an extension of TCP for secure
communication [24]. Tcpcrypt is essentially a clean-slate
redesign of SSL that shifts the decryption overhead by
private key to clients and that allows a range of authen-
tication mechanisms. Their evaluation reports 25x better

connection handling performance when compared with
SSL. Moreover, tcpcrypt provides forward secrecy by
default while SSL leaves that as an option. While fix-
ing the SSL protocol is desirable, we focus on improv-
ing the current practice of SSL in this work. IPsec [17]
provides secure communication at the IP layer, which is
widely used for VPN. IPsec can be more easily paral-
lelized compared to SSL since many packets can be pro-
cessed in parallel [35].

Performance per $ Comparison: In Table 4, we show
the price and relative performance to price for two CPUs,
GTX580, and a popular SSL accelerator card. Intel Xeon
X5650 and GTX580 are choices for our experiments.
i7 920 has four CPU cores with the same clock speed
as the X5650 without AES-NI support. We choose the
CN16208 because it is one of the most cost-effective ac-
celerators that we have found. Though it is difficult to
compare the performance per dollar directly (e.g., GPU
cannot be used without CPU), we present the informa-
tion here to get the sense of cost effectiveness for each
hardware.

Price RSA AES-ENC AES-DEC SHA1
($) (ops/sec/$) (Mbps/$) (Mbps/$) (Mbps/$)

X5650 996 19.9 30.6 92.2 20.2
i7 920 288 45.8 18.9 19.0 46.5
GTX580 499 185.3 21.3 25.1 62.3
CN1620 2,129 30.5 2.8 2.8 2.8

Table 4: Performance per $ comparison (price as of Feb. 2011)

GTX580 shows the best performance per dollar for
RSA and HMAC-SHA1. For AES operations, X5650 is
the best with its AES-NI capability, and GTX580 shows
a slightly better number compared to i7 920. CN1620
is inefficient in terms of performance per dollar for all
operations. SSL accelerators typically have much bet-
ter power efficiency compared to general purpose proces-
sors and it is mainly used in high-end network equipment
rather than on server machines.

8 Conclusions

We have enjoyed the security of SSL for over a decade
and it is high time that we used it for every private In-
ternet communication. As a cheap way to scale the per-
formance of SSL, we propose using graphics cards as
high-performance SSL accelerators. We have presented
a number of novel techniques to accelerate the crypto-
graphic operations on GPUs. On top of that, we have
built SSLShader, an SSL reverse proxy, that opportunis-
tically offloads cryptographic operations to GPUs and
achieves high throughput and low response latency.

8 Model name is CN1620-400-NHB4-E-G and more details are on
http://www.scantec-shop.com/cn1620-400-nhb4-e-g-375.html

14 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Our evaluation shows that we can scale 1024-bit RSA
up to 92K operations/s with a single GPU card by care-
ful workload pipelining. SSLShader handles 29K SSL
TPS and achieves 13 Gbps bulk encryption throughput
on commodity hardware. We hope our work pushes SSL
to a wider adoption than today.

We report that inefficiency in the Linux TCP/IP stack
is keeping performance lower than what SSLShader can
potentially offer. Most of the inefficiency in the Linux
TCP/IP stack comes from mangled flow affinity and seri-
alization problems in multi-core systems. We leave these
issues to future work.

9 Acknowledgment

We thank Geoff Voelker, anonymous reviewers, and
our shepherd David Mazières for their help and invalu-
able comments. This research was funded by NAP
of Korea Research Council of Fundamental Science &
Technology, MKE (Ministry of Knowledge Economy
of Repbulic of Korea, project no. 10035231-2010-01),
KAIST ICC, and KAIST High Risk High Return Project
(HRHRP).

References
[1] ab - Apache HTTP Server Benchmarking Tool. http://httpd.apache.

org/docs/2.2/en/programs/ab.html.
[2] Alexa Top 500 Global Sites. http://www.alexa.com/topsites.
[3] Application Delivery Controllers, Array Networks. http://www.

arraynetworks.net/?pageid=365.
[4] Content Services Switches, Cisco. http://www.cisco.com/web/go/

css11500.
[5] Digital Signature Standard. http://csrc.nist.gov/fips.
[6] F5 BIG-IP SSL Accelerator. http://www.f5.com/products/big-ip/

feature-modules/ssl-acceleration.html.
[7] Intel Advanced Encryption Standard Instructions (AES-

NI). http://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-instructions-aes-ni/.

[8] Intel Integrated Performance Primitives. http://software.intel.com/
en-us/intel-ipp/.

[9] nFast Series, Thales. http://iss.thalesgroup.com/Products/.
[10] NITROX security processor, Cavium Networks. http://www.

caviumnetworks.com/processor_security_nitrox-III.html.
[11] OpenSSL Engine. http://www.openssl.org/docs/crypto/engine.

html.
[12] Researchers crack 768-bit RSA. http://www.bit-tech.net/news/

bits/2010/01/13/researchers-crack-768-bit-rsa/1.
[13] ServerIron ADX Series, Brocade. http://www.brocade.

com/products-solutions/products/application-delivery/
serveriron-adx-series/index.page.

[14] Silicom Protocol Processor Adapter. http://www.silicom-usa.com/
default.asp?contentID=676.

[15] SSL Acceleration Cards, CAI Networks. http://cainetworks.com/
products/ssl/rsa7000.htm.

[16] The AMD Fusion Family of APUs. http://sites.amd.com/us/
fusion/APU/Pages/fusion.aspx.

[17] Security Architecture for the Internet Protocol. RFC 4301, 2005.
[18] Netcraft SSL Survey. http://news.netcraft.com/SSL-survey, 2009.
[19] Netcraft Web Server Survey. http://news.netcraft.com/archives/

2010/04/15/april_2010_web_server_survey.html, 2009.
[20] NVIDIA’s Next Generation CUDATMCompute Architecture: FermiTM.

http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2009.

[21] S. Agarwal, V. N. Padmanabhan, and D. A. Joseph. Addressing email loss
with suremail: Measurement, design, and evaluation. In USENIX ATC,
2007.

[22] G. Apostolopoulos, V. Peris, and D. Saha. Transport Layer Security: How
much does it really cost? In IEEE Infocom, 1999.

[23] A. Badam, K. Park, V. Pai, and L. Peterson. Hashcache: Cache storage for
the next billion. In NSDI, 2009.

[24] A. Bittau, M. Hamburg, M. Handley, D. Mazières, and D. Boneh. The case
for ubiquitous transport-level encryption. In USENIX Security Symposium,
2010.

[25] D. Boneh, H. Shacham, and E. Rescrola. Client side caching for TLS. In
Network and Distributed System Security Symposium (NDSS), 2002.

[26] J. Bos and M. Coster. Addition chain heuristics. In Advances in Cryptology
(CRYPTO), 1989.

[27] Ç. K. Koç. High-speed RSA implementation. Technical Report, 1994.
[28] Ç. K. Koç. Analysis of sliding window techniques for exponentiation. Com-

puter and Mathematics with Applications, 30(10):17–24, 1995.
[29] C. Coarfa, P. Druschel, and D. S. Wallach. Performance Analysis of TLS

Web Servers. In Network and Distributed System Security Symposium
(NDSS), 2002.

[30] D. L. Cook, J. Ioannidis, A. D. Keromytis1, and J. Luck. CryptoGraph-
ics: Secret Key Cryptography Using Graphics Cards . In RSA Conference,
Cryptographers Track (CT-RSA), 2005.

[31] N. Costigan and M. Scott. Accelerating SSL using the Vector processors
in IBMs Cell Broadband Engine for Sonys Playstation 3. In Cryptology
ePrint Archive, Report, 2007.

[32] J. Daemen and V. Rijmen. AES Proposal: Rijndael.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf, 1999.

[33] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[34] S. Dussé and B. Kaliski. A cryptographic library for the Motorola
DSP56000. In Advances in Cryptology—EUROCRYPT 1990.

[35] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated
software router. In ACM SIGCOMM, 2010.

[36] O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on
Modern Graphics Hardware. In USENIX Security Symposium, 2008.

[37] O. Harrison and J. Waldron. Efficient Acceleration of Asymmetric Cryp-
tography on Graphics Hardware. In International Conference on Cryptol-
ogy in Africa, 2009.

[38] J. Jonsson and B. Kaliski. Public-key cryptography standards (PKCS) #1:
RSA cryptography specifications version 2.1, 2003.

[39] E. Kasper and P. Schwabe. Faster and timing-attack resistant aes-gcm. In
Cryptographic Hardware and Embedded Systems (CHES). 2009.

[40] S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-rower architecture
for fast parallel montgomery multiplication. In Advances in Cryptology—
EUROCRYPT 2000, pages 523–538. Springer, 2000.

[41] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, 3th edition, 1997.

[42] N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[43] M. E. Kounavis, X. Kang, K. Grewal, M. Eszenyi, S. Gueron, and
D. Durham. Encrypting the internet. SIGCOMM Comput. Commun. Rev.,
40(4):135–146, 2010.

[44] S. A. Manavski. CUDA compatible gpu as an efficient hardware accelerator
for aes cryptography.

[45] P. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, 1985.

[46] National Institute of Standards and Technology (NIST). Recommendation
for Key Management Part 1: General (Revised). 2007.

[47] NVIDIA Corp. NVIDIA CUDA: Best Practices Guide, Version 3.1. 2010.
[48] NVIDIA Corp. NVIDIA CUDA: Programming Guide, Version 3.1. 2010.
[49] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software aes

encryption. In Foundations of Software Engineering (FSE), 2010.
[50] H. Park, K. Park, and Y. Cho. Analysis of the variable length nonzero

window method for exponentiation. Computers & Mathematics with Ap-
plications, 37(7):21–29, 1999.

[51] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA
public-key cryptosystem. Electronics Letters, 18(21):905–907, 1982.

[52] E. Rescorla, A. Cain, and B. Korver. SSLACC: A Clustered SSL Acceler-
ator. In USENIX Security Symposium, 2002.

[53] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[54] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for vi-
sual computing. ACM Transactions on Graphics (TOG), 27(3):1–15, 2008.

[55] H. Shacham and D. Boneh. Improving SSL Handshake Performance via
Batching. In RSA Conference, 2001.

[56] R. Szerwinski and T. Gneysu. Exploiting the Power of GPUs for Asymmet-
ric Cryptography. In International Workshop on Cryptographic Hardware
and Embedded Systems, 2008.

[57] S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
An operating system for many cores. In USENIX OSDI, 2008.

[58] J. Yang and J. Goodman. Symmetric Key Cryptography on Modern Graph-
ics Hardware. In ASIACRYPT, 2007.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 15

ServerSwitch: A Programmable and High Performance Platform for Data
Center Networks

Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou†∗

Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui Gao, Yongguang Zhang
Microsoft Research Asia, Beijing, China
† Tsinghua University, Beijing, China

Abstract

As one of the fundamental infrastructures for cloud
computing, data center networks (DCN) have recently
been studied extensively. We currently use pure
software-based systems, FPGA based platforms, e.g.,
NetFPGA, or OpenFlow switches, to implement and
evaluate various DCN designs including topology de-
sign, control plane and routing, and congestion control.
However, software-based approaches suffer from high
CPU overhead and processing latency; FPGA based plat-
forms are difficult to program and incur high cost; and
OpenFlow focuses on control plane functions at present.

In this paper, we design a ServerSwitch to address the
above problems. ServerSwitch is motivated by the ob-
servation that commodity Ethernet switching chips are
becoming programmable and that the PCI-E interface
provides high throughput and low latency between the
server CPU and I/O subsystem. ServerSwitch uses a
commodity switching chip for various customized packet
forwarding, and leverages the server CPU for control and
data plane packet processing, due to the low latency and
high throughput between the switching chip and server
CPU.

We have built our ServerSwitch at low cost. Our ex-
periments demonstrate that ServerSwitch is fully pro-
grammable and achieves high performance. Specifically,
we have implemented various forwarding schemes in-
cluding source routing in hardware. Our in-network
caching experiment showed high throughput and flexi-
ble data processing. Our QCN (Quantized Congestion
Notification) implementation further demonstrated that
ServerSwitch can react to network congestions in 23us.

∗This work was performed when Zhiqiang Zhou was a visiting stu-
dent at Microsoft Research Asia.

1 Introduction

Data centers have been built around the world for var-
ious cloud computing services. Servers in data centers
are interconnected using data center networks. A large
data center network may connect hundreds of thousands
of servers. Due to the rise of cloud computing, data cen-
ter networking (DCN) is becoming an important area of
research. Many aspects of DCN, including topology de-
sign and routing [15, 5, 13, 11, 22], flow scheduling and
congestion control [7, 6], virtualization [14], application
support [26, 4], have been studied.

Since DCN is a relatively new exploration area, many
of the designs (e.g., [15, 5, 13, 22, 7, 14, 4]) have de-
parted from the traditional Ethernet/IP/TCP based packet
format, Internet-based single path routing (e.g., OSPF),
and TCP style congestion control. For example, Port-
land performs longest prefix matching (LPM) on destina-
tion MAC address, BCube advocates source routing, and
QCN (Quantized Congestion Notification) [7] uses rate-
based congestion control. Current Ethernet switches and
IP routers therefore cannot be used to implement these
designs.

To implement these designs, rich programmability
is required. There are approaches that provide this
programmability: pure software-based [17, 10, 16] or
FPGA-based systems (e.g., NetFPGA [23]). Software-
based systems can provide full programmability and as
recent progress [10, 16] has shown, may provide a rea-
sonable packet forwarding rate. But their forwarding rate
is still not comparable to commodity switching ASICs
(application specific integrated circuit), and the batch
processing used in their optimizations introduces high
latency which is critical for various control plane func-
tions such as signaling and congestion control [13, 22, 7].
Furthermore, the packet forwarding logics in DCN (e.g.,
[15, 13, 22, 14]) are generally simple and hence are
better implemented in silicon for cost and power sav-
ings. FPGA-based systems are fully programmable. But

16 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the programmability is provided by hardware description
languages such as Verilog, which are not as easy to learn
and use as higher-level programming languages such as
C/C++. Furthermore, FPGAs are expensive and are diffi-
cult to use in large volumes in data center environments.

In this paper, we design a ServerSwitch platform,
which provides easy-to-use programmability, low la-
tency and high throughput, and low cost. ServerSwitch
is based on two observations as follows. First, we ob-
serve that commodity switching chips are becoming pro-
grammable. Though the programmability is not compa-
rable to general-purpose CPUs, it is powerful enough to
implement various packet forwarding schemes with dif-
ferent packet formats. Second, current standard PCI-E
interface provides microsecond level latency and tens of
Gb/s throughput between the I/O subsystem and server
CPU. ServerSwitch is then a commodity server plus a
commodity, programmable switching chip. These two
components are connected via the PCI-E interface.

We have designed and implemented ServerSwitch. We
have built a ServerSwitch card, which uses a merchan-
dise gigabit Broadcom switching chip. The card con-
nects to a commodity server using a PCI-E X4 interface.
Each ServerSwitch card costs less than 400$ when man-
ufactured in 100 pieces. We also have implemented a
software stack, which manages the card, and provides
support for control and data plane packet processing. We
evaluated ServerSwitch using micro benchmarks and real
DCN designs. We built a ServerSwitch based, 16-server
BCube [13] testbed. We compared the performance of
software-based packet forwarding and our ServerSwitch
based forwarding. The results showed that ServerSwitch
achieves high performance and zero CPU overhead for
packet forwarding. We also implemented a QCN con-
gestion control [7] using ServerSwitch. The experi-
ments showed stable queue dynamics and that Server-
Switch can react to congestion in 23us.

ServerSwitch explores the design space of combin-
ing a high performance ASIC switching chip with lim-
ited programmability with a fully programmable mul-
ticore commodity server. Our key findings are as fol-
lows: 1) ServerSwitch shows that various packet for-
warding schemes including source routing can be of-
floaded to the ASIC switching chip, hence resulting in
small forwarding latency and zero CPU overhead. 2)
With a low latency PCI-E interface, we can implement
latency sensitive schemes such as QCN congestion con-
trol, using server CPU with a pure software approach.
3) The rich programmability and high performance pro-
vided by ServerSwitch can further enable new DCN ser-
vices that need in-network data processing such as in-
network caching [4].

The rest of the paper is organized as follows. We elab-
orate the design goals in § 2. We then present the ar-

chitecture of ServerSwitch and our design choices in § 3.
We illustrate the software, hardware, and API implemen-
tations in § 4. § 5 discusses how we use ServerSwitch to
implement two real DCN designs, § 6 evaluates the plat-
form with micro benchmarks and real DCN implemen-
tations. We discuss ServerSwitch limitations and 10G
ServerSwitch in § 7. Finally, we present related work in
§ 8 and conclude in § 9.

2 Design Goals

As we have discussed in § 1, the goal of this paper is
to design and implement a programmable and high per-
formance DCN platform for existing and future DCN
designs. Specifically, we have following design goals.
First, on the data plane, the platform should provide a
packet forwarding engine that is both programmable and
achieves high-performance. Second, the platform needs
to support new routing and signaling, flow/congestion
control designs in the control plane. Third, the platform
enables new DCN services (e.g., in-network caching) by
providing advanced in-network packet processing. To
achieve these design goals, the platform needs to provide
flexible programmability and high performance in both
the data and control planes. It is highly desirable that the
platform be easy to use and implemented in pure com-
modity and low cost silicon, which will ease the adoption
of this platform in a real world product environment. We
elaborate on these goals in detail in what follows.

Programmable packet forwarding engine. Packet
forwarding is the basic service provided by a switch or
router. Forwarding rate (packet per second, or PPS) is
one of the most important metrics for network device
evaluation. Current Ethernet switches and IP routers can
offer line-rate forwarding for various packet sizes. How-
ever, recent DCN designs require a packet forwarding en-
gine that goes beyond traditional destination MAC or IP
address based forwarding. Many new DCN designs em-
bed network topology information into server addresses
and leverage this topology information for packet for-
warding and routing. For example, PortLand [22] codes
its fat-tree topology information into device MAC ad-
dresses and uses Longest Prefix Matching (LPM) over its
PMAC (physical MAC) for packet forwarding. BCube
uses source routing and introduces an NHI (Next Hop
Index, §7.1 of [13]) to reduce routing path length by
leveraging BCube structural information. We expect
that more DCN architectures and topologies will appear
in the near future. These new designs call for a pro-
grammable packet forwarding engine which can handle
various packet forwarding schemes and packet formats.

New routing and signaling, flow/congestion control
support. Besides the packet forwarding functions in the
data plane, new DCN designs also introduce new control

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 17

and signaling protocols in the control plane. For exam-
ple, to support the new addressing scheme, switches in
PortLand need to intercept the ARP packets, and redi-
rect them to a Fabric Manager, which then replies with
the PMAC of the destination server. BCube uses adap-
tive routing. When a source server needs to communi-
cate with a destination server, the source server sends
probing packets to probe the available bandwidth of mul-
tiple edge-disjoint paths. It then selects the path with
the highest available bandwidth. The recent proposed
QCN switches sample the incoming packets and send
back queue and congestion information to the source
servers. The source servers then react to the conges-
tion information by increasing or decreasing the sending
rate. All these functionalities require the switches to be
able to filter and process these new control plane mes-
sages. Control plane signaling is time critical and sen-
sitive to latency. Hence switches have to process these
control plane messages in real time. Note that current
switches/routers do offer the ability to process the con-
trol plane messages with their embedded CPUs. How-
ever, their CPUs mainly focus on management functions
and are generally lack of the ability to process packets
with high throughput and low latency.

New DCN service support by enabling in-network
packet processing. Unlike the Internet which consists of
many ISPs owned by different organizations, data centers
are owned and administrated by a single operator. Hence
we expect that technology innovations will be adopted
faster in the data center environment. One such inno-
vation is to introduce more intelligence into data cen-
ter networks by enabling in-network traffic processing.
For example, CamCube [4] proposed a cache service by
introducing packet filtering, processing, and caching in
the network. We can also introduce switch-assisted reli-
able multicast [18, 8] in DCN, as discussed in [26]. For
an in-network packet processing based DCN service, we
need the programmability such as arbitrary packet mod-
ification, processing and caching, which is much more
than the programmability provided by the programmable
packet forwarding engine in our first design goal. More
importantly, we need low overhead, line-rate data pro-
cessing, which may reach several to tens of Gb/s.

The above design goals call for a platform which is
programmable for both data and control planes, and it
needs to achieve high throughput and low processing
latency. Besides the programmability and high perfor-
mance design goals, we have two additional require-
ments (or constraints) from the real world. First, the
programmability we provide should be easy to use. Sec-
ond, it is highly desirable that the platform is built from
(inexpensive) commodity components (e.g., merchan-
dise chips). We believe that a platform based on com-
modity components has a pricing advantage over non-

commodity, expensive ones. The easy-to-program re-
quirement ensures the platform is easy to use, and the
commodity constraint ensures the platform is amenable
to wide adoption.

Our study revealed that none of the existing plat-
forms meet all our design goals and the easy-to-program
and commodity constraints. The pure software based
approaches, e.g., Click, have full and easy-to-use pro-
grammability, but cannot provide low latency packet pro-
cessing and high packet forwarding rate. FPGA-based
systems, e.g., NetFPGA, are not as easy to program as
the commodity servers, and their prices are generally
high. For example, the price of Virtex-II Pro 50 used
in NetFPGA is 1,180$ per chip for 100+ chip quantum
listed on the Xilinx website. Openflow switches provide
certain programmability for both forwarding and control
functions. But due to the separation of switches and the
controller, it is unclear how Openflow can be extended to
support congestion control and in-network data process-
ing.

We design ServerSwitch to meet the three design goals
and the two practical constraints. ServerSwitch has a
hardware part and a software part. The hardware part
is a merchandise switching chip based NIC plus a com-
modity server. The ServerSwitch software manages the
hardware and provides APIs for developers to program
and control ServerSwitch. In the next section, we will de-
scribe the architecture of ServerSwitch, and how Server-
Switch meets the design goals and constraints.

3 Design

3.1 ServerSwitch Architecture
Our ServerSwitch architecture is influenced by progress
and trends in ASIC switching chip and server tech-
nologies. First, though commodity switches are black
boxes to their users, the switching chips inside (e.g.,
from Broadcom, Fulcrum, and Marvell) are becoming in-
creasingly programmable. They generally provide exact
matching (EM) based on MAC addresses or MPLS tags,
provide longest prefix matching (LPM) based on IP ad-
dresses, and have a TCAM (ternary content-addressable
memory) table. Using this TCAM table, they can pro-
vide arbitrary field matching. Of course, the width of the
arbitrary field is limited by the hardware, but is gener-
ally large enough for our purpose. For example, Broad-
com Enduro series chips have a maximum width of 32
bytes, and Fulcrum FM3000 can match up to 78 bytes
in the packet header [3]. Based on the matching re-
sult, the matched packets can then be programmed to
be forwarded, discarded, duplicated (e.g., for multicast
purpose), or mirrored. Though the programmability is
limited, we will show later that it is already enough for

3

18 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User Space

Kernel

Hardware

Ex
te

rn
al

 P
or

ts

Ethernet
Controller

Ethernet
Controller

Ethernet
Controller

NIC
chips

Switching
chip

SC driver

ServerSwitch driver

API/Library

App

PCI-E PCI-E

TCP/IP

App

Se
rv

er
Se

rv
er

Sw
itc

h
Ca

rd

TCAM

NIC driver

Figure 1: ServerSwitch architecture.

all packet forwarding functions in existing, and arguably,
many future DCN designs.

Second, commodity CPU (e.g., x86 and X64 CPUs)
based servers now have a high-speed, low latency inter-
face, i.e., PCI-E, to connect to I/O subsystems such as
a network interface card (NIC). Even PCI-E 1.0 X4 can
provide 20Gbps bidirectional throughput and microsec-
ond latency between the server CPU and NIC. Moreover,
commodity servers are arguably the best programmable
devices we currently have. It is very easy to write kernel
drivers and user applications for packet processing with
various development tools (e.g., C/C++).

ServerSwitch then takes advantage of both commod-
ity servers and merchandise switching chips to meet our
design goals. Fig. 1 shows its architecture. The hard-
ware part is an ASIC switching chip based NIC and a
commodity server. The NIC and server are connected by
PCI-E. From the figure, we can see there are two PCI-E
channels. One is for the server to control and program
the switching chip, the other is for data packet exchange
between the server and switching chip.

The software part has a kernel and an application
component, respectively. The kernel component has
a switching chip (SC) driver to manage the commod-
ity switching chip and an NIC driver for the NICs.
The central part of the kernel component is a Server-
Switch driver, which sends and receives control mes-
sages and data packets through the SC and NIC drivers.
The ServerSwitch driver is the place for various control
messages, routing, congestion control, and various in-
network packet processing. The application component
is for developers. Developers use the provided APIs to
interface with the ServerSwitch driver, and to program
and control the switching chip.

Our ServerSwitch nicely fulfills all our design goals
and meets the easy-to-program and commodity con-
straints. The switching chip provides a programmable
packet forwarding engine which can perform packet
matching based on flexible packet fields, and achieve
full line rate forwarding even for small packet sizes.
The ServerSwitch driver together with the PCI-E inter-
face achieves low latency communication between the
switching chip and server CPU. Hence various rout-
ing, signaling and flow/congestion controls can be well
supported. Furthermore, the switch chip can be pro-
grammed to select specific packets into the server CPU
for advanced processing (such as in-network caching)
with high throughput. The commodity constraint is di-
rectly met since we use only commodity, inexpensive
components in ServerSwitch. ServerSwitch is easy to
use since all programming is performed using standard
C/C++. When a developer introduces a new DCN de-
sign, he or she needs only to write an application to pro-
gram the switching chip, and add any needed functions
in the ServerSwitch driver.

The ability of our ServerSwitch is constrained by the
abilities of the switching chip, the PCI-E interface, and
the server system. For example, we may not be able to
handle packet fields which are beyond the TCAM width,
and we cannot further cut the latency between the switch-
ing chip and server CPU. In practice, however, we are
still able to meet our design goals with these constraints.
In the rest of this section, we will introduce the pro-
grammable packet forwarding engine, the software, and
the APIs in detail.

3.2 ASIC-based Programmable Packet
Forwarding Engine

In this section, we discuss how existing Ethernet switch-
ing chips can be programmed to support various packet
forwarding schemes.

There are three commonly used forwarding schemes
in current DCN designs, i.e., Destination Address (DA)
based, tag-based, and Source Routing (SR) based for-
warding. DA-based forwarding is widely adopted by
Ethernet and IP networks. Tag-based forwarding decou-
ples routing from forwarding which makes traffic engi-
neering easier. SR-based forwarding gives the source
server ultimate control of the forwarding path and sim-
plifies the functions in forwarding devices. Table 1 sum-
marizes the forwarding primitives and existing DCN de-
signs for these three forwarding schemes. There are
three basic primitives to forward a packet, i.e., lookup
key extraction, key matching, and header modification.
Note that the matching criteria is independent of the for-
warding schemes, i.e., a forwarding scheme can use any
matching criteria. In practice, two commonly used cri-

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 19

Scheme
Primitives DCN

DesignExtract Match Modify

DA-based Direct Any No
Portland

DCell

Tag-based Direct Any
SWAP/
POP/
PUSH

-

SR-based
Direct Any POP VL2

Indirect Any
Change
Index

BCube

Table 1: Forwarding schemes and primitives.

teria are EM and LPM. Next, we describe the three for-
warding schemes in detail. We start from SR-based for-
warding.

3.2.1 Source Routing based Forwarding using
TCAM

For SR-based forwarding, there are two approaches de-
pending on how the lookup key is extracted: indexed and
non-indexed SR-based forwarding. In both approaches,
the source fills a series of intermediate addresses (IA) in
the packet header to define the packet forwarding path.
For the non-Indexed Source Routing (nISR), the for-
warding engine always uses the first IA for table lookup
and pops it before sending the packet. For Indexed
Source Routing (ISR), there is an index i to denote the
current hop. The engine first reads the index, then ex-
tracts IAi based on the index, and finally updates the in-
dex before sending the packet. We focus on ISR support
in the rest of this subsection. We will discuss nISR sup-
port in the next subsection since it can be implemented
as a form of tag-based forwarding.

ISR-based forwarding uses two steps for lookup key
extraction. It first gets the index from a fixed location,
and then extracts the key pointed by the index. However,
commodity switching chips rarely have the logic to per-
form this two-step indirect lookup key extraction. In this
paper, we design a novel solution by leveraging TCAM
and turning this two-step key extraction into a single step
key extraction. The TCAM table has many entries and
each entry has a value and a mask. The mask is to set the
masking bits (‘care’ and ‘do-not-care’ bits) for the value.

In our design, for each incoming packet, the forward
engine compares its index field and all IA fields against
the TCAM table. The TCAM table is set up as follows.
For each TCAM entry, the index field (i) and the IAi field
pointed by the index are ‘care’ fields. All other IA fields
are ‘do-not-care’ fields. Thus, a TCAM entry can simul-
taneously match both the index and the corresponding
IAi field. As both index and IAi may vary, we enumerate
all the possible combinations of index and IA values in

Index IA1 IA2 IA3

1 1

1 2

2 1

2 2

3 1

3 2

1

1

1

2

2

2

Output
PortTCAM Table

2 1 2 1

Incoming packet

Index IA1 IA2 IA3

Figure 2: Support indexed source routing using TCAM.

the TCAM table. When a packet comes in, it will match
one and only one TCAM entry. The action of that entry
determines the operation on that matched packet.

Fig. 2 illustrates how the procedure works. The in-
coming packet has one index field and three IA fields.
IA2 is the lookup key for this hop. In the TCAM table,
the white fields are the ‘care’ fields and the gray fields
are the ‘do-not-care’ fields. Suppose there are two pos-
sible IA addresses and the maximum value of the index
is three, there are 6 entries in the TCAM table. For this
incoming packet, it matches the 5th entry where Index=2
and IA2 = 2. The chip then directs the packet to output
port 2. In § 5.1, we will describe the exact packet format
based on our ServerSwitch.

This design makes a trade-off between the requirement
of extra ASIC logic and the TCAM space. When there
are n different IA values, the two-step indirect match-
ing method uses n lookup entries, while this one-step
method uses n×d entries where d is the maximum value
of the index. d is always less than or equal to the network
diameter. Modern switching chips have at least thou-
sands of TCAM entries, so this one-step method works
well in the DCN environment. For example, consider
a medium sized DCN such as a three-level fat-tree in
Portland. When using 48-port switches, there are 27,648
hosts. We can use 48 IA values to differentiate these 48
next hop ports. Since the diameter of the network is 6,
the number of TCAM entries is 48 × 6 = 288, which is
much smaller than the TCAM table size.

3.2.2 Destination and Tag-based Forwarding

As for the DA-based forwarding, the position of the
lookup key is fixed in the packet header and the forward-
ing engine reads the key directly from the packet header.
No lookup key modification is needed since the destina-
tion address is a globally unique id. However, the des-
tination address can be placed anywhere in the packet
header, so the engine must be able to perform matching
on arbitrary fields. For example, Portland requires the
switch to perform LPM on the destination MAC address,

5

20 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

whereas DCell uses a self-defined header.
Tag-based routing also uses direct key extraction, but

the tag needs to be modified on a per-hop basis since
the tags have only local meaning. To support this
routing scheme, the forwarding engine must support
SWAP/POP/PUSH operations on tags.

Modern merchandise switching chips generally have
a programmable parser, which can be used to extract ar-
bitrary fields. The TCAM matching module is flexible
enough to implement EM, LPM [25], and range match-
ing. Hence, DA-based forwarding can be well supported.

For tag-based forwarding, many commodity switching
chips for Metro Ethernet Network already support MPLS
(multiple protocol label switching), which is the repre-
sentative tag-based forwarding technology. Those chips
support POP/PUSH/SWAP operations on the MPLS la-
bels in the packet header. Hence we can support tag-
based forwarding by selecting a switching chip with
MPLS support. Further, by using tag stacking and POP
operations, we can also support nISR-based forwarding.
In such nISR design, the source fills a stack of tags to de-
note the routing path and the intermediate switches use
the outermost tag for table lookup and then pops the tag
before forwarding the packet.

3.3 Server Software

3.3.1 Kernel Components

The ServerSwitch driver is the central hub that receives
all incoming traffic from the underlying ServerSwitch
card. The driver can process them itself or it can de-
liver them to the user space for further processing. Pro-
cessing them in the driver gives higher performance but
requires more effort to program and debug. Meanwhile,
processing these packets in user space is easy for devel-
opment but scarifies performance. Instead of making a
choice on behalf of users, ServerSwitch allows users to
decide which one to use. For low rate control plane traf-
fic where processing performance is not a major concern,
e.g., ARP packets, ServerSwitch can deliver them to user
space for applications to process them. Since the ap-
plications need to send control plane traffic too, Server-
Switch provides APIs to receive packets from user-space
applications to be sent down to the NIC chips. For those
control plane packets with low latency requirement and
high speed in-network processing traffic whose perfor-
mance is a major concern, e.g., QCN queue queries or
data cache traffic, we can process them in the Server-
Switch driver.

The SC and NIC drivers both act as the data channels
between the switching chip and the ServerSwitch driver.
They receive packets from the device and deliver them to
the ServerSwitch driver, and vice versa. The SC driver
also provides an interface for the user library and the

ServerSwitch to manipulate its registers directly, so both
applications and the ServerSwitch driver can control the
switching chip directly.

3.3.2 APIs

We design a set of APIs to control the switching chip and
send/receive packets. The APIs include five categories as
follows.

1. Set User Defined Lookup Key (UDLK): This API
configures the programmable parser in the switching
chip by setting the i-th UDLK. In this API, the UDLK
can be fields from the packet header as well as meta-
data, e.g., the incoming port of a packet. We use the most
generic form to define packet header fields, i.e., the byte
position of the desired fields. In the following example,
we set the destination MAC address (6 bytes, B0-5) as
the first UDLK. We can also combine meta-data (e.g.,
incoming port) and non-consecutive byte range to define
a UDLK, as shown in the second statement which is used
for BCube (§ 5.1).

API:
SetUDLK(int i, UDLK udlk)

Example:
SetUDLK(1, (B0-5))
SetUDLK(2, (INPORT, B30-33, B42-45))

2. Set Lookup Table: There are several lookup tables
in the switching chip, a general purpose TCAM table,
and protocol specific lookup tables for Ethernet, IP, and
MPLS. This API configures different lookup tables de-
noted by type, and sets the value, mask and action for
the i-th entry. The mask is NULL when the lookup ta-
ble is an EM table. The action is a structure that defines
the actions to be taken for the matched packets, e.g., di-
recting the packets to a specified output port, performing
pre-defined header modifications, etc. For example, for
MPLS the modification actions can be Swap/Pop/Push.
The iudlk is the index of UDLK to be compared. iudlk is
ignored for the tables that do not support UDLK.

In the following example, the statement sets the first
TCAM entry and compares the destination MAC address
(the first UDLK) with the value field (000001020001,
i.e., 00:00:01:02:00:01) using mask (FFFFFF000000).
This statement is used to perform LPM on dest MAC for
PortLand. Consequently, all matching packets are for-
warded to the third virtual interface.

API:
SetLookupTable(int type, int i,

int iudlk, char *value, char* mask,
ACTION *action)

Example:
SetLookupTable(TCAM, 1,

1, "000001020001", "FFFFFF000000",
{act=REDIRECT_VIF, vif=3})

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 21

3. Set Virtual Interface Table: This API sets up the i-
th virtual interface entry which contains destination and
source MAC addresses as well as the output port. The
MAC addresses are used to replace the original MACs in
the packet when they are not NULL.

For example, the following command sets up the third
virtual interface to deliver packets to output port 2.
Meanwhile, the destination MAC is changed to the given
value (001F29D417E8) accordingly. The edge switches
in Portland need such functionality to change PMAC
back to the original MAC (§3.2 in [22]).

API:
SetVIfTable(int i, char *dmac,

char *smac, int oport)
Example:

SetVIfTable(3, "001F29D417E8", NULL, 2)

4. Read/Write Registers: There are many statistic reg-
isters in switching chip, e.g., queue length and packet
counters, and registers to configure the behaviors of the
switching chip, e.g., enable/disable L3 processing. This
API is to read and write those registers (specified by reg-
name). As an example, the following command returns
the queue length (in bytes) of output port 0.

API:
int ReadRegister (int regname)
int WriteRegister(int regname, int value)

Example:
ReadRegister(OUTPUT_QUEUE_BYTES_PORT0)

5. Send/Receive Packet: There are multiple NICs for
sending and receiving packets. We can use the first API
to send packet to a specific NIC port (oport). When we
receive a packet, the second API also provides the input
NIC port (iport) for the packet.

API:
int SendPacket(char *pkt, int oport)
int RecvPacket(char *pkt, int *iport)

4 Implementation

4.1 ServerSwitch Card
Fig. 3 shows the ServerSwitch card we designed. All
chips used on the card are merchandise ASICs. The
Broadcom switching chip BCM56338 has 8 Gigabit Eth-
ernet (GE) ports and two 10GE ports [1]. Four of the
GE ports connect externally and the other four GE ports
connect to two dual GE port Intel 82576EB NIC chips.
The two NIC chips are used to carry a maximum of
4Gb/s traffic between the switching chip and the server
since the bandwidth of the PCI-E interface on 56338 is
only 2Gb/s. The three chips connect to the server via

Intel
82576EB

BCM56338

PEX8617

BCM54664x1GE 2x10GE

Figure 3: ServerSwitch card.

a PCI-E switch PLX PEX8617. The effective band-
width from the PEX8617 to BCM56338, the two NIC
chips and the server are 2, 8, 8 and 8Gb/s (single direc-
tion). Since the maximum inbound or outbound traffic is
4Gb/s, PCI-E is not the bottleneck. The two 10GE XAUI
ports are designed for interconnecting multiple Server-
Switch cards in one server chassis to create a larger non-
blocking switching fabric with more ports. Each Server-
Switch card costs less than 400$ when manufactured in
100 pieces. We expect the price can be cut to 200$ for
a quantity of 10K. The power consumption of Server-
Switch is 15.4W when all 8 GE ports are idle, and is
15.7W when all of them carry full speed traffic.

Fig. 4 shows the packet processing pipeline of the
switching chip, which has three stages. First, when the
packets go into the switching chip, they are directed to
a programmable parser and a classifier. The classifier
then directs the packets to one of the protocol specific
header parsers. The Ethernet parser extracts the desti-
nation MAC address (DMAC), the IP parser extracts the
destination IP address (DIP), the MPLS parser extracts
the MPLS label and the Prog parser can generate two
different UDLKs. Each UDLK can contain any aligned
four 4-byte blocks from the first 128 bytes of the packet,
and some meta-data of the packet.

Next, the DMAC is sent to the EM(MAC) matching
module, the DIP to both the LPM and EM(IP) matching
modules, the MPLS label to the EM(MPLS) module, and
the UDLK to the TCAM. Each TCAM entry can select
one of the two UDLKs to match. The matchings are per-
formed in parallel. The three matching modules (EM,
LPM, TCAM) result in an index into the interface table,
which contains the output port, destination and source
MAC. When multiple lookup modules match, the prior-
ity of their results follows TCAM > EM > LPM.

Finally, the packet header is modified by the L3 and L2
modifiers accordingly. The L3 modifier changes the L3
header, e.g., IP TTL, IP checksum and MPLS label. The

7

22 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

56338

EM(MPLS)

TCAM

Pkt

Prog
Parser

LPM

MPLS
Parser

UDLK

IP Parser
DIP

Label

DIP

MPLS
Modifier

PktL2
Modifier

Interface
Table

IP
Modifier

EM(IP)

Eth
Parser EM(MAC)DMAC

Index

Classifi
er

Figure 4: Packet processing pipeline in Broadcom
56338.

L2 modifier can use the MAC addresses in the interface
table to replace the original MAC addresses.

The size of EM tables for MAC, IPv4 and MPLS are
32K, 8K and 4K entries, respectively. The LPM for IPv4
and the TCAM table have 6144 and 2K entries, respec-
tively. The interface table has 4K entries. All these ta-
bles, the Prog Parser and the behaviors of the modifiers
are programmable.

4.2 Kernel Drivers
We have developed ServerSwitch kernel drivers for Win-
dows Server 2008 R2. As shown in Fig. 1, it has compo-
nents as follows.

Switching Chip Driver. We implemented a PCI-E
driver based on Broadcom’s Dev Kits. The driver has
2670 lines of C code. It allocates a DMA region and
maps the chip’s registers into memory address using
memory-mapped I/O (MMIO). The driver can deliver re-
ceived packets to the ServerSwitch driver, and send pack-
ets to hardware. The ServerSwitch driver and user library
can access the registers and thus control the switching
chip via this SC driver.

NIC Driver. We directly use the most recent Intel NIC
driver binaries.

ServerSwitch Driver. We implemented the Server-
Switch driver as a Windows NDIS MUX driver. It has
20719 lines of C code. The driver exports itself as a vir-
tual NIC. It binds the TCP/IP stack on its top and the In-
tel NIC driver and the SC driver at its bottom. The driver
uses IRP to send and receive packets from the user li-
brary. It can also deliver the packets to the TCP/IP stack.
The ServerSwitch driver provides a kernel framework for
developing various DCN designs.

4.3 User Library
The library is based on the Broadcom SDK. The SDK
has 3000K+ lines of C code and runs only on Linux and

Version HL Tos Total length

Identification Flags Fragment offset

TTL Protocol Header checksum

Source Address

Destination Address

NHA1 NHA2 NHA3 NHA4

NHA5 NHA6 NHA7 NHA8

PadBCube Protocol NH

B14-17

B18-21

B22-25

B26-29

B30-33

B34-37

B38-41

B42-45

Figure 5: BCube header on the ServerSwitch platform.

VxWorks. We ported this SDK to Subsystem for UNIX-
based Applications (SUA) on Windows Server 2008 [2].
At the bottom of the SDK, we added a library to interact
with our kernel driver. We then developed ServerSwitch
APIs over the SDK.

5 Building with the ServerSwitch Platform

In this section, we use ServerSwitch to implement sev-
eral representative DCN designs. First, we implement
BCube to illustrate how indexed source routing is sup-
ported in the switching chip of ServerSwitch. In our
BCube implementation, BCube packet forwarding is
purely carried out in hardware. Second, we show our
implementation of QCN congestion control. Our QCN
implementation demonstrates that our ServerSwitch can
generate low latency control messages using the server
CPU. Due to space limitation, we discuss how Server-
Switch can support other DCN designs in our technical
report [19].

5.1 BCube

BCube is a server centric DCN architecture [13]. BCube
uses adaptive source routing. Source servers probe mul-
tiple paths and select the one with the highest available
bandwidth. BCube defines two types of control mes-
sages, for neighbor discovery (ND) and available band-
width query (ABQ) respectively. The first one is for
servers to maintain the forwarding table. The second one
is used to probe the available bandwidth of the multiple
parallel paths between the source and destination.

Our ServerSwitch is an ideal platform for implement-
ing BCube. For an intermediate server in BCube, our
ServerSwitch card can offload packet forwarding from
the server CPU. For source and destination servers, our
ServerSwitch card can achieve k:1 speedup using k NICs
connected by BCube topology. This is because in our
design the internal bandwidth between the server and the
NICs is equal to the external bandwidth provided by the
multiple NICs, as we show in Figure 1.

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 23

Fig. 5 shows the BCube header we use. It consists of
an IP header and a private header (gray fields). We use
this private header to implement the BCube header. We
use an officially unassigned IP protocol number to dif-
ferentiate the packet from normal TCP/UDP packets. In
the private header, the BCube protocol is used to iden-
tify control plane messages. NH is the number of valid
NHA fields. It is used by a receiver to construct a reverse
path to the sender. There are 8 1-byte Next Hop Address
(NHA) fields, defined in BCube for indexed source rout-
ing. Different from NHA in the original BCube header
design, NHAs are filled in reverse order in our private
header. NHA1 is now the lookup key for the last hop.
This implementation adaption is to obtain an automatic
index counter by the hardware. We observe that for a
normal IP packet, its TTL is automatically decreased af-
ter one hop. Therefore, we overload the TTL field in the
IP header as the index field for NHAs. This is the reason
why we store NHAs in reverse order.

We implemented a BCube kernel module in the
ServerSwitch driver and a BCube agent at the user-level.
The kernel module implements data plane functionali-
ties. On the receiving direction, it delivers all received
control messages to the user-level agent for processing.
For any received data packets, it removes their BCube
headers and delivers them to the TCP/IP stack. On the
sending direction, it adds the BCube header for the pack-
ets from the TCP/IP stack and sends them to the NICs.

The BCube agent implements all control plane func-
tionalities. It first sets up the ISR-based forwarding rules
and the packet filter rules in the switching chip. Then,
it processes the control messages. When it receives
an ND message, it updates the interface table using
SetVIfTable. It periodically uses ReadRegister
to obtain traffic volume from the switching chip and cal-
culates the available bandwidth for each port. When it
receives an ABQ message, it encodes the available band-
width in the ABQ message, and sends it to the next hop.

Fig. 6 shows the procedure to initialize the switch-
ing chip for BCube, using the ServerSwitch API. Line
1 sets a 12-byte UDLK1 for source routing, including
TTL (B22) and the NHA fields (B34-41). Line 2 sets
another 9-byte UDLK2 for packet filtering, including in-
coming port number (INPORT), IP destination address
(B30-33) and BCube protocol (B42). The INPORT oc-
cupies 1-byte field. Lines 5-18 set the ISR-based TCAM
table. Since every NHA denotes a neighbor node with a
destination MAC and corresponding output port, line 8
sets up one interface entry for one NHA value. Lines 13-
16 sets up a TCAM entry to match the TTL and its corre-
sponding NHA in UDLK1. Since the switch discards the
IP packets whose TTL ≤ 1, we use TTL = 2 to denote
NHA1. Lines 21-38 filter packets to the server. Since the
switching chip has four external (0-3) and four internal

Figure 6: Pseudo TCAM setup code for BCube.

ports (4-7), we filter the traffic of an external port to a
corresponding internal port, i.e., port 0→4, 1→5, 2→6
and 3→7. Line 23 sets action to direct the packets to
port 4 ∼ 7 respectively. Lines 27-29 match those packets
whose destination BCube address equals the local BCube
address in UDLK2. Lines 32-37 match BCube control
plane messages, i.e., ND and ABQ, in UDLK2. In our
switching chip, when a packet matches multiple TCAM
entries, the entry with the highest index will win. There-
fore, in our BCube implementation, entries for control
plane messages have higher priority than the other ones.

5.2 Quantized Congestion Control (QCN)

QCN is a rate-based congestion control algorithm for the
Ethernet environment [7]. The algorithm has two parts.
The Switch or Congestion Point (CP) adaptively samples
incoming packets and generates feedback messages ad-
dressed to the source of the sampled packets. The feed-
back message contains congestion information at the CP.
The Source or Reaction Point (RP) then reacts based on
the feedback from the CP. See [7] for QCN details. The
previous studies of QCN are based on simulation or hard-
ware implementation.

9

24 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

UserSpace

Switching
Chip

Packet
Marker

RP

UDP
Source

Token
Bucket

CP

NIC

qlen

Congestion
Notication

Figure 7: QCN on the ServerSwitch platform.

We implemented QCN on the ServerSwitch platform
as shown in Fig. 7. The switching chip we use cannot
adaptively sample packets based on the queue length, so
we let the source mark packets adaptively and let the
ServerSwitch switching chip mirror the marked packets
to the ServerSwitch CPU. When the ServerSwitch CPU
receives the marked packets, it immediately reads the
queue length from the switching chip and sends the Con-
gestion Notification (CN) back to the source. When the
source receives the CN message, it adjusts its sending
rate and marking probability.

We implemented the CP and RP algorithms in Server-
Switch and end-host respectively based on the most re-
cent QCN Pseudo code V2.3 [24]. In order to minimize
the response delay, the CP module is implemented in the
ServerSwitch driver. The CP module sets up a TCAM
entry to filter marked packets to the CPU. On the end-
host, we implemented a token bucket rate limiter in the
kernel to control the traffic sending rate at the source.

6 Evaluation

Our evaluation has two parts. In the first part, we show
micro benchmarks for our ServerSwitch. We evaluate its
performance on packet forwarding, register read/write,
and in-network caching. For micro benchmark evalua-
tion, we connect our ServerSwitch to a NetFPGA card
and use NetFPGA to generate traffic. In the second part,
we implement two DCN designs, namely BCube and
QCN, using ServerSwitch. We build a 16-server BCube1
network to run BCube and QCN experiments. We cur-
rently build only two ServerSwitch cards. As shown in
Fig. 8, the two gray nodes are equipped with Server-
Switch cards, they use an ASUS motherboard with Intel
Quad Core i7 2.8GHz CPU. The other 14 servers are Dell
Optiplex 755 with 2.4Ghz dual core CPU. The switches
are 8-port DLink DGS-1008D GE switches.

00 01

<0,0>

02 03 10 11

<0,1>

12 13 20 21

<0,2>

22 23 30 31

<0,3>

32 33

<1,0> <1,1> <1,2> <1,3>Level 1
Switch

Level 0
Switch

Server

Figure 8: BCube1 testbed.

6.1 Micro Benchmarks

We directly connect the four GE ports of one Server-
Switch to the four GE ports of one NetFPGA, and use
the NetFPGA-based packet generator to generate line-
rate traffic to evaluate the packet forwarding performance
of ServerSwitch. We record the packet send and re-
ceive time using NetFPGA to measure the forwarding
latency of ServerSwitch. The precision of the timestamp
recorded by NetFPGA is 8ns.

Forwarding Performance. Fig. 9 compares the for-
warding performance of our ServerSwitch card and a
software-based BCube implementation using an ASUS
quad core server. In the evaluation, we use NetFPGA to
generate 4GE traffic. The software implementation of the
BCube packet forwarding is very simple. It uses NHA as
an index to get the output port. (See §7.2 in [13] for more
details) As we can see, there is a very huge performance
gap between these two approaches. For ServerSwitch,
there is no packet drop for any packet sizes, and the for-
warding delay is small. The delays for 64 bytes and 1514
bytes are 4.3us and 15.6us respectively, and it grows lin-
early with the packet size. The slope is 7.7ns per byte,
which is very close to the transmission delay of one byte
over a GE link. The curve suggests the forwarding de-
lay is a 4.2us fixed processing delay plus the transmis-
sion delay. For software forwarding, the maximum PPS
achieved is 1.73Mpps and packets get dropped when the
packet size is less than or equal to 512 bytes. The CPU
utilization for 1514 byte is already 65.6%. Moreover, the
forwarding delay is also much larger than that of Server-
Switch. This experiment suggests that a switching chip
does a much better job for packet forwarding, and that
using software for ‘simple’ packet forwarding is not effi-
cient.

Register Read/Write Performance. Certain applica-
tions need to read and write registers of the switching
chip frequently. For example, our software-based QCN
needs to frequently read queue length from the switch-
ing chip. In this test, we continuously read/write a 32-
bit register 1,000,000 times, and the average R/W la-
tency of one R/W operation is 6.94/4.61us. We note
that the latency is larger than what has been reported be-
fore (around 1us) [20]. This is because [20] measured

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 25

 0

 1

 2

 3

 4

 5

 6

 64
 128
 256

 512

 1024

 1514

 0

 20

 40

 60
Th

ro
ug

hp
ut

 (M
pp

s)

D
el

ay
 (u

s)

Packet Size (byte)

Throughput(hw)
Throughput(sw)
Mean delay(hw)
Mean delay(sw)

Figure 9: Packet forwarding performance.

the latency of a single MMIO R/W operation, whereas
our registers are not mapped but are accessed indirectly
via several mapped registers. In our case, a read opera-
tion consists of four MMIO write and three MMIO read
operations. We note that the transmission delay of one
1514-bytes packet over 1GE link is 12us, so the read op-
eration of our ServerSwitch can be finished within the
transmission time of one packet.

In-network Caching Performance. We show that
ServerSwitch can be used to support in-network caching.
In this experiment, ServerSwitch uses two GbE ports
to connect to NetFPGA A and the other two ports to
NetFPGA B. NetFPGA A sends request packets to B via
ServerSwitch. When B receives one request, it replies
with one data packet. The sizes of request and reply are
128 and 1514 bytes, respectively. Every request or reply
packet carries a unique ID in its packet header. When
ServerSwitch receives a request from A, the switching
chip performs an exact matching on the ID of the request.
A match indicates that the ServerSwitch has already
cached the response packet. The request is then for-
warded to the server CPU which sends back the cached
copy to A. When there is no match, the request is for-
warded to B, and B sends back the response data. Server-
Switch also oversees the response data and tries to cache
a local copy. The request rate per link is 85.8Mb/s, so
the response rate per link between ServerSwitch and A is
966Mb/s. Since one NetFPGA has 4 ports, we use one
NetFPGA to act as both A and B in the experiment.

We vary the cache hit ratio at ServerSwitch and mea-
sure the CPU overhead of the ServerSwitch. In-network
caching increases CPU usage at ServerSwitch, but saves
bandwidth between B and ServerSwitch. In our toy
network setup, a x% cache hit rate directly results in
x% bandwidth saving between B and ServerSwitch (as
shown in Fig. 10). In a real network environment, we
expect the savings will be more significant since we can

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100
 0

 1

 2

C
PU

 U
sa

ge
 (%

)

Ba
nd

w
id

th
 (G

bp
s)

Cache Hit Ratio (%)

Pure Software CPU
ServerSwitch CPU
Bandwidth Saving

Figure 10: CPU utilization for in-network caching.

save more bandwidth for multi-hop cases.
Fig. 10 also shows the CPU overhead of the Server-

Switch for different cache hit ratios. Of course, the
higher the cache hit ratio, the more bandwidth we can
save and the more CPU usage we need to pay. Note that
in Fig. 10, even when the cache hit ratio is 0, we still have
a cost of 14% CPU usage. This is because ServerSwitch
needs to do caching for the 1.9Gbps response traffic from
B to ServerSwitch. Fig. 10 also includes the CPU over-
head of a pure software-based caching implementation.
Our result clearly shows that our ServerSwitch signifi-
cantly outperforms pure software-based caching.

6.2 ServerSwitch based BCube

In this experiment, we set up two TCP connections C1
and C2 between servers 01 and 10. The two connections
use two parallel paths, P1 {01, 00, 10} for C1 and P2
{01, 11, 10} for C2, respectively. We run this experiment
twice. First, we configure 00 and 11 to use the Server-
Switch cards for packet forwarding. Next, we configure
them to use software forwarding. In both cases, the total
throughput is 1.7Gbps and is split equally into the two
parallel paths. When using ServerSwitch for forward-
ing, both 00 and 11 use zero CPU cycles. When using
software forwarding, both servers use 15% CPU cycles.
Since both servers have a quad core CPU, 15% CPU us-
age equals 60% for one core.

6.3 ServerSwitch based QCN

In this experiment, we configure server 00 to act as a
QCN-enabled node. We use iperf to send UDP traffic
from server 01 to 10 via 00. The sending rate of iperf
is limited by the traffic shaper at 01. When there is con-
gestion on level-1 port of 00, 00 sends CN to 01. We use
the QCN baseline parameters [7] in this experiment.

11

26 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 11 shows the throughput of the UDP traffic and
the output queue length at server 00. When we start the
UDP traffic, level 1 port is 1Gb/s. There is no conges-
tion and the output queue length is zero. At time 20s, we
limit level 1 port at 00 to 200Mb/s, the queue immedi-
ately builds up and causes 00 to send CN to the source.
The source starts to use the QCN algorithm to adjust its
traffic rate in order to maintain the queue length around
Q EQ which is 50KB in this experiment. We can see that
the sending rate decreases to 200Mb/s very fast. And
then we increase the bandwidth by 200Mb/s every 20
seconds. Similarly, the source adapts quickly to the new
bandwidth. As shown in the figure, the queue length fluc-
tuates around Q EQ. This shows that this software-based
implementation performs good congestion control. The
rate of queue query packets processed by node 00 is very
low during the experiment, with maximum and mean val-
ues of 801 and 173 pps. Hence QCN message processing
introduces very little additional CPU overhead. The to-
tal CPU utilization is smaller than 5%. Besides, there is
no packet drop in the experiment, even at the point when
we decrease the bandwidth to 200Mb/s. QCN therefore
achieves lossless packet delivery. We have varied the
Q EQ from 25KB to 200KB and the results are similar.

The extra delay introduced by our software approach
to generate a QCN queue reply message consists of three
parts: directing the QCN queue query to the CPU, read-
ing the queue register, and sending back the QCN queue
reply. To measure this delay, we first measure time
RTT1 between the QCN query and reply at 01. Then
we configure the switching chip to simply bounce the
QCN query back to the source assuming zero delay re-
sponse for hardware implementation. We measure the
time RTT2 between sending and receiving a QCN query
at 01. RTT1 - RTT2 reflects the extra delay introduced
by software. The packet sizes of the queue query and
reply are both 64 bytes in this measurement. The aver-
age values of RTT1 and RTT2 are 41us and 18us based
on 10,000 measurements. Our software introduces only
23us delay. This extra delay is tolerable since it is com-
parable to or smaller than the packet transmission delay
for one single 1500-bytes in a multi-hop environment.

7 Discussion

Limitations of ServerSwitch. The current version of
ServerSwitch has the following limitations: 1) Limited
hardware forwarding programmability. The switching
chip we use has limited programmability on header field
modification. It supports only standard header modifi-
cations of supported protocols (e.g., changing Ethernet
MAC addresses, decreasing IP TTL, changing IP DSCP,
adding/removing IP tunnel header, modifying MPLS
header). Due to the hardware limitation, our implemen-

 0

 100

 200

 300

 400

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u
e
 l
e
n
g
th

(K
B

)

Time(second)

Q_EQ = 50KB

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time(second)

Figure 11: Throughput and queue dynamics during band-
width change.

tation of index-based source routing has to re-interpret
the IP TTL field. 2) Relatively high packet processing la-
tency due to switching chip to CPU communication. For
the packets that require ‘real’ per-packet processing such
as congestion information calculation in XCP protocol,
the switching chip must deliver them to the CPU for pro-
cessing, which leads to higher latency. Hence Server-
Switch is not suitable for protocols that need real time
per-packet processing such as XCP. 3) Restricted form
factor and relatively low speed. At present, a Server-
Switch card provides only 4 GbE ports. Though it can be
directly used for server-centric or hybrid designs, e.g.,
BCube, DCell, and CamCube, we do not expect that
the current ServerSwitch can be directly used for archi-
tectures that need a large number of switch ports (48-
ports or more), e.g., fat-tree and VL2. However, since
4 ServerSwitch cards can be connected together to pro-
vide 16 ports, we believe ServerSwitch is still a viable
platform for system prototyping for such architectures.

10GE ServerSwitch. Using the same hardware archi-
tecture, we can build a 10GE ServerSwitch. We need to
upgrade the Ethernet switching chip, the PCI-E switch-
ing chip and the NIC chips. As for the Ethernet switch-
ing chip, 10GbE switching chips with 24x10GbE ports or
more are already available from Broadcom, Fulcrum or
Marvell. We can use two dual 10GbE Ethernet controller
chips to provide a 40Gb/s data channel between the card
and server CPU. Since we do not expect all traffic to be
delivered to the CPU for processing, the internal band-
width between the card and the server does not need to
match the total external bandwidth. In this case, the num-
ber of external 10GE ports can be larger than four. We
also need to upgrade the PCI-E switching chip to provide

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 27

an upstream link with 40Gb/s bandwidth, which requires
PCI-E Gen2 x8. Since the signal rate on the board is 10x
faster than that in the current ServerSwitch, more hard-
ware engineering effort will be needed to guarantee the
Signal Integrity (SI).

All the chips discussed above are readily available in
the market. The major cost of such a 10GbE card comes
from the 10GbE Ethernet switching chip, which has a
much higher price than the 8xGbE switching chip. For
example, a chip with 24 10GbE ports may cost about 10x
that of the current one. The NIC chip and PCI-E switch-
ing chip cost about 2x∼3x than current ones. Overall,
we expect the 10GE version card to be about 5x more
expensive than the current 1GE version.

8 Related Work

OpenFlow defines an architecture for a central controller
to manage OpenFlow switches over a secure channel,
usually via TCP/IP. It defines a specification to manage
the flow table inside the switches. Both OpenFlow and
ServerSwitch aim towards a more programmable net-
working platform. Aiming to provide both programma-
bility and high performance, ServerSwitch uses multiple
PCI-E lanes to interconnect the switching chip and the
server. The low latency and high speed of the channel en-
ables us to harness the resources in a commodity server
to provide both programmable control and data planes.
With Openflow, however, it is hard to achieve similar
functionalities due to the higher latency and lower band-
width between switches and the controller.

Orphal provides a common API for proprietary
switching hardware [21], which is similar to our APIs.
Specifically, they also designed a set of APIs to manage
the TCAM table. Our work is more than API design. We
introduce a novel TCAM table based method for index-
based source routing. We also leverage the resources of
a commodity server to provide extra programmability.

Flowstream uses commodity switches to direct traf-
fic to commodity servers for in-network processing [12].
The switch and the server are loosely coupled, i.e., the
server cannot directly control the switching chip. In
ServerSwitch, the server and the switching chip are
tightly coupled, which enables ServerSwitch to provide
new functions such as software-defined congestion con-
trol which requires low-latency communication between
the server and the switching chip.

Recently, high performance software routers, e.g.,
RouteBricks [10] and PacketShader [16] have been de-
signed and implemented. By leveraging multi-cores,
they can achieve tens of Gb/s throughput. ServerSwitch
is complementary to these efforts in that ServerSwitch
tries to offload certain packet forwarding tasks from the
CPU to a modern switching chip. ServerSwitch also tries

to optimize its software to process low latency pack-
ets such as congestion control messages. At present,
due to hardware limitations, ServerSwitch only provides
4x1GE ports. RouteBricks or PacketShader can certainly
leverage a future 10GE ServerSwitch card to provide a
higher throughput system, with a portion of traffic for-
warded by the switching chip.

Commercial switches generally have an embedded
CPU for switch management. More recently, Arista’s
7100 series introduces the use of dual-core x86 CPU
and provides APIs for programmable management plane
processing. ServerSwitch differs from existing com-
modity switches in two ways: (1) The CPUs in com-
modity switches mainly focus on management functions,
whereas ServerSwitch explores a way to combine the
switching chip with the most advanced CPUs and server
architecture. On this platform, the CPUs can process
forwarding/control/management plane packets with high
throughput and low latency. The host interface on the
switching chip usually has limited bandwidth since the
interface is designed for carrying control/management
messages. ServerSwitch overcomes this limitation by in-
troducing additional NIC chips for a high bandwidth, yet
low latency channel between the switching chip and the
server; (2) ServerSwitch tries to provide a common set
of APIs to program the switch chip. The APIs are de-
signed to be as universal as possible. Ideally, the API is
the same no matter what kind of switching chip is used.

Ripcord [9] mainly focuses on the DCN control plane.
It currently uses OpenFlow switches as its data plane.
Our work is orthogonal to their work. We envision that
they can also use ServerSwitch to support new DCN such
as BCube, and to support more routing schemes such as
source routing and tag-based routing.

9 Conclusion

We have presented the design and implementation of
ServerSwitch, a programmable and high performance
platform for data center networks. ServerSwitch ex-
plores the design space of integrating a high perfor-
mance, limited programmable ASIC switching chip with
a powerful, fully programmable multicore commodity
server.

ServerSwitch achieves easy-to-use programmability
by using the server system to program and control the
switching chip. The switching chip can be programmed
to support a flexible packet header format and various
user defined packet forwarding designs with line-rate
without the server CPU intervening. By leveraging the
low latency PCI-E interface and efficient server software
design, we can implement software defined signaling and
congestion control in the server CPU with low CPU over-
head. The rich programmability provided by Server-

13

28 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Switch can further enable new DCN services that need
in-network data processing such as in-network caching.

We have built a ServerSwitch card and a whole Server-
Switch software stack. Our implementation experiences
demonstrate that ServerSwitch can be fully constructed
from commodity, inexpensive components. Our develop-
ment experiences further show that ServerSwitch is easy
to program, using the standard C/C++ language and de-
velopment tool chains. We have used our ServerSwitch
platform to construct several recently proposed DCN de-
signs, including new DCN architectures BCube and Port-
Land, congestion control algorithm QCN, and DCN in-
network caching service.

Our software API currently focuses on lookup table
programmability and queue information query. Current
switching chips also provide advanced features such as
queue and buffer management, access control, and pri-
ority and fair queueing scheduling. We plan to extend
our API to cover these features in our future work. We
also plan to upgrade the current 1GE hardware to 10G in
the next version. We expect that ServerSwitch may be
used for networking research beyond DCN (e.g., enter-
prise networking). We plan to release both the Server-
Switch card and the software package to the networking
research community in the future.

Acknowledgements

We thank our shepherd Sylvia Ratnasamy and the anony-
mous NSDI reviewers for their valuable feedback on
early versions of this paper. We thank Xiongfei Cai and
Hao Zhang for their work on the initial ServerSwitch
hardware design, the members of the Wireless and Net-
working Group and Zheng Zhang at Microsoft Research
Asia for their support and feedback.

References
[1] http://www.broadcom.com/collateral/pb/

56330-PB01-R.pdf.

[2] http://www.suacommunity.com/SUA.aspx.

[3] FM3000 Policy Engine, 2008. http://www.
fulcrummicro.com/documents/applications/
FM3000_Policy_Engine.pdf.

[4] ABU-LIBDEH, H., COSTA, P., ROWSTRON, A., O’SHEA, G.,
AND DONNELLY, A. Symbiotic Routing in Future Data Centers.
In ACM SIGCOMM (2010).

[5] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scal-
able, Commodity Data Center Network Architecture. In ACM
SIGCOMM (2008).

[6] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow Schedul-
ing for Data Center Networks. In NSDI (2010).

[7] ALIZADEH, M., ATIKOGLU, B., KABBANI, A., LAKSH-
MIKANTHA, A., PAN, R., PRABHAKAR, B., AND SEAMAN, M.
Data Center Transport Mechanisms: Congestion Control Theory

and IEEE Standardization. In 46th Annual Allerton Conference
on Communication, Control, and Computing, (2008).

[8] CALDERON, M., SEDANO, M., AZCORRA, A., AND ALONSA,
C. Active Network Support for Multicast Applications. Network,
IEEE 12, 3 (may. 1998), 46 –52.

[9] CASADO, M., ET AL. Ripcord: a Module Platform for Data
Center Networking. Tech. Rep. UCB/EECS-2010-93, Univeristy
of California at Berkeley, 2010.

[10] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In ACM SOSP (2009).

[11] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D., PATEL, P., AND SENGUPTA,
S. VL2: a Scalable and Flexible Data Center Network. In ACM
SIGCOMM (2009).

[12] GREENHALGH, A., HUICI, F., HOERDT, M., PAPADIMITRIOU,
P., HANDLEY, M., AND MATHY, L. Flow Processing and the
Rise of Commodity Network Hardware. SIGCOMM Comput.
Commun. Rev. 39, 2 (2009), 20–26.

[13] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y., TIAN,
C., ZHANG, Y., AND LU, S. BCube: A High Performance,
Server-centric Network Architecture for Modular Data Centers.
In ACM SIGCOMM (2009).

[14] GUO, C., LU, G., WANG, H. J., YANG, S., KONG, C., SUN, P.,
WU, W., AND ZHANG, Y. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In ACM
CoNext (2010).

[15] GUO, C., WU, H., TAN, K., SHI, L., ZHANG, Y., AND LU, S.
DCell: A Scalable and Fault Tolerant Network Structure for Data
Centers. In ACM SIGCOMM (2008).

[16] HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader: a
GPU-Accelerated Software Router. In ACM SIGCOMM (2010).

[17] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. ACM Trans-
actions on Computer Systems (August 2000), 263–297.

[18] LEHMAN, L., GARLAND, S., AND TENNENHOUSE, D. Active
Reliable Multicast. In IEEE INFOCOM (1998).

[19] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. ServerSwitch: A Pro-
grammable and High Performance Platform for Data Center Net-
works. Tech. Rep. MSR-TR-2011-24, Microsoft Research, 2011.

[20] MILLER, D. J., WATTS, P. M., AND MOORE, A. W. Motivating
Future Interconnects: A Differential Measurement Analysis of
PCI Latency. In ACM/IEEE ANCS (2009).

[21] MOGUL, J. C., YALAGANDULA, P., TOURRILHES, J.,
MCGEER, R., BANERJEE, S., CONNORS, T., AND SHARMA,
P. API Design Challenges for Open Router Platforms on Propri-
etary Hardware. In ACM HotNets-VII (2008).

[22] MYSORE, R. N., ET AL. PortLand: a Scalable Fault-tolerant
Layer 2 Data Center Network Fabric. In ACM SIGCOMM (2009).

[23] NAOUS, J., GIBB, G., BOLOUKI, S., AND MCKEOWN, N.
NetFPGA: Reusable Router Architecture for Experimental Re-
search. In PRESTO (2008).

[24] PAN, R. QCN Pseudo Code. http://www.
ieee802.org/1/files/public/docs2009/
au-rong-qcn-serial-hai-v23.pdf.

[25] SHAH, D., AND GUPTA, P. Fast Updating Algorithms for
TCAMs. IEEE Micro 21, 1 (2001), 36–47.

[26] SHIEH, A., KANDULA, S., AND SIRER, E. G. Sidecar: Build-
ing Programmable Datacenter Networks without Programmable
Switches. In ACM HotNets (2010).

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 29

TritonSort: A Balanced Large-Scale Sorting System

Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha†

Radhika Niranjan Mysore, Alexander Pucher∗, Amin Vahdat
UC San Diego, UC Riverside†, and Vienna University of Technology∗

Abstract—We present TritonSort, a highly efficient, scal-
able sorting system. It is designed to process large datasets,
and has been evaluated against as much as 100 TB of input
data spread across 832 disks in 52 nodes at a rate of 0.916
TB/min. When evaluated against the annual Indy GraySort
sorting benchmark, TritonSort is 60% better in absolute
performance and has over six times the per-node efficiency
of the previous record holder. In this paper, we describe
the hardware and software architecture necessary to oper-
ate TritonSort at this level of efficiency. Through careful
management of system resources to ensure cross-resource
balance, we are able to sort data at approximately 80% of
the disks’ aggregate sequential write speed.

We believe the work holds a number of lessons for bal-
anced system design and for scale-out architectures in gen-
eral. While many interesting systems are able to scale lin-
early with additional servers, per-server performance can
lag behind per-server capacity by more than an order of
magnitude. Bridging the gap between high scalability and
high performance would enable either significantly cheaper
systems that are able to do the same work or provide the
ability to address significantly larger problem sets with the
same infrastructure.

1 Introduction
The need for large-scale computing is increasing, driven
by search engines, social networks, location-based ser-
vices, and biological and scientific applications. The
value of these applications is defined by the quality
and quantity of data over which they operate, result-
ing in very high I/O and storage requirements. These
Data-intensive Scalable Computing systems, or DISC
systems[8], require searching and sorting large quanti-
ties of data spread across the network. Sorting forms the
kernel of many data processing tasks in the datacenter,
exercises computing, I/O, and storage resources, and is a
key bottleneck for many large-scale systems.

Several new DISC software architectures have
been developed recently, including MapReduce[9], the
Google File System[11], Hadoop[22], and Dryad[14].
These systems are able to scale linearly with the num-
ber of nodes in the cluster, making it trivial to add new
processing capability and storage capacity to an existing
cluster by simply adding more nodes. This linear scala-

bility is achieved in part by exposing parallel program-
ming models to the user and by performing computation
on data locally whenever possible. Hadoop clusters with
thousands of nodes are now deployed in practice [23].

Despite this linear scaling behavior, per-node perfor-
mance has lagged behind per-server capacity by more
than an order of magnitude. A survey of several de-
ployed DISC sorting systems[4] found that the impres-
sive results obtained by operating at high scale mask a
typically low individual per-node efficiency, requiring
a larger-than-needed scale to meet application require-
ments. For example, among these systems as much as
94% of available disk I/O and 33% CPU capacity re-
mained idle[4]. The largest known industrial Hadoop
clusters achieve only 20 Mbps of average bandwidth for
large-scale data sorting on machines theoretically capa-
ble of supporting a factor of 100 more throughput.

In this work we present TritonSort, a highly efficient
sorting system designed to sort large volumes of data
across dozens of nodes. We have applied it to data sets
as large as 100 terabytes spread across 832 disks in 52
nodes. The key to TritonSort’s efficiency is its balanced
software architecture, which is able to effectively make
use of a large amount of co-located storage per node, en-
suring that the disks are kept as utilized as possible. Our
results show the benefit of our design: evaluating Triton-
Sort against the ‘Indy’ GraySort benchmark[19] resulted
in a system that was able to sort 100TB of input tuples
in about 60% of the absolute time of the previous record-
holder, but with four times fewer resources, resulting in
an increase in per-node efficiency by over a factor of six.

It is important to note that our focus in building Tri-
tonSort is to highlight the efficiency gains that can be
obtained in building systems that process significant
amounts of data through balancing computation, stor-
age, memory, and network. Systems such as Hadoop and
Dryad further support data-level replication, transparent
node failure, and a generalized computational model, all
of which are not currently present in TritonSort. How-
ever, in presenting TritonSort’s hardware and software
architecture, we describe several lessons learned in its
construction that we believe are generalizable to other
data processing systems. For example, our design relies

1

30 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on a very high disk-to-node ratio as well as an explicit,
application-level management of in-memory buffers to
minimize disk seeks and thus increase read and write
throughput. We choose buffer sizes to balance time spent
processing multiple stages of our sort pipeline, and trade
off the utilization of one resource for another.

Our experiences show that for a common datacenter
workload, systems can be built with commodity hard-
ware and open-source software that improve on per-node
efficiency by an order of magnitude while still achiev-
ing scalability. Building such systems will either enable
significantly cheaper systems to be able to do the same
work or provide the ability to address significantly larger
problem sets with the same infrastructure.

The primary contributions of this paper are: 1) the se-
lection of a balanced hardware platform tuned to support
a large-scale sort application, 2) a sort application im-
plemented on top of a staged, pipeline-oriented software
runtime that supports performance tuning via selection
of appropriate buffer sizes and quantities, 3) an examina-
tion of projected sort performance when bottlenecks are
removed, and 4) a discussion of the experience gained in
building and deploying this prototype at scale.

2 Design Challenges
In this paper, we focus on designing systems that sort
large datasets as an instance of the larger problem of
building balanced systems. Here, we present our precise
problem formulation, discuss the challenges involved,
and outline the key insights underlying our approach.

2.1 Problem Formulation
We seek to design a system that sorts large volumes of
input data. Based on the specification of the sort bench-
mark [19], our input data comprises 100 byte tuples with
a 10 byte key and 90 byte value. We target deployments
with input data on the order of tens to hundreds of TB of
randomly-generated tuples. The input data is stored as
a collection of files on persistent storage. The goal of a
sorting system is to transform this input data into an or-
dered set of output files, also stored on persistent storage,
such that the concatenation of these output files in order
constitutes the sorted version of the input data. Our goal
is to design and implement a sorting system that can sort
datasets of the targeted size while achieving a favorable
tradeoff between speed, resource utilization, and cost.

2.2 The Challenge of Efficient Sorting
Sorting large datasets places stress on several resources
in a cluster. First, storing tens to hundreds of TB of input
and output data demands a large amount of storage ca-
pacity. Given the size of the data and modern commod-
ity hard drive capacities, the data must be stored across
several storage devices and almost certainly across many

machines. Second, reading the input data and writing
the output data across many disks simultaneously places
load on both storage devices and I/O controllers. Third,
since the tuples are distributed randomly across the in-
put files, almost all of the large dataset to be sorted will
have to be sent over the network. Finally, comparing tu-
ples in order to sort them requires a non-trivial amount
of compute power. This combination of demands makes
designing a sorting system that efficiently utilizes all of
these resources challenging.

Our key design principle to ensure good resource uti-
lization is to construct a balanced system—a system that
drives all resources at as close to 100% utilization as pos-
sible. For any given application and workload, there will
be an ideal configuration of hardware resources in keep-
ing with the application’s demands on these resources.
In practice, the set of hardware configurations available
is limited by the availability of components (one cannot
currently, for example, buy a processor with exactly 13
cores), and so a configuration must be chosen that best
meets the application’s demands. Once that hardware
configuration is determined, the application must be ar-
chitected to suitably exploit the full capabilities of the
deployed hardware. In the following section, we outline
our considerations in designing such a balanced system,
including our choice of a specific hardware and software
architecture. We did not choose this platform with sort-
ing in mind, and so we believe that our design generalizes
to other DISC problems as well.

2.3 Design Considerations

Our system’s design is motivated by three main consider-
ations. First, we rely only on commodity hardware com-
ponents. This is both to keep the costs of our system rel-
atively low and to have our system be representative of
today’s data centers so that the lessons we learn can be
applied to other applications with workload characteris-
tics similar to those of sort. Hence, we do not make use
of networking substrates such as Infiniband that provide
high network bandwidth at high cost. Also, despite the
recent emergence of solid state drives (SSDs) that pro-
vide higher I/O rates, we chose to use hard disks because
they continue to provide the most affordable option for
high capacity storage and streaming I/O. We believe that
properly-architected sorting software should not stress
random I/O behavior, where SSDs currently excel.

Second, we focus our software architecture on mini-
mizing disk seeks. In the particular hardware configu-
ration we chose, the key bottleneck for sort among the
various system resources is disk I/O bandwidth. Hence,
the primary goal of the system is to enable all disks to
operate continuously at peak bandwidth. The main chal-
lenge in sustaining peak disk bandwidth is to minimize

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 31

the amount of time the disks spend seeking, since any
time seeking is not spent transferring data.

Third, we choose to focus on hardware architectures
whose total memory cannot contain the entire dataset.
One possible implementation of sort is to read all the
input data into memory, appropriately shuffle the data
across machines in the cluster, sort the local in-memory
data on each machine, and then write the sorted data
to the local disks. Note that in this case, every tuple is
read from and written to persistent storage exactly once.
However, this implementation would require an amount
of memory at least equal to the amount of input data;
given that the cost per GB of RAM is over 70 times more
than that of disks, such a design would significantly drive
up costs and be infeasible for large input datasets.

Instead, we pursue an alternative implementation
wherein every tuple is read and written multiple times
from disk before the data is completely sorted. Storing
intermediate results on disk makes the system’s memory
requirement far more modest. Sorting data on clusters
that have less memory than the total amount of data to be
sorted requires every input tuple to be read and written
at least twice [1]. Since every additional read and write
increases the time to sort, we seek to achieve exactly this
lower bound to maximize system performance.

2.4 Hardware Architecture
To determine the right hardware configuration for our ap-
plication, we make the following observations about the
sort workload. First, the application needs to read ev-
ery byte of the input data and the size of the input is
equal to that of the output. Since the “working set” is
so large, it does not make sense to separate the cluster
into computation-heavy and storage-heavy regions. In-
stead, we provision each server in the cluster with an
equal amount of processing power and disks.

Second, almost all of the data needs to be exchanged
between machines since input data is randomly dis-
tributed throughout the cluster and adjacent tuples in the
sorted sequence must reside on the same machine. To
balance the system, we need to ensure that this all-to-all
shuffling of data can happen in parallel without network
bandwidth becoming a bottleneck. Since we focus on
using commodity components, we use an Ethernet net-
work fabric. Commodity Ethernet is available in a set
of discrete bandwidth levels—1 Gbps, 10 Gbps, and 40
Gbps—with cost increasing proportional to throughput
(see Table 1). Given our choice of 7.2k-RPM disks for
storage, a 1 Gbps network can accommodate at most one
disk per server without the network throttling disk I/O.
Therefore, we settle on a 10 Gbps network; 40 Gbps
Ethernet has yet to mature and hence is still cost pro-
hibitive. To balance a 10 Gbps network with disk I/O,
we use a server that can host 16 disks. Based on the op-

Storage
Type Capacity R/W throughput Price

7.2k-RPM 500 GB 90-100 MBps $200
15k-RPM 150 GB 150 MBps $290

SSD 64 GB 250 MBps $450

Network
Type Cost/port

1 Gbps Ethernet $33
10 Gbps Ethernet $480

Server
Type Cost

8 disks, 8 CPU cores $5,050
8 disks, 16 CPU cores $5,450
16 disks, 16 CPU cores $7,550

Table 1: Resource options considered for constructing a
cluster for a balanced sorting system. These values are
estimates as of January, 2010.

tions available commercially for such a server, we use a
server that hosts 16 disks and 8 CPU cores. The choice of
8 cores was driven by the available processor packaging:
two physical quad-core CPUs. The larger the number
of separate threads, the more stages that can be isolated
from each other. In our experience, the actual speed of
each of these cores was a secondary consideration.

Third, sort demands both significant capacity and I/O
requirements from storage since tens to hundreds of TB
of data is to be stored and all the data is to be read and
written twice. To determine the best storage option given
these requirements, we survey a range of hard disk op-
tions shown in Table 1. We find that 7.2k-RPM SATA
disks provide the most cost-effective option in terms of
balancing $ per GB and $ per read/write MBps (assum-
ing we can achieve streaming I/O). To allow 16 disks to
operate at full streaming I/O throughput, we require stor-
age controllers that are able to sustain at least 1600 MBps
of streaming bandwidth. Because of the PCI bus’ band-
width limitations, our hardware design necessitated two
8x PCI drive controllers, each supporting 8 disks.

The final design choice in provisioning our cluster is
the amount of memory each server should have. The
primary purpose of memory in our system is to enable
large amounts of data buffering so that we can read from
and write to the disk in large chunks. The larger these
chunks become, the more data can be read or written be-
fore seeking is required. We initially provisioned each of
our machines with 12 GB of memory; however, during
development we realized that 24 GB was required to pro-
vide sufficiently large writes, and so the machines were
upgraded. We discuss this addition when we present our

3

32 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

architecture in Section 3. One of the key takeaways from
our work is the important role that buffering plays in en-
abling high utilization of the network, disk, and CPU.
Determining the appropriate amount of memory buffer-
ing is not straightforward and we leave to future work
techniques that help automate this process.

2.5 Software Architecture
To maximize cluster resource utilization, we need to de-
sign an appropriate software architecture. There are a
range of possible software architectures in keeping with
our constraint of reading and writing every input tuple at
most twice. The class of architectures upon which we
focus share a similar basic structure. These architectures
consist of two phases separated by a distributed barrier,
so that all nodes must complete phase one before phase
two begins. In the first phase, input data is read from disk
and routed to the node upon which it will ultimately re-
side. Each node is responsible for storing a disjoint por-
tion of the key space. When data arrives at its destination
node, that node writes the data to its local disks. In the
second phase, each node sorts the data on its local disks
in parallel. At the end of the second phase, each node has
a portion of the final sorted sequence stored on its local
disks, and the sorted sequences stored on all nodes can be
concatenated together to form the final sorted sequence.

There are several possible implementations of this
general architecture, but any implementation contains
at least a few basic software elements. These software
elements include Readers that read data from on-disk
files into in-memory buffers, Writers that write buffers to
disk, Distributors that distribute a buffer’s tuples across
a set of logical divisions and Sorters that sort buffers.

Our initial implementation of TritonSort was designed
as a distributed parallel external merge-sort. This ar-
chitecture, which we will call the Heaper-Merger archi-
tecture, is structured as follows. In phase one, Readers
read from the input files into buffers, which are sorted
by Sorters. Each sorted buffer is then passed to a Dis-
tributor, which splits the buffer into a sorted chunk per
node and sends each chunk to its corresponding node.
Once received, these sorted chunks are heap-sorted by
software elements called Heapers in batches and each
resulting sorted batch is written to an intermediate file
on disk. In the second phase, software elements called
Mergers merge-sort the intermediate files on a given disk
into a single sorted output file.

The problem with the Heaper-Merger architecture is
that it does not scale well. In order to prevent the Heaper
in phase one from becoming a bottleneck, the length of
the sorted runs that the Heaper generates is usually fairly
small, on the order of a few hundred megabytes. As a
consequence, the number of intermediate files that the
Merger must merge in phase two grows quickly as the

Figure 1: Performance of a Heaper-Merger sort imple-
mentation in microbenchmark on a 200GB per disk par-
allel external merge-sort as a function of the number of
files merged per disk.

size of the input data increases. This reduces the amount
of data from each intermediate file that can be buffered at
a time by the Merger and requires that the merger fetch
additional data from files much more frequently, causing
many additional seeks.

To demonstrate this problem, we implemented a sim-
ple Heaper-Merger sort module in microbenchmark. We
chose to sort 200GB per disk in parallel across all the
disks to simulate the system’s performance during a
100TB sort. Each disk’s 200GB data set is partitioned
among an increasingly large number of files. Each node’s
memory is divided such that each input file and each
output file can be double-buffered. As shown in Fig-
ure 1, increasing the number of files being merged causes
throughput to decrease dramatically as the number of
files increases above 1000.

TritonSort uses an alternative architecture with simi-
lar software elements as above and again involving two
phases. We partition the input data into a set of logical
partitions; with D physical disks and L logical partitions,
each logical partition corresponds to a contiguous 1

L

th

fraction of the key space and each physical disk hosts L
D

logical partitions. In the first phase, Readers pass buffers
directly to Distributors. A Distributor maps the key of
every tuple in its input buffer to its corresponding logical
partition and sends that tuple over the network to the ma-
chine that hosts this logical partition. Tuples for a given
logical partition are buffered in memory and written to
disk in large chunks in order to seek as little as possible.
In the second phase, each logical partition is read into
an in-memory buffer, that buffer is sorted, and the sorted
buffer is written to disk. This scheme bypasses the seek
limits of the earlier mergesort-based approach. Also, by
appropriately choosing the value of L, we can ensure that
logical partitions can be read, sorted and written in par-
allel in the second phase. Since our testbed nodes have
24GB of RAM, to ensure this condition we set the num-

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 33

ber of logical partitions per node to 2520 so that each
logical partition contains less than 1GB of tuples when
we sort 100 TB on 52 nodes. We explain this architec-
ture in more detail in the context of our implementation
in the next section.

3 Design and Implementation
TritonSort is a distributed, staged, pipeline-oriented
dataflow processing system. In this section, we describe
TritonSort’s design and motivate our design decisions for
each stage in its processing pipeline.

3.1 Architecture Overview
Figures 2 and 7 show the stages of a TritonSort program.
Stages in TritonSort are organized in a directed graph
(with cycles permitted). Each stage in TritonSort im-
plements part of the data processing pipeline and either
sources, sinks, or transmutes data flowing through it.

Each stage is implemented by two types of logical
entities—several workers and a single WorkerTracker .
Each worker runs in its own thread and maintains its own
local queue of pending work. We refer to the discrete
pieces of data over which workers operate as work units
or simply as work. The WorkerTracker is responsible for
accepting work for its stage and assigning that work to
workers by enqueueing the work onto the worker’s work
queue. In each phase, all the workers for all stages in that
phase run in parallel.

Upon starting up, a worker initializes any required in-
ternal state and then waits for work. When work arrives,
the worker executes a stage-specific run() method that
implements the specific function of the stage, handling
work in one of three ways. First, it can accept an indi-
vidual work unit, execute the run() method over it, and
then wait for new work. Second, it can accept a batch of
work (up to a configurable size) that has been enqueued
by the WorkerTracker for its stage. Lastly, it can keep its
run() method active, polling for new work explicitly. Tri-
tonSort stages implement each of these methods, as de-
scribed below. In the process of running, a stage can pro-
duce work for a downstream stage and optionally specify
the worker to which that work should be directed. If a
worker does not specify a destination worker, work units
are assigned to workers round-robin.

In the process of executing its run() method, a worker
can get buffers from and return buffers to a shared pool
of buffers. This buffer pool can be shared among the
workers of a single stage, but is typically shared between
workers in pairs of stages with the upstream stage getting
buffers from the pool and the downstream stage putting
them back. When getting a buffer from a pool, a stage
can specify whether or not it wants to block waiting for
a buffer to become available if the pool is empty.

3.2 Sort Architecture
We implement sort in two phases. First, we perform dis-
tribution sort to partition the input data across L logical
partitions evenly distributed across all nodes in the clus-
ter. Each logical partition is stored in its own logical disk.
All logical disks are of identical maximum size sizeLD

and consist of files on the local file system.
The value of sizeLD is chosen such that logical disks

from each physical disk can be read, sorted and written
in parallel in the second phase, ensuring maximum re-
source utilization. Therefore, if the size of the input data
is sizeinput, there are L = sizeinput

sizeLD
logical disks in the

system. In phase two, the tuples in each logical disk get
sorted locally and written to an output file. This imple-
mentation satisfies our design goal of reading and writing
each tuple twice.

To determine which logical disk holds which tuples,
we logically partition the 10-byte key space into L even
divisions. We logically order the logical disks such that
the kth logical disk holds tuples in the kth division. Sort-
ing each logical disk produces a collection of output files,
each of which contains sorted tuples in a given partition.
Hence, the ordered collection of output files represents
the sorted version of the data. In this paper, we assume
that tuples’ keys are distributed uniformly over the key
range which ensures that each logical disk is approxi-
mately the same size; we discuss how TritonSort can be
made to handle non-uniform key ranges in Section 6.1.

To ensure that we can utilize as much read/write band-
width as possible on each disk, we partition the disks on
each node into two groups of 8 disks each. One group
of disks holds input and output files; we refer to these
disks as the input disks in phase one and as the output
disks in phase two. The other group holds intermediate
files; we refer to these disks as the intermediate disks. In
phase one, input files are read from the input disks and
intermediate files are written to the intermediate disks. In
phase two, intermediate files are read from the intermedi-
ate disks and output files are written to the output disks.
Thus, the same disk is never concurrently read from and
written to, which prevents unnecessary seeking.

3.3 TritonSort Architecture: Phase One
Phase one of TritonSort, diagrammed in Figure 2, is re-
sponsible for reading input tuples off of the input disks,
distributing those tuples over to the network to the nodes
on which they belong, and storing them into the logical
disks in which they belong.

Reader: Each Reader is assigned an input disk and is
responsible for reading input data off of that disk. It does
this by filling 80 MB ProducerBuffers with input data.
We chose this size because it is large enough to obtain
near sequential throughput from the disk.

5

34 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Reader
8

Node
Distributor

3
Sender

1
Receiver

1

LogicalDisk
Distributor

1
Coalescer

8
Writer

8

Input
 Disk

8

Producer
Buffer
Pool

Sender
Node
Buffer
Pool

Network

Receiver
Node
Buffer
Pool

LD
Buffer
Pool

Writer
Buffer
Pool

Intermediate
Disk

8

Figure 2: Block diagram of TritonSort’s phase one architecture. The number of workers for a stage is indicated in the
lower-right corner of that stage’s block, and the number of disks of each type is indicated in the lower-right corner of
that disk’s block.

NodeBuffer Table

t0 t1 t2

ProducerBuffer

1 N00

. . .

1

H(key(t0))

H(key(t2))
H(key(t1))2

Full Buffers
To Sender

2.5

Empty Buffers
from Pool

Figure 3: The NodeDistributor stage, responsible for par-
titioning tuples by destination node.

NodeDistributor: A NodeDistributor (shown in Fig-
ure 3) receives a ProducerBuffer from a Reader and is re-
sponsible for partitioning the tuples in that buffer across
the machines in the cluster. It maintains an internal data
structure called a NodeBuffer table, which is an array of
NodeBuffers, one for each of the nodes in the cluster. A
NodeBuffer contains tuples belonging to the same desti-
nation machine. Its size was chosen to be the size of the
ProducerBuffer divided by the number of nodes, and is
approximately 1.6 MB in size for the scales we consider
in this paper.

The NodeDistributor scans the ProducerBuffer tuple
by tuple. For each tuple, it computes a hash function
H(k) over the tuple’s key k that maps the tuple to a
unique host in the range [0, N − 1]. It uses the Node-
Buffer table to select a NodeBuffer corresponding to host
H(k) and appends the tuple to the end of that buffer. If
that append operation causes the buffer to become full,
the NodeDistributor removes the NodeBuffer from the
NodeBuffer table and sends it downstream to the Sender
stage. It then gets a new NodeBuffer from the Node-
Buffer pool and inserts that buffer into the newly empty
slot in the NodeBuffer table. Once the NodeDistributor
is finished processing a ProducerBuffer, it returns that
buffer back to the ProducerBuffer pool.

Sender: The Sender stage (shown in Figure 4) is
responsible for taking NodeBuffers from the upstream
NodeDistributor stage and transmitting them over the
network to each of the other nodes in the cluster. Each
Sender maintains a separate TCP socket per peer node

send()Sent Buffers To
NodeBuffer Pool

1
NodeBuffer Partially Sent NodeBuffers

2

3

0

1

...

N

1

Figure 4: The Sender stage, responsible for sending data
to other nodes.

in the cluster. The Sender stage can be implemented
in a multi-threaded or a single-threaded manner. In the
multi-threaded case, N Sender workers are instantiated
in their own threads, one for each destination node. Each
Sender worker simply issues a blocking send() call on
each NodeBuffer it receives from the upstream NodeDis-
tributor stage, sending tuples in the buffer to the appro-
priate destination node over the socket open to that node.
When all the tuples in a buffer have been sent, the Node-
Buffer is returned to its pool, and the next one is pro-
cessed. For reasons described in Section 4.1, we choose
a single-threaded Sender implementation instead. Here,
the Sender interleaves the sending of data across all the
destination nodes in small non-blocking chunks, so as to
avoid the overhead of having to activate and deactivate
individual threads for each send operation to each peer.

Unlike most other stages, which process a single unit
of work during each invocation of their run() method, the
Sender continuously processes NodeBuffers as it runs,
receiving new work as it becomes available from the
NodeDistributor stage. This is because the Sender must
remain active to alternate between two tasks: accept-
ing incoming NodeBuffers from upstage NodeDistribu-
tors, and sending data from accepted NodeBuffers down-
stream. To facilitate accepting incoming NodeBuffers,
each Sender maintains a set of NodeBuffer lists, one for
each destination host. Initially these lists are empty. The
Sender appends each NodeBuffer it receives onto the list
of NodeBuffers corresponding to the incoming Node-
Buffer’s destination node.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 35

0

N

1

0

...

1

N
recv()

Empty Buffers
From Pool

Full Buffers To
LD Distributor

Receiver NodeBuffersSockets

1

2

3

...

Figure 5: The Receiver stage, responsible for receiving
data from other nodes’ Sender stages.

To send data across the network, the Sender loops
through the elements in the set of NodeBuffer lists. If
the list is non-empty, the Sender accesses the Node-
Buffer at the head of the list, and sends a fixed-sized
amount of data to the appropriate destination host using
a non-blocking send() call. If the call succeeds and some
amount of data was sent, then the NodeBuffer at the head
of the list is updated to note the amount of its contents
that have been successfully sent so far. If the send() call
fails, because the TCP send buffer for that socket is full,
that buffer is simply skipped and the Sender moves on
to the next destination host. When all of the data from
a particular NodeBuffer is successfully sent, the Sender
returns that buffer back to its pool.

Receiver: The Receiver stage, shown in Figure 5,
is responsible for receiving data from other nodes in
the cluster, appending that data onto a set of Node-
Buffers, and passing those NodeBuffers downstream to
the LogicalDiskDistributor stage. In TritonSort, the Re-
ceiver stage is instantiated with a single worker. On
starting up, the Receiver opens a server socket and ac-
cepts incoming connections from Sender workers on re-
mote nodes. Its run() method begins by getting a set of
NodeBuffers from a pool of such buffers, one for each
source node. The Receiver then loops through each of
the open sockets, reading up to 16KB of data at a time
into the NodeBuffer for that source node using a non-
blocking recv() call. This small socket read size is due
to the rate-limiting fix that we explain in Section 4.1. If
data is returned by that call, it is appended to the end
of the NodeBuffer. If the append would exceed the size
of the NodeBuffer, that buffer is sent downstream to the
LogicalDiskDistributor stage, and a new NodeBuffer is
retrieved from the pool to replace the NodeBuffer that
was sent.

LogicalDiskDistributor: The LogicalDisk-
Distributor stage, shown in Figure 6, receives Node-
Buffers from the Receiver that contain tuples destined
for logical disks on its node. LogicalDiskDistributors
are responsible for distributing tuples to appropriate
logical disks and sending groups of tuples destined for
the same logical disk to the downstream Writer stage.

LDBuffer
Array

LDBuffer
TableEmpty Buffers

from Pool To Coalescer

t0 t1 t2

≥5MB
0
1

L

< 5MB

0
1

...

L

2

3.1
3.2

. . .

2.2 2.1

NodeBuffer1

H
(k

ey
(t0

))
H

(k
ey

(t1
))

H
(k

ey
(t2

))

Figure 6: The LogicalDiskDistributor stage, responsible
for distributing tuples across logical disks and buffering
sufficient data to allow for large writes.

The LogicalDiskDistributor’s design is driven by the
need to buffer enough data to issue large writes and
thereby minimize disk seeks and achieve high band-
width. Internal to the LogicalDiskDistributor are two
data structures: an array of LDBuffers, one per logical
disk, and an LDBufferTable. An LDBuffer is a buffer
of tuples destined to the same logical disk. Each LD-
Buffer is 12,800 bytes long, which is the least common
multiple of the tuple size (100 bytes) and the direct I/O
write size (512 bytes). The LDBufferTable is an array
of LDBuffer lists, one list per logical disk. Additionally,
LogicalDiskDistributor maintains a pool of LDBuffers,
containing 1.25 million LDBuffers, accounting for 20 of
each machine’s 24 GB of memory.

Algorithm 1 The LogicalDiskDistributor stage
1: NodeBuffer ← getNewWork()
2: {Drain NodeBuffer into the LDBufferArray}
3: for all tuples t in NodeBuffer do
4: dst = H(key(t))
5: LDBufferArray[dst].append(t)
6: if LDBufferArray[dst].isFull() then
7: LDTable.insert(LDBufferArray[dst])
8: LDBufferArray[dst] = getEmptyLDBuffer()
9: end if

10: end for
11: {Send full LDBufferLists to the Coalescer}
12: for all physical disks d do
13: while LDTable.sizeOfLongestList(d) ≥ 5MB do
14: ld ← LDTable.getLongestList(d)
15: Coalescer.pushNewWork(ld)
16: end while
17: end for

The operation of a LogicalDiskDistributor worker is
described in Algorithm 1. In Line 1, a full NodeBuffer
is pushed to the LogicalDiskDistributor by the Receiver.

7

36 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Lines 3-10 are responsible for draining that NodeBuffer
tuple by tuple into an array of LDBuffers, indexed by the
logical disk to which the tuple belongs. Lines 12-17 ex-
amine the LDBufferTable, looking for logical disk lists
that have accumulated enough data to write out to disk.
We buffer at least 5 MB of data for each logical disk
before flushing that data to disk to prevent many small
write requests from being issued if the pipeline temporar-
ily stalls. When the minimum threshold of 5 MB is met
for any particular physical disk, the longest LDBuffer list
for that disk is passed to the Coalescer stage on Line 15.

The original design of the LogicalDiskDistributor only
used the LDBuffer array described above and used much
larger LDBuffers (~10MB each) rather than many small
LDBuffers. The Coalescer stage (described below) did
not exist; instead, the LogicalDiskDistributor transferred
the larger LDBuffers directly to the Writer stage.

This design was abandoned due to its inefficient use
of memory. Temporary imbalances in input distribution
could cause LDBuffers for different logical disks to fill at
different rates. This, in turn, could cause an LDBuffer to
become full when many other LDBuffers in the array are
only partially full. If an LDBuffer is not available to re-
place the full buffer, the system must block (either imme-
diately or when an input tuple is destined for that buffer’s
logical disk) until an LDBuffer becomes available. One
obvious solution to this problem is to allow partially full
LDBuffers to be sent to the Writers at the cost of lower
Writer throughput. This scheme introduced the further
problem that the unused portions of the LDBuffers wait-
ing to be written could not be used by the LogicalDisk-
Distributor. In an effort to reduce the amount of memory
wasted in this way, we migrated to the current architec-
ture, which allows small LDBuffers to be dynamically
reallocated to different logical disks as the need arises.
This comes at the cost of additional computational over-
head and memory copies, but we deem this cost to be
acceptable due to the small cost of memory copies rela-
tive to disk seeks.

Coalescer: The operation of the Coalescer stage is
simple. A Coalescer will copy tuples from each LD-
Buffer in its input LDBuffer list into a WriterBuffer and
pass that WriterBuffer to the Writer stage. It then returns
the LDBuffers in the list to the LDBuffer pool.

Originally, the LogicalDiskDistributor stage did the
work of the Coalescer stage. While optimizing the sys-
tem, however, we realized that the non-trivial amount of
time spent merging LDBuffers into a single WriterBuffer
could be better spent processing additional NodeBuffers.

Writer: The operation of the Writer stage is also quite
simple. When a Coalescer pushes a WriterBuffer to it,
the Writer worker will determine the logical disk corre-
sponding to that WriterBuffer and write out the data us-

Intermediate
Disk

Reader

Phase2
Buffer
Pool

Sorter Writer Output
Disk

8 8 4 8 8

Figure 7: Block diagram of TritonSort’s phase two archi-
tecture. The number of workers for a stage is indicated in
the lower-right corner of that stage’s block, and the num-
ber of disks of each type is indicated in the lower-right
corner of that disk’s block.

ing a blocking write() system call. When the write com-
pletes, the WriterBuffer is returned to the pool.

3.4 TritonSort Architecture: Phase Two
Once phase one completes, all of the tuples from the in-
put dataset are stored in appropriate logical disks across
the cluster’s intermediate disks. In phase two, each of
these unsorted logical disks is read into memory, sorted,
and written out to an output disk. The pipeline is straight-
forward: Reader and Writer workers issue sequential,
streaming I/O requests to the appropriate disk, and Sorter
workers operate entirely in memory.

Reader: The phase two Reader stage is identical to
the phase one Reader stage, except that it reads into a
PhaseTwoBuffer, which is the size of a logical disk.

Sorter: The Sorter stage performs an in-memory sort
on a PhaseTwoBuffer. A variety of sort algorithms can
be used to implement this stage, however we selected the
use of radix sort due to its speed. Radix sort requires ad-
ditional memory overhead compared to an in-place sort
like QuickSort, and so the sizes of our logical disks have
to be sized appropriately so that enough Reader–Sorter–
Writer pipelines can operate in parallel. Our version
of radix sort first scans the buffer, constructing a set of
structures containing a pointer to each tuple’s key and
a pointer to the tuple itself. These structures are then
sorted by key. Once the structures have been sorted, they
are used to rearrange the tuples in the buffer in-place.
This reduces the memory overhead for each Sorter sub-
stantially at the cost of additional memory copies.

Writer: The phase two Writer writes a PhaseTwo-
Buffer sequentially to a file on an output disk. As in
phase one, each Writer is responsible for writes to a sin-
gle output disk.

Because the phase two pipeline operates at the granu-
larity of a logical disk, we can operate several of these
pipelines in parallel, limited by either the number of
cores in each system (we can’t have more pipelines than
cores without sacrificing performance because the Sorter
is CPU-bound), the amount of memory in the system

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 37

Figure 9: Comparing the scalability of single-threaded
and multi-threaded Receiver implementations

(each pipeline requires at least three times the size of a
logical disk to be able to read, sort, and write in parallel),
or the throughput of the disks. In our case, the limiting
factor is the output disk bandwidth. To host one phase
two pipeline per input disk requires storing 24 logical
disks in memory at a time. To accomplish this, we set
sizeLD to 850MB, using most of the 24 GB of RAM
available on each node and allowing for additional mem-
ory required by the operating system. To sort 850MB
logical disks fast enough to not block the Reader and
Writer stages, we find that four Sorters suffice.

3.5 Stage and Buffer Sizing
One of the major requirements for operating TritonSort
at near disk speed is ensuring cross-stage balance. Each
stage has an intrinsic execution time, either based on the
speed of the device to which it interfaces (e.g., disks or
network links), or based on the amount of CPU time it re-
quires to process a work unit. Figure 8 shows the speed
and performance of each stage in the pipeline. In our im-
plementation, we are limited by the speed of the Writer
stage in both phases one and two.

4 Optimizations
In implementing the TritonSort architecture, we learned
that several non-obvious optimizations were necessary to
meet our desired goal of driving every disk at full utiliza-
tion. Here, we present the key takeaways from our expe-
rience. In each case, we believe these lessons generalize
to a wide variety of DISC systems.

4.1 Network
For TritonSort to operate at the aggregate sequential
streaming bandwidth of all of its disks, the network must
be able to sustain the read throughput of eight disks while
data is being shuffled among nodes in the first phase.
Since the 7.2k-RPM disks we use deliver at most 100
MBps of sequential read throughput (Table 1), the net-

work must be able to sustain 6.4 Gbps of all-pairs band-
width, irrespective of the number of nodes in the cluster.

It is well-known that sustaining high-bandwidth flows
in datacenter networks, especially all-to-all patterns, is a
significant challenge. Reasons for this include commod-
ity datacenter network hardware, incast, queue buildup,
and buffer pressure[2]. Since we could not employ a
strategy like that presented in [2] to provide fair but high
bandwidth flow rates among the senders, we chose in-
stead to artificially rate limit each flow at the Sender
stage to its calculated fair share by forcing the sockets
to be receive window limited. This works for TritonSort
because 1) each machine sends and receives at approx-
imately the same rate, 2) all the nodes share the same
RTT since they are interconnected by a single switch,
and 3) our switch does not impose an oversubscription
factor. In this case, each Sender should ideally send at
a rate of (6.4/N) Gbps, or 123 Mbps with a cluster of
52 nodes. Given that our network offers approximately
100µsec RTTs, a receiver window size of 8 − 16 KB
ensures that the flows will not impose queue buildup or
buffer pressure on other flows.

Initially, we chose a straightforward multi-threaded
design for the Sender and Receiver stages in which there
were N Senders and N Receivers, one for each Triton-
Sort node. In this design, each Sender issues block-
ing send() calls on a NodeBuffer until it is sent. Like-
wise, on the destination node, each Receiver repeatedly
issues blocking recv() calls until a NodeBuffer has been
received. Because the number of CPU hyperthreads on
each of our nodes is typically much smaller than 2N , we
pinned all Senders’ threads to a single hyperthread and
all Receivers’ threads to a single separate hyperthread.

Figure 9 shows that this multi-threaded approach does
not scale well with the number of nodes, dropping below
4 Gbps at scale. This poor performance is due to thread
scheduling overheads at the end hosts. 16 KB TCP re-
ceive buffers fill up much faster than connections that are
not window-limited. At the rate of 123 MBps, a 16 KB
buffer will fill up in just over 1 ms, causing the Sender
to stop sending. Thus, the Receiver stage must clear out
each of its buffers at that rate. Since there are 52 such
buffers, a Receiver must visit and clear a receive buffer in
just over 20 µs. A Receiver worker thread cannot drain
the socket, block, go to sleep, and get woken up again
fast enough to service buffers at this rate.

To circumvent this problem we implemented a single-
threaded, non-blocking receiver that scans through each
socket in round-robin order, copying out any available
data and storing it in a NodeBuffer during each pass
through the array of open sockets. This implementation
is able to clear each socket’s receiver buffer faster than
the arrival rate of incoming data. Figure 9 shows that
this design scales well as the cluster grows.

9

38 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Worker Type Size Of Runtime # Workers Throughput Total Throughput
Input (MB) (ms) (in MBps) (in MBps)

Reader 81.92 958.48 8 85 683
NodeDistributor 81.92 263.54 3 310 932

LogicalDiskDistributor 1.65 2.42 1 683 683
Coalescer 10.60 4.56 8 2,324 18,593

Writer 10.60 141.07 8 75 601
Phase two Reader 762.95 8,238 8 92 740
Phase two Sorter 762.95 2,802 4 272 1089
Phase two Writer 762.95 8,512 8 89 717

Figure 8: Median stage runtimes for a 52-node, 100TB sort, excluding the amount of time spent waiting for buffers.

Figure 10: Microbenchmark indicating the ideal disk
throughput as a function of write size

4.2 Minimizing Disk Seeks

Key to making the TritonSort pipeline efficient is min-
imizing the total amount of time spent performing disk
seeks, both while writing data in phase one, and while
reading that data in phase two. As individual write sizes
get smaller, the throughput drops, since the disk must oc-
casionally seek between individual write operations. Fig-
ure 10 shows disk write throughput measured by a syn-
thetic workload generator writing to a configurable set of
files with different write sizes. Ideally, the Writer would
receive WriterBuffers large enough that it can write them
out at close to the sequential rate of the disk, e.g., 80
MB. However, the amount of available memory limits
TritonSort’s write sizes. Since the tuple space is uni-
formly distributed across the logical disks, the Logical-
DiskDistributor will fill its LDBuffers at approximately
a uniform rate. Buffering 80 MB worth of tuples for a
given logical disk before writing to disk would cause the
buffers associated with all of the other logical disks to
become approximately as full. This would mandate sig-
nificantly higher memory needs than what is available
in our hardware architecture. Hence, the LogicalDisk-
Distributor stage must emit smaller WriterBuffers, and it

must interleave writes to different logical disks.

4.3 The Importance of File Layout
The physical layout of individual logical disk files plays a
strong role in trading off performance between the phase
one Writer and the phase two Reader. One strategy is to
append to the logical disk files in a log-structured man-
ner, in which a WriterBuffer for one logical disk is im-
mediately appended after the WriterBuffer for a different
logical disk. This is possible if the logical disks’ blocks
are allocated on demand. It has the advantage of mak-
ing the phase one Writer highly performant, since it min-
imizes seeks and leads to near-sequential write perfor-
mance. On the other hand, when a phase two Reader
begins reading a particular logical disk, the underlying
physical disk will need to seek frequently to read each of
the WriterBuffers making up the logical disk.

An alternative approach is to greedily allocate all of
the blocks for each of the logical disks at start time, en-
suring that all of a logical disk’s blocks are physically
contiguous on the underlying disk. This can be accom-
plished with the fallocate() system call, which provides
a hint to the file system to pre-allocate blocks. In this
scheme, interleaved writes of WriterBuffers for different
logical disks will require seeking since two subsequent
writes to different logical disks will need to write to dif-
ferent contiguous regions on the disk. However, in phase
two, the Reader will be able to sequentially read an en-
tire logical disk with minimal seeking. We also use fallo-
cate() on input and output files so that phase one Readers
and phase two Writers seek as little as possible.

The location of output files on the output disks also
has a dramatic effect on phase two’s performance. If we
do not delete the input files before starting phase two, the
output files are allocated space on the interior cylinders
of the disk. When evaluating phase two’s performance on
a 100 TB sort, we found that we could write to the inte-
rior cylinders of the disk at an average rate of 64 MBps.
When we deleted the input files before phase two began,
ensuring that the output files would be written to the ex-
terior cylinders of the disk, this rate jumped to 84 MBps.

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 39

For the evaluations in Section 5, we delete the input files
before starting phase two. For reference, the fastest we
have been able to write to the disks in microbenchmark
has been approximately 90 MBps.

4.4 CPU Scheduling
Modern operating systems support a wide variety of
static and dynamic CPU scheduling approaches, and
there has been considerable research into scheduling dis-
ciplines for data processing systems. We put a significant
amount of effort into isolating stages from one another by
setting the processor affinities of worker threads explic-
itly, but we eventually discovered that using the default
Linux scheduler results in a steady-state performance
that is only about 5% worse than any custom scheduling
policy we devised. In our evaluation, we use our custom
scheduling policy unless otherwise specified.

4.5 Pipeline Demand Feedback
Initially, TritonSort was entirely “push”-based, meaning
that a worker only processed work when it was pushed
to it from a preceding stage. While simple to design, cer-
tain stages perform sub-optimally when they are unable
to send feedback back in the pipeline as to what work
they are capable of doing. For example, the throughput
of the Writer stage in phase one is limited by the latency
of writes to the intermediate disks, which is governed by
the sizes of WriterBuffers sent to it as well as the physical
layout of logical disks (due to the effects of seek and ro-
tational delay). In its naı̈ve implementation, the Logical-
DiskDistributor sends work to the Writer stage based on
which of its LDBuffer lists is longest with no regard to
how lightly or heavily loaded the Writers themselves are.
This can result in an imbalance of work across Writers,
with some Writers idle and others struggling to process a
long queue of work. This imbalance can destabilize the
whole pipeline and lower total throughput.

To address this problem, we must effectively com-
municate information about the sizes of Writers’ work
queues to upstream stages. We do this by creating a pool
of write tokens. Every write token is assigned a single
“parent” Writer. We assign parent Writers in round-robin
order to tokens as the tokens are created and create a
number of tokens equal to the number of WriterBuffers.
When the LogicalDiskDistributor has buffered enough
LDBuffers so that one or more of its logical disks is
above the minimum write threshold (5MB), the Logical-
DiskDistributor will query the write token pool, passing
it a set of Writers for which it has enough data. If a write
token is available for one of the specified Writers in the
set, the pool will return that token, otherwise it will signal
that no tokens are available. The LogicalDiskDistributor
is required to pass a token for the target Writer along with

its LDBuffer list to the next stage, This simple mech-
anism prevents any Writer’s work queue from growing
longer than its “fair share” of the available WriterBuffers
and provides reverse feedback in the pipeline without
adding any new architectural features.

4.6 System Call Behavior
In the construction of any large system, there are always
idiosyncrasies in performance that must be identified and
corrected. For example, we noticed that the sizes of ar-
guments to Linux write() system calls had a dramatic
impact on their latency; issuing many small writes per
buffer often yielded more performance than issuing a sin-
gle large write. One would imagine that providing more
information about the application’s intended behavior to
the operating system would result in better management
of underlying resources and latency but in this case, the
opposite seems to be true. While we are still unsure of
the cause of this behavior, it illustrates that the perfor-
mance characteristics of operating system services can
be unpredictable and counter-intuitive.

5 Evaluation
We now evaluate TritonSort’s performance and scalabil-
ity under various hardware configurations.

5.1 Evaluation Environment
We evaluated TritonSort on a 52 node cluster of HP
DL380G6 servers, each with two Intel E5520 CPUs
(2.27 GHz), 24 GB of memory, and 16 500GB 7,200
RPM 2.5” SATA drives. Each hard drive is configured
with a single XFS partition. Each XFS partition is con-
figured with a single allocation group to prevent file frag-
mentation across allocation groups, and is mounted with
the noatime, attr2, nobarrier, and noquota
flags set. Each server has two HP P410 drive controllers
with 512MB on-board cache, as well as a Myricom 10
Gbps network interface. The network interconnect we
use is a 52-port Cisco Nexus 5020 datacenter switch. The
servers run Linux 2.6.35.1, and our implementation of
TritonSort is written in C++.

5.2 Comparison to Alternatives
The 100TB Indy GraySort benchmark was introduced in
2009, and hence there are few systems against which we
can compare TritonSort’s performance. The most recent
holder of the Indy GraySort benchmark, DEMSort [18],
sorted slightly over 100TB of data on 195 nodes at a rate
of 564 GB per minute. TritonSort currently sorts 100TB
of data on 52 nodes at a rate of 916 GB per minute, a
factor of six improvement in per-node efficiency.

11

40 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Intermediate Disk Logical Disks Phase 1 Phase 1 Average Write
Speed (RPM) Per Physical Disk Throughput (MBps) Bottleneck Stage Size (MB)

7200 315 69.81 Writer 12.6
7200 158 77.89 Writer 14.0
15000 158 79.73 LogicalDiskDistributor 5.02

Table 2: Effect of increasing speed of intermediate disks on a two node, 500GB sort

5.3 Examining Changes in Balance

We next examine the effect of changing the cluster’s con-
figuration to support more memory or faster disks. Due
to budgetary constraints, we could not evaluate these
hardware configurations at scale. Evaluating the perfor-
mance benefits of SSDs is the subject of future work.

In the first experiment, we replaced the 500GB,
7200RPM disks that are used as the intermediate disks in
phase one and the input disks in phase two with 146GB,
15000RPM disks. The reduced capacity of the drives
necessitated running an experiment with a smaller input
data set. To allow space for the logical disks to be pre-
allocated on the intermediate disks without overrunning
the disks’ capacity, we decreased the number of logical
disks per physical disk by a factor of two. This doubles
the amount of data in each logical disk, but the experi-
ment’s input data set is small enough that the amount of
data per logical disk does not overflow the logical disk’s
maximum size.

Phase one throughput in these experiments is slightly
lower than in subsequent experiments because the 30-35
seconds it takes to write the last few bytes of each logical
disk at the end of the phase is roughly 10% of the total
runtime due to the relatively small dataset size.

The results of this experiment are shown in Table 2.
We first examine the effect of decreasing the number of
logical disks without increasing disk speed. Decreas-
ing the number of logical disks increases the average
length of LDBuffer chains formed by the LogicalDisk-
Distributor; note that most of the time, full WriterBuffers
(14MB) are written to the disks. In addition, halving the
number of logical disks decreases the number of external
cylinders that the logical disks occupy, decreasing maxi-
mal seek latency. These two factors combine together to
net a significant (11%) increase in phase one throughput.

The performance gained by writing to 15000 RPM
disks in phase one is much less pronounced. The main
reason for this is that the increase in write speed causes
the Writers to become fast enough that the Logical-
DiskDistributor exposes itself as the bottleneck stage.
One side-effect of this is that the LogicalDiskDistributor
cannot populate WriterBuffers as fast as they become
available, so it reverts to a pathological case in which
it always is able to successfully retrieve a write token
and hence continuously writes minimally-filled (5MB)

RAM Per Phase 1 Average Write
Node (GB) Throughput (MBps) Size (MB)

24 73.53 12.43
48 76.45 19.21

Table 3: Effect of increasing the amount of memory per
node on a two node, 2TB sort

Figure 11: Throughput when sorting 1 TB per node as
the number of nodes increases

buffers. Creating a LogicalDiskDistributor stage that dy-
namically adjusts its write size based on write token re-
trieval success rate is the subject of future work.

In the next experiment, we doubled the RAM in two
of the machines in our cluster and adjusted TritonSort’s
memory allocation by doubling the size of each Writer-
Buffer (from 14MB to 28MB) and using the remain-
ing memory (22GB) to create additional LDBuffers. As
shown in Table 3, increasing the amount of memory al-
lows for the creation of longer chains of LDBuffers in the
LogicalDiskDistributor, which in turn causes write sizes
to increase. The increase in write size is not linear in
the amount of RAM added; this is likely because we are
approaching the point past which larger writes will not
dramatically improve write throughput.

5.4 TritonSort Scalability

Figure 11 shows TritonSort’s total throughput when sort-
ing 1 TB per node as the number of nodes increases from
2 to 48. Phase two exhibits practically linear scaling,
which is expected since each node performs phase two
in isolation. Phase one’s scalability is also nearly linear;
the slight degradation in its performance at large scales

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 41

is likely due to network variance that becomes more pro-
nounced as the number of nodes increases.

6 Discussion and Future Work
In this section, we discuss our system and present direc-
tions for future work.

6.1 Supporting More General Sorting
Two assumptions that we make in our design are that tu-
ples are uniform in size, and that they are uniformly and
identically distributed across the input files. TritonSort
can be extended to support non-uniform tuple sizes by
extending the tuple data structure to keep key and value
lengths. The most major modification that this will ne-
cessitate will be supporting the in-memory sort of keys in
phase two, which will require modifications to the phase
two Sorter stage. To support the non-uniform distribution
of keys across input files, we plan to implement a new
phase that will operate before TritonSort begins in which
a random small subset of the input data is scanned, de-
termining a histogram of the key distribution. Using this
empirical distribution, we will determine a hash function
that spreads tuples across nodes as uniformly as possible.

6.2 Automated Performance Tuning
In the current TritonSort prototype, the sizes of individ-
ual buffers, the number of buffers of each type, and the
number of workers implementing each stage are deter-
mined manually. Key to supporting more general hard-
ware configurations and more general DISC applications
is the ability to determine these quantities automatically
and dynamically. This automatic selection will need to
be performed both statically at design time, and dynam-
ically during runtime based on observed conditions. A
stage’s performance on synthetic data in isolation pro-
vides a good upper-bound on its real performance and
makes choosing between different implementations eas-
ier, but any such synthetic analysis does not take runtime
conditions such as CPU scheduling and cache contention
into account. Therefore, some manner of online learning
algorithm will likely be necessary for the system to de-
termine a good configuration at scale.

6.3 Incorporating SSDs into TritonSort
To achieve nearly sequential-speed throughput to the
disks, writes must be large. However, limited per-node
memory capacity and high memory cost makes it hard
to allocate more than 25MB of memory to each Writer-
Buffer. Here, we discuss a possible use of SSDs to pro-
vide high write speeds with much smaller buffers.

If we were to add three 80GB SSDs to each machine,
we could setup a pipeline in which these SSDs are di-
vided between the eight Writers, so that each Writer has

30 GB of SSD space. The LogicalDiskDistributor passes
data for each logical disk to the Writer stage in small
chunks, where Writers write them to the SSDs. Assum-
ing 315 logical disks per Writer, this gives each logical
disk 95 MB of space on the SSD. Because the SSD can
handle such a large number of IOPS, there is no penalty
for small writes as there is with standard hard drives.
Once 80 MB of data is written to a single logical disk
on the SSDs, the Writer initiates a sendfilev() system
call that causes a sequential DMA transfer of that data
from the SSD to the appropriate intermediate disk. This
should lower our memory requirements to 24 GB, while
permitting extremely large writes. This approach relies
on two features: significant PCI bandwidth to support
parallel transfers to the SSDs, and an SSD array present
in the node able to provide high streaming bandwidth to
the SSDs; we will need such an array to simultaneously
support over 640 MBps of parallel writes and 640 MBps
of parallel reads to fully utilize the disks.

7 Related Work
The Datamation sorting benchmark[5] initially measured
the elapsed time to sort one million records from disk
to disk. As hardware has improved, the number of
records has grown to its current level of 100TB. Over
the years, numerous authors have reported the perfor-
mance of their sorting systems, and we benefit from their
insights[18, 15, 21, 6, 17, 16]. We differ from previous
sort benchmark holders in that we focus on maximizing
both aggregate throughput and per-node efficiency.

Achieving per-resource balance in a large-scale data
processing system is the subject of a large volume of
previous research dating back at least as far as 1970.
Among the more well-known guidelines for building
such systems are the Amdahl/Case rules of thumb for
building balanced systems [3] and Gray and Putzolu’s
“five-minute rule” [13] for trading off memory and I/O
capacity. These guidelines have been re-evaluated and
refreshed as hardware capabilities have increased.

NOWSort[6] was the first of the aforementioned sort-
ing systems to run on a shared-nothing cluster. NOWSort
employs a two-phase pipeline that generates multiple
sorted runs in the first phase and merges them together in
the second phase, a technique shared by DEMSort[18].
An evaluation of NOWSort done in 1998[7] found that
its performance was limited by I/O bus bandwidth and
poor instruction locality. Modern PCI buses and multi-
core processors have largely eliminated these concerns;
in practice, TritonSort is bottlenecked by disk bandwidth.

TritonSort’s staged, pipelined dataflow architecture is
inspired in part by SEDA[20], a staged, event-driven
software architecture that decouples worker stages by in-
terposing queues between them. Other DISC systems
such as Dryad [14] export a similar model, although

13

42 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dryad has fault-tolerance and data redundancy capabili-
ties that TritonSort does not currently implement.

We are further informed by lessons learned from par-
allel database systems. Gamma[10] was one of the first
parallel database systems to be deployed on a shared-
nothing cluster. To maximize throughput, Gamma em-
ploys horizontal partitioning to allow separable queries
to be performed across many nodes in parallel, an ap-
proach that is similar in many respects to our use of log-
ical disks. TritonSort’s Sender-Receiver pair is similar
to the exchange operator first introduced by Volcano[12]
in that it abstracts data partitioning, flow control, paral-
lelism and data distribution from the rest of the system.

8 Conclusions
In this work, we describe the hardware and software
architecture necessary to build TritonSort, a highly ef-
ficient, pipelined, stage-driven sorting system designed
to sort tens to hundreds of TB of data. Through care-
ful management of system resources to ensure cross-
resource balance, we are able to sort tens of GB of data
per node per minute, resulting in 916 GB/min across only
52 nodes. We believe the work holds a number of lessons
for balanced system design and for scale-out architec-
tures in general and will help inform the construction of
more balanced data processing systems that will bridge
the gap between scalability and per-node efficiency.

9 Acknowledgments
This project was supported by NSF’s Center for Inte-
grated Access Networks and NSF MRI #CNS-0923523.
We’d like to thank Cisco Systems for their support of this
work. We’d like to acknowledge Stefan Savage for pro-
viding valuable feedback concerning network optimiza-
tions, and thank our shepherd Andrew Birrell and the
anonymous reviewers for their feedback and suggestions.

References
[1] A. Aggarwal and J. S. Vitter. The input/output com-

plexity of sorting and related problems. CACM,
1988.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[3] G. Amdahl. Storage and I/O Parameters and Sys-
tem Potential. In IEEE Computer Group Confer-
ence, 1970.

[4] E. Anderson and J. Tucek. Efficiency matters! In
HotStorage, 2009.

[5] Anon et al. A Measure of Transaction Processing
Power. Datamation, 1985.

[6] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson. High-
performance sorting on networks of workstations.
In SIGMOD, 1997.

[7] R. Arpaci-Dusseau, A. Arpaci-Dusseau, D. Culler,
J. Hellerstein, and D. Patterson. The architectural
costs of streaming I/O: A comparison of worksta-
tions, clusters, and SMPs. In HPCA, pages 90–101,
1998.

[8] R. E. Bryant. Data-Intensive Supercomputing: The
Case for DISC. Technical Report CMU-CS-07-
128, CMU, 2007.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, 2004.

[10] D. DeWitt, S. Ghandeharizadeh, D. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The
Gamma Database Machine Project. TKDE, 1990.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, 2003.

[12] G. Graefe. Volcano-an extensible and parallel query
evaluation system. TKDE, 1994.

[13] J. Gray and G. R. Putzolu. The 5 Minute Rule
for Trading Memory for Disk Accesses and The 10
Byte Rule for Trading Memory for CPU Time. In
SIGMOD, 1987.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In EuroSys, 2007.

[15] B. C. Kuszmaul. TeraByte TokuSampleSort, 2007.
http://sortbenchmark.org/tokutera.pdf.

[16] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. Alphasort: A cache-sensitive parallel
external sort. In VLDB, 1995.

[17] C. Nyberg, C. Koester, and J. Gray. NSort: a Par-
allel Sorting Program for NUMA and SMP Ma-
chines, 1997.

[18] M. Rahn, P. Sanders, J. Singler, and T. Kieritz.
DEMSort – Distributed External Memory Sort,
2009. http://sortbenchmark.org/demsort.pdf.

[19] Sort Benchmark Home Page. http://sortbenchmark.
org/.

[20] M. Welsh, D. Culler, and E. Brewer. SEDA: an
architecture for well-conditioned, scalable internet
services. In SOSP, 2001.

[21] J. Wyllie. Sorting on a Cluster Attached
to a Storage-Area Network, 2005. http://
sortbenchmark.org/2005 SCS Wyllie.pdf.

[22] Apache hadoop. http://hadoop.apache.org/.
[23] Scaling Hadoop to 4000 nodes at Yahoo!

http://developer.yahoo.net/blogs/hadoop/2008/
09/scaling hadoop to 4000 nodes a.html.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 43

Diagnosing performance changes by comparing request flows

Raja R. Sambasivan⋆, Alice X. Zheng†, Michael De Rosa‡, Elie Krevat⋆,

Spencer Whitman⋆, Michael Stroucken⋆, William Wang⋆, Lianghong Xu⋆, Gregory R. Ganger⋆

⋆Carnegie Mellon University, †Microsoft Research, ‡Google

Abstract

The causes of performance changes in a distributed

system often elude even its developers. This paper de-

velops a new technique for gaining insight into such

changes: comparing request flows from two executions

(e.g., of two system versions or time periods). Build-

ing on end-to-end request-flow tracing within and across

components, algorithms are described for identifying and

ranking changes in the flow and/or timing of request pro-

cessing. The implementation of these algorithms in a

tool called Spectroscope is evaluated. Six case studies

are presented of using Spectroscope to diagnose perfor-

mance changes in a distributed storage service caused by

code changes, configuration modifications, and compo-

nent degradations, demonstrating the value and efficacy

of comparing request flows. Preliminary experiences

of using Spectroscope to diagnose performance changes

within select Google services are also presented.

1 Introduction

Diagnosing performance problems in distributed systems

is difficult. Such problems may have many sources and

may be contained in any one or more of the component

processes or, more insidiously, may emerge from the in-

teractions among them [21]. A suite of debugging tools

is needed to help in identifying and understanding the

root causes of the diverse types of performance prob-

lems that can arise. In contrast to single-process appli-

cations, for which diverse performance debugging tools

exist (e.g., DTrace [6], gprof [14], and GDB [12]), too

few techniques have been developed for guiding diagno-

sis of distributed system performance.

Recent research has developed promising new tech-

niques that can help populate the suite. Many build on

low-overhead end-to-end tracing (e.g., [4, 7, 9, 11, 31,

34]), which captures the flow (i.e., path and timing) of

individual requests within and across the components of

a distributed system. For example, with such rich infor-

mation about a system’s operation, researchers have de-

veloped new techniques for detecting anomalous request

flows [4], spotting large-scale departures from perfor-

mance models [33], and comparing observed behaviour

to manually-constructed expectations [26].

This paper develops a new technique for the suite:

comparing request flows between two executions to iden-

tify why performance has changed between them. Such

comparison allows one execution to serve as a model

of acceptable performance; highlighting key differences

from this model and understanding their performance

costs allows for easier diagnosis than when only a single

execution is used. Though obtaining an execution of ac-

ceptable performance may not be possible in all cases—

e.g., when a developer wants to understand why perfor-

mance has always been poor—there are many cases for

which request-flow comparison is useful. For example,

it can help diagnose performance changes resulting from

modifications made during software development (e.g.,

during regular regression testing) or from upgrades to

components of a deployed system. Also, it can help

when diagnosing changes over time in a deployed sys-

tem, which may result from component degradations, re-

source leakage, or workload changes.

Our analysis of bug tracking data for a distributed stor-

age service indicates that more than half of the reported

performance problems would benefit from guidance pro-

vided by comparing request flows. Talks with Google

engineers [3] and experiences using request-flow com-

parison to diagnose Google services affirm its utility.

The utility of comparing request flows relies on the

observation that performance changes often manifest as

changes in how requests are serviced. When comparing

two executions, which we refer to as the non-problem

period (before the change) and the problem period (after

the change), there will usually be some changes in the

observed request flows. We refer to new request flows

in the problem period as mutations and to the request

flows corresponding to how they were serviced in the

non-problem period as precursors. Identifying mutations

and comparing them to their precursors helps localize

sources of change and gives insight into their effects.

This paper describes algorithms for effectively com-

paring request flows across periods, including for iden-

tifying mutations, ranking them based on their contribu-

tion to the overall performance change, identifying their

most likely precursors, highlighting the most prominent

divergences, and identifying low-level parameter differ-

ences that most strongly correlate to each.

We categorize mutations into two types: Response-

time mutations correspond to requests that have in-

creased only in cost between the periods; their precursors

are requests that exhibit the same structure, but whose re-

sponse time is different. Structural mutations correspond

to requests that take different paths through the system in

the problem period. Identifying their precursors requires

analysis of all request flows with differing frequencies in

the two periods.

44 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1 illustrates a (mocked up) example of two mu-

tations and their precursors. Ranking and highlighting

divergences involves using statistical tests and compari-

son of mutations and associated precursors.

We have implemented request-flow comparison in a

toolset called Spectroscope and used it to diagnose per-

formance problems observed in Ursa Minor [1], a dis-

tributed storage service. By describing five real problems

and one synthetic one, we illustrate the utility of compar-

ing request flows and show that our algorithms enable

effective use of this technique. To understand challenges

associated with scaling request-flow comparison to very

large distributed systems, this paper also describes pre-

liminary experiences using it to diagnose performance

changes within distributed services at Google.

2 End-to-end request-flow tracing

Request-flow comparison builds on end-to-end tracing,

an invaluable information source that captures a dis-

tributed system’s performance and control flow in detail.

Such tracing works by capturing activity records at each

of various trace points within the distributed system’s

software, with each record identifying the specific trace-

point name, the current time, and other contextual infor-

mation. Most implementations associate activity records

with individual requests by propagating a per-request

identifier, which is stored within the record. Activity

records can be stitched together, either offline or online,

to yield request-flow graphs, which show the control flow

of individual requests. Several efforts, including Mag-

pie [4], Whodunit [7], Pinpoint [9], X-Trace [10, 11],

Google’s Dapper [31], and Stardust [34] have indepen-

dently implemented such tracing and shown that it can be

used continuously with low overhead, especially when

request sampling is supported [10, 28, 31]. For example,

Stardust [34], Ursa Minor’s end-to-end tracing mecha-

nism, adds 1% or less overhead when used with key

benchmarks, such as SpecSFS [30].

End-to-end tracing implementations differ in two key

respects: whether instrumentation is added automatically

or manually and whether the request flows can disam-

biguate sequential and parallel activity. With regard to

the latter, Magpie [4] and recent versions of both Star-

dust [34] and X-Trace [10] explicitly account for concur-

rency by embedding information about thread synchro-

nization in their traces (see Figure 2). These implemen-

tations are a natural fit for request-flow comparison, as

they can disambiguate true structural differences from

false ones caused by alternate interleavings of concurrent

activity. Whodunit [7], Pinpoint [9], and Dapper [31] do

not account for parallelism.

End-to-end tracing in distributed systems is past the

research stage. For example, it is used in production

Google datacenters [31] and in some production three-

Cache
hit

Reply

Read

Cache
miss

Start

Reply

Read
20 s

10 s

5,000 s

20 s

100 s

Precursor Mutation Precursor

End
100 s

Reply

Write

Start Start

End End
10 s

Rank: 1
Requests: 7,000
Type: Structural

Rank: 2
Requests: 5,000
Type: Response time

5,000 s

Reply

Write

Start Start

End End
10 s

10 s

5,000 s

Mutation

2,000 s

10 s

Figure 1: Example output from comparing request flows.

The two mutations shown are ranked by their effect on the

change in performance. The item ranked first is a structural

mutation and the item ranked second is a response-time muta-

tion. Due to space constraints, mocked-up graphs are shown in

which nodes represent the type of component accessed.

tier systems [4]. Research continues, however, on how to

best exploit the information provided by such tracing.

3 Behavioural changes vs. anomalies

Our technique of comparing request flows between two

periods identifies distribution changes in request-flow

behaviour and ranks them according to their contribu-

tion to the observed performance difference. Conversely,

anomaly detection techniques, as implemented by Mag-

pie [4] and Pinpoint [9], mine a single period’s request

flows to identify rare ones that differ greatly from oth-

ers. In contrast to request-flow comparison, which at-

tempts to identify the most important differences be-

tween two sets, anomaly detection attempts to identify

rare elements within a single set.

Request-flow comparison and anomaly detection serve

distinct purposes, yet both are useful. For example, per-

formance problems caused by changes in the compo-

nents used (e.g., see Section 8.2), or by common requests

whose response times have increased slightly, can be eas-

ily diagnosed by comparing request flows, whereas many

anomaly detection techniques will be unable to provide

guidance. In the former case, guidance will be diffi-

cult because the changed behaviour is common during

the problem period; in the latter, because the per-request

change is not extreme enough.

4 Spectroscope

To illustrate the utility of comparing request flows, this

technique was implemented in a tool called Spectroscope

and used to diagnose performance problems seen in Ursa

Minor [1] and in certain Google services. This section

provides an overview of Spectroscope, and the next de-

scribes its algorithms. Section 4.1 describes how cate-

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 45

Figure 2: Example request-flow graph. The graph shows

a striped READ in the Ursa Minor distributed storage system.

Nodes represent trace points and edges are labeled with the

time between successive events. Parallel substructures show

concurrent threads of activity. Node labels are constructed by

concatenating the machine name (e.g., e10), component name

(e.g., NFS3), trace-point name (e.g., READ CALL TYPE), and an

optional semantic label (e.g., NFSCACHE READ MISS). Due to

space constraints, trace points executed on other components

as a result of the NFS server’s RPC calls are not shown.

gories, the basic building block on which Spectroscope

operates, are constructed. Section 4.2 describes Spectro-

scope’s support for comparing request flows.

4.1 Categorizing request flows

Even small distributed systems can service hundreds to

thousands of requests per second, so comparing all of

them individually is not feasible. Instead, exploiting

a general expectation that requests that take the same

path should incur similar costs, Spectroscope groups

identically-structured requests into unique categories

and uses them as the basic unit for comparing request

flows. For example, requests whose structures are identi-

cal because they hit in a NFS server’s data and metadata

cache will be grouped into the same category, whereas

requests that miss in both will be grouped in a differ-

ent one. Two requests are deemed structurally identical

if their string representations, as determined by a depth-

first traversal, are identical. For requests with parallel

substructures, Spectroscope computes all possible string

representations when determining the category in which

to bin them. The exponential cost is mitigated by im-

posing an order on parallel substructures (i.e., by always

traversing them in alphabetical order, as determined by

their root node names) and by the fact that parallelism is

limited in most request flows we have observed.

For each category, Spectroscope identifies aggregate

statistics, including request count, average response

time, and variance. To identify where time is spent, it

also computes average edge latencies and correspond-

ing variances. Spectroscope displays categories in ei-

ther a graph view, with statistical information overlaid,

or within train-schedule visualizations [37] (also known

as swim lanes), which more directly show the constituent

requests’ pattern of activity.

Spectroscope uses selection criteria to limit the num-

ber of categories developers must examine. For exam-

ple, when comparing request flows, statistical tests and

a ranking scheme are used. The number of categories

could be further reduced by using unsupervised clus-

tering algorithms, such as those used in Magpie [4], to

bin similar but not necessarily identical requests into the

same category. Initial versions of Spectroscope used

off-the-shelf clustering algorithms [29], but we found

the groups they created too coarse-grained and unpre-

dictable. Often, they would group mutations and pre-

cursors within the same category, masking their exis-

tence. For clustering algorithms to be useful, improve-

ments such as distance metrics that better align with de-

velopers’ notions of request similarity are needed. With-

out them, use of clustering algorithms will result in cate-

gories composed of seemingly dissimilar requests.

4.2 Comparing request flows

Performance changes can result from a variety of factors,

such as internal changes to the system that result in per-

formance regressions, unintended side effects of changes

to configuration files, or environmental issues. Spectro-

scope helps diagnose these problems by comparing re-

quest flows and identifying the key resulting mutations.

Figure 3 shows Spectroscope’s workflow.

When comparing request flows, Spectroscope takes as

input request-flow graphs from two periods of activity,

which we refer to as a non-problem period and a prob-

lem period. It creates categories composed of requests

from both periods and uses statistical tests and heuristics

to identify which contain structural mutations, response-

time mutations, or precursors. Categories containing mu-

tations are presented to the developer in a list ranked by

expected contribution to the performance change. Note

that the periods do not need to be aligned exactly with

the performance change (e.g., at Google we often chose

day-long periods based on historic average latencies).

Visualizations of categories that contain mutations

are similar to those described previously, except per-

period statistical information is shown. The root cause

of response-time mutations is localized by showing the

edges responsible for the mutation in red. The root cause

of structural mutations is localized by providing a ranked

list of the candidate precursors, so that the developer can

determine how they differ. Figure 1 shows an example.

Spectroscope provides further insight into perfor-

3

46 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Categorization

Responsetime
mutation

identification

Structural mutation
and precursor
identification

Problem
period grap

Probl period
graphs

Ranking

1. Structural
2. Response time
3. ...

Ranked list of categories
containing mutations

Visualization
layer

Lowlevel
difference

identification

Nonproblem
period graphs

Problem
period graphs

Figure 3: Spectroscope’s workflow for comparing request

flows. First, Spectroscope groups requests from both periods

into categories. Second, it identifies which categories contain

mutations or precursors. Third, it ranks mutation categories

according to their expected contribution to the performance

change. Developers are presented this ranked list. Visualiza-

tions of mutations and their precursors can be shown. Also,

low-level differences can be identified for them.

mance changes by identifying the low-level parameters

(e.g., client parameters or function call parameters) that

best differentiate a chosen mutation and its precursors.

For example, in Ursa Minor, one performance slow-

down, which manifested as many structural mutations,

was caused by a change in a parameter sent by the client.

For problems like this, highlighting the specific low-level

differences can immediately identify the root cause.

Section 5 describes Spectroscope’s algorithms and

heuristics for identifying mutations, their corresponding

precursors, their rank based on their relative influence

on the overall performance change, and their most rele-

vant low-level parameter differences. It also describes

how these methods overcome key challenges—for ex-

ample, differentiating true mutations from natural vari-

ance in request structure and timings. Identification of

response-time mutations and ranking rely on the expecta-

tion (reasonable for many distributed systems, including

distributed storage) that requests that take the same path

through a distributed system will exhibit similar response

times and edge latencies. Section 7 describes how high

variance in this axis affects Spectroscope’s results.

5 Algorithms for comparing request flows

This section describes the key heuristics and algorithms

used when comparing request flows. In creating them,

we favoured simplicity and those that regulate false

positives—perhaps the worst failure mode due to devel-

oper effort wasted—whenever possible.

5.1 Identifying response-time mutations

When comparing two periods, there will always be some

natural differences in timings. Spectroscope uses the

Kolmogorov-Smirnov two-sample, non-parametric hy-

pothesis test [20] to differentiate natural variance from

true changes in distribution or behaviour. Statistical hy-

pothesis tests take as input two distributions and output

a p-value, which represents uncertainty in the claim that

the null hypothesis, that both distributions are the same,

is false. Expensive false positives are limited to a preset

rate (almost always 5%) by rejecting the null hypothe-

sis only when the p-value is lower than this value. The

p-value increases with variance and decreases with the

number of samples. A non-parametric test, which does

not require knowledge of the underlying distribution, is

used because we have observed that response times are

not governed by well-known distributions.

The Kolmogorov-Smirnov test is used as follows. For

each category, the distributions of response times for

the non-problem period and the problem period are ex-

tracted and input into the hypothesis test. The category

is marked as containing response-time mutations if the

test rejects the null hypothesis. By default, categories

that contain too few requests to run the test accurately

are not marked as containing mutations. To identify the

components or interactions responsible for the mutation,

Spectroscope extracts the critical path—i.e., the path of

the request on which response time depends—and runs

the same hypothesis test on the edge latency distribu-

tions. Edges for which the null hypothesis is rejected

are marked in red in the final output visualization.

5.2 Identifying structural mutations

To identify structural mutations, Spectroscope assumes a

similar workload was run in both the non-problem period

and the problem period. As such, it is reasonable to ex-

pect that an increase in the number of requests that take

one path through the distributed system in the problem

period should correspond to a decrease in the number of

requests that take other paths. Since non-determinism

in service order dictates that per-category counts will al-

ways vary slightly between periods, a threshold is used

to identify categories that contain structural mutations

and precursors. Categories that contain SM THRESHOLD

more requests from the problem period than from the

non-problem period are labeled as containing mutations

and those that contain SM THRESHOLD fewer are labeled

as containing precursors.

Choosing a good threshold for a workload may require

some experimentation, as it is sensitive to both the num-

ber of requests issued and the sampling rate. Fortunately,

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 47

it is easy to run Spectroscope multiple times, and it is not

necessary to get the threshold exactly right—choosing a

value that is too small will result in more false positives,

but they will be given a low rank and so will not mislead

the developer in his diagnosis efforts.

If per-category distributions of request counts are

available, a statistical test, instead of a threshold, could

be used to determine those categories that contain mu-

tations or precursors. This statistical approach would

be superior to a threshold-based approach, as it guar-

antees a set false-positive rate. However, building the

distributions necessary would require obtaining many

non-problem and problem-period datasets, so we opted

for the simpler threshold-based approach instead. Also,

our experiences at Google indicate that request structure

within large datacenters may change too quickly for such

expensive-to-build models to be useful.

5.3 Mapping mutations to precursors

Once the total set of categories that contain structural

mutations and precursors has been identified, Spectro-

scope must iterate through each structural-mutation cate-

gory to determine the precursor categories that are likely

to have donated requests to it. This is accomplished via

three heuristics, described below. Figure 4 shows how

they are applied.

First, the total list of precursor categories is pruned to

eliminate categories with a different root node than those

in the structural-mutation category. The root node de-

scribes the overall type of a request, for example READ,

WRITE, or READDIR, and requests of different high-level

types should not be precursor/mutation pairs.

Second, remaining precursor categories that have de-

creased in request count less than the increase in re-

quest count of the structural-mutation category are also

removed from consideration. This 1:N heuristic reflects

the common case that one precursor category is likely to

donate requests to N structural-mutation categories. For

example, a cache-related problem may result in a portion

of requests that used to hit in that cache to miss and hit

in the next-level cache. Extra cache pressure at this next-

level cache may result in the rest missing in both caches.

This heuristic can be optionally disabled.

Third, the remaining precursor categories are ranked

according to their likelihood of having donated requests,

as determined by the string-edit distance between them

and the structural-mutation category. This heuristic re-

flects the intuition that precursors and structural muta-

tions are likely to resemble each other in structure. The

cost of computing the edit distance is O(NM), where N

and M are the lengths of the string representations of the

categories being compared.

Read

Mutation Precursor categories
Read Read Read

Lookup

NP: 700
P: 1,000

NP: 300
P: 200

NP: 550
P: 150

NP: 650
P: 100

ReadDir

NP: 200
P: 100

NP: 1,100
P: 600

Figure 4: How the precursor categories of a structural-

mutation category are identified. One structural-mutation

category and five precursor categories are shown, each with

their corresponding request counts from the non-problem (NP)

and problem (P) periods. For this case, the shaded precursor

categories will be identified as those that could have donated

requests to the structural-mutation category. The precursor cat-

egories that contain LOOKUP and READDIR requests cannot

have donated requests because their constituent requests are not

READS. The top left-most precursor category contains READS,

but the 1:N heuristic eliminates it.

5.4 Ranking

Ranking of mutations is necessary for two reasons.

First, the performance problem might have multiple root

causes, each of which causes its own set of mutations.

Second, even if there is only one root cause to the prob-

lem (e.g., a misconfiguration), many mutations will often

still be observed. For both cases, it is useful to identify

the mutations that most affect performance in order to fo-

cus diagnosis effort where it will yield the most benefit.

Spectroscope ranks categories that contain mutations

in descending order by their expected contribution to the

performance change. The contribution for a structural-

mutation category is calculated as the number of mu-

tations it contains, which is the difference between its

problem and non-problem period counts, multiplied by

the difference in problem period average response time

between it and its precursor categories. If more than

one candidate precursor category has been identified, a

weighted average of their average response times is used;

weights are based on structural similarity to the muta-

tion. The contribution for a response-time-mutation cat-

egory is calculated as the number of mutations it con-

tains, which is just the non-problem period count, times

the change in average response time of that category be-

5

48 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tween the periods. If a category contains both response-

time mutations and structural mutations, it is split into

two virtual categories and each is ranked separately.

5.5 Identifying low-level differences

Identifying the differences in low-level parameters be-

tween a mutation and precursor can often help develop-

ers further localize the source of the problem. For ex-

ample, the root cause of a response-time mutation might

be further localized by identifying that it is caused by a

component that is sending more data in its RPCs than

during the non-problem period.

Spectroscope allows developers to pick a mutation

category and candidate precursor category for which to

identify low-level differences. Given these categories,

Spectroscope induces a regression tree [5] showing the

low-level parameters that best separate requests in these

categories. Each path from root to leaf represents an

independent explanation of why the mutation occurred.

Since developers may already possess some intuition

about what differences are important, the process is

meant to be interactive. If the developer does not like

the explanations, he can select a new set by removing the

root parameter from consideration and re-running the al-

gorithm.

The regression tree is induced as follows. First, a

depth-first traversal is used to extract a template describ-

ing the parts of request structures that are common be-

tween both categories, up until the first observed differ-

ence. Portions that are not common are excluded, since

low-level parameters cannot be compared for them.

Second, a table in which rows represent requests and

columns represent parameters is created by iterating

through each of the categories’ requests and extracting

parameters from the parts that fall within the template.

Each row is labeled as belonging to the problem or non-

problem period. Certain parameter values, such as the

thread ID and timestamp, must always be ignored, as

they are not expected to be similar across requests. Fi-

nally, the table is fed as input to the C4.5 algorithm [25],

which creates the regression tree. To reduce the runtime,

only parameters from a randomly sampled subset of re-

quests are extracted from the database, currently a min-

imum of 100 and a maximum of 10%. Parameters only

need to be extracted the first time the algorithm is run;

subsequent iterations can modify the table directly.

5.6 Current limitations

This section describes current limitations with our tech-

niques for comparing request flows.

Diagnosing problems caused by contention: Our

techniques assume that performance changes are caused

by changes to the system (code changes, configura-

tion changes, etc). Though they will identify mutations

caused by contention, they cannot directly attribute them

to the responsible process. In some cases our techniques

can indirectly help—for example, by showing that many

edges within a component are responsible for a response-

time mutation, they can help the developer intuit that the

problem is due to contention with an external process.

Diagnosing problems when the load differs signifi-

cantly between periods: In such cases, the load change

itself may be the root cause. Though our techniques

will identify response-time and structural changes when

the load during the problem period is much greater than

the non-problem period, the developer must determine

whether they are reasonable degradations.

6 Experimental apparatus

Most of the experiments and case studies reported in this

paper come from using Spectroscope with a distributed

storage service called Ursa Minor. Section 6.1 describes

this system. Section 6.2 describes the benchmarks used

for Ursa Minor’s nightly regression tests, the setting in

which many of the case studies were observed.

To understand issues in scaling request-flow compari-

son to larger systems, we also used Spectroscope to diag-

nose services within Google. Section 6.3 provides more

details. The implementation of Spectroscope for Ursa

Minor was written in Perl and MATLAB. It includes a

visualization layer built upon Prefuse [16]. The cost of

calculating edit distances dominates its runtime, so it is

sensitive to the value of SM THRESHOLD used. The imple-

mentation for Google was written in C++; its runtime is

much lower (on the order of seconds) and its visualiza-

tion layer uses DOT [15].

6.1 Ursa Minor

Figure 5 illustrates Ursa Minor’s architecture. Like most

modern scalable distributed storage, Ursa Minor sep-

arates metadata services from data services, such that

clients can access data on storage nodes without mov-

ing it all through metadata servers. An Ursa Minor

instance (called a “constellation”) consists of poten-

tially many NFS servers (for unmodified clients), stor-

age nodes (SNs), metadata servers (MDSs), and end-to-

end-trace servers. To access data, clients must first send

a request to a metadata server asking for the appropri-

ate permissions and locations of the data on the storage

nodes. Clients can then access the storage nodes directly.

Ursa Minor has been in active development since 2004

and comprises about 230,000 lines of code. More than 20

graduate students and staff have contributed to it over its

lifetime. More details about its implementation can be

found in Abd-El-Malek et al. [1].

The components of Ursa Minor are usually run on sep-

arate machines within a datacenter. Though Ursa Minor

supports an arbitrary number of components, the experi-

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 49

Meta
da

ta
ac

ce
ss

Data
request

Application

NFS Server
SN

Metadata Server

Trace Server

Data access

Figure 5: Ursa Minor Architecture. Ursa Minor can be

deployed in many configurations, with an arbitrary number of

NFS servers, metadata servers, storage nodes (SNs), and trace

servers. Here, a simple five-component configuration is shown.

ments and case studies detailed in this paper use a simple

five-machine configuration: one NFS server, one meta-

data server, one trace server, and two storage nodes. One

storage node stores data, while the other stores metadata.

Not coincidentally, this is the configuration used in the

nightly regression tests that uncovered many of the prob-

lems described in the case studies.

End-to-end tracing infrastructure via Stardust:

Ursa Minor’s Stardust tracing infrastructure is much like

its peer group, discussed in Section 2. Request sampling

is used to capture trace data for a subset of entire requests

(10% by default), with a per-request decision made ran-

domly when the request enters the system. Ursa Minor

contains approximately 200 trace points, 124 manually

inserted as well as automatically generated ones for each

RPC send and receive function. In addition to simple

trace points, which indicate points reached in the code,

explicit split and join trace points are used to identify the

start and end of concurrent threads of activity. Low-level

parameters are also collected at trace points.

6.2 Benchmarks used with Ursa Minor

Experiments run on Ursa Minor use these benchmarks.

Linux-build and ursa minor-build: These bench-

marks consist of two phases: a copy phase, in which the

source tree is tarred and copied to Ursa Minor and then

untarred, and a build phase, in which the source files

are compiled. Linux-build (of 2.6.32 kernel) runs for

26 minutes. About 145,000 requests are sampled. The

average graph size and standard deviation is 12 and 40

nodes. Most graphs are small, but some are very big,

so the per-category equivalents are larger: 160 and 500

nodes. Ursa minor-build runs for 10 minutes. About

16,000 requests are sampled and the average graph size

and standard deviation is 9 and 28 nodes. The per-

category equivalents are 96 and 100 nodes.

Postmark-large: This synthetic benchmark evalu-

ates the small file performance of storage systems [19].

It utilizes 448 subdirectories, 50,000 transactions, and

200,000 files and runs for 80 minutes. The average graph

size and standard deviation is 66 and 65 nodes. The per-

category equivalents are 190 and 81 nodes.

SPEC SFS 97 V3.0 (SFS97): This synthetic bench-

mark is the industry standard for measuring NFS server

scalability and performance [30]. It applies a period-

ically increasing load of NFS operations to a storage

system’s NFS server and measures the average response

time. It was configured to generate load between 50 and

350 operations/second in increments of 50 ops/second

and runs for 90 minutes. The average graph size and

standard deviation is 30 and 51 nodes. The per-category

equivalents are 206 and 200 nodes.

IoZone: This benchmark [23] sequentially writes, re-

writes, reads, and re-reads a 5GB file in 20 minutes. The

average graph size and standard deviation is 6 nodes. The

per-category equivalents are 61 and 82 nodes.

6.3 Dapper & Google services

The Google services for which Spectroscope was ap-

plied were instrumented using Dapper, which automati-

cally embeds trace points in Google’s RPC framework.

Like Stardust, Dapper employs request sampling, but

uses a sampling rate of less than 0.1%. Spectroscope

was implemented as an extension to Dapper’s aggrega-

tion pipeline, which groups individual requests into cat-

egories and was originally written to support Dapper’s

pre-existing analysis tools. Categories created by the

aggregation pipeline only show compressed call graphs

with identical children and siblings merged together.

7 Dealing with high-variance categories

For automated diagnosis tools to be useful, it is important

that distributed systems satisfy certain properties about

variance. For Spectroscope, categories that exhibit high

variance in response times and edge latencies do not sat-

isfy the expectation that “requests that take the same path

should incur similar costs” and can affect its ability to

identify mutations accurately. Spectroscope’s ability to

identify response-time mutations is sensitive to variance,

whereas for structural mutations only the ranking is af-

fected. Though categories may exhibit high variance in-

tentionally (for example, due to a scheduling algorithm

that minimizes mean response time at the expense of

variance), many do so unintentionally, as a result of latent

performance problems. For example, in early versions

of Ursa Minor, several high-variance categories resulted

from a poorly written hash table that exhibited slowly in-

creasing lookup times because of a poor hashing scheme.

For response-time mutations, both false negatives

and false positives will increase with the number of

high-variance categories. False negatives will increase

7

50 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

because high variance will reduce the Kolmogorov-

Smirnov test’s power to differentiate true behaviour

changes from natural variance. False positives, which are

much rarer, will increase when it is valid for categories to

exhibit similar response times within a single period, but

different response times across different ones. The rest

of this section concentrates on the false negative case.

To quantify how well categories meet the same

path/similar costs expectation within a single period,

Figure 6 shows a CDF of the squared coefficient of vari-

ation in response time (C2) for large categories induced

by linux-build, postmark-large, and SFS97 in Ursa

Minor. Figure 7 shows the same C2 CDF for large cat-

egories induced by Bigtable [8] running in three Google

datacenters over a 1-day period. Each Bigtable instance

is shared among the machines in its datacenter and ser-

vices several workloads. C2 is a normalized measure of

variance and is defined as (σ

µ
)2. Distributions with C2

less than one exhibit low variance, whereas those with C2

greater than one exhibit high variance. Large categories

contain more than 10 requests; Tables 1 and 2 show that

they account for only 15–45% of all categories, but con-

tain more than 98% of all requests. Categories contain-

ing fewer requests are not included, since their smaller

sample size makes the C2 statistic unreliable for them.

For the benchmarks run on Ursa Minor, at least 88%

of the large categories exhibit low variance. C2 for all

the categories generated by postmark-large is small.

More than 99% of its categories exhibit low variance and

the maximum C2 value observed is 6.88. The results for

linux-build and SFS97 are slightly more heavy-tailed.

For linux-build, 96% of its categories exhibit low vari-

ance, and the maximum C2 value is 394. For SFS97,

88% exhibit C2 less than 1, and the maximum C2 value

is 50.3. Analysis of categories in the large tail of these

benchmarks show that part of the observed variance is a

result of contention for locks in the metadata server.

The traces collected for Bigtable by Dapper are rel-

atively sparse—often graphs generated for it are com-

posed of only a few nodes, with one node showing the

incoming call type (e.g., READ, MUTATE, etc.) and an-

other showing the call type of the resulting GFS [13] re-

quest. As such, many dissimilar paths cannot be disam-

biguated and have been merged together in the observed

categories. Even so, 47–69% of all categories exhibit C2

less than 1. Additional instrumentation, such as those

that show the sizes of Bigtable data requests and work

done within GFS, would serve to further disambiguate

unique paths and considerably reduce C2.

8 Ursa Minor case studies

Spectroscope is not designed to replace developers;

rather it is intended to serve as an important step in the

workflow they use to diagnose problems. Sometimes

it can help developers identify the root cause immedi-

ately, or at least localize the problem to a specific area

of the system. In other cases, it can help eliminate the

distributed system as the root cause by verifying that its

behaviour has not changed, allowing developers to focus

their efforts on external factors.

This section presents diagnoses of six performance

problems solved by using Spectroscope to compare re-

quest flows and analyzes its effectiveness in identifying

the root causes. Most of these problems were previously

unsolved and diagnosed by the authors without knowl-

edge of the root cause. One problem was observed before

Spectroscope was available, so it was re-injected to show

how effectively it could have been diagnosed. By intro-

ducing a synthetic spin loop of different delays, we also

demonstrate Spectroscope’s ability to diagnose changes

in response time.

8.1 Methodology

Three complementary metrics are provided for evaluat-

ing Spectroscope’s output.

The percentage of the 10 highest-ranked categories

that are relevant: This metric measures the quality of

the rankings of the results. It accounts for the fact that

developers will naturally investigate the highest-ranked

categories first, so it is important for them to be relevant.

The percentage of false-positive categories: This

metric evaluates the quality of the ranked list by iden-

tifying the percentage of all results that are not relevant.

Request coverage: This metric evaluates quality of

the ranked list by identifying the percentage of requests

affected by the problem that are identified in it.

Table 3 summarizes Spectroscope’s performance us-

ing these metrics. Unless otherwise noted, a default

value of 50 was used for SM THRESHOLD. We chose this

value to yield reasonable runtimes (between 15-30 min-

utes) when diagnosing problems in larger benchmarks,

such as SFS97 and postmark-large. When necessary,

it was lowered to further explore the space of possible

structural mutations.

8.2 MDS configuration change

After a particular large code check-in, performance of

postmark-large decayed significantly, from 46tps to

28tps. To diagnose this problem, we used Spectro-

scope to compare request flows between two runs of

postmark-large, one from before the check-in and one

from after. The results showed many categories that con-

tained structural mutations. Comparing them to their

most-likely precursor categories revealed that the stor-

age node utilized by the metadata server had changed.

Before the check-in, the metadata server wrote metadata

only to its dedicated storage node. After the check-in, it

issued most writes to the data storage node instead. We

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 51

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
2
 for large categories induced by each benchmark

C
D

F

Postmark−large

Linux−build

SFS97

Figure 6: CDF of C2 for large categories induced by three

benchmarks run on Ursa Minor. At least 88% of the cate-

gories induced by each benchmark exhibit low variance (C2
<

1). The results for linux-build and SFS are more heavy-tailed

than postmark-large, partly due to extra lock contention in

the metadata server.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
2
 for large categories induced by Bigtable

C
D

F

Datacenter A

Datacenter B

Datacenter C

Figure 7: CDF of C2 for large categories induced by

Bigtable instances in three Google datacenters. Dapper’s in-

strumentation of Bigtable is sparse, so many paths cannot be

disambiguated and have been merged together in the observed

categories, resulting in a higher C2 than otherwise expected.

Even so, 47–69% of categories exhibit low variance.

Benchmark

Linux-bld Postmark SFS97

Categories 351 716 1602

Large categories (%) 25.3 29.9 14.7

Requests sampled 145,167 131,113 210,669

In large categories (%) 99.7 99.2 98.9

Table 1: Distribution of requests in the categories induced

by three benchmarks run on Ursa Minor. Though many cat-

egories are generated, most contain only a small number of re-

quests. Large categories, which contain more than 10 requests,

account for between 15–29% of all categories generated, but

contain over 99% of all requests.

Google datacenter

A B C

Categories 29 24 17

Large categories (%) 32.6 45.2 26.9

Requests sampled 7,088 5,556 2,079

In large categories (%) 97.7 98.8 93.1

Table 2: Distribution of requests in the categories induced

by three instances of Bigtable over a 1-day period. Fewer

categories and requests are observed than for Ursa Minor, be-

cause Dapper samples less than 0.1% of all requests. The distri-

bution of requests within categories is similar to Ursa Minor—a

small number of categories contain most requests.

also used Spectroscope to identify the low-level param-

eter differences between a few structural-mutation cate-

gories and their corresponding precursor categories. The

regression tree found differences in elements of the data

distribution scheme (e.g., type of fault tolerance used).

We presented this information to the developer of the

metadata server, who told us the root cause was a change

in an infrequently-modified configuration file. Along

with the check-in, he had mistakenly removed a few

lines that pre-allocated the file used to store metadata and

specify the data distribution. Without this, Ursa Minor

used its default distribution scheme and sent all writes to

the data storage node. The developer was surprised to

learn that the default distribution scheme differed from

the one he had chosen in the configuration file.

Summary: For this real problem, comparing re-

quest flows helped developers diagnose a performance

change caused by modifications to the system configura-

tion. Many distributed systems contain large configura-

tion files with esoteric parameters (e.g., hadoop-site.xml)

that, if modified, can result in perplexing performance

changes. Spectroscope can provide guidance in such

cases by showing how various configuration options af-

fect system behaviour.

Quantitative analysis: For the evaluation in Table 3,

results in the ranked list were deemed relevant if they

included metadata accesses to the data storage node with

a most-likely precursor category that included metadata

accesses to the metadata storage node.

8.3 Read-modify-writes

This problem was observed and diagnosed before devel-

opment on Spectroscope began; it was re-injected in Ursa

Minor to show how Spectroscope could have helped de-

velopers easily diagnose it.

A few years ago, performance of IoZone declined

from 22MB/s to 9MB/s after upgrading the Linux ker-

nel from 2.4.22 to 2.6.16.11. To debug this problem,

one of the authors of this paper spent several days manu-

ally mining Stardust traces and eventually discovered the

9

52 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Quality of results

/ Type Name Manifestation Root cause # of Top 10 FPs (%) Cov. (%)

results rel. (%)

8.2 / Real MDS config. Structural Config. change 128 100 2 70

8.3 / Real RMWs Structural Env. change 3 100 0 100

8.4 / Real MDS prefetch. 50 Structural Internal change 7 29 71 93

8.4 / Real MDS prefetch. 10 16 70 56 96

8.5 / Real Create behaviour Structural Design problem 11 40 64 N/A

8.6 / Synthetic 100µs delay Response time Internal change 17 0 100 0

8.6 / Synthetic 500µs delay 166 100 6 92

8.6 / Synthetic 1ms delay 178 100 7 93

8.7 / Real Periodic spikes No change Env. change N/A N/A N/A N/A

Table 3: Overview of the Ursa Minor case studies. This table shows information about each of six problems diagnosed using

Spectroscope. For most of the case studies, quantitative metrics that evaluate the quality of Spectroscope’s results are included.

root cause: the new kernel’s NFS client was no longer

honouring the NFS server’s preferred READ and WRITE

I/O sizes, which were set to 16KB. The smaller I/O sizes

used by the new kernel forced the NFS server to per-

form many read-modify-writes (RMWs), which severely

affected performance. To remedy this issue, support for

smaller I/O sizes was added to the NFS server and coun-

ters were added to track the frequency of RMWs.

To show how comparing request flows and identifying

low-level parameter differences could have helped devel-

opers quickly identify the root cause, Spectroscope was

used to compare request flows between a run of IoZone

in which the Linux client’s I/O size was set to 16KB

and another during which the Linux client’s I/O size was

set to 4KB. All of the results in the ranked list were

structural-mutation categories that contained RMWs.

We next used Spectroscope to identify the low-level

parameter differences between the highest-ranked result

and its most-likely precursor category. The output per-

fectly separated the constituent requests by the count pa-

rameter, which specifies the amount of data to be read or

written by the request. Specifically, requests with count

parameter values less than or equal to 4KB were classi-

fied as belonging to the problem period.

Summary: Diagnosis of this problem demonstrates

how comparing request flows can help developers iden-

tify performance problems that arise due to a workload

change. It also showcases the utility of highlighting rel-

evant low-level parameter differences.

Quantitative analysis: For Table 3, results in the

ranked list were deemed relevant if they contained

RMWs and their most-likely precursor category did not.

8.4 MDS prefetching

A few years ago, several developers, including one of

the authors of this paper, tried to add server-driven meta-

data prefetching to Ursa Minor [17]. This feature was in-

tended to improve performance by prefetching metadata

to clients on every mandatory metadata server access, in

hopes of minimizing the total number of accesses neces-

sary. However, when implemented, this feature provided

no improvement. The developers spent a few weeks (off

and on) trying to understand the reason for this unex-

pected result but eventually moved on to other projects

without an answer.

To diagnose this problem, we compared two runs of

linux-build, one with prefetching disabled and another

with it enabled. linux-build was chosen because it

is more likely to see performance improvements due to

prefetching than the other workloads.

When we ran Spectroscope with SM THRESHOLD set

to 50, several categories were identified as contain-

ing mutations. The two highest-ranked results imme-

diately piqued our interest, as they contained WRITEs

that exhibited an abnormally large number of lock ac-

quire/release accesses within the metadata server. All

of the remaining results contained response-time muta-

tions from regressions in the metadata prefetching code

path, which had not been properly maintained. To further

explore the space of structural mutations, we decreased

SM THRESHOLD to 10 and re-ran Spectroscope. This time,

many more results were identified; most of the highest-

ranked ones now exhibited an abnormally high number

of lock accesses and differed only in the exact number.

Analysis revealed that the additional lock/unlock calls

reflected extra work performed by requests that accessed

the metadata server to prefetch metadata to clients. To

verify this as the root cause, we added instrumentation

around the prefetching function to see whether it caused

the database accesses. Altogether, this information pro-

vided us with the intuition necessary to determine why

server-driven metadata prefetching did not improve per-

formance: the extra time spent in the DB calls by meta-

data server accesses outweighed the time savings gener-

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 53

ated by the increase in client cache hits.

Summary: This problem demonstrates how compar-

ing request flows can help developers account for un-

expected performance loss when adding new features.

In this case, the problem was due to unanticipated con-

tention several layers of abstraction below the feature ad-

dition. Note that diagnosis with Spectroscope is interac-

tive, in this case involving developers iteratively modify-

ing SM THRESHOLD to gain additional insight.

Quantitative analysis: For Table 3, results in the

ranked list were deemed relevant if they contained at

least 30 LOCK ACQUIRE → LOCK RELEASE edges. Re-

sults for the output when SM THRESHOLD was set to 10

and 50 are reported. In both cases, response-time muta-

tions caused by decay of the prefetching code path are

conservatively considered false positives, since these re-

gressions were not the focus of this diagnosis effort.

8.5 Create behaviour

During development of Ursa Minor, we noticed that

the distribution of request response times for CREATEs

in postmark-large increased significantly during the

course of the benchmark. To diagnose this performance

degradation, we used Spectroscope to compare request

flows between the first 1,000 CREATEs issued and the

last 1,000. Due to the small number of requests com-

pared, SM THRESHOLD was set to 10.

Spectroscope’s results showed categories that con-

tained both structural and response-time mutations, with

the highest-ranked one containing the former. The

response-time mutations were the expected result of data

structures in the NFS server and metadata server whose

performance decreased linearly with load. Analysis of

the structural mutations, however, revealed two architec-

tural issues, which accounted for the degradation.

First, to serve a CREATE, the metadata server executed

a tight inter-component loop with a storage node. Each

iteration of the loop required a few milliseconds, greatly

affecting response times. Second, categories containing

structural mutations executed this loop more times than

their precursor categories. This inter-component loop

can be seen easily if the categories are zoomed out to

show only component traversals and plotted in a train

schedule, as in Figure 8.

Conversations with the metadata server’s developer

led us to the root cause: recursive B-Tree page splits

needed to insert the new item’s metadata. To ameliorate

this problem, the developer increased the page size and

changed the scheme used to pick the created item’s key.

Summary: This problem demonstrates how request-

flow comparison can be used to diagnose performance

degradations, in this case due to a long-lived design

problem. Though simple counters could have shown

that CREATEs were very expensive, they would not

have shown that the root cause was excessive metadata

server/storage node interaction.

Quantitative analysis: For Table 3, results in the

ranked list were deemed relevant if they contained struc-

tural mutations and showed more interactions between

the NFS server and metadata server than their most-

likely precursor category. Response-time mutations that

showed expected performance differences due to load are

considered false positives. Coverage is not reported as it

is not clear how to define problematic CREATEs.

8.6 Slowdown due to code changes

This synthetic problem was injected into Ursa Minor to

show how request-flow comparison can be used to diag-

nose slowdowns due to feature additions or regressions

and to assess Spectroscope’s sensitivity to changes in re-

sponse time.

Spectroscope was used to compare request flows be-

tween two runs of SFS97. Problem period runs included

a spin loop injected into the storage nodes’ WRITE code

path. Any WRITE request that accessed a storage node in-

curred this extra delay, which manifested in edges of the

form ⋆ → STORAGE NODE RPC REPLY. Normally, these

edges exhibit a latency of 100µs.

Table 3 shows results from injecting 100µs, 500µs, and

1ms spin loops. Results were deemed relevant if they

contained response-time mutations and correctly identi-

fied the affected edges as those responsible. For the latter

two cases, Spectroscope was able to identify the result-

ing response-time mutations and localize them to the af-

fected edges. Of the categories identified, only 6–7% are

false positives and 100% of the 10 highest-ranked ones

are relevant. The coverage is 92% and 93%.

Variance in response times and the edge latencies in

which the delay manifests prevent Spectroscope from

properly identifying the affected categories for the 100µs

case. It identifies 11 categories that contain requests that

traverse the affected edges multiple times as containing

A

B

C

D
Time Time0ms 4ms 0ms 13ms

: Metadata insertion

Figure 8: Visualization of create behaviour. Two train-

schedule visualizations are shown, the first one a fast early cre-

ate during postmark-large and the other a slower create is-

sued later in the benchmark. Messages are exchanged between

the NFS Server (A), Metadata Server (B), Metadata Storage

Node (C), and Data Storage Node (D). The first phase of the

create procedure is metadata insertion, which is shown to be

responsible for the majority of the delay.

11

54 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

response-time mutations, but is unable to assign those

edges as the ones responsible for the slowdown.

8.7 Periodic spikes

Ursa minor-build, which is run as part of the nightly

test suite, periodically shows a spike in the time required

for its copy phase to complete. For example, from one

particular night to another, copy time increased from 111

seconds to 150 seconds, an increase of 35%. We initially

suspected that the problem was due to an external pro-

cess that periodically ran on the same machines as Ursa

Minor’s components. To verify this assumption, we com-

pared request flows between a run in which the spike was

observed and another in which it was not.

Surprisingly, Spectroscope’s output contained only

one result: GETATTRs, which were issued more fre-

quently during the problem period, but which had not

increased in average response time. We ruled this result

out as the cause of the problem, as NFS’s cache coher-

ence policy suggests that an increase in the frequency

of GETATTRs is the result of a performance change,

not its cause. We probed the issue further by reducing

SM THRESHOLD to see if the problem was due to requests

that had changed only a small amount in frequency, but

greatly in response time, but did not find any such cases.

Finally, to rule out the improbable case that the prob-

lem was caused by an increase in variance of response

times that did not affect the mean, we compared distribu-

tions of intra-category variance between two periods us-

ing the Kolmogorov-Smirnov test; the resulting p-value

was 0.72, so the null hypothesis was not rejected. These

observations convinced us the problem was not due to

Ursa Minor or processes running on its machines.

We next suspected the client machine as the cause of

the problem and verified this to be the case by plotting a

timeline of request arrivals and response times as seen by

the NFS server (Figure 9). The visualization shows that

during the problem period, response times stay constant

but the arrival rate of requests decreases. We currently

suspect the problem to be backup activity initiated from

the facilities department (i.e., outside of our system).

Summary: This problem demonstrates how compar-

ing request flows can help diagnose problems that are not

caused by internal changes. Informing developers that

nothing within the distributed system has changed frees

them to focus their efforts on external factors.

9 Experiences at Google

This section describes preliminary experiences using

request-flow comparison, as implemented in Spectro-

scope, to diagnose performance problems within select

Google services. Sections 9.1 and 9.2 describe two such

experiences. Section 9.3 discusses ongoing challenges in

adapting request-flow comparison to large datacenters.

Time0s 5s

...

...
A:

B:

Figure 9: Timeline of inter-arrival times of requests at the

NFS Server. A 5s sample of requests, where each rectangle

represents the process time of a request, reveals long periods of

inactivity due to lack of requests from the client during spiked

copy times (B) compared to periods of normal activity (A).

9.1 Inter-cluster performance

A team responsible for an internal service at Google ob-

served that load tests run on their software in two dif-

ferent clusters exhibited significantly different perfor-

mance, though they expected performance to be similar.

We used Spectroscope to compare request flows be-

tween the two load test instances. The results showed

many categories that contained response-time mutations;

many were caused by latency changes not only within

the service itself, but also within RPCs and within sev-

eral dependencies, such as the shared Bigtable instance

running in the lower-performing cluster. This led us to

hypothesize that the primary cause of the slowdown was

a problem in the cluster in which the slower load test

was run. Later, we found out that the Bigtable instance

running in the slower cluster was not working properly,

confirming our hypothesis. This experience is a further

example of how comparing request flows can help de-

velopers rule out the distributed system (in this case, a

specific Google service) as the cause of the problem.

9.2 Performance change in a large service

To help identify performance problems, Google keeps

per-day records of average request latencies for major

services. Spectroscope was used to compare two day-

long periods for one such service, which exhibited a sig-

nificant performance deviation, but only a small differ-

ence in load, between the periods compared. Though

many interesting mutations were identified, we were un-

able to identify the root cause due to our limited knowl-

edge of the service, highlighting the importance of do-

main knowledge in interpreting Spectroscope’s results.

9.3 Ongoing challenges with scale

Challenges remain in scaling request-flow comparison

techniques to large distributed services, such as those

within Google. For example, categories generated for

well-instrumented large-scale distributed services will be

much larger than those observed for the 5-instance ver-

sion of Ursa Minor. Additionally, they may yield many

categories, each populated with too few requests for sta-

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 55

tistical rigor. Robust methods are needed to merge cat-

egories and visualize them without losing important in-

formation about structure, which occurs with Dapper be-

cause of its graph compression methods. These meth-

ods affected the quality of Spectroscope’s results by in-

creasing variance, losing important structural differences

between requests, and increasing effort needed to under-

stand individual categories. Our experiences with unsu-

pervised learning algorithms, such as clustering [4, 29],

for merging categories indicate they are inadequate. A

promising alternative is to use semi-supervised methods,

which would allow the grouping algorithm to learn de-

velopers’ mental models of which categories should be

merged. Also, efficient visualization may be possible by

only showing the portion of a mutation’s structure that

differs between it and its precursors.

More generally, request-flow graphs from large ser-

vices are difficult to understand because such services

contain many dependencies, most of which are foreign

to their developers. To help, tools such as Spectroscope

must strive to identify the semantic meaning of individ-

ual categories. For example, they could ask developers to

name graph substructures about which they are knowl-

edgeable and combine them into a meaningful meta-

name when presenting categories.

10 Related work

A number of techniques have been developed for di-

agnosing performance problems in distributed systems.

Whereas many rely on end-to-end tracing, others attempt

to infer request flows from existing data sources, such as

message send/receive events [27] or logs [38]. These lat-

ter techniques trade accuracy of re-constructed request

flows for ease of using existing monitoring mechanisms.

Other techniques rely on black-box metrics and are lim-

ited to localizing problems to individual machines.

Magpie [4], Pinpoint [9], WAP5 [27], and Xu [38],

all identify anomalous requests by finding rare ones that

differ greatly from others. In contrast, request-flow com-

parison identifies the changes in distribution between two

periods that most affect performance. Pinpoint also de-

scribes other ways to use end-to-end traces, including for

statistical regression testing, but does not describe how to

use them to compare request flows.

Google has developed several analysis tools for use

with Dapper [31]. Most relevant is the Service Inspector,

which shows graphs of the unique call paths observed to

a chosen function or component, along with the resulting

call tree below it, allowing developers to understand the

contexts in which the chosen item is used. Because the

item must be chosen beforehand, the Service Inspector is

not a good fit for problem localization tasks.

Pip [26] compares developer-provided, component-

based expectations of structural and timing behaviour to

actual behaviour observed in end-to-end traces. Theoret-

ically, Pip can be used to diagnose any type of problem:

anomalies, correctness problems, etc. But, it relies on de-

velopers to specify expectations, which is a daunting and

error-prone task—the developer is faced with balancing

effort and generality against the specificity needed to ex-

pose particular problems. In addition, Pip’s component-

centric expectations, as opposed to request-centric ones,

complicate problem localization tasks [10]. Nonetheless,

in many ways, comparing request flows between execu-

tions is akin to Pip, with developer-provided expectations

being replaced with the observed non-problem period be-

haviour. Many of our algorithms, such as for ranking

mutations and highlighting the differences, could be used

with Pip-style expectations as well.

The Stardust tracing infrastructure on which our im-

plementation builds was originally designed to enable

performance models to be induced from observed sys-

tem performance [32, 34]. Building on that initial work,

IRONmodel [33] developed approaches to detecting (and

correcting) violations of such models, which can indi-

cate performance problems. In describing IRONmodel,

Thereska et al. also proposed that the specific nature of

how observed behaviour diverges from the model could

guide diagnoses, but they did not develop techniques for

doing so or explore the approach in depth.

A number of black-box diagnosis techniques have

been devised for systems that do not have the detailed

end-to-end tracing on which our approach to comparing

request flows relies. For example, Project 5 [2] infers

bottlenecks by observing messages passed between com-

ponents. Comparison of performance metrics exhibited

by systems that should be doing the same work can also

identify misbehaving nodes [18, 24]. Such techniques

can be useful parts of a suite, but are orthogonal to the

contributions of this paper.

There are also many single-process diagnosis tools

that inform creation of techniques for distributed sys-

tems. For example, Delta analysis [36] compares mul-

tiple failing and non-failing runs to identify the most sig-

nificant differences. OptiScope [22] compares the code

transformations made by different compilers to help de-

velopers identify important differences that affect perfor-

mance. DARC [35] automatically profiles system calls to

identify the greatest sources of latency. Our work builds

on some concepts from such single-process techniques.

11 Conclusion

Comparing request flows, as captured by end-to-end

traces, is a powerful new technique for diagnosing per-

formance changes between two time periods or system

versions. Spectroscope’s algorithms for this compari-

son allow it to accurately identify and rank mutations

and identify their precursors, focusing attention on the

13

56 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

most important differences. Experiences with Spectro-

scope confirm its usefulness and efficacy.

Acknowledgements

We thank our shepherd (Lakshminarayanan Subramanian), the NSDI

reviewers, Brian McBarron, Michelle Mazurek, Matthew Wachs, and

Ariela Krevat for their insight and feedback. We thank the members

and companies of the PDL Consortium (including APC, EMC, Face-

book, Google, Hewlett-Packard Labs, Hitachi, IBM, Intel, LSI, Mi-

crosoft Research, NEC Laboratories, NetApp, Oracle, Riverbed, Sam-

sung, Seagate, STEC, Symantec, VMWare, and Yahoo! Labs) for their

interest, insights, feedback, and support. This research was sponsored

in part by a Google research award, NSF grants #CNS-0326453 and

#CCF-0621508, by DoE award DE-FC02-06ER25767, and by CyLab

under ARO grants DAAD19-02-1-0389 and W911NF-09-1-0273.

References

[1] M. Abd-El-Malek, et al. Ursa Minor: versatile cluster-based stor-

age. Conference on File and Storage Technologies. USENIX

Association, 2005. 2, 6

[2] M. K. Aguilera, et al. Performance debugging for distributed

systems of black boxes. ACM Symposium on Operating System

Principles. ACM, 2003. 13

[3] Anonymous. Personal communication with Google Software En-

gineers, December 2010. 1

[4] P. Barham, et al. Using Magpie for request extraction and work-

load modelling. Symposium on Operating Systems Design and

Implementation. USENIX Association, 2004. 1, 2, 3, 13

[5] C. M. Bishop. Pattern recognition and machine learning, first

edition. Springer Science + Business Media, LLC, 2006. 6

[6] B. M. Cantrill, et al. Dynamic instrumentation of production sys-

tems. USENIX Annual Technical Conference. USENIX Associ-

ation, 2004. 1

[7] A. Chanda, et al. Whodunit: Transactional profiling for multi-tier

applications. EuroSys. ACM, 2007. 1, 2

[8] F. Chang, et al. Bigtable: a distributed storage system for struc-

tured data. Symposium on Operating Systems Design and Imple-

mentation. USENIX Association, 2006. 8

[9] M. Y. Chen, et al. Path-based failure and evolution management.

Symposium on Networked Systems Design and Implementation.

USENIX Association, 2004. 1, 2, 13

[10] R. Fonseca, et al. Experiences with tracing causality in networked

services. Internet Network Management Conference on Research

on Enterprise Networking. USENIX Association, 2010. 2, 13

[11] R. Fonseca, et al. X-Trace: a pervasive network tracing frame-

work. Symposium on Networked Systems Design and Implemen-

tation. USENIX Association, 2007. 1, 2

[12] GDB. http://www.gnu.org/software/gdb/. 1

[13] S. Ghemawat, et al. The Google file system. ACM Symposium

on Operating System Principles. ACM, 2003. 8

[14] S. L. Graham, et al. gprof: a call graph execution profiler. ACM

SIGPLAN Symposium on Compiler Construction. Published as

SIGPLAN Notices, 17(6):120–126, June 1982. 1

[15] Graphviz. http://www.graphviz.org. 6

[16] J. Heer, et al. Prefuse: a toolkit for interactive information visu-

alization. Conference on Human Factors in Computing Systems.

ACM, 2005. 6

[17] J. Hendricks, et al. Improving small file performance in object-

based storage. Technical report CMU-PDL-06-104. Parallel Data

Laboratory, Carnegie Mellon University, Pittsburgh, PA, May

2006. 10

[18] M. P. Kasick, et al. Black-box problem diagnosis in parallel file

systems. Conference on File and Storage Technologies. USENIX

Association, 2010. 13

[19] J. Katcher. PostMark: a new file system benchmark. Technical

report TR3022. Network Appliance, October 1997. 7

[20] F. J. Massey, Jr. The Kolmogorov-Smirnov test for goodness of

fit. Journal of the American Statistical Association, 46(253):66–

78, 1951. 4

[21] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software Sys-

tems. EuroSys. ACM, 2006. 1

[22] T. Moseley, et al. OptiScope: performance accountability for

optimizing compilers. International Symposium on Code Gener-

ation and Optimization. IEEE/ACM, 2009. 13

[23] W. Norcott and D. Capps. IoZone filesystem benchmark program,

2002. http://www.iozone.org. 7

[24] X. Pan, et al. Ganesha: black-box fault diagnosis for MapReduce

systems. Hot Metrics. ACM, 2009. 13

[25] J. R. Quinlan. Bagging, boosting and C4.5. 13th National Con-

ference on Artificial Intelligence. AAAI Press, 1996. 6

[26] P. Reynolds, et al. Pip: Detecting the unexpected in distributed

systems. Symposium on Networked Systems Design and Imple-

mentation. USENIX Association, 2006. 1, 13

[27] P. Reynolds, et al. WAP5: Black-box Performance Debugging for

Wide-Area Systems. International World Wide Web Conference.

ACM Press, 2006. 13

[28] R. R. Sambasivan, et al. Diagnosing performance problems by

visualizing and comparing system behaviours. Technical report

10–103. Carnegie Mellon University, February 2010. 2

[29] R. R. Sambasivan, et al. Categorizing and differencing system be-

haviours. Workshop on hot topics in autonomic computing (Ho-

tAC). USENIX Association, 2007. 3, 13

[30] SPEC SFS97 (2.0). http://www.spec.org/sfs97. 2, 7

[31] B. H. Sigelman, et al. Dapper, a large-scale distributed systems

tracing infrastructure. Technical report dapper-2010-1. Google,

April 2010. 1, 2, 13

[32] E. Thereska, et al. Informed data distribution selection in a self-

predicting storage system. International conference on autonomic

computing. IEEE, 2006. 13

[33] E. Thereska and G. R. Ganger. IRONModel: robust performance

models in the wild. ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems. ACM, 2008. 1,

13

[34] E. Thereska, et al. Stardust: Tracking activity in a distributed

storage system. ACM SIGMETRICS Conference on Measure-

ment and Modeling of Computer Systems. ACM, 2006. 1, 2,

13

[35] A. Traeger, et al. DARC: Dynamic analysis of root causes of

latency distributions. ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems. ACM, 2008. 13

[36] J. Tucek, et al. Triage: diagnosing production run failures at the

user’s site. ACM Symposium on Operating System Principles,

2007. 13

[37] E. R. Tufte. The visual display of quantitative information.

Graphics Press, Cheshire, Connecticut, 1983. 3

[38] W. Xu, et al. Detecting large-scale system problems by mining

console logs. ACM Symposium on Operating System Principles.

ACM, 2009. 13

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 57

Profiling Network Performance for Multi-Tier Data Center Applications

Minlan Yu∗ Albert Greenberg† Dave Maltz† Jennifer Rexford∗ Lihua Yuan†

Srikanth Kandula† Changhoon Kim†

∗ Princeton University † Microsoft

Abstract

Network performance problems are notoriously tricky

to diagnose, and this is magnified when applications

are often split into multiple tiers of application com-

ponents spread across thousands of servers in a data

center. Problems often arise in the communication be-

tween the tiers, where either the application or the net-

work (or both!) could be to blame. In this paper, we

present SNAP, a scalable network-application profiler

that guides developers in identifying and fixing perfor-

mance problems. SNAP passively collects TCP statistics

and socket-call logs with low computation and storage

overhead, and correlates across shared resources (e.g.,

host, link, switch) and connections to pinpoint the lo-

cation of the problem (e.g., send buffer mismanage-

ment, TCP/application conflicts, application-generated

microbursts, or network congestion). Our one-week de-

ployment of SNAP in a production data center (with

over 8,000 servers and over 700 application components)

has already helped developers uncover 15 major per-

formance problems in application software, the network

stack on the server, and the underlying network.

1 Introduction

Modern data-center applications, running over networks

with unusually high bandwidth and low latency, should

have great communication performance. Yet, these ap-

plications often experience low throughput and high

delay between the front-end user-facing servers and

the back-end servers that perform database, storage,

and indexing operations. Troubleshooting network

performance problems is hard. Existing solutions—

like detailed application-level logs or fine-grain packet

monitoring—are too expensive to run continuously, and

still offer too little insight into where performance prob-

lems lie. Instead, we argue that data centers should per-

form continuous, lightweight profiling of the end-host

network stack, coupled with algorithms for classifying

and correlating performance problems.

1.1 Troubleshooting Network Performance

The nature of the data-center environment makes detect-

ing and locating performance problems particularly chal-

lenging. Applications typically consist of tens to hun-

dreds of application components, arranged in multiple

tiers of front-ends and back-ends, and spread across hun-

dreds to tens of thousands of servers. Application devel-

opers are continually updating their code to add features

or fix bugs, so application components evolve indepen-

dently and are updated while the application remains in

operation. Human factors also enter into play: most de-

velopers do not have a deep understanding of how their

design decisions interact with TCP or the network. There

is a constant influx of new developers for whom the intri-

cacies of Nagle’s algorithm, delayed acknowledgments,

and silly window syndrome remains a mystery.1

As a result, new network performance problems hap-

pen all the time. Compared to equipment failures that

are relatively easy to detect, performance problems are

tricky because they happen sporadically and many dif-

ferent components could be responsible. The developers

sometimes blame “the network” for problems they can-

not diagnose; in turn, the network operators blame the

developers if the network shows no signs of equipment

failures or persistent congestion. Often, they are both

right, and the network stack or some subtle interaction

between components is actually responsible [2, 3]. For

example, an application sending small messages can trig-

ger Nagle’s algorithm in the TCP stack, causing trans-

mission delays leading to terrible application throughput.

In the production data center we study, the process of

actually detecting and locating even a single network per-

1Some applications (like memcached [1]) use UDP, and re-

implement reliability, error detection, and flow control; however, these

mechanisms can also introduce performance problems.

58 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

formance problem typically requires tens to hundreds of

hours of the developers’ time. They collect detailed ap-

plication logs (too heavy-weight to run continuously),

deploy dedicated packet sniffers (too expensive to run

ubiquitously), or sample the data (too coarse-grained to

catch performance problems). They then pore over these

logs and traces using a combination of manual inspec-

tion and custom-crafted analysis tools to attempt to track

down the issue. Often the investigation fails or runs

out of time, and some performance problems persist for

months before they are finally caught and corrected.

1.2 Lightweight, Continuous Profiling

In this paper, we argue that the data centers should con-

tinuously profile network performance, and analyze the

data in real time to help pinpoint the source of the prob-

lems. Given the complexity of data-center applications,

we cannot hope to fully automate the detection, diagno-

sis, and repair of network performance problems. In-

stead, our goal is dramatically reducing the demand for

developer time by automatically identifying performance

problems and narrowing them down to specific times and

places (e.g., send buffer, delayed ACK, or network con-

gestion). Any viable solution must be

• Lightweight: Running everywhere, all the time, re-

quires a solution that is very lightweight (in terms of

CPU, storage, and network overhead), so as not to

degrade application performance.

• Generic: Given the constantly changing nature of

the applications, our solution must detect problems

without depending on detailed knowledge of the ap-

plication or its log formats.

• Precise: To provide meaningful insights, the solu-

tion must pinpoint the component causing network

performance problems, and tease apart interactions

between the application and the network.

Finally, the system should help two very different

kinds of users: (i) a developer who needs to detect, di-

agnose, and fix performance problems in his particular

application and (ii) a data-center operator who needs to

understand performance problems with the underlying

platform so that he can tune the network stack, change

server placement, or upgrade network equipment. In this

paper, we present SNAP (Scalable Network-Application

Profiler), a tool that enables application developers and

data-center operators to detect and diagnose these perfor-

mance problems. SNAP represents an “existence proof”

that a tool meeting our three requirements can be built,

deployed in a production data center, and provide valu-

able information to both kinds of users.

SNAP capitalizes on the unique properties of modern

data centers:

• SNAP has full knowledge of the network topology,

the network-stack configuration, and the mapping

of applications to servers. This allows SNAP to use

correlation to identify applications with frequent

problems, as well as congested resources (e.g., hosts

or links) that affect multiple applications.

• SNAP can instrument the network stack to ob-

serve the evolution of TCP connections directly,

rather than trying to infer TCP behavior from packet

traces. In addition, SNAP can collect finer-grain in-

formation, compared to conventional SNMP statis-

tics, without resorting to packet monitoring.

In addition, once the developers fix a problem (or the

operator tunes the underlying platform), we can verify

that the change truly did improve network performance.

1.3 SNAP Research Contributions

SNAP passively collects TCP statistics and socket-level

logs in real time, classifies and correlates the data to pin-

point performance problems. The profiler quickly iden-

tifies the right location (end host, link, or switch), the

right layer (application, network stack, or network), at

the right time. Our major contributions of the paper are:

Efficient, systematic profiling of network-application

interactions: SNAP provides a simple, efficient way

to detect performance problems through real-time anal-

ysis of passively-collected measurements of the network

stack. We provide a systematic way to identify the com-

ponent (e.g., sender application, send buffer, network,

or receiver) responsible for the performance problem.

SNAP also correlates across connections that belong to

the same application, or share underlying resources, to

provide more insight into the sources of problems.

Performance characterization of a production data

center: We deployed SNAP in a data center with over

8,000 servers, and over 700 application components (in-

cluding map-reduce, storage, database, and search ser-

vices). We characterize the sources of performance prob-

lems, which helps data-center operators improve the un-

derlying platform and better tune the network.

Case studies of performance bugs detected by SNAP:

SNAP pinpointed 15 significant and unexpected prob-

lems in application software, the network stack, and the

interaction between the two. SNAP saved the developers

significant effort in locating and fixing these problems,

leading to large performance improvements.

Section 2 presents the design and development of

SNAP. Section 3 describes our data-center environment

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 59

Socket logs

TCP stats

At each host for every connnection

TCP performance

classi�er

Cross-Connection

Correlation

Topology and

Mapping between

connections and apps

O�ending app,

host, link, or switch

Figure 1: SNAP socket-level monitoring and analysis

and how SNAP was deployed. Section 4 validates SNAP

against both labeled data (i.e., known performance prob-

lems) and detailed packet traces. Then, we present an

evaluation of our one-week deployment of SNAP from

the viewpoint of both the data-center operator (Section 5)

and the application developer (Section 6). Section 7

shows how to reduce the overhead of SNAP through dy-

namic tuning of the polling rate. Section 8 discusses re-

lated work and Section 9 concludes the paper.

2 Design of the SNAP Profiler

In this section, we describe how SNAP pinpoints per-

formance problems. Figure 1 shows the main compo-

nents of our system. First, we collect TCP-connection

statistics, augmented by socket-level logs of application

read and write operations, in real time with low overhead.

Second, we run a TCP classifier that identifies and cate-

gorizes periods of bad performance for each socket, and

logs the diagnosis and a time sequence of the collected

data. Finally, based on the logs, we have a centralized

correlator that correlates across connections that share a

common resource or belong to the same application to

pinpoint the performance problems.

2.1 Socket-Level Monitoring of TCP

Data centers host a wide variety of applications that may

use different communication methods and design pat-

terns, so our techniques must be quite general in order to

work across the space. The following three goals guided

the design of our system, and led us away from using the

SNMP statistics, packet traces, or application logs.

(i) Fine-grained profiling: The data should be fine-

grained enough to indicate performance problems for in-

dividual applications on a small timescale (e.g, tens of

milliseconds or seconds). Switches typically only cap-

ture link loads at a one-minute timescale, which is far too

coarse-grained to detect many performance problems.

For example, the TCP incast problem [3], caused by mi-

cro bursts of traffic at the timescale of tens of millisec-

onds, is not even visible in SNMP data.

Statistic Definition

CurAppWQueue # of bytes in the send buffer

MaxAppWQueue Max # of bytes in send buffer

over the entire socket lifetime

#FastRetrans Total # of fast retransmissions

#Timeout Total # of timeouts

#SampleRTT Total # of RTT samples

#SumRTT Sum of RTTs that TCP samples

RwinLimitTime Cumulated time an application

is receiver window limited

CwinLimitTime Cumulated time an application

is congestion window limited

SentBytes Cumulated # of bytes the socket

has sent over the entire lifetime

Cwin Current congestion window

Rwin Announced receiver window

Table 1: Key TCP-level statistics for each socket [5]

(ii) Low overhead: Data centers can be huge, with hun-

dreds of thousands of hosts and tens of thousands sockets

on each host. Yet, the data collection must not degrade

application performance. Packet traces are too expen-

sive to capture in real time, to process at line speed, or

to store on disk. In addition, capturing packet traces on

high-speed links (e.g., 1-10 Gbps in data centers) often

leads to measurement errors including drops, additions,

and resequencing of packets [4]. Thus it is impossible

to capture packet trace everywhere, all the time to catch

new performance problems.

(iii) Generic across applications: Individual applica-

tions often generate detailed logs, but these logs differ

from one application to another. Instead, we focus on

measurements that do not require application support so

our tool can work across a variety of applications.

Through our work on SNAP, we found that the follow-

ing two kinds of per-socket information can be collected

cheaply enough to be used in analysis of large-scale data

center applications, while still providing enough insight

to diagnose where the performance problem lie (whether

they are from the application software, from network is-

sues, or from the interaction between the two).

TCP-level statistics: RFC 4898 [5] defines a mecha-

nism for exposing the internal counters and variables of a

TCP state-machine that is implemented in both Linux [6]

and Windows [7]. We select and collect the statistics

shown in Table 1 based on our diagnosis experience2,

which together expose the data-transfer performance of

a socket. There are two types of statistics: (1) instanta-

neous snapshots (e.g., Cwin) that show the current value

2There are a few other variables in the TCP stack such as the time

TCP spends in SlowStart stage, which are also useful but we did not

mention in the paper due to space limit.

3

60 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Locations Problems App/Net Detection method

Sender app Sender app limited App Not any other problems

Send buffer Send buffer limited App and Net CurAppWQueue ≈ MaxAppWQueue

Network
Fast retransmission Net diff(#FastRetrans) > 0

Timeout Net diff(#Timeout) > 0)

Receiver
Delayed ACK App and Net diff(SumRTT) > diff(SampleRTT)*MaxQueuingDelay

Receiver window limited App and Net diff(#RwinLimitTime) > 0

Table 2: Classes of network performance for a socket

of a variable in the TCP stack; and (2) cumulative coun-

ters (e.g., #FastRetrans) that count the number of events

(e.g., the number of fast retransmissions) that happened

over the lifetime of the socket. #SampleRTT and Sum-

RTT are the cumulative values of the number of packets

TCP sampled and the sum of the RTTs for these sampled

packets. To calculate the retransmission timeout (RTO),

TCP randomly samples one packet in each congestion

window, and measures the time from the transmission of

a packet to the time TCP receives the ACK for the packet

as the RTT for this packet.

These statistics are updated by the TCP stack as indi-

vidual packets are sent and received, making it too ex-

pensive to log every change of these values. Instead,

we periodically poll these statistics. For the cumulative

counters, we calculate the difference between two polls

(e.g., diff(#FastRetrans)). For snapshot values, we sam-

ple with a Poisson interval. According to the PASTA

property (Poisson Arrivals See Time Averages), the sam-

ples are a representative view of the state of the system.

Socket-call logs: Event-tracing systems in Windows [8]

and Linux [9] record the time and number of bytes

(ReadBytes and WriteBytes) whenever the socket makes

a read/write call. Socket-call logs show the applica-

tions’ data-transfer behavior, such as how many connec-

tions they initiated, how long they maintain each con-

nection, and how much data they read/write (as opposed

to the data that TCP actually transfers, i.e., SentBytes).

These logs supplement the TCP statistics with applica-

tion behavior to help developers diagnose problems. The

socket-level logs are collected in an event-driven fashion,

providing fine-grained information with low overhead.

In comparison, the TCP statistics introduce a trade-off

between accuracy and the polling overhead. For exam-

ple, if SNAP polls TCP statistics once per second, a short

burst of packet losses is hard to distinguish from a mod-

est loss rate throughout the interval.

In summary, SNAP collects two types of data in the

following formats: (i) timestamp, 4-tuples (source and

destination address/port), ReadBytes, and WriteBytes;

and (ii) timestamp, 4-tuples, TCP-level logs (Table 1).

SNAP uses TCP-level logs to classify the performance

problems and pinpoint the location of the problem, and

then provides both the relevant TCP-level and socket-

level logs for the affected connections for that period of

time. Developers can use these logs to quickly find the

root cause of performance problems.

2.2 Classifying Single-Socket Performance

Although it is difficult to determine the root cause of per-

formance problems, we can pinpoint the component that

is limiting performance. We classify performance prob-

lems in terms of the stages of data delivery, as summa-

rized in the two columns of Table 23:

1. Application generates the data: The sender appli-

cation may not generate the data fast enough, either by

design or because of bottlenecks elsewhere (e.g., CPU,

memory, or disk). For example, the sender may write a

small amount of data, triggering Nagle’s algorithm [10]

which combines small writes together into larger packets

for better network utilization, at the expense of delay.

2. Data are copied from the application buffer

to the send buffer: Even when the network is not

congested, a small send buffer can limit throughput by

stalling application writes. The send buffer must keep

data until acknowledgments arrive from the receiver, lim-

iting the buffer space available for writing new data.

3. TCP sends the data to the network: A congested

network may drop packets, leading to lower throughput

or higher delay. The sender can detect packet loss by

receiving three duplicate ACKs, leading to a fast retrans-

mission. When packet losses do not trigger a triple du-

plicate ACK, the sender must wait for a retransmission

timeout (RTO) to detect loss and retransmit the data.

4. Receiver receives the data and sends an acknowl-

edgment: The receiver may not read data, or acknowl-

edge their arrival, quickly enough. The receiver window

can limit the throughput if the receiver is not reading the

data quickly enough (e.g., caused by a CPU starvation),

allowing data to fill the receive buffer. A receiver delays

sending acknowledgments in the hope of piggybacking

the ACK on data in the reverse direction. The receiver

acknowledges every other packet and waits up to 200 ms

before sending an ACK.

3The table only summarizes major performance problems and can

be extended to cover other problems such as out-of-order packets.

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 61

The TCP statistics provide direct visibility into cer-

tain performance problems like packet loss and receiver-

window limits, where cumulative counts (e.g., #Time-

out, #FastRetrans, and RwinLimitTime) indicate whether

the problem occurred at any time during the polling in-

terval. Detecting other problems relies on an instanta-

neous snapshot, such as comparing the current backlog

of the send buffer (CurAppWQueue) to its maximum size

(MaxAppWQueue); polling with a Poisson distribution

allows SNAP to accurately estimate the fraction of time

a connection is send-buffer limited. Pinpointing other

latency problems requires some notion of expected de-

lays. For example, the RTT should not be larger than

the propagation delay plus the maximum queuing de-

lay (MaxQueuingDelay) (whose value is measured in ad-

vance by operators), unless a problem like delayed ACK

occurs. SNAP incorporates knowledge of the network

configuration to identify these parameters.

SNAP detects send-buffer, network, and receiver prob-

lems using the rules listed in the last column of Table 2,

where multiple problems may take place for the same

socket during the same time interval. If any of these

problems are detected, SNAP logs the diagnosis and all

the variables in Table 1—as well as WriteBytes from the

socket-call data—to provide the developers with detailed

information to track down the problem. In the absence

of any of the previous problems, we classify the connec-

tion as sender-application limited during the time inter-

val, and log only the socket-call data to track application

behavior. Being sender-application limited should be the

most common scenario for a connection.

2.3 Correlation Across TCP Connections

Although SNAP can detect performance problems on in-

dividual connections in isolation, combining information

across multiple connections helps pinpoint the location

of the problem. As such, a central controller analyzes

the results of the TCP performance classifier, as shown

earlier in Figure 1. The central controller can associate

each connection with a particular application and with

shared resources like a host, links, and switches.

Pinpointing resource constraints (by correlating con-

nections that share a host, link, or switch): Topology

and routing data allow SNAP to identify which connec-

tions share resources such as a host, link, top-of-rack

switch, or aggregator switch. SNAP checks if a per-

formance problem (as identified by the algorithm in Ta-

ble 2) occurs on many connections traversing the same

resource at the same time. For example, packet losses

(i.e., diff(#FastRetrans) > 0 or diff(#Timeout) > 0) on

multiple connections traversing the same link would in-

dicate a congested link. This would detect congestion

occurring on a much smaller timescale than SNMP could

measure. As another example, send-buffer problems for

many connections on the same host could indicate that

the machine has insufficient memory or a low default

configuration of the send-buffer size.

Pinpoint application problem (by correlating across

connections in the same application): SNAP also re-

ceives a mapping of each socket (as identified by the

four-tuple) to an application. SNAP checks if a perfor-

mance problem occurs on many connections from the

same application, across different machines and differ-

ent times. If so, the application software may not interact

well with the underlying TCP layer. With SNAP, we have

found several application programs that have severe per-

formance problems and are currently working with de-

velopers to address them, as discussed in Section 6.

The two kinds of correlation analysis are similar, ex-

cept for (i) sets of connections to compare S (i.e., con-

nections sharing a resource vs. belonging to the same

service) and (ii) the timescale for the comparison — cor-

relation interval T (i.e., transient resource constraining

events taking a few minutes or hours vs. permanent ser-

vice code problems that lasts for days).

We use a simple linear correlation heuristic that works

well in our setting Given a set of connectionsS and a cor-

relation interval T , the SNAP correlation algorithm out-

puts whether these connections have correlated perfor-

mance problems, and provides a time sequence of SNAP

logs for operators and developers to diagnose.

We construct a performance vector
−−−−−→

PT (c, t) =
(timek(p1, c), ..., timek(p5, c))k=1..�T/t�, where t is an

aggregation time interval in T and timek(pi)(i = 1..5)
denotes the total time that connection c is having prob-

lem pi during time period [(k − 1)t, kt].4 We pick c1
and c2 in S, calculate the Pearson correlation coefficient,

and check if the average across all pairs of connections

(Average Correlation Coefficient ACC) is larger than a

threshold α:

ACC = avg
c1,c2∈S,c1 �=c2

(cor(
−−−−−→

PT (c1, t),
−−−−−→

PT (c2, t)) > α,

where

cor(−→x ,−→y) =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)2(yi − ȳ)2
.

If the correlation coefficient is high, SNAP reports that

the connections in S have a common problem. To

extend this correlation for different classes of problems

(e.g., one connection’s delayed ACK problem triggers

4pi(i = 1..5) are the problems of send buffer limited, fast retrans-

mission, timeout, delayed ACK and receiver window limited respec-

tively. We do not include sender application limited because its time

could be determined given the times of the first five problems.

5

62 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Characteristic Value

#Hosts 8K

#Applications 700

Operating systems Win 2003,2008R2

Default send buffer 8 KB

Maximum segment size (MSS) 1460 Bytes

Minimum retrans. timeout 300 ms

Delayed ACK timeout 200 ms

Nagle’s algorithm mostly off

Slow start restart off

Receiver window autotuning off

Table 3: Characteristics in the production data center.

the sender application limited problem on another con-

nection), we can extend our solution to use other infer-

ence techniques [11, 12] or principal component analysis

(PCA) [13].

In practice, we must choose t carefully. With a large

value of t, SNAP only compares the coarse-grained per-

formance between connections; for example, if t = T ,

we only check if two connections have the same perfor-

mance problem with the same percentage of time. With a

small t, SNAP can detect fine-grained performance prob-

lems (e.g., two connections experiencing packet loss at

almost the same time), but are susceptible to clock dif-

ferences of the two machines and any differences in the

polling rates for the two connections. The aggregation

interval t should be large enough to mask the differences

between the clocks and cannot be smaller than the least

common multiple of the polling intervals of the connec-

tions.

3 Production Data Center Deployment

We deployed SNAP in a production data center. This sec-

tion describes the characteristics of the data center and

the configuration of SNAP, to set the stage for the fol-

lowing sections.

3.1 Data Center Environment

The data center consists of 8K hosts and runs 700 appli-

cation components, with the configuration summarized

in Table 3. The hosts run either Windows Server 2008

R2 or Windows Server 2003. The default send buffer

size is 8K, and the maximum segment size is 1460 Bytes.

The minimum retransmission timeout for packet loss is

set to 300 ms, and the delayed-acknowledgment timeout

is 200 ms. These values in Windows OS are configured

for Internet traffic with long RTT.

While the OS enables Nagle’s algorithm (which com-

bines small writes into larger packets) by default, most

delay-sensitive applications disable Nagle’s algorithm

using the NO DELAY socket option.

Most applications in the data center use persistent

connections to avoid establishing new TCP connections

whenever they have data to transmit. Slow-start restart

is disabled to reduce the delay arising when applications

transfer a large amount of data after an idle period over a

persistent connection.

Receiver-window autotuning—a feature in Windows

Server 2008 that allows TCP to dynamically tune the re-

ceiver window size to maximize throughput—is disabled

to avoid bugs in the TCP stack (e.g., [14]). Windows

Server 2003 does not support this feature.

3.2 SNAP Configuration

We ran SNAP continuously for a week in August 2010.

The polling interval for TCP statistics follows the Pois-

son distribution with an average inter-arrival time of 500

ms. We collected the socket-call logs for all the connec-

tions from and to the servers running SNAP. Over the

week, we collected less than 1 GB on each host per day

and the total is just terabytes of logs for the week. This

is a very small amount of data compared to packet traces

which take more than 180 GB per host per day at a 1

Gbps link, even if we just keep packet header informa-

tion.

To identify the connections sharing the same switch,

link, and application, we collect the information about

the topology, routing, and the mapping between sockets

and applications in the data center. We collect topology

and routing information from the data center configura-

tion files. To identify the mapping between the sockets

and applications, we first run a script at each machine to

identify the process that created each socket. We then

map the processes to the application based on the config-

uration file for the application deployment.

To correlate performance problems across connections

using the correlation algorithm we proposed in Sec-

tion 2.3, we chose two seconds as the aggregation inter-

val t to summarize the time on each performance prob-

lems to mask time difference between machines. To pin-

point transient resource constraints which usually last for

minutes or hours, we chose one hour as the correlation

interval T . To pinpoint problems from application code

which usually last for days, we chose 24 hours as the

correlation interval T . We chose the correlation thresh-

old α = 0.4.5

5It is hard to determine the threshold α in practice. Operators can

choose the top n shared resources/application code to investigate their

performance problems.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 63

4 SNAP Validation

To validate the design of SNAP in Section 2 and eval-

uate whether SNAP can pinpoint the performance prob-

lems at the right place and time, we take two approaches:

First, we inject a few known problems in our production

data center and check if SNAP correctly catches these

problems; Second, to validate the decision methods that

use inference to determine the performance class in Ta-

ble 2 rather than observing from TCP statistics directly,

we compare SNAP results against packet traces.

4.1 Validation by Injecting Known Bugs

To validate SNAP, we injected a few known data-center

networking problems and verified if SNAP correctly

classifies those problems for each connection. Next, run-

ning our correlation algorithm on the SNAP logs of these

labeled problems together with the other logs from the

data center, SNAP correctly pinpointed all the labeled

problems. For brevity, we first discuss two representative

problems in detail and then show how SNAP pinpoints

problematic host for each of them.

Problems in receive-window autotuning: We first

injected a receiver-window autotuning problem: This

problem happens when a Windows Server 2008 R2 ma-

chine initiates a TCP connection to a Windows Server

2003 machine with a SYN packet that requests the re-

ceiver window autotuning feature. But due to a bug in

the TCP stack of the Windows Server 20036, the 2003

server does not parse the request for the receiver window

autotuning feature correctly, and returns the SYN ACK

packet with a wrong format. As a result, the 2008 server

tuned its receiver window to four Bytes, leading to low

throughput and long delay.

To inject this problem, we picked ten hosts running

Windows 2008 in the data center and turn on their re-

ceiver window autotuning feature. Each of the ten hosts

initiated TCP connections to a HTTP server running

Windows 2003 to fetch 20 files of 5KB each from a

host running Windows 2003.7 It took the Windows 2003

server more than 5 seconds to transfer each 5KB file.

SNAP correctly reported that all these connections are

receiver window limited all the time, and SNAP logs

showed that the announced receiver window size (RWin)

is 4 Byte.

TCP incast: TCP incast [3] is a common performance

problem in data centers. It happens when an aggregator

distributes a request to a group of workers, and after pro-

cessing the requests, these workers send the responses

6This bug is later fixed with a patch, but some machines do not have

the latest patch.
7We ran ten hosts to the same 2003 server to validate if the SNAP

can correlate these connections and pinpoint the server.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
M

a
c
h

in
e

s

Average correlation coefficient (ACC)

Figure 2: PDF of #Machines with different average correlation

coefficient.

back at almost the same time. These responses together

overflow the switch on the path and experience signifi-

cant packet losses.

We wrote an application that generates a TCP incast

traffic pattern. To limit the effect of our experiment

to the other applications in the production data center,

we picked 36 hosts under the same top-of-rack switch

(TOR), used one host as the aggregator to send requests

to the remaining 35 hosts which serve as workers. These

workers respond with 100KB data immediately after they

receive the requests. After receiving all the responses,

the aggregator sends another request to the workers. The

aggregator sends 20 requests in total.

SNAP correctly identified that seven of the 35 con-

nections have experienced a significant amount of packet

loss causing retransmission timeouts. This is verified

from our application logs which show that it takes much

longer time to get the response through the seven con-

nections than the rest of the connections.8

Correlation to pinpoint resource constraints for the

two problems: We mixed the SNAP logs of the re-

ceiver window autotuning problem and TCP incast with

the logs of an hour period collected at all other machines

in the data center. Then we ran SNAP correlation algo-

rithm across the connections sharing the same machine.

SNAP correctly identified the Windows Server 2003

servers that have receiver-window limited problems

across 5-10 connections with an average correlation co-

efficient (ACC) of 0.8. SNAP also correctly identified the

aggregator machine because the ACC across all the con-

nections that traverse the TOR is 0.45. Both are above

8In this experiment, SNAP can only tell that the connections have

correlated timeouts. If the same problem happens for different aggre-

gators running the same application code, we can tell that the appli-

cation code causes the timeouts. If SNAP reports all the connections

have simultaneous small writes (identified from socket call logs) and

correlated timeouts, we can infer that the application code has incast

problems.

7

64 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the threshold α = 0.4, which is chosen based on the dis-

cussion in Section 3.

Our correlation algorithm clearly distinguished the

two injected problems with the performance of connec-

tions on the other machines in the data center. Figure 2

presents the probability density function (PDF) of the

number of machines with different values of ACC. Only

2.7% of the machines have an ACC larger than 0.4. In ad-

dition to the two injected problems, the other machines

with ACC > 0.4 may also indicate some problems that

happen during our experiment, but we have not verified

these problems yet.

4.2 Validation Against Packet Traces

We also need to validate the performance-classification

algorithm defined in Table 2. The detection methods for

the performance class of fast retransmissions, timeouts,

receiver window limited is always accurate because these

statistics are directly observed phenomena (e.g., #Time-

outs) from the TCP stack. The accuracy of identifying

send buffer problems is closely related to the probability

of detecting the moments when the send buffer is full in

the Poisson sampling, which is well studied in [15].

There is a tradeoff between the overhead and accuracy

of identifying delayed ACK. The accuracy of identify-

ing the delayed ACK and small writes classes is closely

related to the estimation of the RTT. However, we can-

not get per-packet RTT from the TCP stack because it

is a significant overhead to log data for each packet. In-

stead, we get the sum of estimated RTTs (SumRTT) and

the number of sampled packets (SampleRTT) from the

TCP stack.

We evaluate the accuracy of identifying delayed ACK

in SNAP by comparing SNAP’s results with the packet

trace. We picked two real-world applications from the

production data center for which SNAP detects delayed

ACK problems: One connection serves as an aggrega-

tor distributing requests for a Web application that has

the delayed ACK problems for 100% of the packets9.

Another belongs to a configuration-file distribution ser-

vice for various jobs running in the data center, which

has 75% of the packets on average experiencing delayed

ACK. While running SNAP with various polling rates,

we captured packet traces simultaneously. We then com-

pared the results of SNAP with the number of delayed-

ACK incidents we identify from packet traces.

To estimate the number of packets that experience de-

layed ACK, SNAP should find a distribution of RTTs

for the sampled packets that sum up to SumRTT. Those

9This application distributes requests whose size is smaller than

MSS (i.e., one packet), and waits more than the delayed ACK time-

out 200 ms before sending out another request. So the receiver has to

keep each packet for 200 ms before sending the ACK to the sender.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

50 100 200 500m 1s 2s 5s 10s

S
N

A
P

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Polling interval

100%
75%

Figure 3: SNAP estimation error of identifying delayed ACK

problems.

packets that experience delayed ACK have a RTT around

DelayedACKTimeout. The rest of the packets all ex-

perience the maximum queuing delay. Therefore, we

use the equation: (diff(#SumRTT) − diff(#SampleRTT)

* MaxQueuingDelay)/DelayedACKTimeout to count the

number of packets experiencing delayed ACK. We use

MaxQueuingDelay= 10 ms and DelayedACKTimeout =
180 ms. The delayed timeout is set as 200 ms in TCP

stack, but TCP timer is only accurate at 10 ms level and

thus the real DelayedACKTimeout varies around 200 ms.

So we use 180 ms to be conservative on the delayed ACK

estimation.

Figure 3 shows the estimation error of SNAP’s results

which is defined by (dt−ds)/dt, where ds is the percent-

age of packets that experience delayed ACK reported by

SNAP and dt is the actual percentage of delayed ACK we

get from the packet trace. For the application that always

has delayed ACK, SNAP’s estimation error is 0.006 on

average. For the application that has 75% of packets ex-

periencing delayed ACK, the estimation error is within

0.2 for the polling intervals that range from 500 ms to 10

sec.

Figure 3 shows that the estimation error drops from

positive (underestimation) to negative (overestimation)

with the increase of the polling interval. When the

polling interval is smaller than 200 ms, there is at most

one packet experiencing delayed ACK in one polling in-

terval. If a few packets take less than MaxQueuingDelay

to transfer, we would overestimate the part of SumRTT

that is contributed by these packets, and thus the rest of

RTT is less than DelayedACKTimeout. When the polling

interval is large, there are more packets experiencing de-

layed ACK in the same time interval. Since we have use

180 ms instead of 200 ms to detect delayed ACK, we

would underestimate those packets that take longer than

180 ms delayed ACK. Nine such packets would con-

tribute enough RTT for SNAP to assume one more de-

layed ACK.

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 65

5 Profiling Data Center Performance

We deployed SNAP in the production data center to char-

acterize different classes of performance problems, and

provided information to the data-center operators about

problems with the network stack, network congestion or

the interference between services. We first characterize

the frequency of each performance problem in the data

center, and then discuss the key performance problems

in our data center—packet loss and the TCP send buffer.

5.1 Frequency of Performance Problems

Table 4 characterizes the frequency of the network per-

formance problems (defined in Table 2) in our data cen-

ter. Not surprisingly, the overall network performance of

the data center is good. For example, only 0.82% of all

the connections were receiver limited during their life-

times. However, there are two key problems that the op-

erators should address:

Operators should focus on the small fraction of appli-

cations suffering from significant performance prob-

lems. Several connections/applications have severe per-

formance problems. For example, about 0.11% of the

connections are receiver-window limited essentially all

the time. Even though 0.11% sounds like a small num-

ber, when 8K machines are each running many connec-

tions, there is almost always some connection or applica-

tion experiencing bad performance. These performance

problems at the “tail” of the distribution also constrain

the total load operators are willing to put in the data cen-

ter. Operators should look at the SNAP logs of these

connections and work with the developers to improve the

performance of these connections so that they can safely

“ramp up” the utilization of the data center.

Operators should disable delayed ACK, or signifi-

cantly reduce Delayed ACK timeout: About two-

thirds of the connections experienced delayed ACK

problems. Nearly 2% of the connections suffer from

delayed-ACKs for more than 99.9% of the time. We

manually explore the delay-sensitive services, and count

the percentage of connections that have delayed ACK.

Unfortunately, about 136 delay-sensitive applications

have experienced delayed ACKs. Packets that have de-

layed ACK would experience an unnecessary increase

of latency by 200 ms, which is three orders of magni-

tude larger than the propagation delay in the data cen-

ter and well exceeds the latency bounds for these ap-

plications. Since delayed ACK causes many problems

for data-center applications, the operators are consider-

ing disabling delayed ACK or significantly reducing the

delayed ACK timeout. The problems of delayed ACK

for data center applications are also observed in [16].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 2 4 6 8 10 12 14 16 18 20 22 24

#
 p

e
r

s
e

c
o

n
d

Time (hour)

fastretrans
timeout

Figure 4: # of fast retransmissions and timeouts over time.

 0.1

 1

 10

 100

1K 10K 100K 1M 10M

(#
F

a
s
tR

e
tr

a
n

s
+

1
)/

(\
#

T
im

e
o

u
t+

1
)

Bytes per second

Figure 5: Comparing #FastRetrans and #Timeouts of flows

with different throughput.

5.2 Packet Loss

Operators should schedule backup jobs more care-

fully to avoid triggering network congestion: Figure 4

shows the number of fast retransmissions and timeouts

per second over time. The percentage of retransmitted

bytes increases between 2 am and 4 am. This is because

most backup applications with large bulk transfers are

initiated in this time period.

Operators should reduce the number and effect of

packet loss (especially timeouts) for low-rate flows:

SNAP data shows that about 99.8% of the connections

have low throughput (< 1 MB/sec). Although these

low-rate flows do not consume much bandwidth and are

usually not the cause of network congestion, they are

significantly affected by network congestion. Figure 5

is a scatter plot that shows the ratio of of fast retrans-

missions to timeouts vs. the connection sending rate.

Each point in the graph represents one polling interval

of one connection. Low-rate flows usually experience

more timeouts than fast retransmission because they do

not have multiple packets in flight to trigger triple du-

plicate ACKs. Timeouts, in turn, limit the throughput

of these flows. In contrast, high-rate flows experience

9

66 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

% of conn. with prob. #Apps with prob.

for >X% of time for >X% of time

Performance limitation >0 >25% >50% >75% >99.9% > 5% > 50%

Sender app limited 97.91% 96.62% 89.61% 59.21% 32.61% 561 557

Send buffer limited 0.45% 0.06% 0.02% 0.01% 0.01% 1 1

Congestion 1.90% 0.46% 0.22% 0.17% 0.15% 30 6

Receiver window limited 0.82% 0.36% 0.21% 0.15% 0.11% 22 8

Delayed ACK 65.71% 33.20% 10.10% 3.21% 1.82% 154 144

(belong to delay sensitive apps) 63.52% 32.82% 9.71% 3.01% 1.61% 136 129

Table 4: Percentage of connections and number of applications that have different TCP performance limitations.

more fast retransmission than timeouts and can quickly

recover from packet losses achieving higher throughput

(> 1 MB/sec).

5.3 Send Buffer and Receiver Window

Operators should allow the TCP stack to automatically

tune the send buffer and receiver window sizes, and con-

sider the following two factors:

More send buffer problems on machines with more

connections: SNAP reports correlated send buffer prob-

lems on hosts with more than 200 connections. This is

because the larger the send buffer for each connection,

the more memory is required for the machine. As a re-

sult, the developers of different applications on the same

machine are cautious it setting the size of the send buffer;

most use the default size of 8K, which is far less than the

delay-bandwidth product in the data center and thus is

more likely to become the performance bottleneck.

Mismatch between send buffer and receiver window

size: SNAP logs the announced receiver window size

when the connection is receiver limited. From the log

we see that 0.1% of the total time when the senders in-

dicate that their connections are bottlenecked by the re-

ceiver window, the receiver actually announced a 64 KB

window. This is because the send buffer is larger than

the announced receiver size, so the sender is still bottle-

necked by the receiver window.

To fix the send-buffer problems in the short term,

SNAP could help developers to decide what send

buffer size they should set in an online fashion.

SNAP logs the congestion window size (CWin),

the amount of data the application expect to send

(WriteBytes), and the announced receiver window

size (RWin) for all the connections. Developers can

use this information to size the send buffer based

on the total resources (e.g., set the send buffer size to

Cwinthisconn ∗ TotalSendBufferMemory/
∑

CWin).

They can also evaluate the effect of their change using

SNAP. In the long term, operators should have the

TCP stack automatically tune both the send-buffer and

receiver-window sizes for all the connections (e.g., [6]).

6 Performance Problems Caught by SNAP

In this section, we show a few examples of perfor-

mance problems caught by SNAP. In each example, we

first show how the performance problem is exposed by

SNAP’s analysis of socket and TCP logs into perfor-

mance classifications and then correlation across connec-

tions. Next, we explain how SNAP’s reports help guide

developers to identify quickly the root causes. Finally,

we discuss the developer’s fix or proposed fix to these

problems. For most examples, we spent a few hours or

days to discuss with developers to understand how their

programs work and to discover how their programs cause

the problems SNAP detects. It then took several days or

weeks to iterate with developers and operators to find out

the possible alternative ways to achieve their programing

goals.

6.1 Sending Pattern/Packet Loss Issues

Spreading application writes over multiple connec-

tions lowers throughput: When correlating perfor-

mance problems across connections from the same appli-

cation, SNAP found one application whose connections

always experienced more timeouts (diff(#Timeout)) than

fast retransmission (diff(#FastRetrans)) especially when

the WriteBytes is small. For example, SNAP reported re-

peated periods where one connection transferred an av-

erage of five requests per second with a size of 2 KB - 20

KB, while experiencing approximately ten timeouts but

no fast retransmissions.

The developers were expecting to obtain far more than

five requests per second from their system, and when this

report showing small writes and timeouts was shown to

them the cause became clear. The application sends re-

quests to a server and waits for responses. Since some

requests take longer to process than others and devel-

opers wanted to avoid having to implement request IDs

while still avoiding head-of-line blocking, they open two

connections to the server and place new requests on

whichever connection is unused.

However, spreading the application writes over two

connections meant that often there were not enough out-

standing data on a connection to cause three duplicate

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 67

ACKs and trigger fast retransmission when a packet was

lost. Instead, TCP fell back to its slower timeout mecha-

nism.

To fix the problem, the application could send all re-

quests over a single connection, give requests a unique

ID, and use pools of worker threads at each end.10 This

would improve the chances there is enough data in flight

to trigger fast retransmission when packet loss occurs.

Congestion window failing to prevent sudden bursts:

SNAP discovered that some connections belonging to an

application frequently experience packet loss (#FastRe-

trans and #Timeout are both high, and correlate strongly

to the application and across time). SNAP’s logs expose

a time sequence of socket write logs (WriteBytes) and

TCP statistics (Cwin) showing that before/during the in-

tervals where packet loss occurs, there is a single large

socket write call after an idle period. TCP immediately

sends out the data in one large chunk of packets because

the congestion window is large, but it experiences packet

losses. For example, one application makes a socket call

with WriteBytes > 100 MB after an idle period of 3 sec-

onds, the Cwin is 64 KB, and the traffic burst leads to a

bunch of packet losses.

The developers told us they use a persistent connec-

tion to avoid three-way handshake for each data trans-

fer. Since “slow start restart” is disabled, the congestion

window size does not age out and remains constant until

there is a packet loss. As a result, the congestion window

no longer indicates the carrying capacity of the network,

and losses are likely when the application suddenly sends

a congestion window worth of data.

Interestingly, the developers are opposed to enabling

slow start restart, and they intentionally manipulate the

congestion window in an attempt to reduce latency. For

example, if they send 64 KB data, and the congestion

window is small (e.g., 1 MSS), they need at multiple

round-trip times to finish the data transfer. But if they

keep the congestion window large, they can transfer the

data with one RTT. In order to have a large congestion

window, they first make a few small writes when they set

up the persistent connection.

To reduce both the network congestion and delay, we

need better scheduling of traffic across applications, al-

lowing delay-sensitive applications to send traffic bursts

when there is no network congestion, but pacing the traf-

fic if the network is highly used. The feedback mecha-

nism proposed in DCTCP [17] could be applied here.

Delayed ACK slows recovery after a retransmission

timeout: SNAP found that one application frequently

10Note that the application should use a single connection because

its requests are relatively small. For those applications that have a large

amount of data to transfer for each request, they still have to use two

connections to avoid head of line blocking during the network transfer.

Retransmission

timeout (300 ms)

Delayed ACK

(200 ms)

Sender

Receiver

1 2 3 4 4 5 6

Figure 6: Delayed ACK after a retransmission timeout.

had two problems (timeout and delayed ACK) at almost

the same time. As shown in Figure 6, when the fourth

packet of the transferred data is lost, the TCP sender

waits for a retransmission timeout (because there are

not enough following packets to trigger triple-duplicate

ACKs). However, the congestion window drops to one

after the retransmission. As a result, TCP can only send

a single packet, and the receiver waits for a delayed ACK

timeout before acknowledging the packet. Meanwhile,

the sender cannot increase its sending window until it

receives the ACK from the receiver. To avoid this, devel-

opers are discussing the possibility of dropping the con-

gestion window down to two packets when a retransmis-

sion timeout occurs. Disabling delayed ACK is another

option.

6.2 Buffer management and Delayed ACK

Some developers do not manage the application buffer

and the socket send buffer appropriately, leading to bad

interactions between buffer management and delayed

ACK.

Delayed ACK caused by setting send buffer to zero:

SNAP reports show that some applications have delayed

ACK problems most of the time and these applications

had set their send socket buffer length to 0. Investi-

gation found that these applications set the size of the

socket send buffer to zero in the expectation that it will

decrease latency because data is not copied to a kernel

socket buffer, but sent directly from the user space buffer.

However, when send buffer is zero, the socket layer locks

the application buffer until the data is ACK’d by the re-

ceiver so that the socket can retransmit the data in case

a packet is lost. As a result, additional socket writes are

blocked until the previous one has finished.

Whenever an application writes data that results in an

odd number of packets being sent, the last packet is not

ACK’d until the delayed ACK timer expires. This ef-

fectively blocks the sending application for 200 ms and

can reduce application throughput to 5 writes per second.

One team attempted to improve application performance

by shrinking the size of their messages, but ended up cre-

ating an odd number of packets and triggering this issue

— destroying the application’s performance instead of

helping it. After the developers increased the send buffer

11

68 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Proxy

Request

Client

Response

Request

Response

Server

Req pkt

Ack

Ack

Req pkt

Response pkt
Response pkt

Delayed

Ack

(200ms)
Http.sys waits for

ACK before

fetching the next

response data

Figure 7: Performance problem in pipeline communication.

size, throughput returned to normal.

Delayed ACK affecting throughput: SNAP reports

showed that an application was writing small amounts of

data to the socket (WriteBytes) and its connections expe-

rienced both delayed ACK and sender application limited

issues. For example, during 30 minutes, the application

wrote 10K records at only five records per second and

with a the record size of 20–100 Bytes.

The developers explained theirs is a logging applica-

tion where the client uploads records to a server, and

should be able generate far more than five records per

second. Looking into the code with the developers,

we found three key problems in the design: (i) Block-

ing write: to simplify the programming, the client does

blocking writes and the server does blocking reads. (ii)

Small receive buffer: The server calls recv() in a loop

with a 200 bytes buffer in hopes that exactly one record

is read in each receive call. (iii) Send buffer is set to zero:

Since the application is delay-sensitive, the developer set

send buffer size to zero. The application records are 20–

100 Bytes — much less than the MSS of 1460 Bytes. Ad-

ditionally, Nagle’s algorithm forces the socket to wait for

an ACK before it can send another packet (record).11 As

a result, the single packet containing each record always

experience delayed ACK, leading to a throughput of only

five records per second. To address this problem while

still avoiding the buffer copying in memory, developers

changed the sender code to write a group of requests each

time. Throughput improved to 10K requests/sec after the

change—a factor of 5000 improvement.

Delayed ACK affecting performance for pipelined ap-

plications: By correlating connections to the same ma-

chine, SNAP found two connections with performance

problems that co-occur repeatedly: SNAP classified one

11A similar performance problem caused by interactions between de-

layed ACK and Nagle is discussed in [10].

connection as having a significant delayed ACK problem

and the other as having sender application problems.

Developers told us that these two connections belong

to the same application and form a pipeline pattern (Fig-

ure 7). There is a proxy that sits between the clients

and servers and serves as a load balancer. The proxy

passes requests from the client to the server, fetches a se-

quence of responses from the server, and passes them to

the client. SNAP finds such a strong correlation between

the delayed ACK problem and the receiver limited prob-

lem because both stem from the passing of the messages

through the proxy.

After looking at the code, developers figured out that

the proxy uses a single thread and a single buffer for both

the client and the server. The proxy waits for the ACK

of every transfer (one packet in each transfer most of

the time) before fetching a new response data from the

server.12 When the developers changed the proxy to use

two different threads with one fetching responses from

the server and another sending responses to the client and

a response queue between the two threads, the 99% tail

of the request processing time drops from 200 ms to 10

ms.

6.3 Other Problems

SNAP has also detected other problems such as switch

port failure (significant correlated packet losses across

multiple connections sharing the same switch port), re-

ceiver window negotiation problems as reported in [14]

(connections are always receiver window limited while

receiver window size stays small), receiver not reading

the data fast enough (receiver window limited), and poor

latency caused by Nagle algorithm (sender application

limited with small WriteBytes

7 Reducing SNAP CPU Overhead

To run in real time on all the hosts in the data center,

SNAP must keep the CPU overhead and data volume

low. The volume of data is small because (i) SNAP

logs socket calls and TCP statistics instead of other high-

overhead data such as packet traces and (ii) SNAP only

logs the TCP statistics when there is a performance prob-

lem. To reduce CPU overhead, SNAP allows the opera-

tors to set the target percentage of CPU usage on each

host. SNAP stays within a given CPU budget by dynam-

ically tuning the polling rate for different connections.

12The proxy is using the HTTP.sys library without setting the

HTTP SEND RESPONSE FLAG BUFFER DATA flag [18], which

waits for the ACK from the client before sending a “send complete”

signal to the application. By waiting for the ACK, HTTP.sys can make

sure the application send buffer is not overwritten until the data is suc-

cessfully transferred.

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 69

 0

 5

 10

 15

 20

 25

 30

 35

 40

50 100 200 500m 1s 2s 5s 10s

C
P

U
 O

v
e

rh
e

a
d

 (
%

)

Interval

poll 5K
rt 5K

poll 1K
rt 1K

poll 100
rt 100

Figure 8: The CPU overhead of polling TCP statistics (poll)

and reading TCP table (rt) with different number of connec-

tions (10, 100, 1K, 5K) and different intervals (from 50 ms to

10 sec).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
u

m
u

la
te

d
 f

ra
c
ti
o

n

Number of connections

established

Figure 9: Number of connections per machine.

CPU Overhead of Profiling Since SNAP collects logs

for all the connections at the host, the overhead of SNAP

consists of three parts: logging socket calls, reading the

TCP table, and polling TCP statistics.

Logging socket calls: In our data center, the cost of turn-

ing on the event tracing for socket logging is a median of

1.6% of CPU capacity [19].

Polling CPU statistics and reading TCP table: The CPU

overhead of polling TCP statistics and reading the TCP

table depends on the polling frequency and the number

of connections on the machine. Figure 8 plots the CPU

overhead on a 2.5 GHz Intel Xeon machine. If we poll

TCP statistics for 1K connections at 500 millisecond in-

terval, the CPU overhead is less than 5%. The CPU over-

head of reading the TCP table is similar.

The CPU overhead is closely related to the number

of connections on each machine. Figure 9 takes a snap-

shot of the distribution of the number of established con-

nections per machine. There are at most 10K estab-

lished sockets and a median of 150. This means oper-

ators can configure the interval of reading TCP table in

most machines to be 500 millisecond or one second to

keep the CPU overhead lower than 5%.13 Since most of

13We read TCP tables at 500 millisecond interval in our data collec-

the connections in our data center are long-lived connec-

tions (e.g., persistent HTTP connections), we can read

the TCP table at a lower frequency compared to TCP

statistics polling. For the machines with many connec-

tions, we need to carefully adjust the polling rate of TCP

statistics for each connection to achieve a tradeoff be-

tween diagnosis accuracy and the CPU overhead.

Dynamic Polling Rate Tuning To achieve the best

tradeoff between CPU overhead and accuracy, operators

can first configure lCPU (uCPU) to be the lower (upper)

bound of the CPU percentage used by SNAP. We then

propose an algorithm to dynamically tune the polling rate

for different connections to keep CPU overhead between

the two bounds. The basic idea of the algorithm is to

have high polling rate for those connections that are hav-

ing performance issues and have low polling rate for the

others.

We start by polling all the connections on one host at

the same rate. If the current CPU overhead is below

lCPU , we pick a connection that has the most perfor-

mance problems in the past Thistory time, and increase

its polling rate for more detailed data. Similarly if the

current CPU overhead is above uCPU , we pick a con-

nection that has the least performance problems in the

past Thistory time, and decrease its polling rate for more

detailed data. Note that a lower polling rate introduces

lower diagnosis accuracy. We can still catch those perfor-

mance problems with the cumulative counters, but may

miss some problems that rely on snapshots to detect.

8 Related Work

Previous work in diagnosing performance problems fo-

cuses on either the application layer or the network

layer. SNAP addresses the interactions between them

that cause particularly insidious performance issues.

In the application layer, prior work has taken several

approaches: instrumenting application code [20, 21, 22]

to find the causal path of problems, inferring the abnor-

mal behaviors from history logs [11, 12], or identifying

fingerprints of performance problems [23]. In contrast,

SNAP focuses on profiling the interactions between ap-

plications and the network and diagnosing network per-

formance problems, especially ones that arise from those

interactions.

In the network layer, operators use network moni-

toring tools (e.g., switch counters) and active probing

tools (ping, traceroute) to pinpoint network problems

such as switch failures or congestion. To diagnose net-

work performance problems, capture and analysis of

packet traces remains the gold-standard. T-RAT [24]

uses packet traces to diagnosis throughput bottlenecks in

tion.

13

70 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Internet traffic. Tcpanaly [4] uses packet traces to diag-

nose TCP stack problems. Others [25, 26] also infer the

TCP performance and its problems from packet traces.

In contrast, SNAP focuses on the multi-tier applications

in data centers where it has access to the network stack,

enabling us to create simple algorithms based on coun-

ters far cheaper to collect than packet traces to expose

the network performance problems of the applications.

9 Conclusion

SNAP combines socket-call logs of the application’s de-

sired data-transfer behaviors with TCP statistics from the

network stack that highlight the delivery of data. SNAP

leverages the knowledge of topology, routing, and ap-

plication deployment in the data center to correlate per-

formance problems among connections, to pinpoint the

congested resource or problematic software component.

Our experiences in the design, development, and de-

ployment of SNAP demonstrate that it is practical to

build a lightweight, generic profiling tool that runs con-

tinuously in the entire data center. Such a profiling tool

can help both operators and developers in diagnosing

network performance problems.

With applications in data centers getting more com-

plex and more distributed, the challenges of diagnosing

the performance problems between the applications and

the network will only grow in importance in the years

ahead. For future work, we hope to further automate

the diagnosis process to save developers’ efforts by ex-

ploring the appropriate variables to monitor in the stack,

studying the dependencies between the variables SNAP

collects, and combining SNAP reports with automatic

analysis of application software.

Acknowledgments

We thank our shepherd Jason Flinn, the anonymous re-

viewers, Rob Harrison, Eric Keller, and Vytautas Valan-

cius for their comments on earlier versions of this paper.

We also thank Kevin Damour, Chuanxiong Guo, Randy

Kern, Varugis Kurien, Saby Mahajan, Jitendra Padhye,

Murari Sridharan, Ming Zhang for inspiring discussions

on this paper.

References

[1] http://memcached.org.

[2] B. Krishnamurthy and J. Rexford, “HTTP/TCP Interaction,” in

Web Protocols and Practice: HTTP/1.1, Networking Protocols,

Caching, and Traffic Measurement, Addison-Wesley, 2001.

[3] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,

G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-

grained TCP retransmissions for datacenter communication,” in

ACM SIGCOMM, 2009.

[4] V. Paxson, “Automated packet trace analysis of TCP implemen-

tations,” in ACM SIGCOMM, 1997.

[5] http://www.ietf.org/rfc/rfc4898.txt.

[6] www.web100.org.

[7] http://msdn.microsoft.com/en-us/library/

bb427395%28VS.85%29.aspx.

[8] http://msdn.microsoft.com/en-us/library/

bb968803%28VS.85%29.aspx.

[9] http://datatracker.ietf.org/wg/syslog/

charter/.

[10] “TCP performance problems caused by interaction between Na-

gle’s algorithm and delayed ACK.” www.stuartcheshire.

org/papers/NagleDelayedAck.

[11] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and

V. Bahl, “Detailed diagnosis in computer networks,” in ACM SIG-

COMM, 2009.

[12] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and

M. Zhang, “Towards highly reliable enterprise network services

via inference of multi-level dependencies,” in ACM SIGCOMM,

2007.

[13] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

[14] support.microsoft.com/kb/983528.

[15] C. Sarndal, B. Swensson, and J. Wretman, Model Assisted Survey

Sampling. Springer-Verlag, 1992.

[16] A. Diwan and R. L. Sites, “Clock alignment for large distributed

services,” Unpublished report, 2011.

[17] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP

(DCTCP),” in ACM SIGCOMM, 2010.

[18] http://blogs.msdn.com/b/wndp/archive/2006/

08/15/http-sys-buffering.aspx.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,

“The nature of datacenter traffic: Measurements and analysis,” in

Proc. Internet Measurement Conference, 2009.

[20] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,

and E. Brewer, “Path-based failure and evolution management,”

in NSDI, 2004.

[21] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,

and A. Vahdat, “Pip: Detecting the unexpected in distributed sys-

tems,” in NSDI, 2006.

[22] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-

Trace: A pervasive network tracing framework,” in NSDI, 2007.

[23] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Ander-

sen, “Fingerprinting the datacenter: Automated classification of

performance crises,” in EuroSys, 2010.

[24] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the charac-

teristics and origins of Internet flow rates,” in ACM SIGCOMM,

2002.

[25] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker,

and S. Savage, “Jigsaw: Solving the puzzle of enterprise 802.11

analysis,” in ACM SIGCOMM, 2006.

[26] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,

“Answering what-if deployment and configuration questions with

WISE,” in ACM SIGCOMM, 2008.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 71

Efficiently Measuring Bandwidth at All Time Scales

Frank Uyeda∗ Luca Foschini† Fred Baker‡ Subhash Suri† George Varghese∗
∗U.C. San Diego †U.C. Santa Barbara ‡Cisco

Abstract
The need to identify correlated traffic bursts at various,

and especially fine-grain, time scales has become press-
ing in modern data centers. The combination of Giga-

bit link speeds and small switch buffers have led to “mi-

crobursts”, which cause packet drops and large increases
in latency. Our paper describes the design and imple-

mentation of an efficient and flexible end-host bandwidth

measurement tool that can identify such bursts in addi-
tion to providing a number of other features. Managers

can query the tool for bandwidth measurements at reso-

lutions chosen after the traffic was measured. The algo-
rithmic challenge is to support such a posteriori queries

without retaining the entire trace or keeping state for all
time scales. We introduce two aggregation algorithms,

Dynamic Bucket Merge (DBM) and Exponential Buck-

eting (EXPB). We show experimentally that DBM and
EXPB implementations in the Linux kernel introduce

minimal overhead on applications running at 10 Gbps,

consume orders of magnitude less memory than event
logging (hundreds of bytes per second versus Megabytes

per second), but still provide good accuracy for band-
width measures at any time scale. Our techniques can be

implemented in routers and generalized to detect spikes

in the usage of any resource at fine time scales.

1 Introduction

How can a manager of a computing resource detect

bursts in resource usage that cause performance degra-

dation without keeping a complete log? The problem
is one of extracting a needle from a haystack; the prob-

lem gets worse as the needle gets smaller (as finer-grain

bursts cause drops in performance) and the haystack gets
bigger (as the consumption rate increases). While our

paper addresses this general problem, we focus on de-
tecting bursts of bandwidth usage, a problem that has re-

ceived much attention [6, 16, 18] in modern data centers.

The simplest definition of a microburst is the transmis-
sion of more than B bytes of data in a time interval t on a

single link, where t is in the order of 100’s of microsec-

onds. For input and output links of the same speed, bursts
must occur on several links at the same time to overrun

a switch buffer, as in the Incast problem [8, 16]. Thus,
a more useful definition is the sending of more than B
bytes in time t over several input links that are destined

to the same output switch port. This general definition re-
quires detecting bursts that are correlated in time across

several input links.

Microbursts cause problems because data center link

speeds have moved to 10 Gbps while commodity switch
buffers use comparatively small amounts of memory

(Mbytes). Since high-speed buffer memory contributes

significantly to switch cost, commodity switches con-
tinue to provision shallow buffers, which are vulnerable

to overflowing and dropping packets. Dropped packets
lead to TCP retransmissions which can cause millisecond

latency increases that are unacceptable in data centers.

Administrators of financial trading data centers, for in-
stance, are concerned with the microburst phenomena [4]

because even a latency advantage of 1 millisecond over

the competition may translate to profit differentials of
$100 million per year [14]. While financial networks

are a niche application, high-performance computing is
not. Expensive, special-purpose switching equipment

used in high-performance computing (e.g. Infiniband

and FiberChannel) is being replaced by commodity Eth-
ernet switches. In order for Ethernet networks to com-

pete, managers need to identify and address the fine-

grained variations in latencies and losses caused by mi-
crobursts. At the core of this problem is the need to iden-

tify the bandwidth patterns and corresponding applica-

tions causing these latency spikes so that corrective ac-
tion can be taken.

Efficient and effective monitoring becomes increas-
ingly difficult as faster links allow very short-lived phe-

nomenon to overwhelm buffers. For a commodity 24-

port 10 Gbps switch with 4 MB of shared buffer, the
buffer can be filled (assuming no draining) in 3.2 msec by

a single link. However, given that bursts are often corre-

lated across several links and buffers must be shared, the
time scales at which interesting bursts occur can be ten

times smaller, down to 100’s of µs. Instead of 3.2 msec,
the buffer can overflow in 320 µs if 10 input ports each

receive 0.4 MB in parallel. Assume that the strategy to

identify correlated bursts across links is to first identify
bursts on single links and then to observe that they are

correlated in time. The single link problem is then to ef-

ficiently identify periods of length t where more than B
bytes of data occur. Currently, t can vary from hundreds

of microseconds to milliseconds and B can vary from
100’s of Kbytes to a few Mbytes. Solving this problem

efficiently using minimal CPU processing and logging

bandwidth is one of the main concerns of this paper.

Although identifying “bursts” on a single link for a

range of possible time scales and byte thresholds is chal-

1

72 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

lenging, the ideal solution should do two more things.

First, the solution should efficiently extract flows respon-
sible for such bursts so that a manger can reschedule or

rate limit them. Second, the tool should allow a manager

to detect bursts correlated in time across links. While
the first problem can be solved using heavy-hitter tech-

niques [15], we briefly describe some new ideas for this
problem in our context. The second problem can be

solved by archiving bandwidth measurement records in-

dexed by link and time to a relational database which
can then be queried for persistent patterns. This requires

an efficient summarization technique so that the archival

storage required by the database is manageable.
Generalizing to Bandwidth Queries: Beyond identify-

ing microbursts, we believe that modeling traffic at fine
time scales is of fundamental importance. Such model-

ing could form the basis for provisioning NIC and switch

buffers, and for load balancing and traffic engineering at
fine time scales. While powerful, coarse-grain tools are

available, the ability to flexibly and efficiently measure

traffic at different, and especially fine-grain, resolutions
is limited or non-existent.

For instance, we are unable to answer basic ques-

tions such as: what is the distribution of traffic bursts?
At which time-scale did the traffic exhibit burstiness?

With the identification of long-range dependence (LRD)
in network traffic [9], the research community has un-

dergone a mental shift from Poisson and memory-less

processes to LRD and bursty processes. Despite its
widespread use, however, LRD analysis is hindered by

our inability to estimate its parameters unambiguously.

Thus, our larger goal is to use fine-grain measurement
techniques for fine-grain traffic modeling.

While it is not difficult to choose a small number of
preset resolutions and perform measurements for those,

the more difficult and useful problem is to support traffic

measurements for all time scales. Not only do measure-
ment resolutions of interest vary with time (as in burst

detection), but in many applications they only become

critical after the fact, that is, after the measurements have
already been performed. Our paper describes an end-host

bandwidth measurement tool that succinctly summarizes

bandwidth information and yet answers general queries
at arbitrary resolutions without maintaining state for all

time scales.
Some representative queries (among many) that we

wish such a tool to support are the following:

1. What is the maximum bandwidth used at time scale

t?

2. What is the standard deviation and 95th percentile
of the bandwidth at time scale t?

3. What is the coarsest time scale at which bandwidth

exceeds threshold L?

In these queries, the query parameters t or L are cho-

sen a posteriori — after all the measurements have been
performed, and thus require supporting all possible reso-

lutions and bandwidths.

Existing techniques: All the above queries above can

be easily answered by keeping the entire packet trace.

However, our data structures take an order of magni-
tude less storage than a packet trace (even a sampled

packet trace) and yet can answer flexible queries with

good accuracy. Note that standard summarization tech-
niques (including simple ones like SNMP packet coun-

ters [1]) and more complex ones (e.g., heavy-hitter de-

termination [13]) are very efficient in storage but must
be targeted towards a particular purpose and at a fixed

time scale. Hence, they cannot answer flexible queries
for arbitrary time scales.

Note that sampling 1 in N packets, as in Cisco Net-

Flow [2], does not provide a good solution for bandwidth
measurement queries. Consider a 10 Gbps link with an

average packet size of 1000 bytes. This link can produce
10 million packets per second. Suppose the scheme does

1 in 1000 packet sampling. It can still produce 10,000

samples per second with say 6 bytes per sample for time-
stamp and packet size. To identify bursts of 1000 pack-

ets of 1500 bytes each (1.5 MB), any algorithm would

look for intervals containing 1 packet and scale up by the
down sampling factor of 1000. The major problem is that

this causes false positives. If the trace is well-behaved

and has no bursts in any specified period (say 10 msec),
the scaling scheme will still falsely identify 1 in 1000

packets as being part of bursts because of the large scal-
ing factor needed for data reduction. Packet sampling,

fundamentally, takes no account of the passage of time.

From an information-theoretic sense, packet traces,
are inefficient representations for bandwidth queries.

Viewing a trace as a time series of point masses (bytes in
each packet), it is more memory-efficient to represent the

trace as a series of time intervals with bytes sent per in-

terval. But this introduces the new problem of choosing
the intervals for representation so that bandwidth queries

on any interval (chosen after the trace has been summa-

rized) can be answered with minimal error.

Our first scheme builds on the simple idea that for any

fixed sampling interval, say 100 microseconds, one can
easily compute traffic statistics such as max or Standard
Deviation by a few counters each. By exponentially in-

creasing the sampling interval, we can span an aggre-
gation period of length T , and still compute statistics at

all time scales from microseconds to milliseconds, using

only O(log T) counters. We call this approach Expo-
nential Bucketing (EXPB). The challenge in EXPB is to

avoid updating all log T counters on each packet arrival
and to prove error bounds.

Our second idea, dubbed Dynamic Bucket Merge

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 73

Log Server
Query &

Visualize

Realtime

Summaries

Relational

Database

Figure 1: Example Deployment. End hosts and network

devices implementing EXPB and DBM push output data

over the network to a log server. Data at the server can
be monitored and visualized by administrators then col-

lapsed and archived to long-term, persistent storage.

(DBM), constructs an approximate streaming histogram
of the traffic so that bursts stand out as peaks in this his-

togram. Specifically, we adaptively partition the traffic

into k intervals/buckets, in such a way that the periods
of heavy traffic map to more refined buckets than those

of low traffic. The time-scales of these buckets provide a

“visual history” of the burstiness of the traffic—the nar-
rower the bucket in time, the burstier the traffic. In partic-

ular, DBM is well-suited for identifying not only whether
a burst occurred, but how many bursts, and when.

System Deployment: Exponential Bucketing and Dy-

namic Bucket Merge have low computational and stor-
age overheads, and can be implemented at multi-gigabit

speeds in software or hardware. As shown in Figure 1,

we envision a deployment scenario where both end hosts
and network devices record fine-grain bandwidth sum-

maries to a centralized log server. We argue that even

archiving to a single commodity hard disk, administra-
tors could pinpoint, to the second, the time at which cor-

related bursts occurred on given links, even up to a year
after the fact.

This data can be indexed using a relational database,

allowing administrators to query bandwidth statistics
across links and time. For example, administrators could

issue queries to “Find all bursts that occurred between

10 and 11 AM on all links in Set S”. Set S could be the
set of input links to a single switch (which can reveal In-

cast problems) or the path between two machines. Band-

width for particular links can then be visualized to further
delineate burst behavior. The foundation for answering

such queries is the ability to efficiently and succinctly
summarize the bandwidth usage of a trace in real-time,

the topic of this paper.

We break down the remainder of our work as fol-
lows. We begin with a discussion of related algorithms

and systems in Section 2. Section 3 illustrates the Dy-

namic Bucket Merge and Exponential Bucketing algo-

rithms, both formally and with examples. We follow
with our evaluations in Section 4, describe the implica-

tions for a system like Figure 1 in Section 5, and con-

clude in Section 6.

2 Related Work

Tcpdump [5] is a mature tool that captures a full log of

packets at the endhost, which can be used for a wide va-
riety of statistics, including bandwidth at any time scale.

While flexible, tcpdump consumes too much memory for

continuous monitoring at high speeds across every link
and for periods of days. Netflow [2] can capture packet

headers in routers but has the same issues. While sam-

pled Netflow reduces storage, configurations with sub-
stantial memory savings cannot detect bursts without re-

sulting in serious false positives. SNMP counters [1], on
the other hand, provide packet and byte counts but can

only return values at coarse and fixed time scales.

There are a wide variety of summarization data struc-

tures for traffic streams, many of which are surveyed
in [15]. None of these can directly be adapted to solve

the bandwidth problem at all time scales, though solu-
tions to quantile detection do solve some aspects of the

problem [15]. For example, classical heavy-hitters [13]

measures the heaviest traffic flows during an interval.
By contrast, we wish to measure “heavy-hitting sub-

intervals across time”, so to speak. However, heavy-

hitter solutions are complementary in order to identify
flows that cause the problem. The LDA data struc-

ture [12] is for a related problem – that of measuring
average latency. LDA is useful for directly measuring

latency violations. Our algorithms are complementary in

that they help analyze the bandwidth patterns that cause

latency violations.

DBM is inspired by the adaptive space partitioning

scheme of [11], but is greatly simplified, and also con-
siderably more efficient, due to the time-series nature of

packet arrivals.

3 Algorithms

Suppose we wish to perform bandwidth measurements
during a time window [0, T], assuming, without loss of

generality, that the window begins at time zero. We as-

sume that during this period N packets are sent, with pi

being the byte size of the ith packet and ti being the time

at which this packet is logged by our monitoring system,
for i = 1, 2, . . . , N . These packets are received and pro-

cessed by our system as a stream, meaning that the ith
packet arrives before the jth packet, for any i < j.

The bandwidth is a rate, and so converting our ob-

served sequence of N packets into a quantifiable band-

width usage requires a time scale. Since we wish to
measure bandwidth at different time scales, let us first

make precise what we mean by this. Given a time

3

74 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

scale (or granularity) ∆, where 0 < ∆ < T , we di-

vide the measurement window [0, T] into sub-intervals
of length ∆, and aggregate all those packets that are sent

within the same interval. In this way, we arrive at a se-

quence S∆ = 〈s1, s2, . . . , sk〉, where si is the sum of
the bytes sent during the sub-interval ((i−1)∆, i∆], and

k = �T/∆� is the number of such intervals.1

Therefore, every choice of ∆ leads to a corresponding

sequence S∆, which we interpret as the bandwidth use at

the temporal granularity ∆. All statistical measurements

of bandwidth usage at time scale ∆ correspond to statis-
tics over this sequence S∆. For instance, we can quantify

the statistical behavior of the bandwidth at time scale ∆
by measuring the mean, standard deviation, maximum,

median, quantiles, etc. of S∆.

In the following, we describe two schemes that can

estimate these statistics for every a posteriori choice of

the time scale ∆. That is, after the packet stream has
been processed by our algorithms, the users can query for

an arbitrary granularity ∆ and receive provable quality
approximations of the statistics for the sequence S∆.

Our first scheme, DBM, is time scale agnostic, and

essentially maintains a streaming histogram of the val-

ues s1, s2, . . . , sk, by adaptively partitioning the period
[0, T]. Our second scheme EXPB explicitly computes

statistics for a priori settings of ∆, and then uses them

to approximate the statistics for the queried value of ∆.

Since the two schemes are quite orthogonal to each
other, it is also possible to use them both in conjunc-

tion. We give worst-case error guarantees for both of

the schemes. Both schemes are able to compute the
mean with perfect accuracy and estimate the other statis-

tics, such as the maximum or standard deviation, with
a bounded error. The approximation error for the DBM

scheme is expressed as an additive error, while the EXPB

scheme offers a multiplicative relative error. In particu-
lar, for the DBM scheme, the estimation of the maximum

or standard deviation is bounded by an error term of the

form O(εB), where 0 < ε < 1 is a user-specified pa-
rameter dependent on the memory used by the data struc-

ture, and B =
∑N

i=1
pi is the total packet mass over the

measurement window. In the following, we describe and
analyze the DBM scheme, followed by a description and

analysis of the EXPB scheme.

3.1 Dynamic Bucket Merge

DBM maintains a partition of the measurement window

[0, T] into what we call buckets. In particular, a m-

bucket partition {b1, b2, . . . , bm}, is specified by a se-
quence of time instants t(bi), with 0 < t(bi) ≤ T ,

1To deal with the boundary problem properly, we assume that each
sub-interval includes its right boundary, but not the left boundary. If we
assume assume that no packet arrives at time 0, we can form a proper
non-overlapping partition this way.

with the interpretation that the bucket bi spans the inter-

val (t(bi−1), t(bi)]. That is, t(bi) marks the time when
the ith bucket ends, with the convention that t(b0) = 0,

and t(bm) = T . The number of buckets m is controlled

by the memory available to the algorithm and, as we
will show, the approximation quality of the algorithm im-

proves linearly with m. In the following, our description
and analysis of the scheme is expressed in terms of m.

Each bucket maintains O(1) information, typically the

statistics we are interested in maintaining, such as the
total number of bytes sent during the bucket. In particu-

lar, in the following, we use the notation p(b) to denote

the total number of data bytes sent during the interval
spanned by a bucket b.

The algorithm processes the packet stream p1, p2, . . .,
pN in arrival time order, always maintaining a partition

of [0, T] into at most m buckets. (In fact, after the first m
packets have been processed, the number of buckets will
be exactly m, and the most recently processed packet lies

in the last bucket, namely, bm.) The basic algorithm is

quite straightforward. When the next packet pj is pro-
cessed, we place it into a new bucket bm+1, with time in-

terval (tj−1, T)—recall that tj−1 is the time stamp asso-

ciated with the preceding packet pj−1. We also note that
the right boundary of the predecessor bucket bm now be-

comes tj−1 due to the addition of the bucket bm+1. Since
we now have m + 1 buckets, we merge two adjacent

buckets to reduce the bucket count down to m. Several

different criteria can be used for deciding which buckets
to merge, and we consider some alternatives later, but in

our basic scheme we merge the buckets based on their

packet mass. That is, we merge two adjacent buckets
whose sum of the packet mass is the smallest over all

such adjacent pairs. A pseudo-code description of DBM
is presented in Algorithm 1.

Algorithm 1: DBM

foreach pj ∈ S do1

Allocate a new bucket bi and set p(bi) = pj2

if i == m + 1 then3

Merge the two adjacent bw, bw+1 for which55

p(bw) + p(bw+1) is minimum;
end6

end7

3.1.1 DBM Example

To clarify the operation of DBM we give the following

example, illustrated in Figure 2.
Suppose that we run DBM with 4 buckets (m = 4),

each of which stores a count of the number of buckets

that have been merged into it, the sum of all bytes be-
longing to it, and the max number of bytes of any bucket

merged into it. Now suppose that 4 packets have arrived

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 75

Figure 2: Dynamic Bucket Merge with 4 buckets. Ini-

tially each bucket contains a single packet and the min
heap holds the sums of adjacent bucket pairs. When a

new packet (value = 40) arrives, a 5th bucket is allocated
and a new entry added to the heap. In the merge step, the

smallest value (30) is popped from the heap and the two

associated buckets are merged. Last, we update the heap
values that depended on either of the merged buckets.

with masses 10, 20, 35, and 5, respectively. The state of

DBM at this point is shown at the top of Figure 2. Note

that Algorithm 1 required that we merge the buckets with
the minimum combined sum. Hence, we maintain a min

heap which stores the sums of adjacent buckets.

When a fifth packet with a mass of 40 arrives, DBM
allocates a new bucket for it and updates the heap with

the sum of the new bucket and its neighbor.
In the final step, the minimum sum is pulled from the

heap and the buckets contributing to that sum are merged.

In this example, the bucket containing mass 10 and 20 are
merged into a single bucket with a new mass of 30 and

a max bucket value of 20. Note that we also update the

values in the heap which included the mass of either of
the merge buckets.

3.1.2 DBM Analysis

The key property of DBM is that it can estimate the total

number of bytes sent during any time interval. In particu-
lar, let [t, t′] be an arbitrary interval, where 0 ≤ t, t′ ≤ T ,

and let p(t, t′) be the total number of bytes sent during

it, meaning p(t, t′) =
∑N

i=1
{pi | t ≤ ti ≤ t′}. Then we

have the following result.

Lemma 1. The data structure DBM estimates p(t, t′)
within an additive error O(B/m), for any interval [t, t′],

where m is the number of buckets used by DBM and

B =
∑N

i=1
pi is the total packet mass over the measure-

ment window [0, T].

Proof. We first note that in DBM each bucket’s packet
mass is at most 2B/(m−1), unless the bucket contains a

single packet whose mass is strictly larger than 2B/(m−
1). In particular, we argue that whenever two buckets
need to be merged, there always exists an adjacent pair

with total packet mass less than 2B/(m − 1). Suppose
not. Then, summing the sizes of all (m − 1) pairs of

adjacent buckets must produce a total mass strictly larger

than 2(m − 1)B/(m − 1) = 2B, which is impossible
since in this sum each bucket is counted at most twice,

so the total mass must be less than 2B.

With this fact established, the rest of the lemma fol-
lows easily. In order to estimate p(t, t′), we simply add

up the buckets whose time spans intersect the interval

[t, t′]. Any bucket whose interval lies entirely inside
[t, t′] is accurately counted, and so the only error of esti-

mation comes from the two buckets whose intervals only

partially intersect [t, t′]—these are the buckets contain-
ing the endpoints t and t′. If these buckets have mass

less than 2B/(m − 1) each, then the total error in esti-
mation is less than 4B/m, which is O(B

m
). If, on the

other hand, either of the end buckets contains a single

packet with large mass, then that packet is correctly in-
cluded or excluded from the estimation, depending on

its time stamp, and so there is no estimation error. This

completes the proof.

Theorem 1. With DBM we can estimate the maximum

or the standard deviation of S∆ within an additive error

εB, using memory O(1/ε).

Proof. The proof for the maximum follows easily from

the preceding lemma. We simply query DBM for time
windows of length ∆, namely, (i∆, (i + 1)∆], for i =
0, 1, . . . , �T/∆�, and output the maximum packet mass

estimated in any of those intervals. In order to achieve
the target error bound, we use m = 4

ε
+ 1 buckets.

We now analyze the approximation of the standard de-

viation. Recall that the sequence under consideration is
S∆ = 〈s1, s2, . . . , sk〉, for some time scale ∆, where

si is the sum of the bytes sent during the sub-interval

((i−1)∆, i∆], and k = �T/∆� is the number of such in-
tervals. Let V ar(S∆), E(S∆), and E(S2

∆), respectively,

denote the variance, mean, and mean of the squares for
S∆. Then, by definition, we have

V ar(S∆) = E(S2
∆)−E(S∆)2 =

∑k

i=1
si

2

k
−E(S∆)2

Since DBM estimates each si within an additive error of

εB, our estimated variance respects the following bound:

5

76 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

≤
∑

(si + εB)2

k
− E(S∆)2

However, we can compute E(S∆)2 exactly, because it is

just the square of the mean. In order to derive a bound on
the error of the variance, we assume that k > m, that is,

the size of the sequence S∆ is at least as large as the num-
ber of buckets in DBM. (Naturally, statistical measure-

ments are meaningless when the sample size becomes

too small.) With this assumption, we have 2/k < 2/m,

and since ε = 4/(m − 1), we get that 2
P

si

k
≤ εB,

which, considering k ≥ 1, yields the following upper

bound for the estimated variance:

≤
∑

s2
i

k
−E(S∆)2 +

k + 1

k
ε2B2 ≤ V ar(S∆)+2ε2B2

which implies the claim.

Similarly, we can show the following result for ap-
proximating quantiles of the sequence S∆.

Theorem 2. With DBM we can estimate any quantile of

S∆ within an additive error εB, using memory O(1/ε).

Proof. Let s1, s2, . . . , sk be the sequence of data in the
intervals (i∆, (i + 1)∆], for i = 1, 2, . . . , k = �T/∆�,

sorted in increasing order, and let ŝ1, ŝ2, . . . , ŝk be the
sorted estimated sequence for the same intervals. We

now compute the desired quantile, for instance the 95th

percentile, in this sequence. Supposing the index of the
quantile is q, we return ŝq. We argue that the error of

this approximation is O(εB). We do this by estimating

bounds on the si values that are erroneously (due to ap-
proximation) misclassified, meaning reported below or

equal the quantile when they are actually larger or vice

versa. If no si have been misclassified then ŝq and sq

correspond to the same sample, and by Lemma 1 the es-

timated value ŝq − sq ≤ εB, hence the claim follows.
On the other hand, if a misclassification occurred, then

the sample sq is reported at an index different than q in

the estimated sequence. Assume without loss of gener-
ality that the sample sq has been reported as ŝu where

u > q. Then, by the pigeonhole principle, there is at

least a sample sh (h > q) that is reported as ŝd, d ≤ q.
By Lemma 1, ŝd − sh ≤ εB. Since sq and sh switched

ranks in the estimated sequence ŝ, by Lemma 1 it holds
that sh − sq ≤ εB and ŝu − ŝd ≤ εB. By assump-

tion u > q ≥ d, then it follows that ŝu ≥ ŝq ≥ ŝd in the

sorted sequence ŝ, which implies that ŝq − ŝd ≤ εB. The
chain of inequalities implies that ŝq − sq ≤ 3εB, which

completes the proof.

Algorithm 1 can be implemented at the worst-case cost

of O(log m) per packet, with the heap operation being
the dominant step. The memory usage of DBM is Θ(m)
as each bucket maintains O(1) information.

3.1.3 Extensions to DBM for better burst detection

Generic DBM is a useful oracle for estimating bandwidth

in any interval (chosen after the fact) with bounded addi-

tive error. However, one can tune the merge rule of DBM
if the goal is to pick out the bursts only. Intuitively, if

we have an aggregation period with k bursts for small k
(say 10) spread out in a large interval, then ideally we
would like to compress the large trace to k high-density

intervals. Of course, we would like to also represent the
comparatively low traffic adjacent intervals as well, so an

ideal algorithm would partition the trace into 2k + 1 in-

tervals where the bursts and ideal periods are clearly and
even visually identified. We refer to the generic scheme

discussed earlier that uses merge-by-mass as DBM-mm,

and describe two new variants as follows.

• merge-by-variance (DBM-mv): merges the two ad-

jacent buckets that have the minimum aggregated
packet mass variance

• merge-by-range (DBM-mr): merges the two ad-

jacent buckets that have the minimum aggregated

packet mass range (defined as the difference be-
tween maximum and minimum packet masses

within the bucket)

These merge variants can also be implemented in log-

arithmic time, and require storing O(1) additional infor-

mation for each bucket (in addition to p(bi)).
One minor detail is that DBM-mv and DBM-mr

are sensitive to null packet mass in an interval while
DBM-mm is not. For these reasons, we make the DBM-mr

and DBM-mv algorithms work on the sequence defined

by S∆, where ∆ is the minimum time scale at which
bandwidth measurements can be queried. Then DBM-mr

and DBM-mv represents S∆ as a histogram on m buck-

ets, where each bucket has a discrete value for the signal.
The goal of a good approximation is to minimize its pre-

dicted value versus the true under some error metric. We

consider both the L2 norm and the L∞ norm for the ap-
proximation error.

E2 = (

n
∑

i=1

|si − ŝi|2)
1

2 (1)

where ŝi is the approximation for value si.

E∞ = maxn
i=1|si − ŝi| (2)

We compare the performance of DBM-mr and

DBM-mv algorithms with the optimal offline algorithms,
that is, a bucketing scheme that would find the optimal

partition of S∆ to minimize the E2 or the E∞ metric.

Then, the analysis of [7, 10] can be adapted to yield the
following results that formally state our intuitive goal of

picking out m bursts with 2m + 1 pieces of memory.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 77

Theorem 3. The L∞ approximation error of the m-

bucket DBM-mr is never worse than the corresponding

error of an optimal m/2-bucket partition.

Theorem 4. The L2 approximation error of the m-

bucket DBM-mv is at most
√

2 times the corresponding

error of an optimal m/4-bucket partition.

3.2 Exponential Bucketing

Our second scheme, which we call Exponential Buck-

eting (EXPB), explicitly computes statistics for a priori

settings of ∆1, . . . ,∆m, and then uses them to approx-
imate the statistics for the queried value for any ∆, for

∆1 ≤ ∆ ≤ ∆m. We assume that the time scales grow in
powers of two, meaning that ∆i = 2i−1∆1. Therefore,

we can assume that the scheme processes data at the time

scale ∆1, namely, the sequence S∆1
= (s1, s2, . . . , sk).

Conceptually, EXPB maintains bandwidth statistics
for all m time scales ∆1, . . . ,∆m. A naı̈ve implemen-

tation would require updating O(m) counters per (ag-
gregated) packet si. However, by carefully orchestrating

the accumulator update when a new si is available it is

possible to avoid spending m updates per measurement
as shown in Algorithm 2.

The intuition is as follows. Suppose one is maintaining

statistics at 100 µs and 200 µs intervals. When a packet
arrives, we update the 100 µs counter but not the 200

µs counter. Instead, the 200 µs counter is updated only

when the 100 µs counter is zeroed. In other words, only
the lowest granularity counter is updated on every packet,

and coarser granularity counters are only updated when
all the finer granularity counters are zeroed.

Algorithm 2: EXPB

sum=< 0, . . . , 0 > (m times) ;1

foreach si do2

sum[0]=si;3

j=0;4

repeat66

updatestat(j,sum[j]);88

if j < m then9

sum[j+1]+=sum[j];10

end11

sum[j]=0;12

j++;13

until i mod 2j �= 0 or j ≥ m ;14

end15

3.2.1 EXPB Example

To better understand the EXPB algorithm we now present

the example illustrated in Figure 3.
In this example, we maintain 3 buckets (m = 3) each

of which stores statistics at time scales of 1, 2 and 4

Figure 3: Exponential Bucketing Example. Each of the

m buckets collects statistics at 2i−1 times the finest time

scale. At the end of each time scale, ∆i, buckets 1 to i
must be updated. Before storing the new sum in a bucket

j, we first add the old sum into bucket j + 1, if it exists.

time units. Each bucket stores the count of the intervals
elapsed, the sum of the bytes seen in the current interval,

and fields to compute max and standard deviation. We la-

bel the time units along the top and the number of bytes
accumulated during each interval along the bottom.

In the first time interval 10 bytes are recorded in the
first bucket and 10 is pushed to the sum of the second

bucket. We repeat this operation when 20 is recorded

in the second interval. Since 2 time units have elapsed,
we also update the statistics for the ∆2 time scale, and

add bucket two’s sum to bucket 3. In the third interval

we update bucket 1 as before. Finally, at time 4 we up-
date bucket 2 with the current sum from bucket 1, up-

date bucket two’s statistics, and push bucket two’s sum
to bucket 3. Finally, we update the statistics for ∆3 with

bucket three’s sum.

3.2.2 EXPB Analysis

Algorithm 2 uses O(m) memory and runs in O(k) worst-

case time, where k = �T/∆1� is the number of inter-
vals at the lowest time scale of the algorithm. The per-

interval processing time is amortized constant, since the
repeat loop starting at Line 6 simply counts the num-

ber of trailing zeros in the binary representation of i, for

all 0 < i < k = T/∆. The procedure updatestat()
called at Line 8 updates in constant time the O(1) infor-

mation necessary to maintain the statistics for each ∆i,

for 1 ≤ i ≤ m.

We now describe and analyze the bandwidth estima-

tion using EXPB. Given any query time scale ∆, we out-
put the maximum of the bandwidth corresponding to the

smallest index j for which ∆j ≥ ∆, and use the sum

of squared packet masses stored for granularity ∆j to
compute the standard deviation. The following lemma

bounds the error of such an approximation.

7

78 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Lemma 2. With EXPB we can return an estimation of

the maximum or standard deviation of S∆ that is be-

tween factor 1/2 and 3 from the true value. The bound on

the standard deviation holds in the limit when the ratio

E(S2
∆)/E(S∆)2 is large.

Proof. We first prove the result for the statistic maxi-

mum, and then address the standard deviation. Let I
be the interval ((i − 1)∆, i∆] corresponding to the time

scale ∆ in which the maximum value is achieved, and let
p(I) be this value. Since ∆j ≥ ∆, there are at two most

consecutive intervals Ij
i , Ij

i+1 at time scale ∆j that to-

gether cover I . By the pigeonhole principle, either Ij
i or

Ij
i+1 must contain at least half the mass of I , and there-

fore the maximum value at time scale ∆j is at least 1/2 of

the maximum value at ∆. This proves the lower bound
side of the approximation. In order to obtain a corre-

sponding upper bound, we simply observe that if Ij
i is

the interval at time scale ∆j with the maximum value,

then Ij
i overlaps with at most 3 intervals of time scale

∆. Thus, the maximum value at time scale ∆j cannot be
more than 3 times the maximum at ∆ proving an upper

bound on the approximation.

The analysis for the standard deviation follows along

the same lines, using the observation that stddev∆ =
√

E(S2
∆) − E(S∆)2. An argument similar to the one

used for the maximum value holds for the approximation

of E(S2
∆). Then assuming the ratio E(S2

∆)/E(S∆)2

to be a constant sufficiently greater than 1 implies the

claim. We omit the simple algebra from this extended

abstract.

We note that there is a non-trivial extension of EXPB

which allows it to work with a set of exponentially in-
creasing time granularities whose common ratio can be

any α > 1. This can reduce average error. For a gen-

eral α > 1, Algorithm 2 cannot be easily adapted, so
we need a generalization of it that uses an event queue

while processing measurements to schedule when in the

future a new measurement of length ∆j must be sent to
updatestat(). The details are omitted for lack of space.

3.3 Culprit Identification

As mentioned earlier, we do not want to simply identify

bursts but also to identify the flow (e.g., TCP connection,

or source IP address, protocol) that caused the burst so
that the network manager can reschedule or move the of-

fending station or application. The naive approach would
be to add a heavy-hitters [13] data structure to each DBM

bucket, which seems expensive in storage. Instead, we

modify DBM to include two extra variables per bucket: a
flowID and a flow count for the flowID.

The simple heuristic we suggest is as follows. Initially,
each packet is placed in a bucket, and the bucket’s flowID

is set to the flowID of its packet. When merging two

buckets, if the buckets have the same flowID, then that

flowID becomes the flowID of the merged bucket and
the flow counts are summed. If not, then one of the two

flowIDs is picked with probability proportional to their

flow counts. Intuitively, the higher count flows are more
likely to be picked as the main contributor in each bucket

as they are more likely to survive merges.

For EXPB, a simple idea is to use a standard heavy-
hitters structure [13] corresponding to each of the loga-

rithmic time scales. When each counter is reset, we up-
date the flowID if the maximum value has changed and

reinitialize the heavy-hitters structure for the next inter-

val. This requires only a logarithmic number of heavy-
hitters structures. Since there appears to be redundancy

across the structures at each time scale, more compres-

sion appears feasible but we leave this for future work.

4 Evaluation

We now evaluate the performance and accuracy of DBM
and EXPB to show that they fulfill our goal of a tool

that efficiently utilizes memory and processing resources

to faithfully capture and display key bandwidth mea-
sures. We will show that DBM and EXPB use significantly

fewer resources than packet tracing and are suitable for

network-wide measurement and visualization.

4.1 Measurement Accuracy

We implemented EXPB and the three variants of DBM as
user-space programs and evaluated them with real traffic

traces. Our traces consisted of a packets captured from

the 1 Gigabit switch that connects several infrastructure
servers used by the Systems and Networking group at

U.C. San Diego, and socket-level send data produced by

the record-breaking TritonSort sorting cluster [17].

Our “rsync” trace captured individual packets from

an 11-hour period during which our NFS server ran its
monthly backup to a remote machine using rsync. This

trace recorded the transfer of 76.2 GB of data in 60.6

million packets, of which 66.6 GB was due to the backup
operation. The average throughput was 15.4 Mbps with

a maximum of 782 Mbps for a single second.

The “tritonsort” trace contains time-stamped byte
counts from successful send system calls on a single

host during the sorting of 500 GB of data using 23 nodes

connected by a 10 Gbps network. This trace contains an
average of 92,488 send events per second, with a peak of

123,322 events recorded in a single 1-second interval. In

total, 20.8 GB were transferred over 34.24 seconds for
an average throughput of 4.9 Gbps.

Ideally, our evaluation would include traffic from a
mix of production applications running over a 10 Gbps

network. While we do not have access to such a deploy-

ment, our traces provide insight into how DBM and EXPB
might perform given the high bandwidth and network uti-

lization of the “tritonsort” trace and the large variance in

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 79

bandwidth from second to second in the “rsync” trace.

For our accuracy evaluation, we used an aggregation

period of 2 seconds. To avoid problems with incom-
plete sampling periods in EXPB, we must choose our

time scales such that they all evenly divide our aggre-

gation period. Since the prime factors of 2 seconds in
nsec are 211 and 510 nsec, EXPB can use up to 11 buck-

ets. Thus for EXPB, we choose the finest time scale to
be ∆ = 78.125 µs (57 nsec) and the coarsest to be ∆ =
80 msec (21157 nsec), which is consistent with the time

scales for interesting bursts in data centers. For consis-
tency, we also configure DBM to use a base sampling in-

terval of 78.125 µs, but note that it can answer queries

up to ∆ = 2 seconds.

To provide a baseline measurement, we computed
bandwidth statistics for all of our traces at various time

scales where ∆ ≥ 78.125 µs. To ensure that all measure-
ments in S∆ are equal, we only evaluated time scales that

evenly divided 2 seconds. In total, this provided us with

ground-truth statistics at 52 different time scales rang-
ing from 78.125 µs to 2 seconds. In the following sec-

tions we report accuracy in terms of error relative to these

ground-truth measurements. While any number of val-
ues could be used for ∆ and T in practice, we used these

values across our experiments for the sake of a consistent
and representative evaluation between algorithms.

4.1.1 Accuracy vs. Memory

We begin by investigating the tradeoff between memory

and accuracy. At one extreme, SNMP can calculate av-
erage bandwidth using only a single counter. In contrast,

packet tracing with tcpdump can calculate a wide range
of statistics with perfect accuracy, but with storage cost

scaling linearly with the number of packets. Both DBM

and EXPB provide a tradeoff between these two extremes
by supporting complex queries with bounded error, but

with orders of magnitude less memory.

For comparison, consider the simplest event trace

which captures a 64-bit timestamp and a 16-bit byte
length for each packet sent or received. Using this data,

one could calculate bandwidth statistics for the trace with
perfect accuracy at a memory cost of 6 bytes per event.

In contrast, DBM and EXPB require 8 and 16 bytes of stor-

age per bucket used, respectively, along with a few bytes
of meta data for each aggregation period.

To quantify these differences, we queried our traces

for max, standard deviation, and 95th percentile (DBM

only). For each statistic, we compute the average rela-
tive error of the measurements at each of our reference

time scales and report the worst-case. To avoid spurious
errors due to low sample counts, we omit accuracy data

for standard deviations with fewer than 10 samples per

aggregation period and 95th percentiles with fewer than
20 samples per aggregation period. We show the tradeoff

between storage and accuracy in Table 1.

Max of Avg. Rel. Error

Output Max S.Dev. 95th

trace (avg) 9.2 KBps

(peak) 396 KBps 0% 0% 0%

DBM-mr 4 KBps 7.6% 14.7% 14.9%

EXPB 96 Bps 14.2% 5.9% N/A

Table 2: We repeated our evaluation with the “rsync”
trace and report accuracy results for our two best per-

forming algorithms — DBM-mr and EXPB. We calcu-

lated the average relative error for each of our reference
time scale and show the worst case.

While the simple packet trace gives perfectly accu-

rate statistics, both DBM and EXPB consume memory at
a fixed rate which can be configured by specifying the

number of buckets and the aggregation period. In the

presented configuration, both DBM and EXPB generate 4
KBps and 96 Bps, respectively — orders of magnitude

less memory than the simple trace.

The cost of reduced storage overhead in DBM and

EXPB is the error introduced in our measurements. How-
ever, we see that the range of average relative error rates

is reasonable for max, standard deviation, and 95th per-

centile measurements. Further, of the DBM algorithms,
DBM-mr gives the lowest errors throughout. While not

shown, DBM’s errors are largely due to under-estimation,
but its accuracy improves as the query interval grows.

EXPB gives consistent estimation errors for max across

all of our reference points, but gradually degrades for
standard deviation estimates as query intervals increase.

Thus, for this trace, EXPB achieves the lowest error for

query intervals less than 2msec. We have divided Table 1
to show the worst-case errors in these regions.

In Table 2 , we show the accuracy of DBM-mr and

EXPB when run on the “rsync” trace with the same pa-

rameters as before. We note that again DBM-mr gives
the most accurate results for larger query intervals, but

now out-performs EXPB for query intervals greater than

160µs for max and 1msec for standard deviation.

To see the effect of scaling the number of buckets,
we picked a representative query interval of 400 µs and

investigated the accuracy of DBM-mr as the number of

buckets were varied. The results of measuring the max,
standard deviation and 95th percentile on the “tritonsort”

trace are shown in Figure 4. We see that the relative error

for all measurements decreases as the number of buck-
ets is increased. However, at 4,000 buckets the curves

flatten significantly and additional buckets beyond this
do not produce any significant improvement in accuracy.

While one might expect the error to drop to zero when

the number of buckets is equal to the number of samples
at S∆ (5000 samples for 400µs), we do not see this since

the trace is sampled at a finer granularity (78.125 µs) and

9

80 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Max of Avg. Relative Error

≤ 2 msec > 2msec

Output Rate Max S.Dev. 95th Max S.Dev. 95th

packet trace (avg) 555 KBps
(peak) 740 KBps 0% 0% 0% 0% 0% 0%

DBM-mm, 1000 buckets 4 KBps 25.9% 43.3% 18.3% 2.2% 5.7% 1.1%

DBM-mv, 1000 buckets 4 KBps 16.7% 58.9% 26.7% 7.2% 39.0% 10.4%
DBM-mr, 1000 buckets 4 KBps 14.0% 35.0% 16.1% 2.0% 4.1% 0.9%

EXPB, 11 buckets 96 Bps 2.7% 2.5% N/A 2.8% 8.1% N/A

Table 1: Memory vs. Accuracy. We evaluate the “tritonsort” trace with a base time scale of ∆ =78.125 µs and a 2
second aggregation period. Data output rate is reported for a simple packet trace compared with the DBM and EXPB

algorithms. For each statistic, we compute the max of the average relative error of measurements for each of our

reference time scales.

 0

 5

 10

 15

 20

 25

 30

 35

 10 100 1000 10000

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Bucket Count

Quartiles + min,max
Avg

(a) Max measurements

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Bucket Count

Quartiles + min,max
Avg

(b) Std. Dev. measurements

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Bucket Count

Quartiles + min,max
Avg

(c) 95th Percentile measurements

Figure 4: Relative error for DBM-mr algorithm shown for the 400 µs time scale with a varying number of buckets. The

box plots show the range of relative errors from the 25th to 75th percentiles, with the median indicated in between.

The box whiskers indicate the min and max errors.

the buckets are merged online. There is no guarantee that

DBM will merge the buckets such that each spans exactly
400µs of the trace.

With approximations of the max and standard devia-

tion with this degree of accuracy, we see both DBM and

EXPB as an excellent, low-overhead alternative to packet
tracing.

4.1.2 DBM Visualization

One unique property of the DBM algorithms is that they
can be visualized to show users the shape of the band-

width curves. Note that we proved earlier that DBM-mr
is optimal in some sense in picking out bursts. We now

investigate experimentally how all DBM variants do in

burst detection.

In Figures 5 we show the output for a single, 2 sec-
ond aggregation period from the “rsync” trace using

DBM-mr. For visual clarity, we configured DBM-mr to
aggregate measurements at a 4 msec base time scale (250

data points) using 9 buckets. Figure 5 shows the raw

data points (bandwidth use in each 4 msec interval of
the 2 second trace) with the DBM-mr output superim-

posed. Notice that DBM-mr picks out four bursts (the

vertical lines). The fourth burst looks smaller than the

3.1 Mbps burst observable in the raw trace. This is be-
cause there were two adjacent measurement intervals in

the raw trace with bandwidths of 3.1 and 2.2 Mbps, re-

spectively. DBM-mr merged these measurements into a
single bucket of with an average bandwidth of 2.65 Mbps

for 8 msec.

We show the output for all DBM algorithms in a more

clean visual form in Figures 6a, 6b and 6c. We have
normalized the width of the buckets and list their start

and end times on the x-axis. Additionally, we label each

bucket with its mass (byte count). This representation
compresses periods of low traffic and highlights short-

lived, high-bandwidth events. From the visualization of

DBM-mr in Figure 6c, we can quickly see that there were
four periods of time, each lasting between 4 and 8 msec

where the bandwidth exceeded 2.3 Mbps. Note that in
Figure 6a, DBM-mm picks out only two bursts. The re-

maining bursts have been merged into the three buckets

spanning the period from 1440 to 1636 msec, thereby re-
ducing the bandwidth (the y-axis) because the total time

of the combined bucket increases.

In practice, a network administrator might want to

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 81

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000

R
a

te
 (

M
b

p
s
)

Time (msec)

Trace
DBM-mr

Figure 5: Visualization of events from a 2 second aggre-
gation period overlaid with the output of DBM-mr using

9 buckets and a 4 msec measurement time scale.

quickly scan such a visualization and look for microburst
events. To simulate such a scenario, we randomly in-

serted three bursts, each lasting 4 msec and transmitting

between 4.0 and 4.4 MB of data. We show the DBM visu-
alization for this augmented trace in bottom of Figure 6.

DBM-mr and DBM-mm both allocate their memory re-

sources to capture all three of these important events,
even though they only represent 12 msec of a 2 second

aggregation period. Again, DBM-mr cleanly picks out
the three bursts.

4.1.3 Accuracy at High Load

As mentioned in Lemma 1, the error associated with the
DBM algorithms increases with the ratio of total packet

mass (total bytes) to number of buckets within an ag-

gregation period. We now investigate to what extent in-
creasing the mass within an aggregation period affects

the measurement accuracy of DBM. To evaluate this, we

first configured DBM to use a base time scale of ∆ =
78.125 µs and 1000 buckets, as before, but vary the

mass stored in DBM by changing the aggregation period.

Figures 7a & 7b show the change in average relative
error for both max and standard deviation statistics in

our high-bandwidth “tritonsort” trace at a representative
query time scale (400 µs) as the aggregation period is

varied between 1 and 16 seconds.

For DBM-mm and DBM-mvwith 1000 buckets the rela-

tive error diverges significantly as the aggregation period
is increased. In contrast, DBM-mr shows only a subtle

degradation for max from 5.9% to 12.3%. For standard

deviation, DBM-mv show consistently poor performance
with average relative errors increasing from 32% to 64%,

while both DBM-mm and DBM-mr trend together with

DBM-mr’s errors ranging from 9.8 to 31.7%.

We contrast DBM-mr’s performance for these exper-
iments with that of EXPB. We see that EXPB’s average

relative error in the max measurement gradually falls

from 2.8% to 1.9% as the aggregation period increases.

Further, the error in standard deviation falls from 1.4%
at a 1 second aggregation period to 0.5% at 16 seconds.

These results indicate that degradation in accuracy

does occur as the ratio of the total packet mass to bucket
count increases, as predicted by Lemma 1. While DBM

must be configured correctly to bound the ratio of packet

mass to bucket count, EXPB’s accuracy is largely unaf-
fected by the packet mass or aggregation period.

4.2 Performance Overhead

As previously stated, we seek to provide an efficient al-

ternative to packet capture tools. Hence we compare
the performance overhead of DBM and EXPB to that of

an unmodified vanilla kernel, and to the well-established

tcpdump[5].
We implemented our algorithms in the Linux 2.6.34

kernel along with a userspace program to read the cap-

tured statistics and write them to disk. To provide greater
computational efficiency we constrained the base time

scale and the aggregation period to be powers of 2. The

following experiments were run on 2.27 GHz, quad-core
Intel Xeon servers with 24 GB of memory. Each server

is connected to a top-of-rack switch via 10 Gbps ethernet

and has a round trip latency of approximately 100 µs.
To quantify the impact of our monitoring on perfor-

mance, we first ran iperf [3] to send TCP traffic between

two machines on our 10 Gbps network for 10 seconds.
In addition, we instrumented our code to report the time

spent in our routines during the test. We first ran the
vanilla kernel source, then added different versions of

our monitoring to aggregate 64 µs intervals over 1 sec-

ond periods. We report both the bandwidth achieved by
iperf and the average latency added to each packet at the

sending server in Table 3. For comparison, we also re-

port performance numbers for tcpdump when run with
the default settings and writing the TCP and IP head-

ers (52 bytes) of each packet directly to local disk. As

DBM-mr is nearly identical to DBM-mm with respect to
implementation, we omit DBM-mr’s results.

As discussed in section 3.1, we see that the latency

overhead per packet increases roughly as the log of the
number of buckets. However, iperf’s maximum through-

put is not degraded by the latency added to each packet.

Since the added latency per packet is several orders of
magnitude less than the RTT, the overhead of DBM should

not affect TCP’s ability to quickly grow its congestion
window. In contrast to DBM, tcpdump achieves 3.5%

less throughput.

To observe the overhead of our monitoring on an ap-
plication, we transferred a 1GB file using scp. We

measured the wall-clock time necessary to complete the

transfer by running scp within the Linux’s time utility.
To quantify the affects of our measurement on the to-

tal completion time, we measured the total overhead im-

11

82 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 64 472 480 1440 1488 1536 1636 1644 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mm

1560
2064

2676

1724

1520 1560 2676

2652

2028

(a) DBM-mm visualization

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 64 472 480 1440 1444 1540 1636 1648 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mv

1560
2064

2676

1724

1520

1896 2340

3120

1560

(b) DBM-mv visualization

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 472 480 1440 1444 1540 1548 1636 1644 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mr

3624

2676

1724

1520

1896

2340

0

2652

2028

(c) DBM-mr visualization

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0 304 308 580 584 1488 1636 1688 1692 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mm

3624

4200000

2676

4400000

3244 4236 3120

4000000

1560

(d) DBM-mm visualization of bursty traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0 308 580 584 1440 1540 1636 1688 1692 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mv

42036242676

4400000

1724 3416 2340 3120

4000000

1560

(e) DBM-mv visualization of bursty traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0 304 308 580 584 1636 1648 1688 1692 2000

R
a
te

 (
M

b
p
s
)

Time (msec)

DBM-mr

3624

4200000

2676

4400000

7480 3120 0

4000000

1560

(f) DBM-mr visualization of bursty traffic

Figure 6: Visualization of DBM with 9 buckets over a single 2 second aggregation period. The start and end times for

each bucket are shown on the x-axis, and each bucket is labeled with its mass (byte count). The top figures show the
various DBM approximations of a single aggregation period, while the lower graphs show the same period with three

short-lived, high bandwidth bursts randomly inserted.

posed on packets as they moved up and down the network
stack. We report this overhead as a percentage of each

experiment’s average completion time (monitoring time

divided by scp completion time). Each experiment was
replicated 60 times and results are reported in Table 4.

We see that although the cumulative overhead added by
DBM grows logarithmically with the number of buckets,

the time for scp to complete increases by at most 4.5%.

We see that our implementations of DBM and EXPB

have a negligible impact on application performance,
even while monitoring traffic at 10 Gbps.

4.3 Evaluation Summary

Our experiments indicate DBM-mr consistently provides

better burst detection and has reasonable average case

and worst case error for various statistics. When mea-
suring at arbitrary time scales, EXPB has comparable or

better average and worst-case error than DBM while us-

ing less memory. In addition, EXPB is unaffected by
high mass in a given aggregation period. On other hand,

DBM can approximate time series, which is useful for see-
ing how burst are distributed in time and for calculating

more advanced statistics (i.e. percentiles). We recom-

mend a parallel implementation where EXPB is used for
Max and Standard Deviation and DBM-mr is used for all

other queries.

5 System Implications

So far, we have described DBM and EXPB as part of an

end host monitoring tool that can aggregate and visual-

ize bandwidth data with good accuracy. However, we see
these algorithms a part of a larger infrastructure monitor-

ing system.

Long-term Archival and Database Support It is use-
ful for administrators to retrospectively troubleshoot

problems that are reported by customers days after the

fact. At slightly more than 4 KBps, the data produced by
both DBM and EXPB for a week (2.4 GB per link) could

easily be stored to a commodity disk. With this data,

an administrator can pinpoint traffic abnormalities at mi-
crosecond timescales and look for patterns across links.

The data can be compacted for larger time scales by re-
ducing granularity for older data. For example, one hour

of EXPB data could be collapsed into one set of buckets

containing max and standard deviation information at the
original resolutions but aggregated across the hour.

With such techniques, fine-grain network statistics for
hundreds of links over an entire year could be stored to a

single server. The data could be keyed by link and time

and stored in a relational database to allow queries across
time (is the traffic on a single link becoming more bursty

with time?) or across links (did a number of bursts cor-

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 83

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

R
e

la
ti
v
e

 E
rr

o
r

(%
)

Aggregation Period (sec)

DBM-mm
DBM-mv
DBM-mr

EXPB

(a) Max measurements with 1000 buckets

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16

R
e

la
ti
v
e

 E
rr

o
r

(%
)

Aggregation Period (sec)

DBM-mm
DBM-mv
DBM-mr

EXPB

(b) Std. Dev. measurements with 1000 buckets

Figure 7: Average relative error for the DBM with 1000 buckets and EXPB with 11 buckets shown on the “tritonsort”

trace for a 400 µs query interval and various aggregation periods.

Version Buckets Avg. BW Overhead/Pkt

vanilla N/A 9.053 Gbps 0.0 nsec

DBM-mm 10 9.057 Gbps 256.5 nsec
100 9.010 Gbps 335.7 nsec

1000 9.104 Gbps 237.5 nsec

10000 8.970 Gbps 560.4 nsec

DBM-mv 10 9.043 Gbps 205.7 nsec
100 8.986 Gbps 327.9 nsec

1000 9.067 Gbps 432.2 nsec
10000 9.067 Gbps 457.2 nsec

EXPB 14 9.109 Gbps 169.4 nsec

tcpdump N/A 8.732 Gbps N/A

Table 3: Average TCP bandwidth reported by iperf over
60 10-second runs. We also show the average time spent

in the kernel-level monitoring functions for each packet

sent. DBM and EXPB were run with a base time scale of
∆ = 64 µs and T = 1 second aggregation period.

relate on multiple switch input ports?).

Hardware Implementation Both DBM and EXPB al-
gorithms can be implemented in hardware for use in

switches and routers. EXPB has an amortized cost of two

bucket updates per measurement interval. Since bucket
updates are only needed at the frequency of the measure-

ment time scale, these operations could be put on a work

queue and serviced asynchronously from the main packet
pipeline. The key complication for implementing DBM

in hardware is maintaining a binary heap. However, a
1000 bucket heap can be maintained in hardware using

a 2-level radix-32 heap that uses 32-way comparators at

10 Gbps. Higher bucket sizes and speeds will require
pipelining the heap. The extra hardware overhead for

these algorithms in gates is minimal. Finally, the log-

Version Buckets Time Overhead

vanilla N/A 14.133 sec N/A

DBM-mm 10 14.334 sec 1.3%
100 14.765 sec 1.9%

1000 14.483 sec 2.7%

10000 14.527 sec 2.5%

DBM-mv 10 14.320 sec 1.7%
100 14.344 sec 2.3%

1000 14.645 sec 2.9%
10000 14.482 sec 3.1%

EXPB 14 14.230 sec 0.4%

tcpdump N/A 15.253 sec 7.9%

Table 4: The time needed to transfer a 1GB file overscp.
We measured the cumulative overhead incurred by our

monitoring routines for all send and receive events. We

report this overhead as a percentage of each experiment’s
total running time.

ging overhead is very small, especially when compared
to NetFlow.

6 Conclusions

Picking out bursts in a large amount of resource usage

data is a fundamental problem and applies to all re-
sources, whether power, cooling, bandwidth, memory,

CPU, or even financial markets. However, in the do-

main of data center networks, the increase of network
speeds beyond 1 Gigabit per second and the decrease of

in-network buffering has made the problem one of great
interest.

Managers today have little information about how mi-

crobursts are caused. In some cases they have identi-
fied paradigms such as InCast, but managers need better

visibility into bandwidth usage and the perpetrators of

13

84 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

microbursts. They would also like better understanding

of the temporal dynamics of such bursts. For instance,
do they happen occasionally or often? Do bursts linger

below a tipping point for a long period or do they arise

suddenly like tsunamis? Further, correlated bursts across
links lead to packet drops. A database of bandwidth in-

formation from across an administrative domain would
be valuable in identifying such patterns. Of course, this

could be done by logging a record for every packet, but

this is too expensive to contemplate today.

Our paper provides the first step to realizing such a vi-
sion for a cheap network-wide bandwidth usage database

by showing efficient summarization techniques at links

(∼4 KB per second, for example, for running DBM and
EXPB on 10 Gbps links) that can feed a database backend

as shown in Figure 1. Ideally, this can be supplemented

by algorithms that also identify the flows responsible for
bursts and techniques to join information across multiple

links to detect offending applications and their timing.
Of the two algorithms we introduce, Exponential Bucket-

ing offers accurate measurement of the average, max and

standard deviation of bandwidths at arbitrary sampling
resolutions with very low memory. In contrast, Dynamic

Bucket Merge approximates a time-series of bandwidth

measurements that can visualized or used to compute ad-
vanced statistics, such as quantiles.

While we have shown the application of DBM and

EXPB to bandwidth measurements in endhosts, these al-

gorithms could be easily ported to in-network monitor-
ing devices or switches. Further, these algorithms can be

generally applied to any time-series data, and will be par-
ticularly useful in environments where resource spikes

must be detected at fine time scales but logging through-

put and archival memory is constrained.

7 Acknowledgements

This research was supported by grants from the NSF

(CNS-0964395) and Cisco. We would also like to thank
our shepherd, Dave Maltz, and our anonymous reviewers

for their insightful comments and feedback.

References

[1] A Simple Network Management Protocol (SNMP).

http://www.ietf.org/rfc/rfc1157.txt.

[2] Cisco Netflow. www.cisco.com/web/go/netflow.

[3] iperf. http://http://iperf.sourceforge.net/.

[4] Performance Management for Latency-Intolerant

Financial Trading Networks. Financial Service

Technology, 9.

[5] tcpdump. http://www.tcpdump.org/.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data center TCP (DCTCP). SIGCOMM, 2010.

[7] C. Buragohain, N. Shrivastava, and S. Suri. Space

Efficient Streaming Algorithms for the Maximum

Error Histogram. In ICDE, 2007.

[8] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D.
Joseph. Understanding TCP incast throughput col-

lapse in datacenter networks. In WREN 2009.

[9] A. Erramilli, O. Narayan, and W. Willinger. Ex-

perimental queueing analysis with long-range de-
pendent packet traffic. IEEE/ACM Trans. Netw.,

4(2):209–223, 1996.

[10] S. Gandhi, L. Foschini, and S. Suri. Space-efficient

online approximation of time series data: Streams,
amnesia, and out-of-order. In ICDE, 2010.

[11] J. Hershberger, N. Shrivastava, S. Suri, and C. Toth.

Adaptive Spatial Partitioning for Multidimensional
Data Streams. Algorithmica, 2006.

[12] R. R. Kompella, K. Levchenko, A. C. Snoeren, and
G. Varghese. Every microsecond counts: tracking

fine-grain latencies with a lossy difference aggrega-
tor. In SIGCOMM 2009.

[13] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi. Ele-

phantTrap: A low cost device for identifying large

flows. In HOTI, 2007.

[14] R. Martin. Wall Street’s Quest To Process Data At
The Speed Of Light. Information Week, April 23

2007.

[15] S. Muthukrishnan. Data streams: Algorithms and

applications. now Publishers Inc., 2005.

[16] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Se-

shan. Measurement and analysis of TCP through-

put collapse in cluster-based storage systems. In
FAST 2008.

[17] A. Rasmussen, G. Porter, M. Conley, H. V. Mad-

hyastha, R. N. Mysore, A. Pucher, and A. Vahdat.

TritonSort: A Balanced Large-Scale Sorting Sys-
tem. In NSDI 2011.

[18] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,

D. G. Andersen, G. R. Ganger, G. A. Gibson, and

B. Mueller. Safe and effective fine-grained TCP re-
transmissions for datacenter communication. SIG-

COMM 2009.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 85

ETTM: A Scalable Fault Tolerant Network Manager
Colin Dixon Hardeep Uppal Vjekoslav Brajkovic Dane Brandon

Thomas Anderson Arvind Krishnamurthy
University of Washington

Abstract
In this paper, we design, implement, and evaluate a

new scalable and fault tolerant network manager, called
ETTM, for securely and efficiently managing network
resources at a packet granularity. Our aim is to pro-
vide network administrators a greater degree of control
over network behavior at lower cost, and network users a
greater degree of performance, reliability, and flexibility,
than existing solutions. In our system, network resources
are managed via software running in trusted execution
environments on participating end-hosts. Although the
software is physically running on end-hosts, it is logi-
cally controlled centrally by the network administrator.
Our approach leverages the trend to open management
interfaces on network switches as well as trusted com-
puting hardware and multicores at end-hosts. We show
that functionality that seemingly must be implemented
inside the network, such as network address translation
and priority allocation of access link bandwidth, can be
simply and efficiently implemented in our system.

1 Introduction
In this paper, we propose, implement, and evaluate a new
approach to the design of a scalable, fault tolerant net-
work manager. Our target is enterprise-scale networks
with common administrative control over most of the
hardware on the network, but with complex quality of
service and security requirements. For these networks,
we provide a uniform administrative and programming
interface to control network traffic at a packet granular-
ity, implemented efficiently by exploiting trends in PC
and network switch hardware design. Our aim is to pro-
vide network administrators a greater degree of control
over network behavior at lower cost, and network users a
greater degree of performance, reliability, and flexibility,
compared to existing solutions.

Network management today is a difficult and complex
endeavor. Although IP, Ethernet and 802.11 are widely
available standards, most network administrators need
more control over network behavior than those proto-
cols provide, in terms of security configuration [21, 14],
resource isolation and prioritization [36], performance
and cost optimization [4], mobility support [22], prob-
lem diagnosis [27], and reconfigurability [7]. While most
end-host operating systems have interfaces for configur-
ing certain limited aspects of network security and re-
source policy, these configurations are typically set inde-
pendently by each user and therefore provide little assur-

ance or consistent behavior when composed across mul-
tiple users on a network.

Instead, most network administrators turn to middle-
boxes - a central point of control at the edge of the net-
work where functionality can be added and enforced on
all users. Unfortunately, middleboxes are neither a com-
plete nor a cost-efficient solution. Middleboxes are usu-
ally specialized appliances designed for a specific pur-
pose, such as a firewall, packet shaper, or intrusion de-
tection system, each with their own management inter-
face and interoperability issues. Middleboxes are typi-
cally deployed at the edge of the (local area) network,
providing no help to network administrators attempting
to control behavior inside the network. Although middle-
box functionality could conceivably be integrated with
every network switch, doing so is not feasible at line-rate
at reasonable cost with today’s LAN switch hardware.

We propose a more direct approach, to manage net-
work resources via software running in trusted execution
environments on participating endpoints. Although the
software is physically running on endpoints, it is logi-
cally controlled centrally by the network administrator.
We somewhat whimsically call our approach ETTM, or
End to the Middle. Of course, there is still a middle,
to validate the trusted computing stack running on each
participating node, and to redirect traffic originating from
non-participating nodes such as smart phones and print-
ers to a trusted intermediary on the network. By moving
packet processing to trusted endpoints, we can enable a
much wider variety of network management functional-
ity than is possible with today’s network-based solutions.

Our approach leverages four separate hardware and
software trends. First, network switches increasingly
have the ability to re-route or filter traffic under admin-
istrator control [7, 30]. This functionality was origi-
nally added for distributed access control, e.g., to pre-
vent visitors from connecting to the local file server. We
use these new-generation switches as a lever to a more
general, fine-grained network control model, e.g., allow-
ing us to efficiently interpose trusted network manage-
ment software on every packet. Second, we observe
that many end-host computers today are equipped with
trusted computing hardware, to validate that the endpoint
is booted with an uncorrupted software stack. This al-
lows us to use software running on endpoints, and not
just network hardware in the middle of the network, as
part of our enforcement mechanism for network man-
agement. Third, we leverage virtual machines. Our

86 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

network management software runs in a trusted virtual
machine which is logically interposed on each network
packet by a hypervisor. Despite this, to the user each
computer looks like a normal, completely configurable
local PC running a standard operating system. Users can
have complete administrative control over this OS with-
out compromising the interposition engine. Finally, the
rise of multicore architectures means that it is possible
to interpose trusted packet processing on every incom-
ing/outgoing packet without a significant performance
degradation to the rest of the activity on a computer.

In essence, we advocate converting today’s closed ap-
pliance model of network management to an open soft-
ware model with a standard API. None of the function-
ality we need to implement on top of this API is par-
ticularly complex. As a motivating example, consider a
network administrator needing to set up a computer lab
at a university in a developing country with an underpro-
visioned, high latency link to the Internet. It is well un-
derstood that standard TCP performance will be dread-
ful unless steps are taken to manipulate TCP windows
to limit the rate of incoming traffic to the bandwidth of
the access link, to cache repeated content locally, and to
prioritize interactive traffic over large background trans-
fers. As another example, consider an enterprise seek-
ing to detect and combat worm traffic inside their net-
work. Current Deep Packet Inspection (DPI) techniques
can detect worms given appropriate visibility, but are ex-
pensive to deploy pervasively and at scale. We show that
it is possible to solve these issues in software, efficiently,
scalably, and with high fault tolerance, avoiding the need
for expensive and proprietary hardware solutions.

The rest of the paper discusses these issues in more
detail. We describe our design in § 2, sketch the network
services which we have built in § 3, summarize related
work in § 4 and conclude in § 5.

2 Design & Prototype
ETTM is a scalable and fault-tolerant system designed to
provide a reliable, trustworthy and standardized software
platform on which to build network management ser-
vices without the need for specialized hardware. How-
ever, this approach begs several questions concerning se-
curity, reliability and extensibility.
• How can network management tasks be entrusted to

commodity end hosts which are notorious for being
insecure? In our model, network management tasks
can be relocated to any trusted execution environment
on the network. This requires the network manage-
ment software be verified and isolated from the host
OS to be protected from compromise.

• If the management tasks are decentralized, how can
these distributed points of control provide consistent
decisions which survive failures and disconnections?

Hypervisor w/TPM

Commodity OS

AEEApp App

Netwk
Service

Netwk
Service

µvrouter paxos

Figure 1: The architecture of an ETTM end-host. Network
management services run in a trusted virtual machine (AEE).
Application flows are routed to appropriate network manage-
ment services using a micro virtual router (µvrouter).

The system should not break simply because a user,
or a whole team of users, turn off their computers.
In particular, management services must be available
in face of node failures and maintain consistent state
regarding the resources they manage.

• How can we architect an extensible system that en-
ables the deployment of new network management
services which can interpose on relevant packets?
Network administrators need a single interface to in-
stall, configure and compose new network manage-
ment services. Further, the implementation of the in-
terface should not impose undue overheads on net-
work traffic.

While many of the techniques we employ to surmount
these challenges are well-known, their combination into
a unified platform able to support a diverse set of net-
work services is novel. The particular mechanisms we
employ are summarized in Table 1, and the architecture
of a given end-host participating in management can be
seen in Figure 1.

The function of these mechanisms is perhaps best il-
lustrated by example, so let us consider a distributed Net-
work Address Translation (NAT) service for sharing a
single IP address among a set of hosts. The NAT service
in ETTM maps globally visible port numbers to private
IP addresses and vice versa. First, the translation table
itself needs to be consistent and survive faults, so it is
maintained and modified consistently by the consensus
subsystem based on the Paxos distributed coordination
algorithm. Second, the translator must be able to inter-
pose on all traffic that is either entering or leaving the
NATed network. The micro virtual router (µvrouter)’s
filters allow for this interposition on packets sourced by a
ETTM end-host, while the physical switches are set up to

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 87

Mechanism Description Tech Trends Goals Section
Trusted Authoriza-
tion

Extension to the 802.1X network access control pro-
tocol to authorize trusted stacks

TPM Trust 2.1

Attested Execution
Environment

Trusted space to run filters and control plane pro-
cesses on untrusted end-hosts

Virtualization,
Multicore

Scalability 2.2

Physical Switches In-network enforcers of access control and rout-
ing/switching policy decisions

Open interfaces Standardization 2.3

Filters End-host enforcers of network policy running inside
the Attested Execution Environment

Multicore Extensibility 2.4

Consensus Agreement on management decisions and shared
state

Fault tolerance
techniques

Reliability,
Extensibility

2.5

Table 1: Summary of mechanisms in ETTM.

deliver incoming packets to the appropriate host.1 Lastly,
because potentially untrusted hosts will be involved in
the processing of each packet, the service is run only in
an isolated attested execution environment on hosts that
have been verified using our trusted authorization proto-
col based on commodity trusted hardware.

2.1 Trusted Authorization
Traditionally, end-hosts running commodity operating
systems have been considered too insecure to be en-
trusted with the management of network resources.
However, the recent proliferation of trusted computing
hardware has opened the possibility of restructuring the
placement of trust. In particular, using the trusted plat-
form module (TPM) [39] shipping with many current
computers, it is possible to verify that a remote com-
puter booted a particular software stack. In ETTM, we
use this feature to build an extension to the widely-used
802.1X network access control protocol to make autho-
rization decisions based on the booted software stack of
end-hosts rather than using traditional key- or password-
based techniques. We note that the guarantees provided
by trusted computing hardware generally assume that an
attacker will not physically tamper with the host, and we
make this assumption as well.

The remainder of this section describes the particular
capabilities of current trusted hardware and how they en-
able the remote verification of a given software stack.

2.1.1 Trusted Platform Module

The TPM is a hardware chip commonly found on moth-
erboards today consisting of a cryptographic processor,
some persistent memory, and some volatile memory. The
TPM has a wide variety of capabilities including the se-
cure storage of integrity measurements, RSA key cre-
ation and storage, RSA encryption and decryption of
data, pseudo-random number generation and attestation
to portions of the TPM state. Much of this functionality

1This is possible with legacy ethernet switches using a form of de-
tour routing or more efficiently with programmable switches [30].

is orthogonal to the purposes of this paper. Instead, we
focus on the features required to remotely verify that a
machine has booted a given software stack.

One of the keys stored in the TPM’s persistent memory
is the endorsement key (EK). The EK serves as an iden-
tity for the particular TPM and is immutable. Ideally, the
EK also comes with a certificate from the manufacturer
stating that the EK belongs to a valid hardware TPM.
However many TPMs do not ship with an EK from the
manufacturer. Instead, the EK is set as part of initializing
the TPM for its first use.

The volatile memory inside the TPM is reset on ev-
ery boot. It is used to store measurement data as well
as any currently loaded keys. Integrity measurements of
the various parts of the software stack are stored in regis-
ters called Platform Configuration Registers (PCRs). All
PCR values start as 0 at boot and can only be changed
by an extend operation, i.e., it is not possible to replace
the value stored in the PCR with an arbitrary new value.
Instead, the extend operation takes the old value of the
PCR register, concatenates it with a new value, computes
their hash using Secure Hash Algorithm 1 (SHA-1), and
replaces the current value in the PCR with the output of
the hash operation.

2.1.2 Trusted Boot

The intent is that as the system boots, each software com-
ponent will be hashed and its hash will be used to ex-
tend at least one of the PCRs. Thus, after booting, the
PCRs will provide a tamper evident summary of what
happened during the boot. For instance, the post-boot
PCR values can be compared against ones corresponding
to a known-good boot to establish if a certain software
stack has been loaded or not.

To properly measure all of the relevant components
in the software stack requires that each layer be instru-
mented to measure the integrity of the next layer, and
then store that measurement in a PCR before passing ex-
ecution on. Storing measurements of different compo-
nents into different PCRs allows individual modules to

88 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

be replaced independently.
As each measurement’s validity depends on the cor-

rectness of the measuring component, the PCRs form a
chain of trust that must be rooted somewhere. This root
is the immutable boot block code in the BIOS and is
referred to as the Core Root of Trust for Measurement
(CRTM). The CRTM measures itself as well as the rest
of BIOS and appends the value into a PCR before pass-
ing control to any software or firmware. This means that
any changeable code will not acquire a blank PCR state
and cannot forge being the “bottom” of the stack.

It should be noted that the values in the PCRs are only
representative of the state of the machine at boot time.
If malicious software is loaded or changes are made to
the system thereafter, the changes will not be reflected
in the PCRs until the machine is rebooted. Thus, it is
important that only minimal software layers are attested.
In our case, we attest the BIOS, boot loader, virtual ma-
chine monitor, and execution environment for network
services. We do not need to attest the guest OS running
on the device, as it is never given access to the raw pack-
ets traversing the device.

2.1.3 Attestation

Once a machine is booted with PCR values in the TPM,
we need a verifiable way to extract them from the TPM
so that a remote third party can verify that they match
a known-good software stack and that they came from
a real TPM. In theory this should be as simple as sign-
ing the current PCR values with the private half of the
EK, but signing data with the EK directly is disallowed.2

Instead, Attestation Identity Keys (AIKs) are created to
sign data and create attestations. The AIKs can be as-
sociated with the TPM’s EK either via a Privacy CA or
via Direct Anonymous Attestation [39] in order to prove
that the AIKs belong to a real TPM. As a detail, because
many TPMs do not ship with EKs from their manufactur-
ers, these computers must generate an AIK at installation
and store the public half in a persistent database.

To facilitate attestation, TPMs provide a quote opera-
tion which takes a nonce and signs a digest of the current
PCRs and that nonce with a given AIK. Thus, a verifier
can challenge a TPM-equipped computer with a random,
fresh nonce and validate that the response comes from a
known-good AIK, contains the fresh nonce, and repre-
sents a known-good software stack.

2.1.4 ETTM Boot

When a machine attempts to connect to an ETTM net-
work, the switch forwards the packets to a verification
server which can be either an already-booted end-host
running ETTM, a persistent server on the LAN or even

2This is to avoid creating an immutable identity which is revealed
in every interaction involving the TPM.

ETTM Switch

End-Host

1
2

4

3

5
6

7 Verification
Server

Figure 2: The steps required for an ETTM boot and trusted
authorization.

a cloud service.3 On recognizing the connection of a
new host, the switch establishes a tunnel to the verifica-
tion server and maintains this tunnel until the verification
server can reach a verdict about authorization.

If the host is verified as running a complete, trusted
software stack then it is simply granted access to the
network. If the host is running either an incomplete or
old software stack, the ETTM software on the end-host
attempts to download a fresh copy and retries. Traffic
from non-conformant hosts are tunneled to a participat-
ing host; our design assumes this is a rare case.

Our trusted authorization protocol creates this ex-
change via an extension to the 802.1X and EAP proto-
cols. We have extended the wpa supplicant [28]
802.1X client and the FreeRADIUS [16] 802.1X server
to support this extension and provide authorization to
clients based purely on their attested software stacks.

This process is shown in Figure 2. First, the end-
host connects to an ETTM switch, receives an EAP Re-
quest Identity packet (1), and responds with an EAP
Response/Identity frame containing the desired AIK to
use (2). The switch encapsulates this response inside
an 802.1x packet which is forwarded to the verifica-
tion server running our modified version of FreeRA-
DIUS (3). The FreeRADIUS server responds with a sec-
ond EAP Request Trusted Software Stack frame contain-
ing a nonce again encapsulated inside an 802.1X packet
(4), and the end-host responds with an EAP Response
Trusted Software Stack frame containing the signed PCR
values proving the booted software stack (5). This con-
cludes the verification stage.

The verification server can then either render a verdict
as to whether access is granted (7) or require the end-host
to go through a provisioning stage (6) where extra code
and/or configuration can be loaded onto the machine and
the authorization retried.

2.1.5 Performance of ETTM Boot

Table 2 presents microbenchmarks for various TPM op-
erations (including those which will be described later in
this section) on our Dell Latitude e5400 with a Broad-
com TPM complying to version 1.2 of the TPM spec, an
Intel 2 GHz Core 2 Duo processor and 2 GB of RAM.

3We assume the existence of some persistently reachable computer
to bootstrap new nodes and store TPM configuration state. Under nor-
mal operation, this is a currently active verified ETTM node.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 89

Operation Time (s) Std. Dev. (s)
PCR Extend 0.0253 0.001
Create AIK 34.3 8.22
Load AIK 1.75 0.002
Sign PCR 0.998 0.001

Table 2: The time (in seconds) it takes for a variety of TPM
operations to complete.

Operation Wall Clock Time (s)
client start 0
receive first server message +0.049
receive challenge nonce +0.021
send signed PCRs +0.998
receive server decision +0.018
Total 1.09

Table 3: The time (in seconds) it takes for an 802.1X EAP-TSS
authorization with breakdown by operation.

The time to create the AIK is needed only once at sys-
tem initialization. The total time added to the normal
boot sequence for an ETTM enabled host is negligible
as most actions can be trivially overlapped with other
boot tasks. Assuming the challenge nonce is received,
the signing time can be overlapped with the booting of
the guest OS as no attestation is required to its state.

Table 3 shows a breakdown of how long each step
takes in our implementation of trusted authorization as-
suming an up-to-date trusted software stack is already in-
stalled on the end-host and the relevant AIK has already
been loaded. The total time to verify the boot status is
just over 1 second. This is dominated by the time that
it takes to sign the PCR values after having received the
challenge nonce.

2.2 Attested Execution Environment
In ETTM, we require that each participating host has a
corresponding trusted virtual machine which is responsi-
ble for managing that host’s traffic. We call this virtual
machine an Attested Execution Environment (AEE) be-
cause it has been attested by Trusted Authorization. In
the common case, this virtual machine will run alongside
the commodity OS on the host, but in some cases a host’s
corresponding AEE may run elsewhere with the physical
switching infrastructure providing an constrained tunnel
between the host and its remote VM.

The AEE is the vessel in which network management
activities take place on end-hosts. It provides three key
features: a mechanism to intercept all incoming and out-
going traffic, a secure and isolated execution environ-
ment for network management tasks and a common plat-
form for network management applications.

To interpose the AEE on all network traffic, the hyper-
visor (our implementation makes use of Xen [3]) is con-

figured to forward all incoming and outgoing network
traffic through the AEE. This configuration is verified as
part of trusted authorization. Once the AEE has been in-
terposed on all traffic, it can apply the ETTM filters (de-
scribed in § 2.4) giving each network service the required
points of visibility and control of the data path.

Further, the hypervisor is configured to isolate the
AEE from any other virtual machines it hosts. Thus, the
AEE will be able to faithfully execute the prescribed fil-
ters regardless of the configuration of the commodity op-
erating system. 4 The AEE can also execute network
management tasks which are not directly related to the
host’s traffic. For example, it could redirect traffic to a
mobile host, verify a new host’s software stack or recon-
figure physical switches. It is even possible for a host to
run multiple AEEs simultaneously with some being run
on behalf of other nodes in the system. A desktop with
excess processing power can stand-in to filter the traffic
from a mobile phone.

Lastly, the AEE provides a common platform to build
network management services. Because this platform
is run as a VM, it can remain constant across all end-
hosts providing a standardized software API. Our cur-
rent AEE implementation is a stripped-down Linux vir-
tual machine, however, we have augmented it with APIs
to manage filters (described in § 2.4) as well as to manage
reliable, consistent, distributed state (described in § 2.5).

While in most cases, the added computational re-
sources required to run an AEE do not pose a problem,
ETTM allows for AEEs (or some parts of an AEE) to
be offloaded to another computer. In our prototype, this
is handled by applications themselves. In the future, we
hope to add dynamic offloading based on machine load.

2.3 Physical Switches
Physical switches are the lowest-level building block in
ETTM. Their primary purpose is to provide control and
visibility into the link layer of the network. This includes
access control, flexible control of packet forwarding, and
link layer topology monitoring.
• Authorization/Access Control: As described ear-

lier, switches redirect and tunnel traffic from as of yet
unauthorized hosts until an authorization decision has
been made.

• Flexible Packet Forwarding: The ability to install
custom forwarding rules in the network enables sig-
nificantly more efficient implementations of some
network management services (e.g., NAT), but is not
required. Flexible forwarding also enables more ef-
ficient routing by not constraining traffic within the

4We make use of a VM other than the root VM (e.g., Dom0 in Xen)
for the AEE to both maintain independence from any particular hyper-
visor and to protect any such root VM from misbehaving applications
in the AEE.

90 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

traditional ethernet spanning tree protocol.
• Topology Monitoring: In order to properly manage

available network resources, end-hosts must be able
to discover what network resources exist. This in-
cludes the set of physical switches and links along
with the links’ latencies and capacities.

At a minimum, ETTM only requires the first of these
capabilities and since we implement access control via
an extension to 802.1X and EAP, most current ethernet
switches (even many inexpensive home routers [31, 10])
can serve as ETTM switches. There are advantages
to more full-featured switches, however. For instance,
a physical switch that supports the 802.1AE MACSec
specification can provide a secure mechanism to differ-
entiate between the different hosts attached to the same
physical port and authorize them independently, while
denying access to other unauthorized hosts attached to
the port.

Additionally, ETTM can better manage network re-
sources when used in conjunction with an OpenFlow
switch [30]. OpenFlow provides a wealth of network
status information and supports packet header rewriting
and flexible, rule-based packet forwarding. We currently
leave interacting with programmable switches to applica-
tions. Many applications function correctly using simple
Ethernet spanning tree routing and do not require con-
trol over packet-forwarding. Those that do, like the NAT,
must either implement packet redirection in the applica-
tion logic by having AEEs forward packets to the ap-
propriate host or manage configuring the programmable
switches themselves. We are in the process of creating a
standard interface to packet forwarding in ETTM.

2.4 Micro Virtual Router
On each end-host, we construct a lightweight virtual
router, called the micro virtual router (µvrouter), which
mediates access to incoming and outgoing packets by the
various services. Services use the µvrouter to inspect
and modify packets as well as insert new packets or drop
packets. The core idea of filters in ETTM is that they
are the mechanism to interpose on a per-packet basis and
their behavior can be controlled by consensus operations
which occur at a slower time scale: one operation per
flow or one operation per flow, per RTT.

The µvrouter consists of an ordered list (by priority)
of filters which are applied to packets as they depart and
arrive at the host. The current Filter API is described
in Table 4. The filters which we have implemented so
far (described in § 3) correspond to tasks that would cur-
rently be carried out by a special-purpose middlebox like
a NAT, web cache, or traffic shaper.

The µvrouter is approximately 2250 lines of C++ code
running on Linux using libipq and iptables to cap-
ture traffic. This has simplified development by allowing

matchOnHeader()
returns true if the filter can match purely on IP, TCP and
UDP headers (i.e., without considering the payload) and
false if the filter must match on full packets
getPriority()
returns the priority of the filter, this is used to establish the
order in which filters are applied
getName()
simply returns a human readable name of the filter
matchHeader(iphdr, tcphdr, udphdr)
returns true if the filter is interested in a packet with these
headers; undefined filters are set to NULL and behavior is
undefined if matchOnHeader() returns false
match(packet)
returns true if the filter is interested in the packet; behavior
is undefined if matchOnHeader() returns true
filter(packet)
actually processes a packet; returns one of ERROR,
CONTINUE, SEND, DROP or QUEUED and possibly modi-
fies the packet
upkeep()
this function is called ‘frequently’ and enables the filter to
perform any maintenance that is required
getReadyPackets()
this returns a list of packets that the filter would like to either
dequeue or introduce; this is called ‘frequently’

Table 4: The filter API.

the µvrouter to run as a user-space application. However,
the user-space implementation has a downside in that it
imposes performance overheads that limit the sustained
throughput for large flows. To address the performance
concerns, we split the functionality of the µvrouter into
two components—a user-space module supporting the
full filter API specified in Table 4 and a kernel-level
module that supports a more restricted API used only for
header rewriting and rate-limiting. In applications such
as the NAT, the user-space filter is invoked only for the
first packet in order to assign a globally unique port num-
ber to the flow, while the kernel module is used for filling
in this port number in subsequent packets.

The µvrouter enables an administrator to specify a
stack of filters that carry out the data-plane management
tasks for the network. That is, it handles traffic that is
destined for or emanates from an end-host on the net-
work. Traffic destined to or emanating from AEEs or
physical switches constitutes the control plane of ETTM
and is not handled by the filters.

2.5 Consensus
If network management is going to be distributed among
a large number of potentially unreliable commodity com-
puters, there must be a layer to provide consistency and
reliability despite failures. For example, a desktop unex-
pectedly being unplugged should not cause any state to

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 91

be lost for the remaining functioning computers. Fortu-
nately, there is a vast literature on how to build reliable
systems out of inexpensive, unreliable parts. In our case
we build reliability using the Paxos algorithm for dis-
tributed consensus [25].

We expose a common API which provides a simple
way for ETTM network services to manage their consis-
tent state including the ability to define custom rules for
what state should be semantically allowed and ways to
choose between liveness and safety in the event that it is
required. We expose our consensus implementation via
a table abstraction in which each row corresponds to a
single service’s state and each cell in a given row corre-
sponds to an agreed upon action on the state managed by
the service. Thus, each service has its own independently
ordered list of agreed upon values, with each row entirely
independent of other rows from the point of view of the
Paxos implementation.

In building the API and its supporting implementation
we strove to overcome several key challenges:

Application Independent Agreement: The actual
agreement process should be entirely independent of the
particular application. As a consequence, the abstrac-
tion presented is agreement on an ordered list of blobs of
bytes for each application or service, with the following
operations allowed on this ordered list.

• put(name, value): Attempts to place value
as a cell in the row named name. This will not return
immediately specifying success or failure, but if the
value is accepted, a later get call or subscription will
return value.

• get(name, seqNum): Attempts to retrieve cell
number seqNum from the row named name. Re-
turns an error if seqNum is invalid and the relevant
value otherwise.

For example, our NAT implementation creates a row in
the table called “NAT”. When an outgoing connection is
made an entry is added with the mapping from the private
IP address and port to the public IP address and a glob-
ally visible port along with an expiration time. Nodes
with long-running connections can refresh by appending
a new entry. Thus, each node participating in the NAT
can determine the shared state by iteratively processing
cells from any of the replicas.

Publish-Subscribe Functionality: A network service
can subscribe to the set of agreed upon values for a row
via the subscribeAPI call. The service running on an
ETTM node receives a callback (using notify) when
new values are added to a given row through the put
API calls. This is useful not just for letting services
manage their own state, but also for subscribing to spe-
cial rows that contain information about the network in

general. For instance, there is one row which describes
topology information and another row which logs autho-
rization decisions. The consensus system invokes

• subscribe(name, seqNum): Asks that the
values of all cells in the row name starting with the
cell numbered seqNum be sent to the caller. This
includes all cells agreed on in the future.

• unsubscribe(name): Cancels any existing sub-
scription to the row name.

• notify(name, value, seqNum): This is the
callback from a subscription call and lets the
client know that cell number seqNum of row name
has the value value.

Balance Reliability and Performance: Invariably
adding more nodes and thus increasing expected relia-
bility causes performance to degrade as more responses
are required. Thus, we allow for a subset of the partici-
pating ETTM nodes to form the Paxos group rather than
the whole set. ETTM nodes use the following API calls
to join and depart from consensus groups and to identify
the set of cells that have been agreed upon by the con-
sensus group.

• join(name)Asks the local consensus agent to par-
ticipate in the row name.

• leave(name) Asks the local consensus agent to
stop participating in row name. A graceful ETTM
machine shutdown involves informing each row that
the node is leaving beforehand.

• highestSequenceNumber(name) Returns the
current highest valid cell number in the row named
name.

Allow Application Semantics: While we wish to be ap-
plication agnostic in the details of agreement, we also
would like services to be able to enforce some seman-
tics about what constitute valid and invalid sequences of
values. Coming back to the NAT example, the seman-
tic check can ensure that a newly proposed IP-port map-
ping does not conflict with any previously established
ones and can even deal with the leased nature of our IP-
port mappings making the decision once (typically at the
leader of the Paxos group) as to whether the old lease
has expired or not. We accomplish this by having net-
work services optionally provide a function to check the
validity of each value before it is proposed.

• setSemanticCheckPolicy(name,
policyhandler): Sets the semantic check
policy for row name. policyhandler is an
application-specific call-back function that is used to
check the validity of the proposed values.

• check(policyhandler, name, value,
seqNum): Asks the consensus client if value is

92 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a semantically valid value to be put in cell number
seqNum of row name. Returns true if the value
is semantically valid, false if it is not and with an
error if the checker has not been informed of all cells
preceding cell number seqNum.

Finally, each row maintained by the consensus sys-
tem can have a different set of policies about whether
to check for semantic validity, whether to favor safety or
liveness (as described below), and even which nodes are
serving as the set of replicas.

2.5.1 Catastrophic Failures

Paxos can make progress only when a majority of the
nodes are online. If membership changes gradually, the
Paxos group can elect to modify its membership. The
two critical parameters that determine the robustness of
the quorum are the churn rate and the time it takes to
detect failure and change the group’s membership. The
consensus group can continue to operate if fewer than
half of the nodes fail before their failure is detected. In
such cases, since a majority of the machines in the con-
sensus group are still operating, we have that set vote on
any changes necessary to cope with the churn [26].

But if a large number of nodes leave simultaneously
(e.g., because of a power outage), we allow services to
opt to make progress despite inconsistent state. Each
service can pick they want to handle this case for its
row, deciding to either favor liveness or safety via the
setForkPolicy call. If the row favors safety, then
the row is effectively frozen until a time when a majority
of the nodes recover and can continue to make progress.
However, we allow for a row to favor liveness, in which
case the surviving nodes make note of the fact that they
are potentially breaking safety and fork the row.

Forking effectively creates a new row in which the first
value is an annotation specifying the row from which it
was forked off, the last agreed upon sequence number
before the fork and the new set of nodes which are be-
lieved to be up. This enables a minority of the nodes to
continue to make progress. Later on, when a majority of
the nodes in the original row return to being up, it is up to
the service to merge the relevant changes (and deal with
any potential conflicts) from the forked row back into the
main row via the normal put operation and eventually
garbage collect the forked row via a delete operation.
The details of this API are described in Table 5.

While, in theory, building services that can handle po-
tentially inconsistent state is hard, we have found that, in
practice, many services admit reasonable solutions. For
instance, a NAT which experiences a catastrophic fail-
ure can continue to operate and when merging conflicts
it may have to terminate connections if they share the
same external IP and port, though most of the time there
will be no such conflicts.

setForkPolicy(name, policy)
Sets the forking policy for the row name in the case of catas-
trophic failures. The valid values of policy are ‘safe’ and
‘live’.
delete(name)
Cleans up the state associated with row name. Fails if called
on a row which is not a fork of an already existing row.
forkNotify(name, forkName)
Informs the consensus client that because the client asked to
favor liveness over safety, the row name has been forked and
that a new copy has been started as row forkName where
potentially unsafe progress can be made, but may need to be
later merged.

Table 5: API for dealing with catastrophic failures.

 0

 0.5

 1

 1.5

 2

 2.5

4 8 12 16 20

La
te

nc
y

(m
s)

Group size

Paxos
Leader Paxos

Figure 3: The average time for a Paxos round to complete with
and without a leader as we vary the size of the Paxos group.

2.5.2 Implementation

Our current implementation of consensus is approxi-
mately 2100 lines of C++ code implementing a straight-
forward and largely unoptimized adaptation of the Paxos
distributed agreement protocol. In Paxos, proposals are
sent to all participating nodes and accepted if a majority
of the nodes agree on the proposal. In our implemen-
tation, one leader is elected per row and all requests for
that row are forwarded to the leader. If progress stalls, the
leader is assumed to have failed and a new one is elected
without concern for contention. If progress on electing
a leader stalls, then the row can be unsafely forked de-
pending on the requested forking policy. As nodes fail,
the Paxos group reconfigures itself to remove the failed
node from the node set and replace it with a different
ETTM end-host.

Figure 3 shows the average time for a round of our
Paxos implementation to complete when running with
varying numbers of pc3000 nodes (with 3GHz, 64-bit
Xeon processors) on Emulab [15]. The results show that
a Paxos round can be completed within 2 ms when there
is no leader and within 1 ms with a leader. While the
computation necessarily grows linearly with the number
of nodes, this effect is mitigated by running Paxos on a
subset of the active ETTM nodes. For example, as we

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 93

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

Fl
ow

 th
ro

ug
hp

ut
 (M

bp
s)

Flow size (KB)

Direct flow
NAT flow

Figure 4: Bandwidth throughput of flows traversing ETTM
NAT as we vary the flow size.

will show in our evaluation of the NAT, a Paxos group
of only 10 nodes—with new machines brought in only to
replace any departing nodes in the subset—provides suf-
ficient throughput and availability for the management of
a large number of network flows.

3 Network Management Services
We next describe the design, implementation, and eval-
uation of several example services we have built using
ETTM. These services are intended to be proof of con-
cept examples of the power of making network admin-
istration a software engineering, rather than a hardware
configuration, problem. In each case the functionality
we describe can also be implemented using middleboxes.
However, a centralized hardware solution increases costs
and limits reliability, scalability, and flexibility. Propos-
als exist to implement several of these services as peer-
to-peer applications on end-hosts [23, 38], but this raises
questions of enforcement and privacy. Instead, ETTM
provides the best of both worlds: safe enforcement of
network management without the limitations of hard-
ware solutions.

3.1 NATs
Network Address Translators (NATs) share a single
externally-visible IP address among a number of differ-
ent hosts by maintaining a mapping between externally
visible TCP or UDP ports and the private, internally-
visible IP addresses belonging to the hosts. Mappings
are generated on-demand for each new outgoing connec-
tion, stored and transparently applied at the NAT device
itself. Traffic entering the network which does not be-
longing to an already-established mapping is dropped.
As a result, passive listeners such as servers and peer-to-
peer systems can have connectivity problems when lo-
cated behind NATs. Mappings are usually not replicated,
so a rebooted NAT will break all connections.

In contrast, Our ETTM NAT is distributed and fault-
tolerant. We store the mappings using the consensus API
allowing any participating AEE to access the complete
list of mappings. When the NAT filter running in a host’s

 0

 2000

 4000

 6000

 8000

 10000

4 8 12 16 20

N
AT

 T
hr

ou
gh

pu
t (

ne
w

 fl
ow

s/
se

c)

Group size

Figure 5: Throughput performance of ETTM NAT as we vary
the Paxos group size.

AEE detects a new outgoing flow, it temporarily hold the
flow and requests a mapping to an available, externally-
visible port. This request is satisfied only if the port is
actually available. Once this request completes, the NAT
filter begins rewriting the packet headers for the flow and
allows packets to flow normally.

Handling incoming traffic is slightly more compli-
cated. If the physical switches on the network sup-
port flexible packet forwarding (as with OpenFlow hard-
ware), they can be configured with soft state to forward
traffic to the appropriate host where its NAT filter can
rewrite the destination address.5 If the soft state has not
yet been installed or has been lost due to failure, default
forwarding rules result in the packet being delivered to
some host which can appropriately forward the packet
and install rules in the physical switches as needed.

Our NAT also works if the physical switches do not
support re-configurable routing. Instead, we assign the
globally-visible IP address to a specific AEE and have
that AEE forward traffic to appropriate hosts. While this
might appear to be similar to proxying all external traf-
fic through an end-host, such an approach would be nei-
ther fault tolerant nor privacy preserving. In contrast, in
ETTM the AEE allows for packets to be silently redi-
rected to the appropriate host without those packets being
visible to the user of the forwarding host. Also, the fail-
ure of that AEE can be detected and another can be cho-
sen with no lost state. When selecting an AEE, we use
historical uptime data as well as information about cur-
rent load to avoid using unreliable hosts and to avoid un-
necessarily burdening loaded hosts. While it is possible
that a determined snoop might physically tap their ether-
net wire to see forwarded packets, deployments that wish
to prevent this could enforce end-to-end encryption using
a combination of SSL, IPsec and/or 802.1AE MACsec to
encrypt all traffic entering or exiting the organization.

Our NAT can be configured to allow passive connec-

5We implement address translation in the AEE despite OpenFlow
support because some of our OpenFlow hardware has worse perfor-
mance when modifying packets. Further, keeping translation tables
reliably in AEEs keeps no hard state in the network.

94 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0 2 4 6 8 10 12

N
AT

 F
ai

lu
re

 P
ro

ba
bi

lit
y

Group size

Figure 6: Availability of ETTM NAT as we vary the Paxos
group size. Note the y-axis is in log scale.

tions to establish mappings. We have implemented a
Linux kernel module that can be installed in the guest
OS to explicitly notify the NAT filter whenever bind()
or listen() is called, triggering a request for a valid
mapping to an external IP address and port. This allows
the ETTM system to direct incoming connections to the
appropriate host without having the administrator set up
customized port forwarding rules. We attempt to provide
passive connections with the same external port as its in-
ternal one; if this is not possible, the kernel module can
be queried for the external port number.

Note that the ETTM approach for implementing NATs
reinstates the fate sharing principle. We trivially support
multiple ingress points to the network because there is
no hard state stored in the network. A connection only
fails if either endpoint fails or there is no path between
them, but not if the middlebox fails. Even if the consen-
sus group fails entirely, existing flows will still continue
as long as one member of the group remains; of course,
new flows may be delayed in this case.

We evaluated the performance of our NAT module on
a cluster of pc3000 nodes on Emulab. Figure 4 depicts
the flow throughputs with and without the NAT module
for TCP flows of various sizes over a 1 Gbps LAN link.
The NAT filter imposes some added cost in terms of the
latency of the first packet (about 1-2 ms), which affects
the throughput of short flows in the LAN. For all other
flows, the throughput of the NAT filter matches that of
the direct communications channel, and it achieves the
maximum possible throughput of 1 Gbps for large flows.

Figure 5 plots the throughput of ETTM NAT by mea-
suring the number of NAT translations that it can estab-
lish per second as we vary the size of the Paxos group
operating on behalf of the NAT. While the throughput
falls with the number of nodes, it is still able to sustain an
admission rate of 2000 new flows per second even with
large Paxos groups. Additional scalability would be pos-
sible if the external port space were partitioned among
multiple Paxos groups.

We also model the NAT failure probability using end-
host availability data collected for hosts within the Mi-

!

!"#$

!"$

!"%$

&

! $! &!! &$! #!! #$! '!! '$! (!! ($! $!!

!
"#
$"%
&'

(&
)*
)"%
&*
(%
+&

,"
-.
/0

123&"*#")&%425&"%&'(&)*"-3)0

.&+*%6728&,".659&": ;<=">?<"@A<=",2)B

)*+,

-..

/*,,0,

Fr
ac

ti
on

 o
f r

eq
ue

st
s

re
tu

rn
ed

 (C
D

F)

(a) Latency by request type with a single centralized cache.

!

!"#$

!"$

!"%$

&

! $! &!! &$! #!! #$! '!! '$! (!! ($! $!!

!
"#
$"%
&'

(&
)*
)"%
&*
(%
+&

,"
-.
/0

123&"*#")&%425&"%&'(&)*"-3)0

62)*%27(*&,".859&": ;<=">?<"@A<=",2)B

)*+,-./012

345*14./012

6--

702242

Fr
ac

ti
on

 o
f r

eq
ue

st
s

re
tu

rn
ed

 (C
D

F)
(b) Latency by request type with a distributed cache across 6 nodes.

Figure 7: The cumulative distribution of latencies by type of
request with a centralized (Figure 7(a)) and distributed (Fig-
ure 7(b)) web caches.

crosoft corporate network [12, 5]. The trace data has
81% of the end-hosts available at any time, and the me-
dian session length of these end-hosts was in excess of
16 hours. Figure 6 plots the probability of catastrophic
failures assuming independent failures and a generous
failure detection and group reconfiguration delay of 1
minute. As we can see from this analysis, a handful of
end-systems would suffice for most enterprise settings.

3.2 Transparent Distributed Web Cache
It is common for large networks to employ a transparent
web cache such as Akamai [1] or squid [38] to improve
performance and reduce bandwidth costs. These caches
exploit similarity in different users’ browsing habits to
reduce the total bandwidth consumption while also im-
proving throughput and latency for requests served from
the cache.

Even though a shared cache is often very effective,
many small and medium sized networks do not use one
because of the administrative overhead of setting it up
and the potential performance bottleneck if the central-
ized cache is misconfigured. An alternative is to coordi-
nate caches on each end-host [23], but this requires re-
configuration by each user and it raises privacy concerns
since requests can be snooped by anyone with adminis-
trative privileges on any machine.

We implemented a distributed and privacy preserving

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 95

distributed cache. The cache runs as an ETTM network
management service that is triggered by a µvrouter filter
capturing all traffic headed to port 80. The service first
checks the local AEE’s web cache to see if the request
can be served from the local host. If it cannot be served
locally, the service computes a consistent hash of the re-
quest url and forwards it to a participating remote AEE
based on the computed hash value. If the remote AEE
does not have the content cached, it retrieves the content
from the origin server, stores a copy in its local cache,
and returns the fetched content to the requesting node.
Note that the protocol traffic in ETTM is captured by the
web cache filter and is not visible to any of the guest
OSes. Also, communication between the caches can be
optionally encrypted to prevent snooping. We adapted
squid [38] to serve as the cache in each AEE and to pro-
vide the logic for interpreting http header directives, such
as when to forward requests to the origin due to cache
timeouts or outright disabling of caching.

We evaluated our end-host based web-cache imple-
mentation using a trace driven simulation. In order to
generate trace data we aggregated the browser history of
three of the authors and replayed the trace data on six
nodes on Emulab [15]. In the centralized experiments,
all clients but one have their cache disabled and were
configured to send all requests to the one remaining ac-
tive cache. In the distributed experiments each node runs
its own cache. In the centralized case, the single cache is
set to 600 MB, while in the distributed experiments the
cache size for each of the six nodes is set to 100 MB.

Cache hit rates are similar in both cases. For brevity
we omit detailed analysis of hit rates and instead focus on
latency. The cumulative distribution of latencies for the
centralized and distributed caches is shown in Figure 7.
The latency for objects found in the other node’s caches
is at most a few milliseconds more than local cache hits,
indicating that the distributed nature of our implementa-
tion imposes little or no performance penalty.

3.3 Deep Packet Inspection
The ability to filter traffic based on the full packet
contents and often the contents of multiple packets—
commonly called deep packet inspection (DPI)—has
quickly become a standard tool alongside traditional fire-
walls and intrusion detection systems for detecting se-
curity breaches. However, the computation required for
deep packet inspection is still limits its deployment.

The ETTM approach opens the door to ‘outsourcing’
the DPI computation to end-hosts where there is almost
certainly more aggregate compute power than inside a
dedicated DPI middlebox. Traditionally, the idea of run-
ning this DPI code at end-hosts would flounder because
they could not be trusted to execute the code faithfully—
a virus infecting one host could undermine network secu-

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

Si
ng

le
 c

or
e

C
PU

 U
til

iz
at

io
n

(%
)

Transfer rate (Mbps)

Figure 8: CPU load of ETTM DPI module as we vary the
transfer rate of our trace.

rity. While no security is invulnerable, we offer a narrow
attack surface similar to middleboxes, and also use attes-
tation to be able to make claims about booted software
and detect malicious changes on reboots.

Our implementation of DPI is based on the Snort [37]
engine and renders decisions either by delaying or drop-
ping traffic or by tagging flows with metadata. The DPI
filter is run within the end-host AEE and inspects the
flows being sourced from or received by the end-host. In
addition, the DPI modules running on end-hosts period-
ically exchange CPU load information with each other.
In situations where the end-host CPU is overloaded, as
in highly-loaded web servers, the flows are redirected to
some other lightly loaded end-host running the ETTM
stack in order to perform the DPI tasks.

The two commonly used applications of DPI are to
detect possible attacks and to discover obfuscated peer-
to-peer traffic. In the case of detecting attacks, the filter
releases traffic after it has been scanned for attack sig-
natures and found to be clean. If a flow is flagged as an
attack, no further traffic is allowed, and the source is la-
beled as being believed to be compromised. In the case
of obfuscated peer-to-peer traffic, normal traffic is passed
through the DPI filter without delay, but when a flow is
categorized as peer-to-peer the flow is labeled with meta-
data. The next section describes how we can use these
labels to adjust priorities for peer-to-peer traffic.

Figure 8 shows benchmark results from a trace-based
evaluation of our DPI filter. We ran the ETTM stack on a
quad-core Intel Xeon machine with 4 GB of RAM where
each core runs at 2 GHz. However, we only make use of
one core as snort-2.8 is single-threaded. The traces
are from DEFCON 17 “capture the flag” dataset [13],
which contain numerous intrusion attempts and serve as
commonly used benchmarks for evaluating DPI perfor-
mance. We vary the trace playback rate from 1x to 1024x
and measured the CPU load imposed by our DPI filter
at various traffic rates. Figure 8 shows the load on the
ETTM CPU to analyze traffic to/from that CPU. This
demonstrates that running DPI on a single core per host
is feasible. Stated in other terms, the ETTM approach

96 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of performing DPI computation on end-hosts scales with
the number of ETTM machines; centralizing DPI com-
putation on specialized hardware is more expensive and
less scalable.

3.4 Bandwidth Allocation
The ability for ETTM to control network behavior on a
packet granularity provides an opportunity for more ef-
ficient bandwidth management. In TCP, hosts increase
their send rates until router buffers overflow and start
dropping packets. As a result, it is well-known that the
latency of short flows degrades whenever a congested
link is shared with a bandwidth-intensive flow. Many
large enterprises deploy hardware-based packet shapers
at the edge of the network to throttle high bandwidth
flows before they overwhelm the bottleneck link. In
this subsection, we demonstrate a backwardly compat-
ible software-based ETTM solution to this issue; we use
this as an illustration of how ETTM can be used to im-
prove quality-of-service in an enterprise setting.

We call our bandwidth allocation strategy TCP with
reservations or TCP-R; the approach is similar to the ex-
plicit bandwidth signaling in ATM. In TCP-R, bandwidth
allocations for the bottleneck access link are performed
by a controller replicated using the consensus API. End-
points managing TCP flows make bandwidth allocation
requests to the controller, which responds with reserva-
tions for short periods of time. We next describe the logic
executed end-hosts followed by the controller logic.

Endpoint: Whenever a new flow crossing the access link
appears and every RTT after that, the bandwidth alloca-
tion filter on the local host issues a bandwidth reservation
request to the controller. The request is for the maximum
bandwidth the host needs, that can be allocated safely
without causing queueing at the congested link. The con-
troller responds with an allocation and a reservation for
the subsequent round-trips.

Once the reservation has been agreed upon, the filter
limits the flow to using that amount of bandwidth until
it issues a subsequent reservation. The amount of the
new reservation is based on the last RTT of behavior. Let
Af (i− 1) be the bandwidth allocated to flow f in period
i − 1, and let Uf (i − 1) be the bandwidth utilized by it
during the period. Then it makes a reservation request
Rf (i) based on the following logic; this preserves TCP
behavior for the portion of the path external to the LAN,
while allowing for explicit allocation of the access link.
• If the flow used up its allocation, it asks the controller

to provide it the maximum allowed by the TCP con-
gestion window (Rf (i) = cwnd/RTT).

• If the flow did not use up its bandwidth allocation in
the previous RTT, then it issues a new request for the
lesser of the bandwidth it did use and the TCP con-

gestion window, relinquishing its unused reservation
(Rf (i) = min(cwnd/RTT, Uf (i − 1))).

Controller: The controller allocates bandwidth among
the reservation requests according to max-min fairness.
It publishes the results by committing its allocation deci-
sion across the various controller instances using Paxos.
Note that the actual reservation amount can be less than
what was requested.

Periodically the controller processes the bandwidth
requests and makes an allocation using the following
scheme to achieve max-min fairness. It sorts the flows
based on their requested bandwidth. Let R0 ≤ R2 ≤
R3...Rk−2 ≤ Rk−1 be the set of sorted bandwidth re-
quests, L be the link access bandwidth, and A = 0 be
the allocated bandwidth at the beginning of each allo-
cation round. The controller considers these requests in
increasing order and the requested bandwidth or its fair
share, whichever is lower. Concretely, for each flow j,
it does the following: Aj = min(Rj ,

L−A
k−j) and sets

A = A + Aj . Note that L−A
k−j is the fair share of flow

j after having allocated A bandwidth resources to the j
flows considered before it.

In practice, because it takes some time to acquire a
reservation, we leave some fraction of the link (10% in
our implementation) unallocated and allow each flow to
send a few packets (4 in our implementation) before re-
ceiving a reservation. Because the time to acquire a
reservation (a millisecond or less) is smaller than most
Internet round trip times, this avoids adversely affecting
flows with increased latency.

TCP-R has many benefits over traditional TCP. It does
not drive the bottleneck link to saturation, thereby avoid-
ing losses and sub-optimal use of network resources. In
particular, latency sensitive web traffic can obtain their
share of the bandwidth resource even if there are simul-
taneous large background transfers.

This implementation of bandwidth allocation assumes
that we are only managing the upload bandwidth of our
access link. In the future, we will to extend our imple-
mentation to handle arbitrary bottlenecks as well as the
allocation of incoming bandwidth.

Evaluation: Our evaluation illustrates the ability of the
ETTM bandwidth allocator to provide a fair allocation to
interactive web traffic. On Emulab, we set up an access
link with a bottleneck bandwidth of 10 Mb/s and com-
pared the latency of accessing google.com with and
without background BitTorrent traffic that is generated
by a different end-host in the network. Figure 9 depicts
the webpage access latency at different points in time.
When there is no competing traffic, the average access
latency is 0.68 seconds. When there is competing traf-
fic (during attempts 11 through 30), the average access

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 97

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

Latency to load google.com
Pa

ge
 lo

ad
 ti

m
e

(s
ec

s)

Attempt

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

Latency to load google.com using bandwidth allocator

Pa
ge

 lo
ad

 ti
m

e
(s

ec
s)

Attempt

Figure 9: Webpage access latency in the presence of compet-
ing BitTorrent traffic with and without the bandwidth allocator.
The solid lines depict the access latency when there is compet-
ing BitTorrent traffic.

latency is 5.67 seconds if we don’t use the ETTM band-
width allocator. With the ETTM bandwidth allocator, the
interactive web traffic receives a fair share and incurs a
latency of 1.04 seconds.

4 Related Work
Providing network administrators more control at lower
cost is a longstanding goal of network research. Sev-
eral recent projects have focused on providing adminis-
trators a logically centralized interface for configuring a
distributed set of network routers and switches. Exam-
ples of this approach include 4D [34, 17, 42], NOX [19],
Ethane [8, 7], Maestro [6] and CONMan [2]. Of course,
the power of these systems is limited to the configurabil-
ity of the hardware they control. While we agree with the
need for logical centralization of network management
functions, our hypothesis is that network administrators
would prefer fine-grained, packet level control over their
networks, something that is not possible at line-rate with
today’s current low cost network switches.

Other efforts have focused on building drop-in re-
placements for the the virtual ethernet switch inside
existing hypervisors. Cisco’s Nexus 1000V virtual
switch [9, 40] provides a standard Cisco switch interface
enabling switching policies to to the edge of VMs as well
as hosts. Open vSwitch [33] accomplishes a similar feat,
but provides an OpenFlow interface to the virtual switch
and is compatible with Xen and a few other hypervisors.
Still others are working to do hardware network I/O vir-
tualization [32]. While all of these tools give network
administrators additional points of control, they do not
offer the flexibility required to implement the breadth of
coordinated network polices administrators seek today.
Instead, we are working to incorporate these standard-

ized, simple points of control into ETTM to provide po-
tentially higher performance some tasks and added con-
trol over the low-level network.

Other systems have tried to bring end-hosts into net-
work management, though in limited ways. Microsoft’s
Active Directory includes Group Policy which allows for
control over the actions which connected Windows hosts
are allowed to carry out, but enforces them only assum-
ing the host remains uncompromised. Network Excep-
tion Handlers [24] allow end-hosts to react to certain
network events, but still leaves network hardware domi-
nantly in control. Still other work [11] uses end-hosts to
provide visibility into network traffic, but does not pro-
vide a point of control and assumes that the host remains
uncompromised.

Other recent work has attempted to increase the flex-
ibility of network switches to carry out administrative
tasks. OpenFlow [30] adds the ability to configure rout-
ing and filtering decisions in LAN switches based on pat-
tern matching on packet headers performed in hardware.
A limitation of OpenFlow is throughput when packets
need to be processed out of band, because there is typi-
cally only one underpowered control processor per LAN
switch. In ETTM, we invoke out of band processing on
the switch only for the initial TPM verification when the
node connects, while still allowing the network adminis-
trator to add arbitrary processing on every packet.

Middleboxes have always been a contentious topic,
but recent work has looked at how to embrace mid-
dleboxes and treat them as first-class citizens. In
TRIAD [18] middleboxes are first-order constructs in
providing a content-addressable network architecture.
The Delegation-Oriented Architecture [41] allows hosts
to explicitly invoke middleboxes, while NUTSS [20]
proposes a novel connection establishment mechanism
which includes negotiation of which middleboxes should
be involved. Our work can be seen as enabling network
administrators to place arbitrary packet-granularity mid-
dlebox functionality throughout the network, via vali-
dated software running on end-hosts.

Existing work has leveraged trusted computing hard-
ware to avoid vulnerabilities in commodity software [35]
as well as to ensure correct execution of specific
tasks [29]. Our use of trusted computing hardware is
complementary to these efforts.

5 Conclusion
Enterprise-level network management today is complex,
expensive and unsatisfying: seemingly straightforward
quality of service and security goals can be difficult to
achieve even with an unlimited budget. In this paper, we
have designed, implemented and evaluated a novel ap-
proach to provide network administrators more control
at lower cost, and their users higher performance, more

98 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

reliability, and more flexibility. Network management
tasks are implemented as software applications running
in a distributed but secure fashion on every end-host, in-
stead of on closed proprietary hardware at fixed points
in the network. Our approach leverages the increasing
availability of trusted computing hardware on end-hosts
and reconfigurable routing tables in network switches,
as well as the expansive computing capacity of modern
multicore architectures. We show that our approach can
support complex tasks such as fault tolerant network ad-
dress translation, network-wide deep packet inspection
for virus control, privacy preserving peer-to-peer web
caching, and congested link bandwidth prioritization, all
with reasonable performance despite the added overhead
of fault tolerant distributed coordination.

Acknowledgements
We would like to thank our anonymous reviewers and
our shepherd David Maltz for their valuable feedback.
This work was supported in part by the National Sci-
ence Foundation under grants NSF-0831540 and NSF-
0963754.

References
[1] Akamai technologies. http://www.akamai.com/.
[2] Hitesh Ballani and Paul Francis. CONMan: A step towards net-

work manageability. In SIGCOMM, 2007.
[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In SOSP, 2003.

[4] Blue Coat Systems. Blue Coat PacketShaper. http://www.
bluecoat.com/products/packetshaper.

[5] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop pcs. In SIGMETRICS, 2000.

[6] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. Maestro: A new
architecture for realizing and managing network controls. In LISA
Workshop on Network Configuration, 2007.

[7] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Nick McKeown, and Scott Shenker. Ethane: Taking control of
the enterprise. In SIGCOMM, 2007.

[8] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freed-
man, Dan Boneh, Nick McKeown, and Scott Shenker. SANE: A
protection architecture for enterprise networks. In USENIX Secu-
rity, 2006.

[9] Cisco Systems. Cisco Nexus 1000V Series Switches - Cisco
Systems. http://www.cisco.com/en/US/products/
ps9902/index.html.

[10] OpenFlow Consortium. OpenFlow >> OpenWrt. http://
www.openflowswitch.org/wp/openwrt/.

[11] Evan Cooke, Richard Mortier, Austin Donnelly, Paul Barham,
and Rebecca Isaacs. Reclaiming network-wide visibility using
ubiquitous end system monitors. In USENIX, 2006.

[12] D. Narayanan and A. Donnelly and R. Mortier and A. Rowstron.
Delay Aware Querying with Seaweed. In VLDB, 2006.

[13] Defcon 17 ctf packet traces. http://www.ddtek.biz/
dc17.html.

[14] K. Egevang and P. Francis. RFC 1631: The IP network address
translator (NAT), 1994.

[15] Eric Eide, Leigh Stoller, and Jay Lepreau. An experimentation
workbench for replayable networking research. In NSDI, 2007.

[16] FreeRADIUS: The world’s most popular RADIUS Server.
http://freeradius.org/.

[17] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy My-
ers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and
Hui Zhang. A clean slate 4D approach to network control and
management. In CCR, 2005.

[18] Mark Gritter and David R Cheriton. An architecture for content
routing support in the internet. In USITS, 2001.

[19] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an
operating system for networks. In CCR, 2008.

[20] Saikat Guha and Paul Francis. An end-middle-end approach to
connection establishment. In SIGCOMM, 2007.

[21] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In CCS,
2000.

[22] RFC 3220: IP Mobility Support for IPv4, 2002.
[23] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A

decentralized peer-to-peer web cache. In PODC, 2002.
[24] Thomas Karagiannis, Richard Mortier, and Antony Rowstron.

Network exception handlers: Host-network control in enterprise
networks. In SIGCOMM, 2008.

[25] Leslie Lamport. The part-time parliament. TOCS, 16(2):133–
169, 1998.

[26] Leslie Lamport. Paxos Made Simple. In SIGACT, 2001.
[27] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas An-

derson. User-level Internet Path Diagnosis. In SOSP, 2003.
[28] Jouni Malinen. Linux WPA Supplicant (IEEE 802.1X, WPA,

WPA2, RSN, IEEE 802.11i). http://hostap.epitest.
fi/wpa supplicant/, January 2010.

[29] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K.
Reiter, and Hiroshi Isozaki. Flicker: An execution infrastructure
for TCB minimization. In EuroSys, April 2008.

[30] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. OpenFlow: Enabling innovation in
campus networks. http://www.openflowswitch.org/
documents/openflow-wp-latest.pdf, March 2008.

[31] OpenWrt. http://openwrt.org/.
[32] PCI-SIG. PCI-SIG - I/O Virtualization. http://www.

pcisig.com/specifications/iov/.
[33] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin

Casado, and Scott Shenker. Extending networking into the virtu-
alization layer. In HotNets, 2009.

[34] Jennifer Rexford, Albert Greenberg, Gisli Hjalmtysson, David A.
Maltz, Andy Myers, Geoffrey Xie, Jibin Zhan, and Hui Zhang.
Network-wide decision making: Toward a wafer-thin control
plane. In HotNets, 2004.

[35] Seshadri, Arvind, Mark Luk, Ning Qu, and Adrian Perrig. SecVi-
sor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity
for Commodity OSes. In SOSP, 2007.

[36] S. Shenker, C. Partridge, and R. Guerin. RFC 2212: Specification
of Guaranteed Quality of Service, 1997.

[37] Snort. http://www.snort.org.
[38] squid : Optimizing Web Delivery. http://www.

squid-cache.org/.
[39] Trusted Computing Group. TPM Main Specification.

http://www.trustedcomputinggroup.org/
resources/tpm main specification, August 2007.

[40] VMware, Inc. Cisco Nexus 1000V Virtual Network Switch:
Policy-Based Virtual Machine Networking. http://www.
vmware.com/products/cisco-nexus-1000V/.

[41] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakr-
ishnan, Robert Morris, and Scott Shenker. Middleboxes no longer
considered harmful. In OSDI, 2004.

[42] Hong Yan, David A. Maltz, T. S. Eugen Ng, Hemant Gogineni,
Hui Zhang, and Zheng Cai. Tesseract: A 4D network control
plane. In NSDI, 2007.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 99

Design, implementation and evaluation of congestion control
for multipath TCP

Damon Wischik, Costin Raiciu, Adam Greenhalgh, Mark Handley
University College London

ABSTRACT
Multipath TCP, as proposed by the IETF working group
mptcp, allows a single data stream to be split across
multiple paths. This has obvious benefits for reliability,
and it can also lead to more efficient use of networked
resources. We describe the design of a multipath con-
gestion control algorithm, we implement it in Linux,
and we evaluate it for multihomed servers, data centers
and mobile clients. We show that some ‘obvious’ solu-
tions for multipath congestion control can be harmful,
but that our algorithm improves throughput and fairness
compared to single-path TCP. Our algorithm is a drop-in
replacement for TCP, and we believe it is safe to deploy.

1. INTRODUCTION
Multipath TCP, as proposed by the IETF working group

mptcp [7], allows a single data stream to be split across
multiple paths. This has obvious benefits for reliability—
the connection can persist when a path fails. It can also
have benefits for load balancing at multihomed servers
and data centers, and for mobility, as we show below.

Multipath TCP also raises questions, some obvious
and some subtle, about how network capacity should be
shared efficiently and fairly between competing flows.
This paper describes the design and implementation of
a multipath congestion control algorithm that works ro-
bustly across a wide range of scenarios and that can be
used as a drop-in replacement for TCP.

In §2 we propose a mechanism for windowed con-
gestion control for multipath TCP, and then spell out
the questions that led us to it. This section is presented
as a walk through the design space signposted by perti-
nent examples and analysed by calculations and thought
experiments. It is not an exhaustive survey of the de-
sign space, and we do not claim that our algorithm is
optimal—to even define optimality would require a more
advanced theoretical underpinning than we have yet de-
veloped. Some of the issues (§2.1–§2.3) have previ-
ously been raised in the literature on multipath conges-
tion control, but not all have been solved. The others
(§2.4–§2.5) are novel.

In §3–§5 we evaluate our algorithm in three applica-
tion scenarios: multihomed Internet servers, data cen-
ters, and mobile devices. We do this by means of simu-
lations with a high-speed custom packet-level simulator,

and with testbed experiments on a Linux implementa-
tion. We show that multipath TCP is beneficial, as long
as congestion control is done right. Naive solutions can
be worse than single-path TCP.

In §6 we discuss what we learnt from implementing
the protocol in Linux. There are hard questions about
how to avoid deadlock at the receiver buffer when pack-
ets can arrive out of order, and about the datastream se-
quence space versus the subflow sequence spaces. But
careful consideration of corner cases forced us to our
specific implementation. In §7 we discuss related work
on protocol design.
In this paper we will restrict our attention to end-

to-end mechanisms for sharing capacity, specifically to
modifications to TCP’s congestion control algorithm. We
will assume that each TCP flow has access to one or
more paths, and it can control how much traffic to send
on each path, but it cannot specify the paths themselves.
For example, our Linux implementation uses multihom-
ing at one or both ends to provide path choice, but it
relies on the standard Internet routing mechanisms to
determine what those paths are. Our reasons for these
restrictions are (i) the IETF working group is working
under the same restrictions, (ii) they lead to a readily
deployable protocol, i.e. no modifications to the core of
the Internet, and (iii) theoretical results indicate that in-
efficient outcomes may arise when both the end-systems
and the core participate in balancing traffic [1].

2. THE DESIGN PROBLEM FOR MUL-
TIPATH RESOURCE ALLOCATION

The basic window-based congestion control algorithm
employed in TCP consists of additive increase behaviour
when no loss is detected, and multiplicative decrease
when a loss event is observed. In short:

ALGORITHM: REGULAR TCP
• Each ACK, increase the congestion window w by

1/w, resulting in an increase of one packet per RTT.1

• Each loss, decrease w by w/2.

Additionally, at the start of a connection, an exponen-
tial increase is used, as it is immediately after a retrans-
mission timeout. Newer versions of TCP [24, 9] have
1For simplicity, we express windows in this paper in packets,
but real implementations usually maintain them in bytes.

1

100 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: A scenario which shows the importance
of weighting the aggressiveness of subflows.

faster behaviour when the network is underloaded; we
believe our multipath enhancements can be straightfor-
wardly applied to these versions, but it is a topic for fur-
ther work.

The congestion control algorithm we propose is this:

ALGORITHM: MPTCP
A connection consists of set of subflowsR, each of which
may take a different route through the Internet. Each
subflow r ∈ R maintains its own congestion window
wr. An MPTCP sender stripes packets across these sub-
flows as space in the subflow windows becomes avail-
able. The windows are adapted as follows:
• Each ACK on subflow r, for each subset S ⊆ R that

includes path r, compute

maxs∈S ws/RTT2s
(
∑

s∈S ws/RTTs
)2 , (1)

then find the minimum over all such S, and increase
wr by that much. (The complexity of finding the
minimum is linear in the number of paths, as we
show in the appendix.)

• Each loss on subflow r, decrease the window wr by
wr/2.

Here RTTr is the round trip time as measured by sub-
flow r. We use a smoothed RTT estimator, computed
similarly to TCP.
In our implementation, we compute the increase pa-

rameter only when the congestion windows grow to ac-
commodate one more packet, rather than every ACK on
every subflow.

The following subsections explain how we arrived at
this design. The basic question we set out to answer is
how precisely to adapt the subflow windows of a mul-
tipath TCP so as to get the maximum performance pos-
sible, subject to the constraint of co-existing gracefully
with existing TCP traffic.

2.1 Fairness at shared bottlenecks
The obvious question to ask is why not just run regu-

lar TCP congestion control on each subflow? Consider
the scenario in Fig. 1. If multipath TCP ran regular
TCP congestion control on both paths, then the multi-
path flow would obtain twice as much throughput as the
single path flow (assuming all RTTs are equal). This is
unfair. An obvious solution is to run a weighted version

Figure 2: A scenario to illustrate the importance
of choosing the less-congested path

of TCP on each subflow, weighted so as to take some
fixed fraction of the bandwidth that regular TCP would
take. The weighted TCP proposed by [5] is not suitable
for weights smaller than 0.5, so instead [11] consider the
following algorithm, EWTCP.

ALGORITHM: EWTCP
• For each ACK on path r, increase window wr by

a/wr.
• For each loss on path r, decrease window wr by

wr/2.
Here wr is the window size on path r, and a = 1/

√
n

where n is the number of paths.

Each subflow gets window size proportional to a2 [11].
By choosing a = 1/

√
n, and assuming equal RTTs,

the multipath flow gets the same throughput as a reg-
ular TCP at the bottleneck link. This is an appealingly
simple mechanism in that it does not require any sort of
explicit shared-bottleneck detection.

2.2 Choosing efficient paths
Athough EWTCP can be fair to regular TCP traffic, it

would not make very efficient use of the network. Con-
sider the somewhat contrived scenario in Fig.2, and sup-
pose that the three links each have capacity 12Mb/s. If
each flow split its traffic evenly across its two paths2,
then each subflow would get 4Mb/s hence each flow
would get 8Mb/s. But if each flow used only the one-hop
shortest path, it could get 12Mb/s. (In general, however,
it is not efficient to always use only shortest paths, as the
simulations in §4 of data center topologies show.)
A solution has been devised in the theoretical litera-

ture on congestion control, independently by [15] and
[10]. The core idea is that a multipath flow should shift
all its traffic onto the least-congested path. In a situa-
tion like Fig. 2 the two-hop paths will have higher drop
probability than the one-hop paths, so applying the core
idea will yield the efficient allocation. Surprisingly it
2In this topology EWTCP wouldn’t actually split its traf-
fic evenly, since the two-hop path traverses two bottleneck
links and so experiences higher congestion. In fact, as TCP’s
throughput is inversely proportional to the square root of loss
rate, EWTCP would end up sending approximately 3.5Mb/s
on the two-hop path and 5Mb/s on the single-hop path, a total
of 8.5Mb/s—slightly more than with an even split, but much
less than with an optimal allocation.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 101

turns out that this can be achieved (in theory) without
any need to explicitly measure congestion3. Consider
the following algorithm, called COUPLED4:

ALGORITHM: COUPLED
• For each ACK on path r, increase window wr by

1/wtotal.
• For each loss on path r, decrease window wr by

wtotal/2.
Here wtotal is the total window size across all subflows.
We bound wr to keep it non-negative; in our experi-
ments we bound it to be ≥ 1pkt, but for the purpose
of analysis it is easier to think of it as ≥ 0.

To get a feeling for the behaviour of this algorithm,
we now derive an approximate throughput formula. Con-
sider first the case that all paths have the same loss rate
p. Each window wr is made to increase on ACKs, and
made to decrease on drops, and in equilibrium the in-
creases and decreasesmust balance out, i.e. rate of ACKs
× average increase per ACK must equal rate of drops×
average decrease per drop, i.e.

(wr

RTT
(1 − p)

) 1

wtotal
=

(wr

RTT
p
)wtotal

2
. (2)

Solving for wtotal gives wtotal =
√

2(1− p)/p ≈
√

2/p
(where the approximation is good if p is small). Note
that when there is just one path then COUPLED reduces
to regular TCP, and that the formula for wtotal does not
depend on the number of paths, hence COUPLED auto-
matically solves the fairness problem in §2.1.

For the case that the loss rates are not all equal, let
pr be the loss rate on path r and let pmin be the mini-
mum loss rate seen over all paths. The increase and de-
crease amounts are the same for all paths, but paths with
higher pr will see more decreases, hence the equilib-
rium window size on a path with pr > pmin is wr = 0.
In Fig.2, the two-hop paths go through two congested
links, hence theywill have higher loss rates than the one-
hop paths, hence COUPLED makes the efficient choice
of using only the one-hop paths.
An interesting consequence of moving traffic away

from more congested paths is that loss rates across the
whole network will tend to be balanced. See §3 for ex-
periments which demonstrate this. Or consider the net-
work shown in Fig.3, and assume all RTTs are equal.
3Of course it can also be achieved by explicitly measuring
congestion as in [11], but this raises tricky measurement ques-
tions.
4COUPLED is adapted from [15, equation (21)] and [10, equa-
tion (14)], which propose a differential equation model for a
rate-based multipath version of ScalableTCP [16]. We applied
the concepts behind the equations to classic window-based
TCP rather than to a rate-based version of ScalableTCP, and
translated the differential equations into a congestion control
algorithm.

flow A

flowB

flowC

5 Mb/s

12 Mb/s

10 Mb/s

3 Mb/s

11
Mb/s

11
Mb/s

8
Mb/s

10
Mb/s

10
Mb/s

10
Mb/s

Figure 3: A scenario where EWTCP (left)
does not equalize congestion or total throughput,
whereas COUPLED (right) does.

WiFi:
RTT1 = 10ms
p1 = 4% loss

3G:
RTT2 = 100ms
p2 = 1% loss

Figure 4: A scenario in which RTT and congestion
mismatch can lead to low throughput.

Under EWTCP each link will be shared evenly between
the subflows that use it, hence flow A gets throughputs
5 and 6 Mb/s, B gets 6 and 5 Mb/s, and C gets 5 and
3 Mb/s. Since TCP throughput is inversely related to
drop probability, we deduce that the 3Mb/s link has the
highest drop probability and the 12Mb/s link the low-
est. For COUPLED, we can calculate the throughput on
each subflow by using two facts: that a flow uses a path
only if that path has the lowest loss rate pmin among its
available paths, and that a flow’s total throughput is pro-
portional to

√

2/pmin; the only outcome consistent with
these facts is for all four links to have the same loss rate,
and for all flows to get the same throughput, namely
10Mb/s.
In this scenario the rule “only use a path if that path

has lowest drop probability among available paths” leads
to balanced congestion and balanced total throughput.
In some scenarios, these may be desirable goals per se.
Even when they are not the primary goals, they are still
useful as a test: a multipath congestion control algo-
rithm that does not balance congestion in Fig.3 is un-
likely to make the efficient path choice in Fig.2.

2.3 Problems with RTT mismatch
Both EWTCP and COUPLED have problems when

the RTTs are unequal. This is demonstrated by experi-
ments in §5. To understand the issue, consider the sce-
nario of a wireless client with two interfaces shown in
Fig.4: the 3G path typically uses large buffers, result-
ing in long delays and low drop rates, whereas the wifi
path might have smaller delays and higher drop rate. As

3

102 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: A scenario where multipath TCP might
get ‘trapped’ into using a less desirable path.

a simple approximation, take the drop rates to be fixed
(though in practice, e.g. in the experiments in §5, the
drop rate will also depend on the sender’s data rate).
Also, take the throughput of a single-path TCP to be
√

2/p/RTT pkt/s. Then
• A single-path WiFi flow would get 707 pkt/s, and a

single-path 3G flow would get 141 pkt/s.

• EWTCP is half as aggressive as single-path TCP
on each path, so it will get total throughput (707 +
141)/2 = 424 pkt/s.

• COUPLED will send all its traffic on the less con-
gested path, on which it will gets the same window
size as single-path TCP, so it will get total through-
put 141 pkt/s.5

Both EWTCP and COUPLED are undesirable to a user
considering whether to adopt multipath TCP.
One solution is to switch from window-based control

to rate-based control; the rate-based equations [15, 10]
that inspired COUPLED do not suffer from RTT mis-
match. But this would be a drastic change to the In-
ternet’s congestion control architecture, a change whose
time has not yet come. Instead, we have a practical sug-
gestion for window-based control, which we describe
in §2.5. First though we describe another problem with
COUPLED and our remedy.

2.4 Adapting to load changes
It turns out there is another pitfall with COUPLED,

which shows itself evenwhen all subflows have the same
RTT. Consider the scenario in Fig. 5. Initially there are
two single-path TCPs on each link, and one multipath
TCP able to use both links. It should end up balancing
itself evenly across the two links, since if it were uneven
then one link would be more congested than the other
and COUPLED would shift some of its traffic onto the
less congested. Suppose now that one of the flows on
the top link terminates, so the top link is less congested,
hence the multipath TCP flow moves all its traffic onto
the top link. But then it is ‘trapped’: no matter how
much extra congestion there is on the top link, the the
multipath TCP flow is not using the bottom link, so it

5The ‘proportion manager’ in the multipath algorithm of [11]
will also move all the traffic onto the less congested path, with
the same outcome.

gets no ACKs on the bottom link, so COUPLED is un-
able to increase the window size on the bottom subflow.
The same problem is demonstrated in experiments in §3.
We can conclude that the simple rule “Only use the

least congested paths” needs to be balanced by an op-
posing consideration, “Always keep sufficient traffic on
other paths, as a probe, so that you can quickly discover
when they improve.” In fact, our implementation of
COUPLED keeps window sizes ≥ 1pkt, so it always has
some probe traffic. And the theoretical works [15, equa-
tion (11)] and [10, equation (14)] that inspired COU-
PLED also have a parameter that controls the amount of
probing; the theory says that with infinitesimal probing
one can asymptotically (after a long enough time, and
with enough flows) achieve fair and efficient allocations.
But we found in experiments that if there is too lit-

tle probe traffic then feedback about congestion is too
infrequent for the flow to discover changes in a reason-
able time. Noisy feedback (random packet drops) makes
it even harder to get a quick reliable signal. As a com-
promise, we propose the following.

ALGORITHM: SEMICOUPLED
• For each ACK on path r, increase window wr by

a/wtotal.
• For each loss on path r, decrease window wr by

wr/2.
Here a is a constant which controls the aggressiveness,
discussed below.

SEMICOUPLED tries to keep a moderate amount of
traffic on each path while still having a bias in favour of
the less congested paths. For example, suppose a SEMI-
COUPLED flow is using three paths, two with drop prob-
ability 1% and a third with drop probability 5%. We can
calculate equilibrium window sizes by a balance argu-
ment similar to (2); when 1 − pr ≈ 1 the window sizes
are

wr ≈
√
2a

1/pr
√
∑

s 1/ps
.

In three-path example, the flowwill put 45% of its weight
on each of the less congested path and 10% on the more
congested path. This is intermediate between EWTCP
(33%on each path) and COUPLED (0% on themore con-
gested path).
To achieve fairness in scenarios like Fig.1, one can

fairly simply tune the a parameter. For more compli-
cated scenarios like Fig.4, we need a more rigorous def-
inition of fairness, which we now propose.

2.5 Compensating for RTT mismatch
In order to reason about bias and fairness in a prin-

cipled way, we propose the following two requirements
for multipath congestion control:

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 103

ŵ1

ŵ2

ŵTCP
1

ŵTCP
2

bad

ŵ1

ŵ2

bad

badbad

Figure 6: Fairness constraints for a two-path flow.
Constraint (3) on the left, constraints (4) on the
right.

• A multipath flow should give a connection at least
as much throughput as it would get with single-path
TCP on the best of its paths. This ensures there is an
incentive for deploying multipath.

• A multipath flow should take no more capacity on
any path or collection of paths than if it was a single-
path TCP flow using the best of those paths. This
guarantees it will not unduly harm other flows at a
bottleneck link, nomatter what combination of paths
passes through that link.

In mathematical notation, suppose the set of available
paths is R, let ŵr be the equilibrium window obtained
by multipath TCP on path r, and let ŵTCP

r be the equi-
librium window that would be obtained by a single-path
TCP experiencing path r’s loss rate. We shall require

∑

r∈R

ŵr

RTTr
≥ max

r∈R

ŵTCP
r

RTTr
(3)

∑

r∈S

ŵr

RTTr
≤ max

r∈S

ŵTCP
r

RTTr
for all S ⊆ R. (4)

These constraints are illustrated, for a two-path flow, in
Fig.6. The left hand figure illustrates (3), namely that
(ŵ1, ŵ2) should lie on or above the diagonal line. The
exact slope of the diagonal is dictated by the ratio of
RTTs, and here we have chosen them so that ŵTCP

2 /RTT2 >
ŵTCP

1 /RTT1. The right hand figure illustrates the three
constraints in (4). The constraint for S = {path1} says
to pick a point on or left of the vertical line. The con-
straint for S = {path2} says to pick a point on or be-
low the horizontal line. The joint bottleneck constraint
(S = {path1, path2}) says to pick a point on or below
the diagonal line. Clearly the only way to satisfy both
(3) & (4) is to pick some point on the diagonal, inside
the box; any such point is fair. (Separately, the consid-
erations in §2.2 say we should prefer the less-congested
path, and in this figure ŵTCP

1 > ŵTCP
2 hence the loss rates

satisfy p1 < p2, hence we should prefer the right hand
side of the diagonal line.)
The following algorithm, a modification of SEMICOU-

PLED, satisfies our two fairness requirements, when the
flow has two paths available. EWTCP can also be fixed
with a similar modification. The experiments in §5 show

that the modification works.

ALGORITHM
• Each ACK on subflow r, increase the window wr by

min(a/wtotal, 1/wr).
• Each loss on subflow r, decrease the window wr by

wr/2.
Here

a = ŵtotal
maxr ŵr/RTT2r
(
∑

r ŵr/RTTr)2
, (5)

wr is the current window size on path r and ŵr is the
equilibrium window size on path r, and similarly for
wtotal and ŵtotal.

The increase and decrease rules are similar to SEMI-
COUPLED, so the algorithm prefers less-congested paths.
The difference is that the window increase is capped at
1/wr, which ensures that the multipath flow can take
no more capacity on either path than a single-path TCP
flow would, i.e. it ensures we are inside the horizontal
and vertical constraints in Fig.6.

The parameter a controls the aggressiveness. Clearly
if a is very large then the two flows act like two inde-
pendent flows hence the equilibrium windows will be at
the top right of the box in Fig.6. On the other hand if a
is very small then the flows will be stuck at the bottom
left of the box. As we said, the two fairness goals re-
quire that we exactly hit the diagonal line. The question
is how to find a to achieve this.

We can calculate a from the balance equations. At
equilibrium, the window increases and decreases bal-
ance out on each path, hence

(1− pr)min
(a

ŵtotal
,
1

ŵr

)

= pr
ŵr

2
.

Making the approximation that pr is small enough that
1− pr ≈ 1, and writing it in terms of ŵTCP

r =
√

2/pr,

max
(

ŵr,
ŵtotalŵr

a

)

= ŵTCP
r . (6)

By simultaneously solving (3) (with the inequality re-
placed by equality) and (6), we arrive at (5).
Our final MPTCP algorithm, specified at the begin-

ning of §2, is a generalization of the above algorithm to
an arbitrary number of paths. The proof that it satisfies
(3)–(4) is in the appendix. The formula (5) technically
requires ŵr , the equilibrium window size, whereas in
our final algorithm we have used the instantaneous win-
dow size instead. The experiments described below in-
dicate that this does not cause problems.

Trying too hard to be fair? Our fairness goals say
“take no more than a single-path TCP”. At first sight
this seems overly restrictive. For example, consider a
single-path user with a 14.4Mb/s WiFi access link, who

5

104 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A

B

C

D

E

Figure 7: Torus topology. We
adjust the capacity of linkC, and
test how well congestion is bal-
anced.

Figure 8: Effect of changing the
capacity of link C on the ratio of
loss rates pC/pA. All other links
have capacity 1000pkt/s.

Figure 9: Bursty CBR traffic on
the top link requires quick re-
sponse by the multipath flow.

then adds a 2Mb/s 3G access link. Shouldn’t this user
now get 16.4Mb/s, and doesn’t the fairness goal dictate
14.4Mb/s?
We describe tests of this scenario, and others like it,

in §5. MPTCP does in fact give throughput equal to the
sum of access link bandwidths, when there is no com-
peting traffic. When there is competing traffic on the
access links, the answer is different.

To understand what’s going on, note that our precise
fairness goals say “take no more than would be obtained
by a single-path TCP experiencing the same loss rate”.
Suppose there is no competing traffic on either link, and
the user only takes 14.4Mb/s. Then one or other of
the two access links is underutilized, so it has no loss,
and a hypothetical single-path TCP with no loss should
get very high throughput, so the fairness goal allows
MPTCP to increase its throughput. The system will
only reach equilibrium once both access links are fully
utilized. See §5 for further experimental results, includ-
ing scenarios with competing traffic on the access links.

3. BALANCING CONGESTION AT
A MULTIHOMED SERVER

In §3–§5 we investigate the behaviour of multipath
TCP in three different scenarios: a multihomed Inter-
net server, a data center, and a mobile client. Our aim
in this paper is to produce one multipath algorithm that
works robustly across a wide range of scenarios. These
three scenarios will showcase all the design decisions
dicussed in §2—though not all the design decisions are
important in every one of the scenarios.

The first scenario is a multihomed Internet server. Mul-
tihoming of important servers has become ubiquitous
over the last decade; no company reliant on network
access for their business can afford to be dependent on
a single upstream network. However, balancing traffic
across these links is difficult, as evidenced by the hoops
operators jump through using BGP techniques such as

prefix splitting and AS prepending. Such techniques are
coarse-grained, very slow, and a stress to the global rout-
ing system. In this section we will show that multipath
transport can balance congestion, even when only a mi-
nority of flows are multipath-capable.
We will first demonstrate congestion balancing in a

simple simulation, to illustrate the design discussion in
§2 and to compare MPTCP to EWTCP and COUPLED.
In the static scenario COUPLED is better than MPTCP
is better than EWTCP, and in the dynamic scenario the
order is reversed—but in each case MPTCP is close to
the best, so it seems to be a reasonable compromise. We
will then validate our findings with a result from an ex-
perimental testbed running our Linux implementation.

Static load balancing simulation. First we shall in-
vestigate load balancing in a stable environment of long-
lived flows, testing the predictions in §2.2. Fig.7 shows
a scenario with five bottleneck links arranged in a torus,
each used by two multipath flows. All paths have equal
RTT of 100ms, and the buffers are one bandwidth-delay
product. We will adjust the capacity of link C. When
the capacity of link C is reduced then it will become
more congested, so the two flows using it should shift
their traffic towards B and D, so those links become
more congested, so there is a knock-on effect and the
other flows should shift their traffic onto links A and E.
With perfect balancing, the end result should be equal
congestion on all links.
Fig.8 plots the imbalance in congestion as a function

of the capacity of link C. When all links have equal ca-
pacity (C = 1000pkt/s) then congestion is of course
perfectly balanced for all the algorithms. When link
C is smaller, the imbalance is greater. COUPLED is
very good at balancing congestion, EWTCP is bad, and
MPTCP is in between. We also find that balanced con-
gestion results in better fairness between total flow rates:
when link C has capacity 100 pkt/s then Jain’s fairness
index is 0.99 for the flow rates with COUPLED, 0.986
for MPTCP and 0.92 for EWTCP.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 105

Figure 10: Server load balancing with MPTCP

Dynamic load balancing simulation. Next we illus-
trate the problem with dynamic load described in §2.4.
We ran a simulation with two links as in Fig.9, both of
capacity 100Mb/s and buffer 50 packets, and one mul-
tipath flow where each path has a 10ms RTT. On the
top link there is an additional bursty CBR flow which
sends at 100Mb/s for a random duration of mean 10ms,
then is quiet for a random duration of mean 100ms. The
multipath flow ought to use only the bottom link when
the CBR flow is present, and it ought to quickly take up
both links when the CBR flow is absent. We reasoned
that COUPLED would do badly, and the throughputs we
obtain confirm this. In Mb/s, they are

top link bottom link
EWTCP 85 100
MPTCP 83 99.8
COUPLED 55 99.4

We have found similar problems in a wide range of
different scenarios. The exact numbers depend on how
quickly congestion levels change, and in this illustra-
tion we have chosen particularly abrupt changes. One
might expect similarly abrupt changes for a mobile de-
vices when coverage on one radio interface is suddenly
lost and then recovers.

Server load balancing experiment. We next give re-
sults from an experimental testbed that show our Linux
implementation of MPTCP balancing congestion, vali-
dating the simulations we have just presented.
We first ran a server dual-homed with two 100Mb/s

links and a number of client machines. We used dum-
mynet to add 10ms of latency to simulate a wide-area
scenario. We ran 5 client machines connecting to the
server on link 1 and 15 on link 2, both using long-lived
flows of Linux 2.6 NewReno TCP. The first minute of
Fig.10 shows the throughput that is achieved—clearly
there is more congestion on link 2. Then we started
10 multipath flows able to use both links. Perfect load
balancing would require these new flows to shift com-
pletely to link 1. This is not perfectly achieved, but

nonethelessmultipath helps significantly to balance load,
despite constituting only 1/3 the total number of flows.
The figure only shows MPTCP; COUPLED was simi-
lar and EWTCP was slightly worse as it pushed more
traffic onto link 2.
Our second experiment used the same topology. On

link 1 we generated Poisson arrivals of TCP flows with
rate alternating between 10/s (light load) and 60/s (heavy
load), with file sizes drawn from a Pareto distribution
with mean 200kB. On link 2 we ran a single long-lived
TCP flow. We also ran three multipath flows, one for
each multipath algorithm. Their average throughputs
were 61Mb/s for MPTCP, 54Mb/s for COUPLED, and
47Mb/s for EWTCP. In heavy load EWTCP did worst
because it did not move as much traffic onto the less con-
gested path. In light load COUPLED did worst because
bursts of traffic on link 1 pushed it onto link 2, where it
remained ‘trapped’ even after link 1 cleared up.

4. EFFICIENT ROUTING
IN DATA CENTERS

Growth in cloud applications from companies such
as Google, Microsoft and Amazon has resulted in huge
data centers in which significant amounts of traffic are
shifted between machines, rather than just out to the In-
ternet. To support this, researchers have proposed new
architectures with much denser interconnects than have
traditionally been implemented. Two such proposals,
FatTree [2] and BCube [8], are illustrated in Fig.11. The
density of interconnects means that there are many pos-
sible paths between any pair of machines. The challenge
is: how can we ensure that the load is efficiently dis-
tributed, no matter the traffic pattern?
One obvious benefit of any sort of multipath TCP in

data centers is that it can alleviate bottlenecks at the host
NICs. For example in BCube, Fig.11(b), if the core is
lightly loaded and a host has a single large flow then it
makes sense to use both available interfaces.
Multipath TCP is also beneficial when the network

core is the bottleneck. To show this, we compared mul-
tipath TCP to single-path TCP with Equal Cost Mul-
tipath (ECMP), which we simulated by making each
TCP source pick one of the shortest-hop paths at ran-
dom. We ran packet-level simulations of FatTree with
128 single-interface hosts and 80 eight-port switches,
and for each pair of hosts we selected 8 paths at ran-
dom to use for multipath. (Our reason for choosing 8
paths is discussed below.) We also simulated BCube
with 125 three-interface hosts and 25 five-port switches,
and for each pair of hosts we selected 3 edge-disjoint
paths according to the BCube routing algorithm, choos-
ing the intermediate nodes at random when the algo-
rithm needed a choice. All links were 100Mb/s.
We simulated three traffic patterns, all consisting of

7

106 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) FatTree (b) BCube

switch

host machine

src or dst

relaying host

Figure 11: Two proposed data center topologies. The bold lines show multiple paths between the source and
destination.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (%

 o
f o

pt
im

al
)

Paths Used

TCP
MPTCP

Figure 12: Multipath needs 8 paths
to get good utilization in FatTree

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

b/
s)

Rank of Flow

MPTCP
EWTCP

Single Path
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

Lo
ss

 R
at

e
(%

)

Rank of Link

Core Links

 0 50 100
Rank of Link

Access Links

MPTCP
EWTCP

Single Path

Figure 13: Distribution of throughput and loss rate, in 128-node
FatTree

long-lived flows. TP1 is a random permutation where
each host opens a flow to a single destination chosen
uniformly at random, such that each host has a single
incoming flow. For FatTree, this is the least amount of
traffic that can fully utilize the network and is a good
test for overall utilization. In TP2 each host opens 12
flows to 12 destinations; in FatTree the destinations are
chosen at random, while in BCube they are the host’s
neighbours in the three levels. This mimics the locality
of communication of writes in a distributed filesystem,
where replicas of a block may be placed close to each
other in the physical topology in order to allow higher
throughput. We are using a high number of replicas as
a stress-test of locality. Finally, TP3 is a sparse traffic
pattern: 30% of the hosts open one flow to a single des-
tination chosen uniformly at random.

FatTree simulations. The per-host throughputs ob-
tained in FatTree in Mb/s, are:

TP1 TP2 TP3
SINGLE-PATH 51 94 60
EWTCP 92 92.5 99
MPTCP 95 97 99

These figures show that for all three traffic patterns,
both EWTCP and MPTCP have enough path diversity
to ‘find’ nearly all the capacity in the network, as we can
see from the fact that they get close to full utilization
of the machine’s 100Mb/s interface card. Fig.12 shows
the throughput achieved as a function of paths used, for
MPTCP under TP1—we have found that 8 is enough

to get 90% utilization, in simulations across a range of
traffic matrices and with thousands of hosts.
Average throughput figures do not give the full pic-

ture. Fig.13 shows the distribution of throughput on
each flow, and of loss rate on each link, obtained by
the three algorithms, for traffic pattern TP1. We see that
MPTCP does a better job of allocating throughput fairly
than EWTCP, for the reasons discussed in §2.2 and §3.
Fairness matters for many datacenter distributed com-
putations that farm processing out to many nodes and
are limited by the response time of the slowest node.
We also see that MPTCP does a better job of balancing
congestion.

BCube simulations. The per-host throughputs obtained
in BCube, in Mb/s, are:

TP1 TP2 TP3
SINGLE-PATH 64.5 297 78
EWTCP 84 229 139
MPTCP 86.5 272 135

These throughput figures reflect three different phe-
nomena. First, both multipath algorithms allow a host
to use all three of its interfaces whereas single-path TCP
can use only one, so they allow higher throughput. This
is clearest in the sparse traffic pattern TP3, where the
network core is underloaded. Second, BCube paths may
have different hop counts, hence they are likely to tra-
verse different numbers of bottlenecks, so some paths
will be more congested than others. As discussed in
§2.2, an efficient multipath algorithm should shift its

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 107

S1

M

S2

link 1

link 2

Figure 14: A multipath
flow competing against
two single-path flows

Figure 15: Multipath TCP throughput
compared to single-path, where link 1 is
WiFi and link 2 is 3G.

12 25 50 100 200 400 800
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

RTT2

400
800

1600
3200

Figure 16: The ratio of flow M ’s
throughput to the better of flow S1

and S2, as we vary link 2 in Fig.14.

traffic away from congestion, and EWTCP does not do
this hence it tends to get worse throughput than MPTCP.
This is especially clear in TP2, and not noticeable in
TP3 where the core has little congestion. Third, even
MPTCP does not move all its traffic away from the
most congested path, for the reasons discussed in §2.4,
so when the least-congested paths happen to all be shortest-
hop paths then shortest-hop single-path TCP will do bet-
ter. This is what happened in TP2. (Of course it is not al-
ways true that the least congested paths are all shortest-
hop paths, so shortest-hop single-path TCP does poorly
in other cases.)

In summary, MPTCP performs well across a wide
range of traffic patterns. In some cases EWTCP achieves
throughput as good as MPTCP, and in other cases it
falls short. Even when its average throughput is as good
as MPTCP it is less fair.
We have comparedmultipath TCP to single-path TCP,

assuming that the single path is chosen at random from
the shortest-hop paths available. Randomization goes
some way towards balancing traffic, but it is likely to
cause some congestion hotspots. An alternative solu-
tion for balancing traffic is to use a centralized scheduler
which monitors large flows and solves an optimization
problem to calculate good routes for them [3]. We have
found that, in order to get comparable performance to
MPTCP, one may need to re-run the scheduler as of-
ten as every 100ms [22] which raises serious scalability
concerns. However, the exact numbers depend on the
dynamics of the traffic matrix.

5. MULTIPATH WIRELESS CLIENT
Modern mobile phones and devices such as Nokia’s

N900 have multiple wireless interfaces such asWiFi and
3G, yet only one of them is used for data at any given
time. With more and more applications requiring Inter-
net access, from email to navigation, multipath can im-
prove mobile users’ experience by allowing simultane-
ous use of both interfaces. This shields the user from the

inherently variable connectivity of wireless networks.
3G and WiFi have quite different link characteristics.

WiFi provides much higher throughput and short RTTs,
but in our tests its performance was very variable with
quite high loss rates, because there was significant in-
terference in the 2.4GHz band. 3G tends to vary over
longer timescales, and we found it to be overbuffered
leading to RTTs of well over a second. These differ-
ences provide a good test of the fairness goals and RTT
compensation algorithm developed in §2.5. The exper-
iments we describe here show that MPTCP gives users
at least as much throughput as single-path users, and
that the other multipath algorithms we have described
do worse.

Single-flow experiment. Our first experiments use a
laptop equipped with a 3G USB interface and a 802.11
network adapter, running our Linux implementation of
MPTCP. The laptop was placed in the same room as the
WiFi basestation, and 3G reception was good. The lap-
top did not move, so the path characteristics were rea-
sonably static. We ran 15 tests of 20 seconds each: 5
with single-path TCP on WiFi, 5 with single-path TCP
on 3G, and 5 with MPTCP. The average throughputs
(with standard deviations) were 14.4 (0.2), 2.1 (0.2) and
17.3 (0.7) Mb/s respectively. As we would wish, the
MPTCP user gets bandwidth roughly equal to the sum
of the bandwidths of the access links.

Competing-flows experiment. We repeated the exper-
iment, but now with competing single-path TCP flows
on each of the paths, as in Fig.14. In order to showcase
our algorithm for RTT compensation we repeated the
experiment but replacing MPTCP first with EWTCP
and then with COUPLED. The former does not have any
RTT compensation built in, although the technique we
used for MPTCP could be adapted. For the latter, we
do not know how to build in RTT compensation.

Fig.15 shows the total throughput obtained by each
of the three flows over the course of 5 minutes, one plot
for each of the three multipath algorithms. The top half

9

108 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of the figure shows the bandwidth achieved on the WiFi
path, the bottom half shows (inverted) the throughput
on the 3G path, and the range of the grey area extend-
ing into both halves shows the throughput the multipath
algorithms achieved on both paths.
The figure shows that only MPTCP gives the multi-

path flow a fair total throughput, i.e. approximately as
good as the better of the single-path competing flows,
which in this case is the WiFi flow. The pictures are
somewhat choppy: it seems that the WiFi basestation is
underbuffered, hence the TCP sawtooth leads to peaks
and troughs in throughput as measured at the receiver; it
also seems the 3G link has bursts of high speed, perhaps
triggered by buffer buildup. Despite these experimental
vicissitudes, the long-run averages show that MPTCP
does a much better job of getting fair total throughput.
The long-run average throughputs in Mb/s, over 5 min-
utes of each setup, are:

multipath TCP-WiFi TCP-3G
EWTCP 1.66 3.11 1.20
COUPLED 1.41 3.49 0.97
MPTCP 2.21 2.56 0.65

These numbers match the predictions in §2.3. COU-
PLED sends all its traffic on the less congested path so
it often chooses to send on the 3G path and hardly uses
the WiFi path. EWTCP splits its traffic so it gets the
average of WiFi and 3G throughput. Only MPTCP gets
close to the correct total throughput. The shortfall (2.21Mb/s
for MPTCP compared to 2.56Mb/s for the best single-
path TCP) may be due to difficulty in adapting to the
rapidly changing 3G link speed; we continue to investi-
gate how quickly multipath TCP should adapt to changes
in congestion.

Simulations. In order to test RTT compensation across
a wider range of scenarios, we simulated the topology
in Fig.14 with two wired links, with capacities C1 =
250pkt/s and C2 = 500pkt/s, and propagation delays
RTT1 = 500ms and RTT2 = 50ms. At first sight we
might expect each flow to get 250pkt/s. The simulation
outcome is very different: flow S1 gets 130pkt/s, flow
S2 gets 315pkt/s and flow M gets 305pkt/s; the drop
probabilities are p1 = 0.22% and p2 = 0.28%. Af-
ter some thought we realize this outcome is very nearly
what we designed the algorithm to achieve. As dis-
cussed in §2.5, flowM says ‘What would a single-path
TCP get on path 2, based on the current loss rate? I
should get at least as much!’ and decides its throughput
should be around 315pkt/s. It doesn’t say ‘What would
a single-path TCP get on path 2 if I used only path 2?’
which would give the answer 250pkt/s. The issue is that
the multipath flow does not take account of how its ac-
tions would affect drop probabilities when it decides on
its fair rate. It is difficult to see any practical alternative.

3

2

1

0

1

2

3

4

5

6

7

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (M

bp
s)

Time (min)

Multipath Subflows
Regular TCP Flows

WiFi Interface

3G Interface

Figure 17: Throughput of multipath and regular
TCP running simultaneously over 3G and WiFi.
The 3G graph is shown inverted, so the total multi-
path throughput (the grey area) can be seen clearly.

And nonetheless, the outcome in this case is still better
for both S1 and M than if flowM used only link 1, and
it is better for both S2 and M than if flowM used only
link 2.

We repeated the experiment, but with C1 = 400pkt/s,
RTT1 = 100ms, and a range of values of C2 (shown as
labels in Fig.16) and RTT2 (the horizontal axis). Flow
M aims to do as well as the better of flows S1 and S2.
Fig.16 shows it is within a few percent of this goal in all
cases except where the bandwidth delay product on link
2 is very small; in such cases there are problems due to
timeouts. Over all of these scenarios, flow M always
gets better throughput by using multipath than if it used
just the better of the two links; the average improvement
is 15%.

Mobile experiment. Having shown that our RTT com-
pensation algorithm works in a rather testing wireless
environment, we nowwish to see howMPTCP performs
when the client is mobile and both 3G and WiFi con-
nectivity are intermittent. We use the same laptop and
server as in the static experiment, but now the laptop
user moves between floors of the building. The building
has reasonable WiFi coverage on most floors but not on
the staircases. 3G coverage is acceptable but is some-
times heavily congested by other users.

The experiment starts with one TCP running over the
3G interface and one over WiFi, both downloading data
from an otherwise idle university server. A multipath
flow then starts, using both interfaces, downloading data
from the same server. Fig.17 shows the throughputs over
each link (each point is a 5s average). Again, WiFi is
shown above the dashed line, 3G is shown inverted be-
low the dashed line, and the total throughput of the mul-
tipath flow can be clearly seen from the vertical range of
the gray region.

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 109

During the experiment the subject moves around the
building. For the first 9 minutes the 3G path has less
congestion, so MPTCP would prefer to send its traffic
on that route. But it also wants to get as much through-
put as the higher-throughput path, in this case WiFi. The
fairness algorithm prevents it from sending this much
traffic on the 3G path, so as not to out-compete other
single path TCPs that might be using 3G, and so the re-
mainder is sent on WiFi. At 9 minutes the subject walks
downstairs to go to a coffee machine. On the stairwell
there is no WiFi coverage, but 3G coverage is better, so
MPTCP adapts and takes advantage. When the subject
leaves the stairwell, a new WiFi basestation is acquired,
and multipath quickly takes advantage of it. This single
trace shows the robustness advantage of multipath TCP,
and it also shows that it does a good job of utilizing dif-
ferent links simultaneously without harming competing
traffic on those links.

6. PROTOCOL IMPLEMENTATION
Although this paper primarily focuses on the conges-

tion control dynamics of MPTCP, the protocol changes
to TCP needed to implement multipath can be quite sub-
tle. In particular, we must to be careful to avoid dead-
lock in a number of scenarios, especially relating to buffer
management and flow control. In fact we discovered
there is little choice in many aspects of the design. There
are also many tricky issues regarding middleboxes which
further constrain the design, not described here. A more
complete exposition of these constraints can be found
in [21], and our protocol is precisely described in the
current mptcp draft [7].

Subflow establishment. Our implementation ofMPTCP
requires both client and server to have multipath exten-
sions. A TCP option in the SYN packets of the first sub-
flow is used to negotiate the use of multipath if both ends
support it, otherwise they fall back to regular TCP be-
havior. After this, additional subflows can be initiated;
a TCP option in the SYN packets of the new subflows
allows the recipient to tie the subflow into the existing
connection. We rely on multiple interfaces or multiple
IP addresses to obtain different paths; we have not yet
studied the question of when additional paths should be
started.

Loss Detection and Stream Reassembly. Rgeular TCP
uses a single sequence space for both loss detection and
reassembly of the application data stream. WithMPTCP,
loss is a subflow issue, but the application data stream
spans all subflows. To accomplish both goals using a
single sequence space, the sequence space would need
to be striped across the subflows. To detect loss, the
receiver would then need to use selective acknowledg-

ments and the sender would need to keep a scoreboard
of which packets were sent on each subflow. Retrans-
mitting packets on a different subflow creates an ambi-
guity, but the real problem is middleboxes that are un-
aware of MPTCP traffic. For example, the pf[19] fire-
wall can re-write TCP sequence numbers to improve the
randomness of the initial sequence number. If only one
of the subflows passes through such a firewall, the re-
ceiver cannot reliably reconstruct the data stream.
To avoid such issues, we separated the two roles of

sequence numbers. The sequence numbers and cumu-
lative ack in the TCP header are per-subflow, allowing
efficient loss detection and fast retransmission. Then to
permit reliable stream reassembly, an additional data se-
quence number is added stating where in the application
data stream the payload should be placed.

Flow Control. TCP’s flow control is implemented via
the combination of the receive window field and the ac-
knowledgment field in the TCP packet header. The re-
ceive window indicates the number of bytes beyond the
acknowledged sequence number that the receiver can
buffer. The sender is not permitted to send more than
this amount of additional data.
Multipath TCP also needs to implement flow control,

although packets now arrive overmultiple subflows. Two
choices seem feasible:
• separate buffer pools are maintained at the receiver

for each subflow, and their occupancy is signalled
relative to the subflow sequence space using the re-
ceive window field.

• a single buffer pool is maintained at the receiver,
and its occupancy is signalled relative to the data se-
quence space using the receive window field.

Unfortunately the former suffers from potential dead-
lock. Suppose subflow 1 stalls due to an outage, but
subflow 2’s receive buffer fills up. The packets received
from subflow 2 cannot be passed to the application be-
cause a packet from subflow 1 is still missing, but there
is no space in subflow 2’s receive window to resend the
packet from subflow 1 that is missing. To avoid this we
use a single shared buffer; all subflows report the receive
window relative to the last consecutively received data
in the data sequence space.
Does the data cumulative ack then need to be explicit,

or can it be inferred from subflow acks by keeping track
of which data corresponds to which subflow sequence
numbers?
Consider the following scenario: a receiver has suffi-

cient buffering for two packets6. In accordance with the
receive window, the sender sends two packets; data seg-
ment 1 is sent on subflow 1 with subflow sequence num-
6The same issue occurs with larger buffers

11

110 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ber 10, and data segment 2 is sent on subflow 2 with sub-
flow sequence number 20. The receiver acknowledges
the packets using subflow sequence numbers only; the
sender will infer which data is being acknowledged. Ini-
tially, the inferred cumulative ack is 0.
i. In the Ack for 10, the receiver acks data 1 in or-

der, but the receiving application has not yet read the
data, so relative to 1, the receive window is closed to
1 packet.

ii. In the Ack for 20, the receiver acks data 2 in order.
As the application still has not read, relative to 2 the
receive window is now zero.

iii. Unfortunately the acks are reordered simply because
the RTT on path 2 is shorter than that on path 1, a
common event. The sender receives the Ack for 20,
infers that 2 has been received but 1 has not. The
data cumulative ack is therefore still 0.

iv. When the ack for 10 arrives, the receiver infers that
1 and 2 have been received, so the data cumulative
ack is now 2. The receive window indicated is 1
packet, relative to the inferred cumulative ack of 2.
Thus the sender can send packet 3. Unfortunately,
the receiver cannot buffer 3 and must drop it.

In general, the problem is that although it is possible
to infer a data cumulative ack from the subflow acks,
it is not possible to reliably infer the trailing edge of
the receive window. The result is either missed sending
opportunities or dropped packets. This is not a corner
case; it will occur whenever RTTs differ so as to cause
the acks to arrive in a different order from that in which
they were sent.
To avoid this problem (and some others related to

middleboxes) we add an explicit data acknowledgment
field in addition to the subflow acknowledgment field in
the TCP header.

Encoding. How should be data sequence numbers and
data acknowledgments be encoded in TCP packets? Two
mechanisms seemed feasible: carry them in TCP op-
tions or embed them in the payload using an SSL-like
chunking mechanism. For data sequence numbers there
is no compelling reason to choose one or the other, but
for data acknowledgements the situation is more com-
plex.
For the sake of concreteness, let us assume that a hy-

pothetical payload encoding uses a chunked TLV struc-
ture, and that a data ack is contained in its own chunk,
interleaved with data chunks flowing in the same direc-
tion. As data acks are now part of the data stream, they
are subject to congestion control and flow control. This
can lead to potential deadlock scenarios.
Consider a scenario where A’s receive buffer is full

because the application has not read the data, but A’s ap-
plication wishes to send data to B whose receive buffer

is empty. This might occur for examplewhen B is pipelin-
ing requests to A, and A now needs to send the response
to an earlier request to B before reading the next request.
A sends its data, B stores it locally, and wants to send

the data ACK, but can’t do so: flow control imposed by
A’s receive window stops him. Because no data acks are
received from B, A cannot free its send buffer, so this
fills up and blocks the sending application on A. The
connection is now deadlocked. A’s application will only
read when it has finished sending data to B, but it cannot
do so because his send buffer is full. The send buffer can
only empty when A receives an data ack from B, but B
cannot send a data ack until A’s application reads. This
is a classic deadlock cycle.
In general, flow control of acks seems to be danger-

ous. Our implementation conveys data acks using TCP
options to avoid this and similar issues. Given this choice,
we also encode data sequence numbers in TCP options.

7. RELATED WORK
There has been a good deal of work on building mul-

tipath transport protocols [13, 27, 18, 12, 14, 6, 23, 7].
Most of this work focuses on the protocol mechanisms
needed to implement multipath transmission, with key
goals being robustness to long term path failures and to
short term variations in conditions on the paths. The
main issues are what we discussed in §6: how to split
sequence numbers across paths (i.e. whether to use one
sequence space for all subflows or one per subflow with
an extra connection-level sequence number), how to do
flow control (subflow, connection level or both), how to
ack, and so forth. Our protocol design in §6 has drawn
on this literature.
However, the main focus of this paper is congestion

control not protocol design. In most existing proposals,
the problem of shared bottlenecks (§2.1) is considered
but the other issues in §2 are not. Let us highlight the
congestion control characteristics of these proposals.

pTCP [12], CMT over SCTP[14] and M/TCP [23] use
uncoupled congestion control on each path, and are not
fair to competing single-path traffic in the general case.
mTCP [27] also performs uncoupled congestion con-

trol on each path. In an attempt to detect shared conges-
tion at bottlenecks it computes the correlation between
fast retransmit intervals on different subflows. It is not
clear how robust this detector is.
R-MTP [18] targets wireless links: it probes the band-

width available periodically for each subflow and ad-
justs the rates accordingly. To detect congestion it uses
packet interarrival times and jitter, and infers mounting
congestion when it observes increased jitter. This only
works when wireless links are the bottleneck.
The work in [11] is based on using EWTCP with dif-

ferent weights on each path, and adapting the weights to

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 111

achieve the outcomes described in §2.1–§2.2. It does not
address the problems identified in §2.3–§2.5, and in par-
ticular it has problems coping with heterogenous RTTs.

Network layer multipath. ECMP[25] achieves load
balancing at the flow level, without the involvement of
end-systems. It sends all packets from a given flow
along the same route in order that end-systems should
not see any packet re-ordering. ECMP and multipath
TCP complement each other. Multipath TCP can use
ECMP to get different paths through the network with-
out having multihomed endpoints. Different subflows of
the same multipath connection will have different five-
tuples (at least one port will differ) and will likely hash
onto a different path with ECMP. This interaction can
be readily used in data centers, where multiple paths are
available and ECMP is widely used.
Horizon [20] is a system for load balancing at the net-

work layer, for wireless mesh networks. Horizon net-
work nodes maintain congestion state and estimated de-
lay for each possible path towards the destination; hop-
by-hop backpressure is applied to achieve near-optimal
throughput, and the delay estimates let it avoid re-ordering.
Theoretical work suggests that inefficient outcomesmay
arise when both the end-systems and the network partic-
ipate in balancing traffic [1].

Application layer multipath. BitTorrent [4] is an ex-
ample of application layer multipath. Different chunks
of the same file are downloaded from different peers to
increase throughput. BitTorrent works at chunk granu-
larity, and only optimizes for throughput, downloading
more chunks from faster servers. Essentially BitTorrent
is behaving in a similar way to uncoupledmultipath con-
gestion control, albeit with the paths having different
endpoints. While uncoupled congestion control does not
balance flow rates, it nevertheless achieves some degree
of load balancing when we take into account flow sizes
[17, 26], by virtue of the fact that the less congested sub-
flow gets higher throughput and therefore fewer bytes
are put on the more congested subflow.

8. CONCLUSIONS & FUTURE WORK
We have demonstrated a working multipath conges-

tion control algorithm. It brings immediate practical
benefits: in §5 we saw it seamlessly balance traffic over
3G and WiFi radio links, as signal strength faded in and
out. It is safe to use: the fairness mechanism from §2.5
ensures that it does not harm other traffic, and that there
is always an incentive to turn it on because its aggregate
throughput is at least as good as would be achieved on
the best of its available paths. It should be beneficial
to the operation of the Internet, since it selects efficient
paths and balances congestion, as described in §2.2 and

demonstrated in §3, at least in so far as it can given topo-
logical constraints and the requirements of fairness.

We believe our multipath congestion control algorithm
is safe to deploy, either as part of the IETF’s efforts to
standardize Multipath TCP[7] or with SCTP, and it will
perform well. This is timely, as the rise of multipath-
capable smart phones and similar devices has made it
crucial to find a good way to use multiple interfaces
more effectively. Currently such devices use heuristics
to periodically choose the best interface, terminating ex-
isting connections and re-establishing new ones each time
a switch is made. Combined with a transport protocol
such as Multipath TCP or SCTP, our congestion control
mechanism avoids the need to make such binary deci-
sions, but instead allows continuous and rapid rebalanc-
ing on short timescales as wireless conditions change.
Our congestion control scheme is designed to be com-

patible with existing TCP behavior. However, existing
TCP has well-known limitations when coping with long
high-speed paths. To this end, Microsoft incorporate
Compound TCP[24] in Vista and Windows 7, although
it is not enabled by default, and recent Linux kernels
use Cubic TCP[9]. We believe that Compound TCP
should be a very good match for our congestion con-
trol algorithm. Compound TCP kicks in when a link
is underutilized to rapidly fill the pipe, but it falls back
to NewReno-like behavior once a queue starts to build.
Such a delay-based mechanism would be complemen-
tary to the work described in this paper, but would fur-
ther improve a multipath TCP’s ability to switch to a
previously congested path that suddenly has spare ca-
pacity. We intend to investigate this in future work.

9. REFERENCES
[1] D. Acemoglu, R. Johari, and A. Ozdaglar. Partially

optimal routing. IEEE Journal of selected areas in
communications, 2007.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proc.
SIGCOMM, 2008.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic flow scheduling for
data center networks. In Proc. NSDI, 2010.

[4] B. Cohen. Incentives build robustness in BitTorrent. In
Workshop on econonomics of peer-to-peer systems,
2003.

[5] J. Crowcroft and P. Oechslin. Differentiated end-to-end
Internet services using a weighted proportional fair
sharing TCP. CCR, 1998.

[6] Y. Dong, D. Wang, N. Pissinou, and J. Wang. Multi-path
load balancing in transport layer. In Proc. 3rd EuroNGI
Conference on Next Generation Internet Networks,
2007.

[7] A. Ford, C. Raiciu, and M. Handley. TCP extensions for
multipath operation with multiple addresses, Oct 2010.
IETF draft (work in progress).

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: a high performance,

13

112 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

server-centric network architecture for modular data
centers. In Proc. SIGCOMM, 2009.

[9] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev.,
42(5), 2008.

[10] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and
D. Towsley. Multi-path TCP: a joint congestion control
and routing scheme to exploit path diversity in the
Internet. IEEE/ACM Trans. Networking, 14(6), 2006.

[11] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and
H. Tokuda. Multipath Congestion Control for Shared
Bottleneck. In Proc. PFLDNeT workshop, May 2009.

[12] H.-Y. Hsieh and R. Sivakumar. A transport layer
approach for achieving aggregate bandwidths on
multi-homed mobile hosts. In Proc. MobiCom ’02,
pages 83–94, New York, NY, USA, 2002. ACM.

[13] C. Huitema. Multi-homed TCP. Internet draft, IETF,
1995.

[14] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent
multipath transfer using SCTP multihoming over
independent end-to-end paths. IEEE/ACM Trans. Netw.,
14(5):951–964, 2006.

[15] F. Kelly and T. Voice. Stability of end-to-end algorithms
for joint routing and rate control. CCR, 35(2), Apr. 2005.

[16] T. Kelly. Scalable TCP: improving performance in
highspeed wide area networks. SIGCOMM Comput.
Commun. Rev., 33(2):83–91, 2003.

[17] P. Key, L. Massoulié, and D. Towsley. Path selection and
multipath congestion control. In Proc. IEEE Infocom,
May 2007. Also appeared in proceedings of IEEE
ICASSP 2007.

[18] L. Magalhaes and R. Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
ICNP, page 0165, 2001.

[19] PF: the OpenBSD Packet Filter. OpenBSD 4.7,
www.openbsd.org/faq/pf, retrieved Sep 2010.

[20] B. Radunović, C. Gkantsidis, D. Gunawardena, and
P. Key. Horizon: balancing TCP over multiple paths in
wireless mesh network. In Proc. MobiCom ’08, 2008.

[21] C. Raiciu, M. Handley, and A. Ford. Multipath TCP
design decisions. Work in progress,
www.cs.ucl.ac.uk/staff/C.Raiciu/
files/mtcp-design.pdf, 2009.

[22] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh,
D. Wischik, and M. Handley. Data center networking
with multipath TCP. In Hotnets, 2010.

[23] K. Rojviboonchai and H. Aida. An evaluation of
multi-path transmission control protocol (M/TCP) with
robust acknowledgement schemes. IEICE Trans.
Communications, 2004.

[24] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
Compound TCP approach for high-speed and long
distance networks. In Proc. IEEE INFOCOM 2006,
pages 1–12, April 2006.

[25] D. Thaler and C. Hopps. Multipath Issues in Unicast
and Multicast Next-Hop Selection. RFC 2991
(Informational), Nov. 2000.

[26] B. Wang, W. Wei, J. Kurose, D. Towsley, K. R. Pattipati,
Z. Guo, and Z. Peng. Application-layer multipath data
transfer via TCP: schemes and performance tradeoffs.
Performance Evaluation, 64(9–12), 2007.

[27] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using redundant
paths. In Proc USENIX ’04, 2004.

Appendix
We now prove that the equilibriumwindow sizes of MPTCP
satisfy the fairness goals in §2.5. The rough intuition is
that if we use SEMICOUPLED from §2.4, and addition-
ally ensure (4), then the set of bottlenecked paths in-
creases as a increases. The proof involves identifying
the order in which paths become bottlenecked, to permit
an analysis similar to §2.5.
First define

i(S) =
maxr∈S

√
ŵr/RTTr

∑

r∈S ŵr/RTTr

and assume for convenience that the window sizes are
kept in the order

√
ŵ1

RTT1
≤

√
ŵ2

RTT2
≤ · · ·

√
ŵn

RTTn
.

Note that with this ordering, the equilibrium window in-
crease (1) reduces to

min
S⊆R:r∈S

ŵmax(S)/RTT2max(S)
(
∑

s∈S ws/RTTs
)2

= min
r≤u≤n

ŵu/RTT2u
(
∑

t≤u wt/RTTt
)2

i.e. it can be computed with a linear search not a combi-
natorial search.

At equilibrium, assuming drop probabilities are small
so 1 − pr ≈ 1, the window sizes satisfy the balance
equations

min
S:r∈S

i(S)2 = prŵr/2 for each r ∈ R.

Rearranging this, and writing it in terms of ŵr =
√

2/pr,

ŵTCP
r =

√

ŵr max
S:r∈S

1/i(S). (7)

Now take any T ⊆ R. Rearranging the definition of
i(T), and applying some simple algebra, and substitut-
ing in (7),
∑

r∈T

ŵr

RTTr
= max

r∈T

1

RTTr

√

ŵr/i(T)

≤ max
r∈T

1

RTTr

√

ŵr max
S:r∈S

1/i(S) = max
r∈T

ŵTCP
r

RTTr

.

Since T was arbitrary, this proves we satisfy (4).
To prove (3), applying (7) at r = n in conjunction

with the ordering on window sizes, we get
ŵTCP

n

RTTn
=

∑

r

ŵr

RTTr
.

One can also show that for all r, ŵTCP
r /RTTr ≤ ŵTCP

n /RTTn;
the proof is by induction on r starting at r = n, and is
omitted. These two facts imply (3).

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 113

CIEL: a universal execution engine for distributed data-flow computing

Derek G. Murray Malte Schwarzkopf Christopher Smowton
Steven Smith Anil Madhavapeddy Steven Hand

University of Cambridge Computer Laboratory

Abstract
This paper introduces CIEL, a universal execution en-
gine for distributed data-flow programs. Like previous
execution engines, CIEL masks the complexity of dis-
tributed programming. Unlike those systems, a CIEL job
can make data-dependent control-flow decisions, which
enables it to compute iterative and recursive algorithms.

We have also developed Skywriting, a Turing-
complete scripting language that runs directly on CIEL.
The execution engine provides transparent fault toler-
ance and distribution to Skywriting scripts and high-
performance code written in other programming lan-
guages. We have deployed CIEL on a cloud computing
platform, and demonstrate that it achieves scalable per-
formance for both iterative and non-iterative algorithms.

1 Introduction

Many organisations have an increasing need to process
large data sets, and a cluster of commodity machines on
which to process them. Distributed execution engines—
such as MapReduce [18] and Dryad [26]—have become
popular systems for exploiting such clusters. These sys-
tems expose a simple programming model, and auto-
matically handle the difficult aspects of distributed com-
puting: fault tolerance, scheduling, synchronisation and
communication. MapReduce and Dryad can be used to
implement a wide range of algorithms [3, 39], but they
are awkward or inefficient for others [12, 21, 25, 28, 34].
The problems typically arise with iterative algorithms,
which underlie many machine-learning and optimisation
problems, but require a more expressive programming
model and a more powerful execution engine. To address
these limitations, and extend the benefits of distributed
execution engines to a wider range of applications, we
have developed Skywriting and CIEL.

Skywriting is a scripting language that allows the
straightforward expression of iterative and recursive

task-parallel algorithms using imperative and functional
language syntax [31]. Skywriting scripts run on CIEL,
an execution engine that provides a universal execu-
tion model for distributed data-flow. Like previous sys-
tems, CIEL coordinates the distributed execution of a set
of data-parallel tasks arranged according to a data-flow
DAG, and hence benefits from transparent scaling and
fault tolerance. However CIEL extends previous mod-
els by dynamically building the DAG as tasks execute.
As we will show, this conceptually simple extension—
allowing tasks to create further tasks—enables CIEL to
support data-dependent iterative or recursive algorithms.
We present the high-level architecture of CIEL in Sec-
tion 3, and explain how Skywriting maps onto CIEL’s
primitives in Section 4.

Our implementation incorporates several additional
features, described in Section 5. Like existing systems,
CIEL provides transparent fault tolerance for worker
nodes. Moreover, CIEL can tolerate failures of the cluster
master and the client program. To improve resource util-
isation and reduce execution latency, CIEL can memoise
the results of tasks. Finally, CIEL supports the streaming
of data between concurrently-executing tasks.

We have implemented a variety of applications in
Skywriting, including MapReduce-style (grep, word-
count), iterative (k-means, PageRank) and dynamic-
programming (Smith-Waterman, option pricing) algo-
rithms. In Section 6 we evaluate the performance of
some of these applications when run on a CIEL cluster.

2 Motivation

Several researchers have identified limitations in the
MapReduce and Dryad programming models. These
systems were originally developed for batch-oriented
jobs, namely large-scale text mining for information re-
trieval [18, 26]. They are designed to maximise through-
put, rather than minimise individual job latency. This is
especially noticeable in iterative computations, for which

114 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MapReduce Dryad Pregel Iterative MR Piccolo CIEL

Feature [2, 18] [26] [28] [12, 21] [34]
Dynamic control flow � � � � � �

Task dependencies Fixed (2-stage) Fixed (DAG) Fixed (BSP) Fixed (2-stage) Fixed (1-stage) Dynamic
Fault tolerance Transparent Transparent Transparent � Checkpoint Transparent
Data locality � � � � � �

Transparent scaling � � � � � �

Figure 1: Analysis of the features provided by existing distributed execution engines.

multiple jobs are chained together and the job latency is
multiplied [12, 21, 25, 28, 34].

Nevertheless, MapReduce—in particular its open-
source implementation, Hadoop [2]—remains a pop-
ular platform for parallel iterative computations with
large inputs. For example, the Apache Mahout ma-
chine learning library uses Hadoop as its execution en-
gine [3]. Several of the Mahout algorithms—such as
k-means clustering and singular value decomposition—
are iterative, comprising a data-parallel kernel inside a
while-not-converged loop. Mahout uses a driver pro-
gram that submits multiple jobs to Hadoop and performs
convergence testing at the client. However, since the
driver program executes logically (and often physically)
outside the Hadoop cluster, each iteration incurs job-
submission overhead, and the driver program does not
benefit from transparent fault tolerance. These problems
are not unique to Hadoop, but are shared with both the
original version of MapReduce [18] and Dryad [26].

The computational power of a distributed execution
engine is determined by the data flow that it can express.
In MapReduce, the data flow is limited to a bipartite
graph parameterised by the number of map and reduce
tasks; Dryad allows data flow to follow a more general
directed acyclic graph (DAG), but it must be fully spec-
ified before starting the job. In general, to support it-
erative or recursive algorithms within a single job, we
need data-dependent control flow—i.e. the ability to cre-
ate more work dynamically, based on the results of pre-
vious computations. At the same time, we wish to retain
the existing benefits of task-level parallelism: transparent
fault tolerance, locality-based scheduling and transparent
scaling. In Figure 1, we analyse a range of existing sys-
tems in terms of these objectives.

MapReduce and Dryad already support transparent
fault tolerance, locality-based scheduling and transparent
scaling [18, 26]. In addition, Dryad supports arbitrary
task dependencies, which enables it to execute a larger
class of computations than MapReduce. However, nei-
ther supports data-dependent control flow, so the work in
each computation must be statically pre-determined.

A variety of systems provide data-dependent control
flow but sacrifice other functionality. Google’s Pregel

is the largest-scale example of a distributed execution
engine with support for control flow [28]. Pregel is a
Bulk Synchronous Parallel (BSP) system designed for
executing graph algorithms (such as PageRank), and
Pregel computations are divided into “supersteps”, dur-
ing which a “vertex method” is executed for each vertex
in the graph. Crucially, each vertex can vote to terminate
the computation, and the computation terminates when
all vertices vote to terminate. Like a simple MapRe-
duce job, however, a Pregel computation only operates
on a single data set, and the programming model does
not support the composition of multiple computations.

Two recent systems add iteration capabilities to
MapReduce. CGL-MapReduce is a new implementation
of MapReduce that caches static (loop-invariant) data in
RAM across several MapReduce jobs [21]. HaLoop ex-
tends Hadoop with the ability to evaluate a convergence
function on reduce outputs [12]. Neither system provides
fault tolerance across multiple iterations, and neither can
support Dryad-style task dependency graphs.

Finally, Piccolo is a new programming model for data-
parallel programming that uses a partitioned in-memory
key-value table to replace the reduce phase of MapRe-
duce [34]. A Piccolo program is divided into “kernel”
functions, which are applied to table partitions in paral-
lel, and typically write key-value pairs into one or more
other tables. A “control” function coordinates the kernel
functions, and it may perform arbitrary data-dependent
control flow. Piccolo supports user-assisted checkpoint-
ing (based on the Chandy-Lamport algorithm), and is
limited to fixed cluster membership. If a single machine
fails, the entire computation must be restarted from a
checkpoint with the same number of machines.

We believe that CIEL is the first system to support all
five goals in Figure 1, but it is not a panacea. CIEL
is designed for coarse-grained parallelism across large
data sets, as are MapReduce and Dryad. For fine-grained
tasks, a work-stealing scheme is more appropriate [11].
Where the entire data set can fit in RAM, Piccolo may
be more efficient, because it can avoid writing to disk.
Ultimately, achieving the highest performance requires
significant developer effort, using a low-level technique
such as explicit message passing [30].

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 115

B C

Dz

v w

x y

Concrete
object

Future
object

Result
(future)

Root task SPAWNS Child task

DELEGATES

A

u

(a) Dynamic task graph

Task ID Dependencies Expected outputs
A { u } �z
B { v } x
C { w } y
D { x, y } z

Object ID Produced by Locations
u – { host19, host85 }
v – { host21, host23 }
w – { host22, host57 }
x B ∅
y C ∅
z �A D ∅

(b) Task and object tables

Figure 2: A CIEL job is represented by a dynamic task graph, which contains tasks and objects (§3.1). In this example,
root task A spawns tasks B, C and D, and delegates the production of its result to D. Internally, CIEL uses task and
object tables to represent the graph (§3.3).

3 CIEL

CIEL is a distributed execution engine that can execute
programs with arbitrary data-dependent control flow. In
this section, we first describe the core abstraction that
CIEL supports: the dynamic task graph (§3.1). We then
describe how CIEL executes a job that is represented as
a dynamic task graph (§3.2). Finally, we describe the
concrete architecture of a CIEL cluster that is used for
distributed data-flow computing (§3.3).

3.1 Dynamic task graphs

In this subsection, we define the three CIEL primitives—
objects, references and tasks—and explain how they are
related in a dynamic task graph (Figure 2).

CIEL is a data-centric execution engine: the goal of
a CIEL job is to produce one or more output objects.
An object is an unstructured, finite-length sequence of
bytes. Every object has a unique name: if two objects
exist with the same name, they must have the same con-
tents. To simplify consistency and replication, an object
is immutable once it has been written, but it is sometimes
possible to append to an object (§5.3).

It is helpful to be able to describe an object without
possessing its full contents; CIEL uses references for this
purpose. A reference comprises a name and a set of lo-
cations (e.g. hostname-port pairs) where the object with
that name is stored. The set of locations may be empty:
in that case, the reference is a future reference to an ob-
ject that has not yet been produced. Otherwise, it is a
concrete reference, which may be consumed.

A CIEL job makes progress by executing tasks. A
task is a non-blocking atomic computation that executes
completely on a single machine. A task has one or more

dependencies, which are represented by references, and
the task becomes runnable when all of its dependencies
become concrete. The dependencies include a special
object that specifies the behaviour of the task (such as an
executable binary or a Java class) and may impose some
structure over the other dependencies. To simplify fault
tolerance (§5.2), CIEL requires that all tasks compute a
deterministic function of their dependencies. A task also
has one or more expected outputs, which are the names of
objects that the task will either create or delegate another
task to create.

Tasks can have two externally-observable behaviours.
First, a task can publish one or more objects, by cre-
ating a concrete reference for those objects. In particu-
lar, the task can publish objects for its expected outputs,
which may cause other tasks to become runnable if they
depend on those outputs. To support data-dependent con-
trol flow, however, a task may also spawn new tasks that
perform additional computation. CIEL enforces the fol-
lowing conditions on task behaviour:

1. For each of its expected outputs, a task must either
publish a concrete reference, or spawn a child task
with that name as an expected output. This ensures
that, as long as the children eventually terminate,
any task that depends on the parent’s output will
eventually become runnable.

2. A child task must only depend on concrete refer-
ences (i.e. objects that already exist) or future refer-
ences to the outputs of tasks that have already been
spawned (i.e. objects that are already expected to be
published). This prevents deadlock, as a cycle can-
not form in the dependency graph.

The dynamic task graph stores the relation between
tasks and objects. An edge from an object to a task means

116 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

that the task depends on that object. An edge from a task
to an object means that the task is expected to output
the object. As a job runs, new tasks are added to the
dynamic task graph, and the edges are rewritten when a
newly-spawned task is expected to produce an object.

The dynamic task graph provides low-level data-
dependent control flow that resembles tail recursion: a
task either produces its output (analogous to returning a
value) or spawns a new task to produce that output (anal-
ogous to a tail call). It also provides facilities for data-
parallelism, since independent tasks can be dispatched
in parallel. However, we do not expect programmers
to construct dynamic task graphs manually, and instead
we provide the Skywriting script language for generating
these graphs programmatically (§4).

3.2 Evaluating objects
Given a dynamic task graph, the role of CIEL is to eval-
uate one or more objects that correspond to the job out-
puts. Indeed, a CIEL job can be specified as a single
root task that has only concrete dependencies, and an
expected output that names the final result of the com-
putation. This leads to two natural strategies, which are
variants of topological sorting:

Eager evaluation. Since the task dependencies form a
DAG, at least one task must have only concrete de-
pendencies. Start by executing the tasks with only
concrete dependencies; subsequently execute tasks
when all of their dependencies become concrete.

Lazy evaluation. Seek to evaluate the expected output
of the root task. To evaluate an object, identify the
task, T , that is expected to produce the object. If T
has only concrete dependencies, execute it immedi-
ately; otherwise, block T and recursively evaluate
all of its unfulfilled dependencies using the same
procedure. When the inputs of a blocked task be-
come concrete, execute it. When the production of
a required object is delegated to a spawned task, re-
evaluate that object.

When we first developed CIEL, we experimented with
both strategies, but switched exclusively to lazy evalua-
tion since it more naturally supports the fault-tolerance
and memoisation features that we describe in §5.

3.3 System architecture
Figure 3 shows the architecture of a CIEL cluster. A sin-
gle master coordinates the end-to-end execution of jobs,
and several workers execute individual tasks.

The master maintains the current state of the dynamic
task graph in the object table and task table (Figure 2(b)).

Worker
Master

Object
table

Task
table

Worker
table

Sc
he

du
le

r

WorkerWorker

Ex
ec

ut
or

s

Java

.NET

SW

...

Object
store

DISPATCH TASK

PUBLISH OBJECT

SPAWN TASKS

DATA I/O

Figure 3: A CIEL cluster has a single master and many
workers. The master dispatches tasks to the workers for
execution. After a task completes, the worker publishes
a set of objects and may spawn further tasks.

Each row in the object table contains the latest refer-
ence for that object, including its locations (if any), and
a pointer to the task that is expected to produce it (if any:
an object will not have a task pointer if it is loaded into
the cluster by an external tool). Each row in the task ta-
ble corresponds to a spawned task, and contains pointers
to the references on which the task depends.

The master scheduler is responsible for making
progress in a CIEL computation: it lazily evaluates out-
put objects and pairs runnable tasks with idle workers.
Since task inputs and outputs may be very large (on the
order of gigabytes per task), all bulk data is stored on the
workers themselves, and the master handles references.
The master uses a multiple-queue-based scheduler (de-
rived from Hadoop [2]) to dispatch tasks to the worker
nearest the data. If a worker needs to fetch a remote ob-
ject, it reads the object directly from another worker.

The workers execute tasks and store objects. At
startup, a worker registers with the master, and periodi-
cally sends a heartbeat to demonstrate its continued avail-
ability. When a task is dispatched to a worker, the ap-
propriate executor is invoked. An executor is a generic
component that prepares input data for consumption and
invokes some computation on it, typically by executing
an external process. We have implemented simple execu-
tors for Java, .NET, shell-based and native code, as well
as a more complex executor for Skywriting (§4).

Assuming that a worker executes a task successfully,
it will reply to the master with the set of references that
it wishes to publish, and a list of task descriptors for any
new tasks that it wishes to spawn. The master will then
update the object table and task table, and re-evaluate the
set of tasks now runnable.

In addition to the master and workers, there will be one
or more clients (not shown). A client’s role is minimal: it
submits a job to the master, and either polls the master to
discover the job status or blocks until the job completes.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 117

function process_chunk(chunk, prev_result) {
// Execute native code for chunk processing.
// Returns a reference to a partial result.
return spawn_exec(...);

}

function is_converged(curr_result, prev_result) {
// Execute native code for convergence test.
// Returns a reference to a boolean.
return spawn_exec(...)[0];

}

input_data = [ref("ciel://host137/chunk0"),
ref("ciel://host223/chunk1"),
...];

curr = ...; // Initial guess at the result.

do {
prev = curr;
curr = [];
for (chunk in input_data) {
curr += process_chunk(chunk, prev);

}
} while (!*is_converged(curr, prev));

return curr;

Figure 4: Iterative computation implemented in Skywrit-
ing. input data is a list of n input chunks, and curr is
initialised to a list of n partial results.

A job submission message contains a root task, which
must have only concrete dependencies. The master adds
the root task to the task table, and starts the job by lazily
evaluating its output (§3.2).

Note that CIEL currently uses a single (active) mas-
ter for simplicity. Despite this, our implementation can
recover from master failure (§5.2), and it did not cause
a performance bottleneck during our evaluation (§6).
Nonetheless, if it became a concern in future, it would be
possible to partition the master state—i.e. the task table
and object table—between several hosts, while retaining
the functionality of a single logical master.

4 Skywriting

Skywriting is a language for expressing task-level paral-
lelism that runs on top of CIEL. Skywriting is Turing-
complete, and can express arbitrary data-dependent con-
trol flow using constructs such as while loops and re-
cursive functions. Figure 4 shows an example Skywrit-
ing script that computes an iterative algorithm; we use a
similar structure in the k-means experiment (§6.2).

We introduced Skywriting in a previous paper [31],
but briefly restate the key features here:

• ref(url) returns a reference to the data stored
at the given URL. The function supports common
URL schemes, and the custom ciel scheme, which
accesses entries in the CIEL object table. If the URL
is external, CIEL downloads the data into the cluster
as an object, and assigns a name for the object.

function f(x) {
 ...
}
return f(42);

Skywriting script

T

t0 result

(a) Skywriting task

T

t1 tn...

Arguments of T

n results

jar = z
inputs = x, y
cls = a.b.Foo x y z

(b) Other (e.g. Java) tasks

f(); g();

Continuation of T
a = spawn(f);
b = spawn(g);
return *a + *b;

a = spawn(f);
b = spawn(g);
return *a + *b;

F G

T

T

t0

(c) Implicit continuation due to dereferencing

Figure 5: Task creation in Skywriting. Tasks can be cre-
ated using (a) spawn(), (b) spawn exec() and (c) the
dereference (*) operator.

• spawn(f, [arg, ...]) spawns a parallel task
to evaluate f(arg, ...). Skywriting functions
are pure: functions cannot have side-effects, and all
arguments are passed by value. The return value is
a reference to the result of f(arg, ...).

• exec(executor, args, n) synchronously runs
the named executor with the given args. The ex-
ecutor will produce n outputs. The return value is a
list of n references to those outputs.

• spawn exec(executor, args, n) spawns a
parallel task to run the named executor with the
given args. As with exec(), the return value is a
list of n references to those outputs.

• The dereference (unary-*) operator can be applied
to any reference; it loads the referenced data into
the Skywriting execution context, and evaluates to
the resulting data structure.

In the following, we describe how Skywriting maps on
to CIEL primitives. We describe how tasks are cre-
ated (§4.1), how references are used to facilitate data-
dependent control flow (§4.2), and the relationship be-
tween Skywriting and other frameworks (§4.3).

118 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.1 Creating tasks

The distinctive feature of Skywriting is its ability to
spawn new tasks in the middle of executing a job. The
language provides two explicit mechanisms for spawning
new tasks (the spawn() and spawn exec() functions)
and one implicit mechanism (the *-operator). Figure 5
summarises these mechanisms.

The spawn() function creates a new task to run the
given Skywriting function. To do this, the Skywriting
runtime first creates a data object that contains the new
task’s environment, including the text of the function to
be executed and the values of any arguments passed to
the function. This object is called a Skywriting continu-
ation, because it encapsulates the state of a computation.
The runtime then creates a task descriptor for the new
task, which includes a dependency on the new continu-
ation. Finally, it assigns a reference for the task result,
which it returns to the calling script. Figure 5(a) shows
the structure of the created task.

The spawn exec() function is a lower-level task-
creation mechanism that allows the caller to invoke code
written in a different language. Typically, this function is
not called directly, but rather through a wrapper for the
relevant executor (e.g. the built-in java() library func-
tion). When spawn exec() is called, the runtime seri-
alises the arguments into a data object and creates a task
that depends on that object (Figure 5(b)). If the argu-
ments to spawn exec() include references, the runtime
adds those references to the new task’s dependencies, to
ensure that CIEL will not schedule the task until all of
its arguments are available. Again, the runtime creates
references for the task outputs, and returns them to the
calling script. We discuss how names are chosen in §5.1.

If the task attempts to dereference an object that has
not yet been created—for example, the result of a call
to spawn()—the current task must block. However,
CIEL tasks are non-blocking: all synchronisation (and
data-flow) must be made explicit in the dynamic task
graph (§3.1). To resolve this contradiction, the runtime
implicitly creates a continuation task that depends on
the dereferenced object and the current continuation (i.e.
the current Skywriting execution stack). The new task
therefore will only run when the dereferenced object has
been produced, which provides the necessary synchro-
nisation. Figure 5(c) shows the dependency graph that
results when a task dereferences the result of spawn().

A task terminates when it reaches a return statement
(or it blocks on a future reference). A Skywriting task has
a single output, which is the value of the expression in the
return statement. On termination, the runtime stores
the output in the local object store, publishes a concrete
reference to the object, and sends a list of spawned tasks
to the master, in order of creation.

Skywriting ensures that the dynamic task graph re-
mains acyclic. A task’s dependencies are fixed when
the task-creation function is evaluated, which means
that they can only include references that are stored in
the local Skywriting scope before evaluating the func-
tion. Therefore, a task cannot depend on itself or any of
its descendants. Note that the results of spawn() and
spawn exec() are first-class futures [24]: a Skywriting
task can pass the references in its return value or in a sub-
sequent call to the task-creation functions. This enables a
script to create arbitrary acyclic dependency graphs, such
as the MapReduce dependency graph (§4.3).

4.2 Data-dependent control flow
Skywriting is designed to coordinate data-centric com-
putations, which means that the objects in the computa-
tion can be divided into two spaces:

Data space. Contains large data objects that may be up
to several gigabytes in size.

Coordination space. Contains small objects—such as
integers, booleans, strings, lists and dictionaries—
that determine the control flow.

In general, objects in the data space are processed by pro-
grams written in compiled languages, to achieve better
I/O or computational performance than Skywriting can
provide. In existing distributed execution engines (such
as MapReduce and Dryad), the data space and coordi-
nation space are disjoint, which prevents these systems
from supporting data-dependent control flow.

To support data-dependent control flow, data must be
able to pass from the data space into the coordination
space, so that it can help to determine the control flow.
In Skywriting, the *-operator transforms a reference to
a (data space) object into a (coordination space) value.
The producing task, which may be run by any executor,
must write the referenced object in a format that Sky-
writing can recognise; we use JavaScript Object Notation
(JSON) for this purpose [4]. This serialisation format is
only used for references that are passed to Skywriting,
and the majority of executors use the appropriate binary
format for their data.

4.3 Other languages and frameworks
Systems like MapReduce have become popular, at least
in part, because of their simple interface: a developer can
specify a whole distributed computation with just a pair
of map() and reduce() functions. To demonstrate that
Skywriting approaches this level of simplicity, Figure 6
shows an implementation of the MapReduce execution
model, taken from the Skywriting standard library.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 119

function apply(f, list) {
outputs = [];
for (i in range(len(list))) {
outputs[i] = f(list[i]);

}
return outputs;

}

function shuffle(inputs, num_outputs) {
outputs = [];
for (i in range(num_outputs)) {
outputs[i] = [];
for (j in range(len(inputs))) {
outputs[i][j] = inputs[j][i];

}
}
return outputs;

}

function mapreduce(inputs, mapper, reducer, r) {
map_outputs = apply(mapper, inputs);
reduce_inputs = shuffle(map_outputs, r);
reduce_outputs = apply(reducer, reduce_inputs);
return reduce_outputs;

}

Figure 6: Implementation of the MapReduce program-
ming model in Skywriting. The user provides a list of in-
puts, a mapper function, a reducer function and the num-
ber of reducers to use.

The mapreduce() function first applies mapper to
each element of inputs. mapper is a Skywriting func-
tion that returns a list of r elements. The map outputs
are then shuffled, so that the ith output of each map be-
comes an input to the ith reduce. Finally, the reducer

function is applied r times to the collected reduce in-
puts. In typical use, the inputs to mapreduce() are data
objects containing the input splits, and the mapper and
reducer functions invoke spawn exec() to perform
computation in another language.

Note that the mapper function is responsible for par-
titioning data amongst the reducers, and the reducer

function must merge the inputs that it receives. The im-
plementation of mapper may also incorporate a com-
biner, if desired [18]. To simplify development, we have
ported portions of the Hadoop MapReduce framework to
run as CIEL tasks, and provide helper functions for par-
titioning, merging, and processing Hadoop file formats.

Any higher-level language that is compiled into a DAG
of tasks can also be compiled into a Skywriting pro-
gram, and executed on a CIEL cluster. For example,
one could develop Skywriting back-ends for Pig [32]
and DryadLINQ [39], raising the possibility of extending
those languages with support for unbounded iteration.

5 Implementation issues

The current implementation of CIEL and Skywriting
contains approximately 9,500 lines of Python code, and
a few hundred lines of C, Java and other languages in the

executor bindings. All of the source code, along with a
suite of example Skywriting programs (including those
used to evaluate the system in §6), is available to down-
load from our project website:
http://www.cl.cam.ac.uk/netos/ciel/

The remainder of this section describes three interest-
ing features of our implementation: memoisation (§5.1),
master fault tolerance (§5.2) and streaming (§5.3).

5.1 Deterministic naming & memoisation
Recall that all objects in a CIEL cluster have a unique
name. In this subsection, we show how an appropriate
choice of names can enable memoisation.

Our original implementation of CIEL used globally-
unique identifiers (UUIDs) to identify all data objects.
While this was a conceptually simple scheme, it compli-
cated fault tolerance (see following subsection), because
the master had to record the generated UUIDs to support
deterministic task replay after a failure.

This motivated us to reconsider the choice of names.
To support fault-tolerance, existing systems assume that
individual tasks are deterministic [18, 26], and CIEL
makes the same assumption (§3.1). It follows that two
tasks with the same dependencies—including the exe-
cutable code as a dependency—will have identical be-
haviour. Therefore the n outputs of a task created with
the following Skywriting statement

result = spawn_exec(executor, args, n);

will be completely determined by executor, args, n
and their indices. We could therefore construct a name
for the ith output by concatenating executor, args,
n and i, with appropriate delimiters. However, since
args may itself contain references, names could grow
to an unmanageable length. We therefore use a collision-
resistant hash function, H, to compute a digest of args
and n, which gives the resulting name:

executor : H(args||n) : i

We currently use the 160-bit SHA-1 hash function to
generate the digest.

Recall the lazy evaluation algorithm from §3.2: tasks
are only executed when their expected outputs are needed
to resolve a dependency for a blocked task. If a new
task’s outputs have already been produced by a previous
task, the new task need not be executed at all. Hence,
as a result of deterministic naming, CIEL memoises task
results, which can improve the performance of jobs that
perform repetitive tasks.

The goals of our memoisation scheme are similar to
the recent Nectar system [23]. Nectar performs static

120 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

analysis on DryadLINQ queries to identify subqueries
that have previously been computed on the same data.
Nectar is implemented at the DryadLINQ level, which
enables it to make assumptions about the semantics of
the each task, and the cost/benefit ratio of caching inter-
mediate results. For example, Nectar can re-use the re-
sults of commutative and associative aggregations from
a previous query, if the previous query operated on a pre-
fix of the current query’s input. The expressiveness of
CIEL jobs makes it more challenging to run these analy-
ses, and we are investigating how simple annotations in a
Skywriting program could provide similar functionality
in our system.

5.2 Fault tolerance

A distributed execution engine must continue to make
progress in the face of network and computer faults. As
jobs become longer—and, since CIEL allows unbounded
iteration, they may become extremely long—the proba-
bility of experiencing a fault increases. Therefore, CIEL
must tolerate the failure of any machine involved in the
computation: the client, workers and master.

Client fault tolerance is trivial, since CIEL natively
supports iterative jobs and manages job execution from
start to finish. The client’s only role is to submit the
job: if the client subsequently fails, the job will con-
tinue without interruption. By contrast, in order to exe-
cute an iterative job using a non-iterative framework, the
client must run a driver program that performs all data-
dependent control flow (such as convergence testing).
Since the driver program executes outside the frame-
work, it does not benefit from transparent fault tolerance,
and the developer must provide this manually, for exam-
ple by checkpointing the execution state. In our system, a
Skywriting script replaces the driver program, and CIEL
executes the whole script reliably.

Worker fault tolerance in CIEL is similar to
Dryad [26]. The master receives periodic heartbeat mes-
sages from each worker, and considers a worker to have
failed if (i) it has not sent a heartbeat after a specified
timeout, and (ii) it does not respond to a reverse message
from the master. At this point, if the worker has been
assigned a task, that task is deemed to have failed.

When a task fails, CIEL automatically re-executes it.
However, if it has failed because its inputs were stored
on a failed worker, the task is no longer runnable. In
that case, CIEL recursively re-executes predecessor tasks
until all of the failed task’s dependencies are resolved.
To achieve this, the master invalidates the locations in
the object table for each missing input, and lazily re-
evaluates the missing inputs. Other tasks that depend on
data from the failed worker will also fail, and these are
similarly re-executed by the master.

Master fault tolerance is also supported in CIEL. In
MapReduce and Dryad, a job fails completely if its mas-
ter process fails [18, 26]; in Hadoop, all jobs fail if the
JobTracker fails [2]; and master failure will usually cause
driver programs that submit multiple jobs to fail. How-
ever, in CIEL, all master state can be derived from the
set of active jobs. At a minimum, persistently storing the
root task of each active job allows a new master to be
created and resume execution immediately. CIEL pro-
vides three complementary mechanisms that extend mas-
ter fault tolerance: persistent logging, secondary masters
and object table reconstruction.

When a new job is created, the master creates a log
file for the job, and synchronously writes its root task
descriptor to the log. By default, it writes the log to a log
directory on local secondary storage, but it can also write
to a networked file system or distributed storage service.
As new tasks are created, their descriptors are appended
asynchronously to the log file, and periodically flushed to
disk. When the job completes, a concrete reference to its
result is written to the log directory. Upon restarting, the
master scans its log directory for jobs without a matching
result. For those jobs, it replays the log, rebuilding the
dynamic task graph, and ignoring the final record if it is
truncated. Once all logs have been processed, the master
restarts the jobs by lazily evaluating their outputs.

Alternatively, the master may log state updates to a
secondary master. After the secondary master registers
with the primary master, the primary asynchronously for-
wards all task table and object table updates to the sec-
ondary. Each new job is sent synchronously, to ensure
that it is logged at the secondary before the client re-
ceives an acknowledgement. In addition, the secondary
records the address of every worker that registers with the
primary, so that it can contact the workers in a fail-over
scenario. The secondary periodically sends a heartbeat to
the primary; when it detects that the primary has failed,
the secondary instructs all workers to re-register with it.
We evaluate this scenario in §6.5.

If the master fails and subsequently restarts, the work-
ers can help to reconstruct the object table using the con-
tents of their local object stores. A worker deems the
master to have failed if it does not respond to requests. At
this point, the worker switches into reregister mode, and
the heartbeat messages are replaced with periodic regis-
tration requests to the same network location. When the
worker finally contacts a new master, the master pulls a
list of the worker’s data objects, using a protocol based
on GFS master recovery [22].

5.3 Streaming

Our earlier definition of a task (§3.1) stated that a task
produces data objects as part of its result. This definition

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 121

implies that object production is atomic: an object either
exists completely or not at all. However, since data ob-
jects may be very large, there is often the opportunity to
stream the partially-written object between tasks, which
can lead to pipelined parallelism.

If the producing task has streamable outputs, it sends a
pre-publish message to the master, containing stream ref-
erences for each streamable output. These references are
used to update the object table, and may unblock other
tasks: the stream consumers. A stream consumer ex-
ecutes as before, but the executed code reads its input
from a named pipe rather than a local file. A separate
thread in the consuming worker process fetches chunks
of input from the producing worker, and writes them into
the pipe. When the producer terminates successfully, it
commits its outputs, which signals to the consumer that
no more data remains to be read.

In the present implementation, the stream producer
also writes its output data to a local disk, so that, if
the stream consumer fails, the producer is unaffected. If
the producer fails while it has a consumer, the producer
rolls back any partially-written output. In this case, the
consumer will fail due to missing input, and trigger re-
execution of the producer (§5.2). We are investigating
more sophisticated fault-tolerance and scheduling poli-
cies that would allow the producer and consumer to com-
municate via direct TCP streams, as in Dryad [26] and
the Hadoop Online Prototype [16]. However, as we show
in the following section, support for streaming yields
useful performance benefits for some applications.

6 Evaluation

Our main goal in developing CIEL was to develop a sys-
tem that supports a more powerful model of computa-
tion than existing distributed execution engines, without
incurring a high cost in terms of performance. In this
section, we evaluate the performance of CIEL running a
variety of applications implemented in Skywriting. We
investigate the following questions:

1. How does CIEL’s performance compare to a system
in production use (viz. Hadoop)? (§6.1, §6.2)

2. What benefits does CIEL provide when executing
an iterative algorithm? (§6.2)

3. What overheads does CIEL impose on compute-
intensive tasks? (§6.3, §6.4)

4. What effect does master failure have on end-to-end
job performance? (§6.5)

For our evaluation, we selected a set of algorithms to an-
swer these questions, including MapReduce-style, iter-

10 20 50 100
Number of workers

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n
tim

e
(s

)

Hadoop
CIEL

Figure 7: Grep execution time on Hadoop and CIEL
(§6.1).

ative, and compute-intensive algorithms. We chose dy-
namic programming algorithms to demonstrate CIEL’s
ability to execute algorithms with data dependencies that
do not translate to the MapReduce model.

All of the results presented in this section were gath-
ered using m1.small virtual machines on the Amazon
EC2 cloud computing platform. At the time of writing,
an m1.small instance has 1.7 GB of RAM and 1 virtual
core (equivalent to a 2007 AMD Opteron or Intel Xeon
processor) [1]. In all cases, the operating system was
Ubuntu 10.04, using Linux kernel version 2.6.32 in 32-
bit mode. Since the virtual machines are single-core, we
run one CIEL worker per machine, and configure Hadoop
to use one map slot per TaskTracker.

6.1 Grep

Our grep benchmark uses the Grep example application
from Hadoop to search a 22.1 GB dump of English-
language Wikipedia for a three-character string. The
original Grep application performs two MapReduce jobs:
the first job parses the input data and emits the matching
strings, and the second sorts the matching strings by fre-
quency. In Skywriting, we implemented this as a single
script that uses two invocations of mapreduce() (§4.3).
Both systems use identical data formats and execute an
identical computation (regular expression matching).

Figure 7 shows the absolute execution time for Grep
as the number of workers increases from 10 to 100. Av-
eraged across all runs, CIEL outperforms Hadoop by
35%. We attribute this to the Hadoop heartbeat proto-
col, which limits the rate at which TaskTrackers poll for
tasks once every 5 seconds, and the mandatory “setup”
and “cleanup” phases that run at the start and end of
each job [38]. As a result, the relative performance of
CIEL improves as the job becomes shorter: CIEL takes
29% less time on 10 workers, and 40% less time on 100

122 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 40 60 80 100
Number of tasks

0

200

400

600

800

1000

It
er

at
io

n
le

ng
th

(s
)

Hadoop
CIEL

(a) Iteration length

4539
0%

100%

Hadoop

0 3751
Time since start (s)

0%

100%

CIEL

(b) Cluster utilisation (100 tasks)

0 50 100 150 200
Task duration (s)

0

0.5

1

P
(X

<
x)

CIEL

Hadoop

(c) Map task distribution

Figure 8: Results of the k-means experiment on Hadoop and CIEL with 20 workers (§6.2).

workers. We observed that a no-op Hadoop job (which
dispatches one map task per worker, and terminates im-
mediately) runs for an average of 30 seconds. Since Grep
involves two jobs, we would not expect Hadoop to com-
plete the benchmark in less than 60 seconds. These re-
sults confirm that Hadoop is not well-suited to short jobs,
which is a result of its original application (large-scale
document indexing). However, anecdotal evidence sug-
gests that production Hadoop clusters mostly run jobs
lasting less than 90 seconds [40].

6.2 k-means
We ported the Hadoop-based k-means implementation
from the Apache Mahout scalable machine learning
toolkit [3] to CIEL. Mahout simulates iterative-algorithm
support on Hadoop by submitting a series of jobs and
performing a convergence test outside the cluster; our
port uses a Skywriting script that performs all iterations
and convergence testing in a single CIEL job.

In this experiment, we compare the performance of the
two versions by running 5 iterations of clustering on 20
workers. Each task takes 64 MB of input—80,000 dense
vectors, each containing 100 double-precision values—
and k = 100 cluster centres. We increase the number of
tasks from 20 to 100, in multiples of the cluster size. As
before, both systems use identical data formats and exe-
cute an identical computational kernel. Figure 8(a) com-
pares the per-iteration execution time for the two ver-
sions. For each job size, CIEL is faster than Hadoop,
and the difference ranges between 113 and 168 seconds.
To investigate this difference further, we now analyse the
task execution profile.

Figure 8(b) shows the cluster utilisation as a function
of time for the 5 iterations of 100 tasks. From this fig-
ure, we can compute the average cluster utilisation: i.e.
the probability that a worker is assigned a task at any

point during the job execution. Across all job sizes, CIEL
achieves 89 ± 2% average utilisation, whereas Hadoop
achieves 84% utilisation for 100 tasks (and only 59%
utilisation for 20 tasks). The Hadoop utilisation drops to
70% at several points when there is still runnable work,
which is visible as troughs or “noise” in the utilisation
time series. This scheduling delay is due to Hadoop’s
polling-based implementation of task dispatch.

CIEL also achieves higher utilisation in this experi-
ment because the task duration is less variable. The
execution time of k-means is dominated by the map
phase, which computes k Euclidean distances for each
data point. Figure 8(c) shows the cumulative distribution
of map task durations, across all k-means experiments.
The Hadoop distribution is clearly bimodal, with 64%
of the tasks being “fast” (µ = 130.9, σ = 3.92) and
36% of the tasks being “slow” (µ = 193.5, σ = 3.71).
By contrast, all of the CIEL tasks are “fast” (µ = 134.1,
σ = 5.05). On closer inspection, the slow Hadoop tasks
are non-data-local: i.e. they read their input from an-
other HDFS data node. When computing an iterative job
such as k-means, CIEL can use information about previ-
ous iterations to improve the performance of subsequent
iterations. For example, CIEL preferentially schedules
tasks on workers that consumed the same inputs in pre-
vious iterations, in order to exploit data that might still
be stored in the page cache. When a task reads its input
from a remote worker, CIEL also updates the object table
to record that another replica of that input now exists. By
contrast, each iteration on Hadoop is an independent job,
and Hadoop does not perform cross-job optimisations, so
the scheduler is less able to exploit data locality.

In the CIEL version, a Skywriting task performs a con-
vergence test and, if necessary, spawns a subsequent it-
eration of k-means. However, compared to the data-
intensive map phase, its execution time is insignificant:
in the 100-task experiment, less than 2% of the total job

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 123

(a) Smith-Waterman (b) Binomial options pricing

Figure 9: Smith-Waterman (§6.3) and BOPM (§6.4)
are dynamic programming algorithms, with macro-level
(partition) and micro-level (element) dependencies.

10×10

20×20

30×30

40×40

0 1654 4122
Time since start (s)

50×50

N
um

be
ro

fc
hu

nk
s

Figure 10: Smith-Waterman cluster utilisation against
time, for different block granularities. The best perfor-
mance is observed with 30 × 30 blocks.

execution time is spent running Skywriting tasks. The
Skywriting execution time is dominated by communica-
tion with the master, as the script sends a new task de-
scriptor to the master for each task in the new iteration.

6.3 Smith-Waterman
In this experiment, we evaluate strategies for paral-
lelising the Smith-Waterman sequence alignment algo-
rithm [36]. For strings of size m and n, the algorithm
computes mn elements of a dynamic programming ma-
trix. However, since each element depends on three
predecessors, the algorithm is not embarrassingly par-
allel. We divide the matrix into blocks—where each
block depends on values from its three neighbours (Fig-
ure 9(a))—and process one block per task.

We use CIEL to compute the alignment between two
1 MB strings on 20 workers. Figure 10 shows the clus-
ter utilisation as the block granularity is varied: a gran-
ularity of m × n means that the computation is split
into mn blocks. For 10 × 10 (the most coarse-grained
case that we consider), the maximum degree of paral-
lelism is 10, because the dependency structure limits the

0 20 40 60 80 100
Number of tasks

0

5

10

15

20

25

Sp
ee

du
p

1600k
800k
400k
200k

Figure 11: Speedup of BOPM (§6.4) on 47 workers as
the number of tasks is varied and the resolution is in-
creased.

maximum achievable parallelism to the length of the an-
tidiagonal in the block matrix. Increasing the number
of blocks to 20 × 20 allows CIEL to achieve full util-
isation briefly, but performance remains poor because
the majority of the job duration is spent either ramp-
ing up to or down from full utilisation. We observe the
best performance for 30 × 30, which ramps up to full
utilisation more quickly than coarser-grained configura-
tions, and maintains full utilisation for an extended pe-
riod, because there are more runnable tasks than work-
ers. Increasing the granularity beyond 30 × 30 leads
to poorer overall performance, because the overhead of
task dispatch becomes a significant fraction of task dura-
tion. Furthermore, the scheduler cannot dispatch tasks
quickly enough to maintain full utilisation, which ap-
pears as “noise” in Figure 10.

6.4 Binomial options pricing

We now consider another dynamic programming algo-
rithm: the binomial options pricing model (BOPM) [17].
BOPM computes a binomial tree, which can be repre-
sented as an upper-triangular matrix, P . The rightmost
column of P can be computed directly from the input pa-
rameters, after which element pi,j depends on pi,j+1 and
pi+1,j+1, and the result is the value of p1,1. We achieve
parallelism by dividing the matrix into row chunks, creat-
ing one task per chunk, and streaming the top row of each
chunk into the next task. Figure 9(b) shows the element-
and chunk-level data dependencies for this algorithm.

BOPM is not an embarrassingly parallel algorithm.
However, we expect CIEL to achieve some speedup,
since rows of the matrix can be computed in parallel, and
we can use streaming tasks (§5.3) to obtain pipelined par-
allelism. We can also achieve better speedup by increas-
ing the resolution of the calculation: the problem size

124 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

185
0%

100%

No
failure

0 215
Time since start (s)

0%

100%

Master
failure

Downtime

Figure 12: Cluster utilisation for three iterations of an
iterative algorithm (§6.5). In the lower case, the primary
master fails over to a secondary at the beginning of the
second iteration. The total downtime is 7.7 seconds.

(n) is inversely proportional to the time step (∆t), and
the serial execution time increases as O(n2).

Figure 11 shows the parallel speedup of BOPM on a
47-worker CIEL cluster. We vary the number of tasks,
and increase n from 2×105 to 1.6×106. As expected, the
maximum speedup increases as the problem size grows,
because the amount of independent work in each task
grows. For n = 2 × 105 the maximum speedup ob-
served is 4.9×, whereas for n = 1.6× 106 the maximum
speedup observed is 23.8×. After reaching the maxi-
mum, the speedup decreases as more tasks are added,
because small tasks suffer proportionately more from
constant per-task overhead. Due to our streaming im-
plementation, the minimum execution time for a stream
consumer is approximately one second. We plan to re-
place our simple, polling-based streaming implementa-
tion with direct TCP sockets, which will decrease the
per-task overhead and improve the maximum speedup.

6.5 Fault tolerance

Finally, we conducted an experiment in which master
fail-over was induced during an iterative computation.
Figure 12 contrasts the cluster utilisation in the non-
failure and master-failure cases, where the master fail-
over occurs at the beginning of the second iteration. Be-
tween the failure of the primary master and the resump-
tion of execution, 7.7 seconds elapse: during this time,
the secondary master must detect primary failure, con-
tact all of the workers, and wait until the workers register
with the secondary. Utilisation during the second itera-
tion is poorer, because some tasks must be replayed due
to the failure. The overall job execution time increases
by 30 seconds, and the original full utilisation is attained
once more in the third iteration.

7 Alternative approaches

CIEL was inspired primarily by the MapReduce and
Dryad distributed execution engines. However, there
are several different and complementary approaches to
large-scale distributed computing. In this section, we
briefly survey the related work from different fields.

7.1 High performance computing (HPC)
The HPC community has long experience in developing
parallel programs. OpenMP is an API for developing
parallel programs on shared-memory machines, which
has recently added support for task parallelism with de-
pendencies [7]. In this model, a task is a C or Fortran
function marked with a compiler directive that identifies
the formal parameters as task inputs and outputs. The
inputs and outputs are typically large arrays that fit com-
pletely in shared memory. OpenMP is more suitable than
CIEL for jobs that share large amounts of data that is fre-
quently updated on a fine-grained basis. However, the
parallel efficiency of a shared memory system is limited
by interconnect contention and/or non-uniform memory
access, which limits the practical size of an OpenMP job.
Nevertheless, we could potentially use OpenMP to ex-
ploit parallelism within an individual multi-core worker.

Larger HPC programs typically use the Message Pass-
ing Interface (MPI) for parallel computing on distributed
memory machines. MPI provides low-level primitives
for sending and receiving messages, collective commu-
nication and synchronisation [30]. MPI is optimised
for low-latency supercomputer interconnects, which of-
ten have a three-dimensional torus topology [35]. These
interconnects are optimal for problems that decompose
spatially and have local interactions with neighbouring
processors. Since these interconnects are highly reliable,
MPI does not tolerate intermittent message loss, and so
checkpointing is usually used for fault tolerance. For ex-
ample, Piccolo, which uses MPI, must restart an entire
computation from a checkpoint if an error occurs [34].

7.2 Programming languages
Various programming paradigms have been proposed to
simplify or fully automate software parallelisation.

Several projects have added parallel language con-
structs to existing programming languages. Cilk-NOW
is a distributed version of Cilk that allows developers
to spawn a C function on another cluster machine and
sync on its result [11]. X10 is influenced by Java, and
provides finish and async blocks that allow devel-
opers to implement more general synchronisation pat-
terns [15]. Both implement strict multithreading, which
restricts synchronisation to between a spawned thread

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 125

and its ancestor [10]. While this does not limit the ex-
pressiveness of these languages, it necessitates additional
synchronisation in the implementation of, for example,
MapReduce, where non-ancestor tasks may synchronise.

Functional programming languages offer the prospect
of fully automatic parallelism [8]. NESL contains a par-
allel “apply to each” operator (i.e. a map() function) that
processes the elements of a sequence in parallel, and the
implementation allows nested invocation of this opera-
tor [9]. Glasgow Distributed Haskell contains mecha-
nisms for remotely evaluating an expression on a par-
ticular host [33]. Though theoretically appealing, paral-
lel functional languages have not demonstrated as great
scalability as MapReduce or Dryad, which sacrifice ex-
pressivity for efficiency.

7.3 Declarative programming
The relational algebra, which comprises a relatively
small set of operators, can be parallelised in time
(pipelining) and space (partitioning) [19]. Pig and Hive
implement the relational algebra using a DAG of MapRe-
duce jobs on Hadoop [32, 37]; DryadLINQ and SCOPE
implement it using a Dryad graph [14, 39].

The relational algebra is not universal but can be made
more expressive by adding a least fixed point opera-
tor [5], and this research culminated in support for re-
cursive queries in SQL:1999 [20]. Recently, Bu et al.
showed how some recursive SQL queries may be trans-
lated to iterative Hadoop jobs [12].

Datalog is a declarative query language based on first-
order logic [13]. Recently, Alvaro et al. developed a ver-
sion of Hadoop and the Hadoop Distributed File System
using Overlog (a dialect of Datalog), and demonstrated
that it was almost as efficient as the equivalent Java code,
while using far fewer lines of code [6]. We are not
aware of any project that has used a fully-recursive logic-
programming language to implement data-intensive pro-
grams, though the non-recursive Cascalog language,
which runs on Hadoop, is a step in this direction [29].

7.4 Distributed operating systems
Hindman et al. have developed the Mesos distributed
operating system to support “diverse cluster computing
frameworks” on a shared cluster [25]. Mesos performs
fine-grained scheduling and fair sharing of cluster re-
sources between the frameworks. It is predicated on the
idea that no single framework is suitable for all applica-
tions, and hence the resources must be virtualised to sup-
port different frameworks at once. By contrast, we have
designed CIEL with primitives that support any form of
computation (though not always optimally), and allow
frameworks to be virtualised at the language level.

8 Conclusions

We designed CIEL to provide a superset of the features
that existing distributed execution engines provide. With
Skywriting, it it possible to write iterative algorithms
in an imperative style and execute them with transpar-
ent fault tolerance and automatic distribution. However,
CIEL can also execute any MapReduce job or Dryad
graph, and the support for iteration allows it to perform
Pregel- and Piccolo-style computations.

Our next step is to integrate CIEL primitives with ex-
isting programming languages. At present, only Skywrit-
ing scripts can create new tasks. This does not limit uni-
versality, but it requires developers to rewrite their driver
programs in Skywriting. It can also put pressure on
the Skywriting runtime, because all scheduling-related
control-flow decisions must ultimately pass through in-
terpreted code. The main benefit of Skywriting is that it
masks the complexity of continuation-passing style be-
hind the dereference operator (§4.2). We now seek a
way to extend this abstraction to mainstream program-
ming languages.

CIEL scales across hundreds of commodity machines,
but other scaling challenges remain. For example, it is
unclear how best to exploit multiple cores in a single
machine, and we currently pass this problem to the ex-
ecutors, which receive full use of an individual machine.
This gives application developers fine control over how
their programs execute, at the cost of additional complex-
ity. However, it limits efficiency if tasks are inherently
sequential and multiple cores are available. Furthermore,
the I/O saving from colocating a stream producer and
its consumers on a single host may outweigh the cost
of CPU contention. Finding the optimal schedule is a
hard problem, and we are investigating simple annota-
tion schemes and heuristics that improve performance in
the common case. The recent work on cluster operating
systems and scheduling algorithms [25, 27] offers hope
that this problem will admit an elegant solution.

Further information about CIEL and Skywriting, in-
cluding the source code, a language reference and a tuto-
rial, is available from the project website:
http://www.cl.cam.ac.uk/netos/ciel/

Acknowledgements

We wish to thank our past and present colleagues in the
Systems Research Group at the University of Cambridge
for many fruitful discussions that contributed to the evo-
lution of CIEL. We would also like to thank Byung-
Gon Chun, our shepherd, and the anonymous reviewers,
whose comments and suggestions have been invaluable
for improving the presentation of this work.

126 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Amazon EC2. http://aws.amazon.com/ec2/.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache Mahout. http://mahout.apache.org/.

[4] JSON. http://www.json.org/.

[5] AHO, A. V., AND ULLMAN, J. D. Universality of data retrieval
languages. In Proceedings of POPL (1979).

[6] ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY, K.,
HELLERSTEIN, J. M., AND SEARS, R. BOOM Analytics: Ex-
ploring data-centric, declarative programming for the cloud. In
Proceedings of EuroSys (2010).

[7] AYGUADÉ, E., COPTY, N., DURAN, A., HOEFLINGER, J., LIN,
Y., MASSAIOLI, F., TERUEL, X., UNNIKRISHNAN, P., AND
ZHANG, G. The design of OpenMP tasks. IEEE Trans. Parallel
Distrib. Syst. 20, 3 (2009), 404–418.

[8] BACKUS, J. Can programming be liberated from the von Neu-
mann style?: A functional style and its algebra of programs.
Commun. ACM 21, 8 (1978), 613–641.

[9] BLELLOCH, G. E. Programming parallel algorithms. Commun.
ACM 39, 3 (1996), 85–97.

[10] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling multi-
threaded computations by work stealing. J. ACM 46, 5 (1999),
720–748.

[11] BLUMOFE, R. D., AND LISIECKI, P. A. Adaptive and reliable
parallel computing on networks of workstations. In Proceedings
of USENIX ATC (1997).

[12] BU, Y., HOWE, B., BALAZINSKA, M., AND ERNST, M. D.
HaLoop: Efficient iterative data processing on large clusters. In
Proceedings of VLDB (2010).

[13] CERI, S., GOTTLOB, G., AND TANCA, L. What you always
wanted to know about Datalog (and never dared to ask). IEEE
Trans. on Knowl. and Data Eng. 1, 1 (1989), 146–166.

[14] CHAIKEN, R., JENKINS, B., LARSON, P.-A., RAMSEY, B.,
SHAKIB, D., WEAVER, S., AND ZHOU, J. SCOPE: Easy and
efficient parallel processing of massive data sets. In Proceedings
of VLDB (2008).

[15] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA,
C., KIELSTRA, A., EBCIOGLU, K., VON PRAUN, C., AND
SARKAR, V. X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of OOPSLA (2005).

[16] CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M.,
ELMELEEGY, K., AND SEARS, R. MapReduce Online. In Pro-
ceedings of NSDI (2010).

[17] COX, J. C., ROSS, S. A., AND RUBINSTEIN, M. Option pric-
ing: A simplified approach. Journal of Financial Economics 7, 3
(1979), 229–263.

[18] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. In Proceedings of OSDI (2004).

[19] DEWITT, D., AND GRAY, J. Parallel database systems: The
future of high performance database systems. Commun. ACM 35,
6 (1992), 85–98.

[20] EISENBERG, A., AND MELTON, J. SQL: 1999, formerly known
as SQL3. SIGMOD Rec. 28, 1 (1999), 131–138.

[21] EKANAYAKE, J., PALLICKARA, S., AND FOX, G. MapReduce
for data intensive scientific analyses. In Proceedings of eScience
(2008).

[22] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proceedings of SOSP (2003).

[23] GUNDA, P. K., RAVINDRANATH, L., THEKKATH, C. A., YU,
Y., AND ZHUANG, L. Nectar: Automatic management of data
and computation in data centers. In Proceedings of OSDI (2010).

[24] HALSTEAD, JR., R. H. Multilisp: A language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst. 7, 4
(1985), 501–538.

[25] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I.
Mesos: A platform for fine-grained resource sharing in the data
center. In Proceedings of NSDI (2011).

[26] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: Distributed data-parallel programs from se-
quential building blocks. In Proceedings of EuroSys (2007).

[27] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,
TALWAR, K., AND GOLDBERG, A. Quincy: Fair scheduling for
distributed computing clusters. In Proceedings of SOSP (2009).

[28] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
A system for large-scale graph processing. In Proceedings of
SIGMOD (2010).

[29] MARZ, N. Introducing Cascalog. http://nathanmarz.
com/blog/introducing-cascalog/.

[30] MESSAGE PASSING INTERFACE FORUM. MPI: A message-
passing interface standard. Tech. Rep. CS-94-230, University of
Tennessee, 1994.

[31] MURRAY, D. G., AND HAND, S. Scripting the cloud with Sky-
writing. In Proceedings of HotCloud (2010).

[32] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND
TOMKINS, A. Pig Latin: A not-so-foreign language for data
processing. In Proceedings of SIGMOD (2008).

[33] POINTON, R. F., TRINDER, P. W., AND LOIDL, H.-W. The
design and implementation of Glasgow Distributed Haskell. In
Proceedings of IFL (2001).

[34] POWER, R., AND LI, J. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In Proceedings of OSDI (2010).

[35] SCOTT, S. L., AND THORSON, G. M. The Cray T3E network:
adaptive routing in a high performance 3D torus. In Proceedings
of HOT Interconnects (1996).

[36] SMITH, T., AND WATERMAN, M. Identification of common
molecular subsequences. Journal of molecular biology 147, 1
(1981), 195–197.

[37] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,
ZHANG, N., ANTONY, S., LIU, H., AND MURTHY, R. Hive: A
petabyte scale data warehouse using Hadoop. In Proceedings of
ICDE (2010).

[38] WHITE, T. Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
2009.

[39] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ÚLFAR ER-
LINGSSON, GUNDA, P. K., AND CURREY, J. DryadLINQ: A
system for general-purpose distributed data-parallel computing
using a high-level language. In Proceedings of OSDI (2008).

[40] ZAHARIA, M., BORTHAKUR, D., SEN SARMA, J., ELMELE-
EGY, K., SHENKER, S., AND STOICA, I. Delay scheduling:
A simple technique for achieving locality and fairness in cluster
scheduling. In Proceedings of EuroSys (2010).

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 127

A Semantic Framework for Data Analysis in Networked Systems ∗

Arun Viswanathan† Alefiya Hussain†‡ Jelena Mirkovic† Stephen Schwab‡ John Wroclawski†

† USC/Information Sciences Institute ‡ Sparta Inc.

{aviswana, hussain, mirkovic, jtw}@isi.edu Stephen.Schwab@cobham.com

Abstract

Effective analysis of raw data from networked systems

requires bridging the semantic gap between the data and

the user’s high-level understanding of the system. The

raw data represents facts about the system state and

analysis involves identifying a set of semantically rel-

evant behaviors, which represent “interesting” relation-

ships between these facts. Current analysis tools, such as

wireshark and splunk, restrict analysis to the low-level

of individual facts and provide limited constructs to aid

users in bridging the semantic gap. Our objective is to

enable semantic analysis at a level closer to the user’s

understanding of the system or process. The key to our

approach is the introduction of a logic-based formulation

of high-level behavior abstractions as a sequence or a

group of related facts. This allows treating behavior rep-

resentations as fundamental analysis primitives, elevat-

ing analysis to a higher semantic-level of abstraction. In

this paper, we propose a behavior-based semantic anal-

ysis framework which provides: (a) a formal language

for modeling high-level assertions over networked sys-

tems data as behavior models, (b) an analysis engine for

extracting instances of user-specified behavior models

from raw data. Our approach emphasizes reuse, com-

posibility and extensibility of abstractions. We demon-

strate the effectiveness of our approach by applying it

to five analyses tasks; modeling a hypothesis on traffic

traces, modeling experiment behavior, modeling a se-

curity threat, modeling dynamic change and composing

higher-level models. Finally, we discuss the performance

of our framework in terms of behavior complexity and

number of input records.

∗This work is funded by the Department of Homeland Security and

Space and Naval Warfare Systems Center, San Diego, under Contract

No. N66001-10-C-2018. All findings and conclusions expressed in

this material are those of the authors and do not reflect the views of the

funding agencies.

Part of Alefiya Hussain’s contributions to this paper were while she was

at Sparta Inc.

1 Introduction

The ability to convert raw data into higher-level in-

sights and understanding has become a key enabler in

many fields. We approach one particular aspect of this

problem, namely the analysis of data within the domain

of networked and distributed systems. Such systems rou-

tinely generate a plethora of logs, trace and audit data

during their operation. Users, such as researchers and

system administrators, use this raw data to understand

system behavior, diagnose problems, discover new be-

haviors, or verify hypotheses. Effective analysis of such

raw data requires bridging the semantic gap between raw

data and the user’s high-level understanding of the anal-

ysis domain. Our experience with analysis tools reveals

that this problem is ill-addressed.

A typical approach to data analysis involves the user

sifting through the data using simple search and correla-

tion constructs like boolean queries to identify relation-

ships and infer meaning from data. For example, wire-

shark [19] can help identify complete or incomplete TCP

flows from packet traces and splunk [16] can help iden-

tify spurious logins from a server log. Our study of four

popular tools, discussed in Section 2.1, reveals that cur-

rent approaches require cumbersome multi-step analyses

to infer semantic relationships from data. For example,

a user analyzing a network packet trace may first have to

extract individual flows by specifying specific attribute

values related to each flow, and then somehow manually

infer relationships like concurrency between the flows.

This problem is further complicated if the user has to

reason and analyze over multiple types of data. This sep-

aration between the raw data and the meaning it carries

constitutes the semantic gap.

In this paper, we focus on the problem of express-

ing analyses tasks that are meaningful and useful to the

user. Specifically, given a finite, timestamped list of facts

about the system under observation, our objective is to

assist the user in expressing and modeling semantically

128 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

relevant behaviors, which are “interesting” relationships

between these facts or sequence of facts. These relation-

ships encompass notions of ordering, causality, depen-

dence, or concurrency.

Our insight is that higher-level understanding in net-

worked and distributed systems can be expressed in the

form of relationships between system states, simple be-

haviors, and complex behaviors. For example, in most

situations, a typical web-server operation is better un-

derstood as a concurrent relationship between multiple

HTTP sessions to a server rather than the details of the

protocols and specific values in the packet headers. Thus,

our data analysis approach introduces a behavior as a

primitive analysis construct. Behaviors can be extended

or constrained to create a behavior model, which forms

an assertion about the overall behavior of the system. A

behavior model can then be rapidly applied over data to

validate the assertion. We discuss complete details about

specifying behavior models in Section 3, and Section 4

presents the analysis engine for extracting instances of

user-specified behavior models from raw data.

The behavior models are abstract entities to capture

the semantic essence of a particular relationship without

focusing on unnecessary details or particular parameters

that may vary between individual facts or behaviors. In-

corporation of abstract behavior models as explicitly rep-

resented and manipulated constructs within our frame-

work provides two key benefits. First, this abstraction

allows users of our framework to analyze and understand

the raw data at a semantically relevant level. In Sec-

tion 3.4, we introduce an example of a behavior model

to identify pairs of communication events where the des-

tination IP of the second event is same as the source IP of

the first. Such models can be used to analyze many dif-

ferent datasets without any modification. Additionally,

since behavior models are primitive analysis constructs,

the framework supports extensibility by composing new

models from behavior models present in the knowledge

base as demonstrated in Section 5.5. Thus, represent-

ing analysis expertise explicitly as behavior models for-

malizes the semantics for data analysis in networked sys-

tems.

The second key benefit of our work is the ability to

foster sharing and reuse of knowledge embedded in ex-

plicitly represented behavior models. Our first-hand ex-

perience with existing tools suggests that in most cases

knowledge inferred from analysis resides either in a

domain-specific tool or a single expert’s brain. This is

due to a lack of an explicit representation for captur-

ing, storing, sharing, and reusing such knowledge in a

context-independent way. Many current tools are either

static in nature, handling only a fixed set of analyses

and record types, or may offer limited extensibility, but

through some mechanism that involves significant effort.

For example, wireshark [19] is easily extensible using

plugins, but writing a plugin requires understanding the

wireshark API and C programming skills. In contrast,

a well defined shareable format for representing knowl-

edge about networked systems data offers the prospect

that many different tools can be driven by, and contribute

to, a single shared knowledge base.

Beyond the basic challenge, the task of semantic-level

analysis is difficult for two disparate reasons. First, the

definition of “interesting” may vary widely in different

situations, requiring a rich toolbox of techniques for ef-

fective analysis. We address this problem by restricting

the definition of “interesting relationships” to expressing

a particular set of characteristics of networked systems

as discussed in Section 3.1. Second, in large scale sys-

tems, efficient and intelligent data analysis is extremely

resource intensive due to the sheer volume of system

events and traces. While in Section 6 we report perfor-

mance results, this paper primarily discusses the funda-

mental aspects of defining and employing explicit behav-

ior models as a data analysis tool. Real-time analysis of

data for applications such as intrusion detection is a fu-

ture goal as discussed in Section 7.

The fundamental contribution of this paper is the in-

troduction of a behavior-based semantic analysis frame-

work for confirmatory and exploratory analysis of multi-

variate, multi-type, timestamped data captured from net-

worked systems. The main elements of the semantic

framework include (a) a specialized formal language for

specifying behavior models and (b) an analysis engine

for extracting instances of user-specified behavior mod-

els from data. In confirmatory analysis, the user specifies

a validation criteria, expected system behavior or hypoth-

esis, by writing a specific model or through composing a

high-level model from existing models contained within

the knowledge base of the framework. In exploratory

analysis, a user applies existing models from the knowl-

edge base to explore data for new or unanticipated be-

haviors. In Section 5 we present five detailed examples

of how the framework can be applied for these data anal-

ysis tasks.

2 Related Work

In this section, we set the context for our work by first

studying four popular analysis tools followed by a dis-

cussion on specification-based approaches for analysis of

networked systems data.

2.1 Tool Comparison

In this section, we study four popular analysis method-

ologies: wireshark v1.2.7 [19], splunk v4.1 [16], Simple

Event Correlator (SEC) v2.5.3 [18], Bro v1.5.2 [14], and

compare them with our behavior-based semantic anal-

ysis framework (SAF). Both wireshark and splunk are

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 129

wireshark splunk SEC Bro SAF

System goals Interactive

analysis

Interactive analysis Real-time event

correlation

High-speed, real-time

monitoring

Interactive analysis

Input data Network packets Ascii data from any

source

Ascii data from files,

stdin, pipes

Network packets Any type of data (with

plugin)

Specification

language

Boolean logic Boolean logic Simple language for

specifying rules

Bro scripting language Formal language based

on temporal logic,

interval temporal logic

and boolean logic

Primitive

constructs

Boolean

predicates

Boolean predicates,

unix-like pipelines

and commands

Boolean predicates,

functions written in

Perl

Events (low-level or

higher-level)

Behavior (low-level or

higher-level)

Semantic

constructs

None External commands

can encode

semantics

Perl functions can

encode semantics

Network notions such

as connections, IP

addrs., ports, and

network protocols

Temporal logic and

interval temporal logic

operators for defining

behaviors (Section 3)

Composibility

of specs

None Queries can be

recorded and then

composed into other

queries

Matching events can

trigger creation of new

high-level events

Policies can compose

lower-level events to

generate higher-level

events

Behaviors can be

composed into higher

level behaviors

Abstraction None None Limited Yes Yes

Table 1: Comparison of the behavior-based Semantic Analysis Framework (SAF) with four popular data analysis tools.

mainly interactive analysis tools while Bro and SEC are

real-time monitoring tools. The behavior-based semantic

analysis framework (SAF) falls in the category of inter-

active analysis tools. The tools are compared along seven

dimensions in Table 1; (a) high-level goals, (b) input data

types, (c) analysis specification language (d) primitive

analysis constructs, (e) semantic analysis constructs, (f)

ability to compose specifications and (g) abstraction, that

is, specifications in terms of relationships between data

attributes.

Each paragraph below introduces an analysis frame-

work and the reader is directed to Table 1 for details. The

corresponding features for our framework (SAF) are in-

troduced in Table 1 and explored in future sections. We

have not considered SQL-based approaches on stream-

ing data for comparison [6], since SAF representations

are at a higher-level of abstraction than database query

languages. However, we further discuss how our frame-

work could benefit by using the above SQL extensions to

optimize event storage and retrieval in Section 7.

wireshark [19] is an open-source tool for interactive

analysis of a large variety of network data from a packet

capture file. Wireshark’s design can be separated into

the analysis framework and plugins. The analysis frame-

work provides the ability to sift through large volumes

of packets visually and provides a boolean query gram-

mar for finding “interesting” relationships and statistical

summaries over typical networking concepts, for exam-

ple, rate, flows, bytes, and connections. The plugin archi-

tecture, on the other hand, is responsible for normalizing

and presenting different types of packet data and protocol

behavior to the analysis framework in a uniform way.

splunk [16] is a popular commercial framework for

unified data analysis of a large variety of data. Splunk’s

strength comes from its ability to index various types of

data, allowing the user to sift through logs by combin-

ing search queries using boolean operations, pipes and

powerful statistical and aggregation functions. Splunk

supports time-based, event-based, value-based correla-

tions and also allows combining queries into higher-level

queries. Splunk is extensible using apps, which allow en-

coding knowledge as queries for sharing and wider dis-

semination. However, it does not provide support for ex-

plicitly capturing domain expertise with semantic con-

structs. It does provide the ability to invoke external

commands, thus providing an indirect way to incorpo-

rate explicit domain expertise into the analyses.

Simple Event Correlator(SEC) [18] is an open-

source framework for rule-based event correlation. SEC

reads the analysis specifications from a configuration file

containing a set of event matching rules and correspond-

ing actions. SEC processes data from log files, pipes and

standard streams to trigger the configured actions on a

match. It supports both time-based and event-based cor-

relations and also allows specifying abstract rules that

bind their values at runtime. SEC is more sophisti-

cated than the previous two tools, it supports composing

higher-level events by correlating low-level events, pro-

viding a framework for semantic understanding. Its rule-

types pair and pairwithwindow capture some of the se-

mantics of ordering and duration. However, it lacks sup-

port for inferring interval-based temporal relationships

like concurrency and overlap and the analysis specifica-

tion in the configuration files are not intuitive to capture

3

130 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and share domain expertise in a generic way.

Bro [14] is a high-speed intrusion detection system for

checking security policy violations by passively moni-

toring network traffic in real-time. Bro’s security poli-

cies are written in the specialized Bro scripting language

which is geared towards security analysis. The lan-

guage supports semantic constructs such as connections,

IP addresses, ports, and various network protocols along

with various operators and functions to express different

forms of network analyses. Bro has the ability to do time-

based and event-based correlation. However, Bro mainly

processes network packet data and uses a programming

language-based analysis approach.

2.2 Specification-based Approaches

Specification-based approaches are particularly appeal-

ing in various areas of networked and distributed systems

due to their ability to be abstract, concise, precise, and

verifiable. In formal verification of distributed and con-

current systems, a system is specified in logic and then

formal reasoning is applied on the specification to ver-

ify desired properties [3, 9]. In declarative networking, a

specification language, Network Datalog (NDLog) [10],

allows defining high-level networking specifications for

rapidly specifying, modeling, implementing, and experi-

menting with evolving designs for network architectures.

In testbed-based experimentation, a simple set of user-

supplied expectations are used to validate expected be-

havior of an experiment [12].

The formal specification approaches have been well

developed within the intrusion detection community and

have been successfully applied to network and audit data

for analysis. In this section we first present a brief

overview of four such approaches and then compare

them to SAF.

Roger et al. [15], leverage the idea that attack signa-

tures are best expressed in simple temporal logic using

temporal connectives to express ordering of events. They

pose the detection problem as a model-checking prob-

lem against event logs. Naldurg et al. [13], propose an-

other temporal-logic based approach for real-time mon-

itoring and detection. Their language EAGLE supports

parameterized recursive equations and allows specifying

signatures with complex temporal event patterns along

with properties involving real-time, statistics and data

values. Kinder et al. [8], extend the logic CTL (Computa-

tion Tree Logic) and introduce CTPL (Computation Tree

Predicate Logic) to describe malicious code as a high-

level specification. Their approach allows writing spec-

ifications that capture malware variants. Ellis et al. [4],

introduce a behavioral detection approach to malware by

focusing on detecting patterns at higher-level of abstrac-

tions. They introduce three high-level behavioral signa-

tures which have the ability to detect classes of worms

without needing any apriori information of the worm be-

havior.

The SAF abstract models are comparable to the ap-

proaches of [13, 8, 4] in their use of formal logic and

temporal constructs for specifications. But, in addition

to providing an extended set of sophisticated intuitive op-

erators and constructs, the behavior models presented in

this paper can be generically applied to model various

scenarios over a variety of data and are easily composed

into semantically relevant higher-level models. This al-

lows creating a knowledge base to explicitly capture do-

main expertise required for analyzing a large variety of

operations encountered in networked and distributed sys-

tems as shown in Section 5. The higher-level behav-

ioral signatures [4] based on the network-theoretic ab-

stract communication network (ACN) are tightly bound

to networking constructs like hosts, routers, sensors and

links making them very restrictive in their ability to ex-

press general networked systems behaviors.

The SAF is based on a logic-based specification ap-

proach rather than a programming language-based spec-

ification approach like the one followed in Bro. Our

goal is that the behavior models should be abstract but

also concise and precise to support well-known knowl-

edge representation and reasoning approaches. Logic

is declarative and type-free, imparting formal seman-

tics, abstract specifications, and efficient processing by

analysis engines. The logic-based approach also enables

building a knowledge base of behavior models to explic-

itly capture domain expertise that can be used to auto-

matically reason and infer behavior models. However,

logic-based approaches are less expressive than program-

ming languages. The expressiveness of our approach

is based on requirements derived from characteristics of

networked systems as discussed in Section 3.1.

3 Behavior Models

A particular execution of a networked system or process

can be captured as a sequence of states, where a state

is a collection of attributes and their values. A behav-

ior (b) is a sequence of one or more related states. A

system execution is thus defined as a combination of dif-

ferent behaviors, and each new execution may generate

a unique set of behaviors. A behavior model (φ) is a for-
mula that makes an assertion about the overall behavior

of the system.

For example, consider a simplified IP flow in net-

working, where a flow is a communication between two

hosts identified by their IP addresses. For simplicity

we assume an IP flow to be broken into two states:

ip s2d denotes a packet from some source to destina-

tion host and ip d2s denotes a packet from a destination

to source. Then, a valid IP flow behavior, IPFLOW, is

one where ip s2d and ip d2s are related by their source

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 131

and destination attributes with the additional criteria that

ip d2s always occurs after ip s2d. The behavior model

(φipflow) is an assertion that IPFLOW is valid. We dis-

cuss details of this example and extend it further in Sec-

tion 3.4.

In this section, we first discuss the requirements and

design choices for a language to specify behaviors fol-

lowed by the formal syntax and semantics of the lan-

guage.

3.1 Requirements

As discussed in Section 1, the key objective of our frame-

work is to enable semantic-level analysis over data. A

semantically expressive language for analysis over net-

worked and distributed systems data must meet the fol-

lowing requirements: (a) enable analysis over multi-

type, multi-variate, timestamped data, (b) express a wide

variety of “interesting” relationships, (c) enable analysis

over higher-level abstractions, and (d) enable composing

abstractions into higher-level abstractions.

The language should express at-least the following

“interesting” relationships to capture the core character-

istics of networked and distributed systems: (a) causal

relationships between behaviors, for example, a file be-

ing opened only if a user is authorized; (b) partial or to-

tal ordering, for example, in-order or out-of-order arrival

of packets; (c) dynamic changes over time, for example,

traffic between client and server drops after an attack on

the server; (d) concurrency of operations, for example,

simultaneous web client sessions; (e) multiple possible

behaviors, for example, a polymorphic worm behavior

may vary on each execution; (f) synchronous or asyn-

chronous operations, for example, some operations need

to complete within a specific time whereas others need

not; (g) value dependencies between operations, for ex-

ample, a TCP flow is valid only if the attribute–values

contained in the individual packets are related to each

other; (h) invariant operations, for example, some opera-

tions may always hold true and, (i) eventual operations,

for example, some operations happen in the course of

time. In addition, we need traditional mechanisms, such

as boolean operators and loops, for combining these re-

lationships into complex behaviors and mechanisms for

basic counting of events and reasoning over the counts.

We do not claim completeness of the above require-

ments but we believe that being able to express the above

classes of primitive relationships and combining them

to form complex relationships would suffice for a wide

range of situations, a few of which we demonstrate as

case studies in Section 5.

3.2 Design

The following four design decisions realize the require-

ments listed above. First, our framework provides logic-

based support to formulate behavior abstractions as a se-

quence or group of related events, where events are uni-

form representation of system facts as discussed later.

This formulation allows treating this behavior represen-

tation as fundamental analysis primitive, elevating anal-

yses to a higher semantic-level of abstraction.

Second, the language combines operators fromAllen’s

interval-temporal logic [1], Lamport’s Temporal Logic

of Actions [9] and boolean logic. Temporal logic allows

expressing the ordering of events in time without explic-

itly introducing time. Interval-temporal logic allows ex-

pressing relationships like concurrency, overlap and or-

dering between behaviors as relationships between their

time-intervals. Additionally, complex behaviors are eas-

ily composed from simpler ones using boolean operators.

Third, the framework enables specifying dependency

relationships between event attributes while leaving the

values to be dynamically populated at runtime. Late

binding enables abstract specifications that enrich the

knowledge base as they can be directly applied to a wide

variety of data-sets. This also enables parametrization of

models during complex model composition as discussed

in Section 5.5.

Lastly, the framework introduces the notion of a

domain-independent event as a uniform representation

of multi-type, multi-variate, timestamped data. Specif-

ically, an event (e) is a representation of system state

and is given by a 4-tuple 〈o, c, t, av〉 where o is the

event-origin (for example, the host IP), c is the event-

type (for example, PKT TCP or APP HTTPD), t is the
event timestamp and av = { 〈ai, vi〉 | ai ∈ A , vi ∈
Strings , 1 ≤ i ≤ Dc } are the attribute-value pairs con-

tained in the event. A is the set of attribute labels, for ex-

ample, sip, dip, etype. Dc is the number of attributes in

an event of type c. This normalization of data to events

ensures that the analysis algorithms are independent of

the input domain.

We believe these design decisions ensure developing

abstract behavior models as first-order primitives for cap-

turing, storing, and reusing domain expertise for the anal-

ysis of networked systems. Next we discuss the syntax

of such a language.

3.3 Syntax

The language grammar for defining a behavior model

φ as a formula, consists of five key elements as shown

in Figure 1: state propositions S as atomic formulae;

grouping operators ‘(’ and ‘)’ to define sub-formulae;

logical operators and temporal operators for relating

sub-formulae or atomic-formulae; the optional behavior

constraints bcon and operator constraints opcon written

within ‘[’ and ‘]’; and the relational operators relop.

A state proposition, S, is an atomic formula for cap-

turing events that satisfy specified relations between at-

5

132 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

φ ::= ‘(’ S |φ ‘)’ { bcon }

| notφ (negation)
| φ and φ (logical and)
| φ or φ (logical or)
| φ xor φ (logical xor)
| φ �(opcon) φ (leadsto)
| �(opcon) φ (always)
| φ olap(opcon) φ (overlaps)

| φ dur(opcon) φ (during)
| φ sw(opcon) φ (startswith)
| φ ew(opcon) φ (endswith)
| φ eq(opcon) φ (equals)

bcon ::= ‘[’ {tc | cc} ‘]’
tc ::= {at | duration | end} relop t{: t}
cc ::= {icount | bcount | rate} relop c{: c}

opcon ::= ‘[’ relop t{: t} ‘]’

relop ::= {> |< |= | ≥ |≤ | �= }

t ::= [0− 9] + {s|ms}
c ::= [0− 9]+

Figure 1: The grammar for specifying a behavior model φ.

tributes and their values. In essence, S captures states of

a system or process and is the basic element of a behav-

ior model. The most trivial behavior model is one with a

single state proposition. Formally, S is represented as a

finite collection of related attribute-value tuples as:

S = {(ai, ri, vi) | i ∈ N, ai ∈ A, vi ∈ V,

ri ∈ (=, >, <, ≥, ≤, �=)}

A is a set of string labels, such as sip, dip,

etype and V is a set of string constants, such as

10.1.1.2,/bin/sh, along with two special strings: (a)

strings prefixed with ‘$’, as in $$,$s2.dst (b) strings

with the wild-card character ‘*’, as in /etc/pas*. Con-

sidering our previous example of IPFLOW, the state

propositions ip s2d and ip d2s are written as:

ip s2d = {etype=PKT IP, sip=$$,dip=$$}

ip d2s = {etype=PKT IP,sip=$ip s2d.dip,

dip=$ip s2d.sip}

State proposition ip s2d contains three attributes

etype, sip and dip. etype has a constant value

PKT IP, while sip and dip attributes use the ‘$’ pre-

fixed special variables which are dynamically bound at

runtime. State proposition ip d2s defines the values of

its sip and dip attributes as being dependent on val-

ues of state ip s2d. Dependent attributes along with dy-

namic binding of values allows leaving out details like

the actual IP addresses from the specification.

The temporal operators allow expressing temporal re-

lationships like ordering and concurrency between one-

or-more behaviors. The linear-time temporal operator�

(leadsto), written as ∼>, is used to express causal rela-

tionships between behaviors. The interval temporal logic

operators express concurrent relationships between be-

haviors as either relationships: (a) between their start-

times using sw (startswith), (b) between their endtimes

using ew (endswith) or (c) between their durations using

olap (overlap), eq (equals) and dur (during). The �

(always) operator, written as [], allows expressing invari-
ant behaviors. The logical operators not, and, or, xor
are supported for logical operations over behaviors and

for creating complex behaviors.

Behavior constraints allow placing additional con-

straints on the matching behavior instances and are spec-

ified immediately following the behavior within square

brackets. Constraints and their values are related using

the standard relational operators. The six behavior con-

straints are divided as time constraints tc and count con-

straints cc. Time constraints allow constraining behav-

ior starttime using at, behavior endtime using end and

behavior duration using duration. The time value, t,
for the constraint can be specified as a single positive

value or as a range. Additionally, the values can be suf-

fixed with either ‘s’ or ‘ms’ to indicate seconds or mil-

liseconds respectively. The count constraints allow con-

straining number of matching behavior instances using

icount, the size of each behavior instance using bcount

and rate of events within a behavior instance using rate.

Operator constraints allow specifying time bounds over

the temporal operators thus allowing their semantics to

be slightly modified. The operator constraint values are

specified as a single value or a range along with a rela-

tional operator. Table 2 presents detailed semantics of

operators along with behavior and operator constraints.

Expressing a behavior in the language constitutes writ-

ing sub-formulae. Behaviors are always enclosed within

parenthesis ‘(’ and ’)’. Simple behaviors are constructed

by relating one-or-more state propositions using opera-

tors, while complex behaviors are constructed by relat-

ing one-or-more behaviors. The grammar also allows

expressing complex behaviors using recursion and we

present an example in Section 5.3. Recursive definitions

allow expressing looping behavior for which the loop

bounds can be optionally specified using the bcount be-

havior constraint. The current grammar does not support

existential and universal quantification since such a need

is not clear. We explore these language extensions as part

of our future work.

Writing behavior models in the framework involves

additional syntax such as namespaces, headers and vari-

ables which are discussed along with the case-studies in

Section 5.1 and Section 5.2. Next section presents the

formal semantics of the language.

3.4 Semantics

We first define two concepts important for understanding

the semantics. A sequential log (L) is a finite sequence
of timestamped events L = e1, e2, e3, . . . , en such that

ei.t ≤ ej .t , ∀ i < j. A behavior instance Bφ for a be-

havior model φ is sequence or groups of events satisfying

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 133

Behavior model ψ Meaning of ψ L satisfies ψ (L |= ψ) iff
(φ) φ is a behavior. ∃Bφ ⊆ L and |Bφ| > 0

S S is a state proposition defined as

S = {(a1, r1, v1) . . ., (ad, rd, vd)}.
(a) |BS | > 0, (b) ∀ e ∈ BS , ∀ i ∈ {1, . . . , d}, e.ai
is defined and values e.vi and S.vi satisfy relation ri.

(negφ) Negation of behavior is true. L �|= φ, that is, |Bφ| = 0

(φ1 andφ2) Both φ1 and φ2 are true. L |= φ1 and L |= φ2

(φ1 orφ2) φ1 and φ2 are not both false simultaneously. L |= φ1 or L |= φ1 or satisfies both φ1 and φ2

(φ1 xorφ2) Either of φ1 or φ2 are true but not both. L |= φ1 or L |= φ2 but not both

(φ1 � φ2) φ1 leadsto φ2, that is, whenever φ1 is satisfied φ2 will

eventually be satisfied.

(a) L |= φ1 and L |= φ2, (b) Bφ1
[1] �= Bφ2

[1], (c)
Bφ2

.starttime ≥ Bφ1
.endtime

(φ1 � [≤ t]φ2) Whenever φ1 is satisfied φ2 will be satisfied within t
time units.

(a) L |= (φ1 � φ2), (b)
Bφ2

.starttime ≤ (Bφ1
.endtime+ t)

(�φ) φ is always satisfied, that is, satisfied by each event. ∀ e ∈ L, e |= φ

(�[= t]φ) φ is always satisfied within every consecutive

interval(epoch) of t time units.

t > 0 and for all consecutive intervals t, lt ⊆ L and

lt |= φ

(φ1 swφ2) φ1 starts with φ2. (a) L |= φ1 and L |= φ2, (b) Bφ1
[1] �= Bφ2

[1], (c)
Bφ1

.starttime = Bφ2
.starttime

(φ1 sw[≥ t]φ2) φ1 starts t time units after φ2. (a) L |= (φ1 swφ2), (b)
Bφ1

.starttime ≥ (Bφ2
.starttime+ t)

(φ1 ewφ2) φ1 ends with φ2. (a) L |= φ1 and L |= φ2, (b) Bφ1
[1] �= Bφ2

[1], (c)
Bφ1

.endtime = Bφ2
.endtime

(φ1 ew[= t]φ2) φ1 ends t time units after φ2. (a) L |= (φ1 ewφ2), (b)
Bφ1

.endtime = (Bφ2
.endtime+ t)

(φ1 olapφ2) φ1 overlaps φ2, that is, φ1 starts after φ2 starts but

before φ2 ends and ends after φ2 ends.

(a) L |= φ1 and L |= φ2, (b) Bφ1
[1] �= Bφ2

[1], (c)
(Bφ2

.starttime < Bφ1
.starttime <

Bφ2
.endtime) and

(Bφ1
.endtime > Bφ2

.endtime)

(φ1 olap[> t]φ2) φ1 overlaps φ2 and the overlapping region is greater

than t time units.

(a) L |= (φ1 olapφ2), (b) the overlap
(Bφ2

.endtime−Bφ1
.starttime) > t

(φ1 eqφ2) φ1 equals φ2 in duration. (a) L |= φ1 and L |= φ2, (b) Bφ1
[1] �= Bφ2

[1], (c)
Bφ1

.duration = Bφ2
.duration

(φ1 eq[= t]φ2) φ1 and φ2 are both of duration t. (a) L |= (φ1 eqφ2), (b)
Bφ1

.duration = Bφ2
.duration = t

(φ1 durφ2) φ1 occurs during φ2, that is, φ1 starts after φ2 and

ends before φ2 ends.

(a) L |= φ1 and L |= φ2, (b) Bφ1
[1] �= Bφ2

[1], (c)
(Bφ1

.starttime > Bφ2
.starttime) and

(Bφ1
.endtime < Bφ2

.endtime)

(φ1 dur[= t1 : t2]φ2) φ1 occurs during φ2 with duration between t1 and t2. (a) L |= (φ1 durφ2), (b) (t1 ≤ Bφ1
.duration ≤ t2)

(φ)[icount = c] The number of behavior instances satisfying φ is c. (a) L |= φ, (b) there exist distinct B1
φ
. . . Bc

φ
⊆ L

(φ)[bcount = c] Behavior instances satisfying φ are of size c. (a) L |= φ, (b) Bφ.bcount = c
(φ)[rate > c] Behavior instances satisfying φ have a rate, defined as

(behavior size / behavior duration) greater than c.
(a) L |= φ, (b) (Bφ.bcount/Bφ.duration) > c and
Bφ.duration > 0

(φ)[at < t] Starting time of behavior instances satisfying φ must

be less than absolute time t.
(a) L |= φ, (b) Bφ.starttime < t

(φ)[end ≥ t] Behavior instances satisfying φ have endtime greater

than absolute time t.
(a) L |= φ, (b) Bφ.endtime ≥ t

(φ)[duration �= t] Behavior instances satisfying φ are of duration �= t. (a) L |= φ, (b) Bφ.duration �= t

Table 2: Semantics of operators, behavior constraints and operator constraints in our logic. We describe semantics for constraints considering only

a single relational operator and refer the reader to the framework webpage [17] for details.

the behavior model φ.

Bφ = 〈starttime, endtime, bcount, (b1, b2, . . . , bk)〉

where (b1, b2, . . . , bk) ⊆ L could be an individual

event e or another behavior-instance Bφi
. starttime =

b1.starttime is the starting time of the behavior as de-

fined by its first element and endtime = bk.endtime
is the ending time of the behavior as defined by its last

element. bcount = k is the total number of elements

in the behavior instance. All bi’s are in increasing time-

order of their starttime. Additionally, let Bφ.duration
= (Bφ.endtime − Bφ.startime) be the duration of the

behavior instance and |Bφ| = Bφ.bcount represent the
size of behavior instance. If φ is a simple behavior, such

as a state proposition S, then

Bs = 〈ei1 .t, eik .t, k, (ei1 , . . . , eik)〉

7

134 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Sequence diagram of IP-interaction between four nodes. →

or ← represent an IP packet between a source (s) and destination (d).
An IP flow is a packet pair between s and d.

where (ei1 , . . . , eik) ⊆ L.
Given a finite sequential log L and a user-defined be-

havior model φ, goal of the analysis is to find all behavior
instances (B1

φ, B
2

φ, . . .) from L that satisfy the behavior

model, where satisfiability is defined as follows:

L |= φ iff ∃Bφ ⊆ L and |Bφ| > 0

That is, the log L satisfies (|=) the behavior model φ iff

there exists a behavior instance Bφ in L of finite length

|Bφ|. Since φ is a composite formula created using many

sub-formulas, the satisfiability of φ is determined as a

function of satisfiability of its sub-formulae. Table 2 de-

fines the satisfiability criteria for sub-formulae formed

using the operators and constraints. We next explain the

key language ideas by defining simple models and apply-

ing them to a fictitious data set.

Assume a packet trace of seven IP packets represent-

ing an interaction between four nodes A, B, C and D as

shown in Figure 2. Let the sequential log of correspond-

ing events be e1, e2, . . . , e7.
Using the states ip s2d and ip d2s defined earlier

in Section 3.3, IP flow behavior is written as a causal

relationship between the state propositions ip s2d and

ip d2s as IPFLOW=(ip s2d � ip d2s). There are

three IP flow instances in Figure 2 that satisfy IPFLOW,

that is, icount = 3 with bcount = 2 for each instance:

B1
ipflow = (e1, e7)

B2
ipflow = (e2, e5)

B3
ipflow = (e3, e4)

Extending the example, a complex behavior for

pairs of overlapping IP flows can now be written as

IPFLOW PAIRS=(IPFLOW olap IPFLOW). There are

in all three instances of overlapping IPFLOW pairs from

Figure 2. That is,

B1
ipflow pairs = ((e1, e7), (e2, e5))

B2
ipflow pairs = ((e1, e7), (e3, e4))

B3
ipflow pairs = ((e2, e5), (e3, e4))

Again, icount = 3 and for each instance bcount = 2,
since bcount counts the number of IPFLOW occurrences

and not individual events.

We can additionally define a bad IP flow behav-

ior BAD IPFLOW as one for which there was no

matching response from the destination. That is,

BAD IPFLOW=(ip s2d � (not ip d2s)). Event

e6 matches BAD IPFLOW model since it has no matching

response. That is, B1

bad ipflow = (e6), with bcount = 1.
The next section describes the architecture of the anal-

ysis framework.

4 Semantic Analysis Framework

Given our objective of semantic-level data analysis, we

require the analysis framework to support (a) analysis

of multi-type, multi-variate, timestamped data, (b) defin-

ing new models by composing existing models, and (c)

storage, retrieval and extensibility of domain-specific be-

havior models. The framework has five components as

shown in Figure 3; the knowledge base, a data normal-

izer, an event storage system, an analysis engine and a

presentation engine. The decoupling of behavior model

specification, the input processing and the analysis al-

gorithms, allows the framework to be directly applied

across several different domains. Subsequent sections

discuss the details of each component.

4.1 Knowledge Base

The knowledge base provides a namespace-based stor-

age mechanism to store behavior models and is central

in providing an extensible framework. For example, our

networking domain currently defines models for ipflow,

tcpflow, icmpflow and udpflow. These behavior models

capture common domain information and allow a user

to rapidly compose higher-level models by reusing exist-

ing behavior models. Reusing a behavior model from the

knowledge base constitutes importing it using its names-

pace and name. For example, referring to the behavior

model in Figure 4(a), line 5 imports the IPFLOW model

from the NET.BASE PROTO domain. The namespace al-

lows categorization of models into domain-specific areas

while allowing composition of models across domains.

We implement namespaces similar to Java namespaces,

that is, each component in the namespace corresponds to

a directory name on the filesystem. This simple design

ensures that the knowledge base is easily customizable

and extensible.

4.2 Data Normalizer

The data normalizer maps a data record to the event for-

mat defined in Section 3.2. Raw data accepted by the nor-

malizer can be in the form or trace files, packet dumps,

audit logs, security logs, syslogs, kernel logs or script

output with the only requirement that each data record

have a timestamp and a message field. Specialized plug-

ins in the normalizer convert each type of raw data into

corresponding events. Figure 3(b) shows a possible event

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 135

Figure 3: The semantic analysis framework (SAF) captures a user’s higher-level analysis intent as (a) a behavior model, applies the model over (b)

a finite stream of events normalized from raw data, and (c) outputs events satisfying the behavior model.

format for an IP packet from a packet dump. The current

normalizer supports a C-based plugin API for writing

new specialized plugins. The framework includes plu-

gins for the basic packet-types of IP, TCP, UDP, ICMP,

DNS along with plugins for parsing syslog, auth and

server logs.

4.3 Event Storage

The event storage component is responsible for storing

the events from the data normalizer into a database. Ev-

ery event-type has a separate table, the columns of the

tables correspond to the event attributes and each row

describes an event. The current implementation stores

all events into a SQLite database for two reasons: (a) it

provides a standard and ready-to-use interface for stor-

ing and fetching events and (b) its server-less operation

and open-source nature ensures portability on commod-

ity systems. Our experience suggests that SQLite per-

forms reasonably well for a large number of situations

but presents challenges for complex analysis as the vol-

ume of events increases. Our future work includes inves-

tigating the scale and efficiency challenges involved in

storage and retrieval of events.

4.4 Analysis and Presentation Engine

Given a finite sequential log L and a user-defined behav-

ior model φ, goal of the analysis engine is to find all be-

havior instances (B1

φ, B
2

φ, . . .) from L that satisfy the be-

havior model. Let the events in L be stored internally in

the event storage database Edb. We discuss only the key

ideas behind the analysis process by describing extrac-

tion of behavior instances satisfying the IPFLOW model

defined in Section 3.4 from the sample data in Figure 2.

The behavior model φ is first internally represented

in a manner similar to a compiler expression-tree and

is then evaluated left-to-right in a post-order fashion.

The satisfiability of the behavior model is determined

as a function of satisfiability of each of the compo-

nent behaviors according to the semantics defined in

Table 2. For the IPFLOW model, the state proposition

ip s2d={etype=PKT IP,sip=$$,dip=$$} is evalu-

ated first. Since it does not have any dependent at-

tributes, its expression is converted to the following

query {etype=PKT IP,sip=*,dip=*} and is used to

fetch all events in Edb matching the query. All events

(e1, e2, e3, e4, e5, e6, e7) match the state ip s2d.

Next, the proposition ip d2s={etype=PKT IP,

sip=$ip s2d.dip, dip=$ip s2d.sip} is evaluated.

The attributes depend on the attributes of state ip s2d.

So, using each event that matched ip s2d, a correspond-

ing query is generated by resolving the values of sip and

dip using the values from the matched events. From Fig-

ure 2, e1 matches e7, e2 matches e5, e3 matches e4. e5
and e6 are also possible candidates but since e5 already

matched e2, it is not paired with e6. Finally, the oper-

ator � is evaluated, where the satisfiability criteria de-

scribed in Table 2 is applied and any specified operator

constraints are checked. The three instances satisfying

the criteria (e1,e7), (e2, e5), and (e3,e4) are returned.

9

136 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The presentation engine is responsible for extracting

the output from the analysis stage and presenting it in a

summarized format. We currently support printing the

output in a tabular format as shown in Figure 3(c). We

next present a brief analysis of the algorithm.

Algorithm Analysis As described in Section 3.3,

state propositions could either contain constant attribute-

values (cStates), such as 10.1.1.2; dependent values

(dStates), such as $s1.dip; or dynamic values (iStates),

such as $$. A simple behavior consists of a combination

of these states using one or more combinations of oper-

ators and constraints. We assume a constant processing

time for all operators and constraints. Then, given an

input of N events, processing a state proposition can in-

volve two important operations which influence the run-

time: (i) querying using the state expression and (ii) pro-

cessing the results of the query if any. In the case of

cStates and iStates, there is exactly one query made, and

it generates at most N responses. Thus, the worst case

for processing thoseN responses isO(N). In the case of
a dstate, given N events, there are N queries to be made

and in the worst case every query may return O(N) re-
sults that have to be processed. Thus, processing depen-

dent states involves a worst case of O(N2) operations.
We present our performance results in Section 6.

5 Case Studies

In this section, we evaluate the utility of our semantic

framework by applying it to five different analysis sce-

narios: (a) confirming a hypothesis on collected net-

work traces, (b) specifying expected system behavior

during network experimentation, (c) modeling worm be-

havior as an example security threat, (d) modeling dy-

namic change, and (e) rapidly composing models to cre-

ate higher-level behaviors. We present detailed explana-

tion of input, the behavior model and analysis output for

the first two cases. Due to space constraints, we briefly

discuss the remaining three cases with their correspond-

ing behavior models, demonstrating features of our se-

mantic analysis framework.

5.1 Modeling Hypothesis

Researchers frequently need to validate hypothesis or test

results presented by other researchers. We emulate one

such scenario by validating the results presented by Hus-

sain et al. [5] to demonstrate how behavior models can be

rapidly created to reproduce results. We also discuss the

syntax involved in writing a complete behavior model.

In the above referenced paper, a threshold-based

heuristic was presented to identify DDoS attacks in

traces captured at an ISP. Attacks on a victim were iden-

tified by testing for two thresholds on anonymized traces:

(a) the number of sources that connect to the same des-

tination within one second exceeds 60, or (b) the traffic

1. [header]
2. NAMESPACE=NET.ATTACKS
3. NAME=DDOS_HYP
4. QUALIFIER={}
5. IMPORT=NET.BASE_PROTO.IPFLOW

6. [states]
7. sA=IPFLOW.ip_s2d()
8. sB=IPFLOW.ip_s2d(dip=$sA.dip)

9. [behavior]
10.hyp_1=(sA)[bcount=1] ~>[<=1s] (sB)[bcount>=59]
11.hyp_2=(sA)[rate > 40000]

12.[model]
13.DDOS_HYP(timestamp,sip,dip,etype)= (hyp_1 or hyp_2)

(a) DDOS HYP models two thresholds for detecting DDoS attacks.

Summary : DDOS_HYP_hyp1
========================
Total Matching Instances: 2
Instance : 1 of 2 (Total Event Count: 60)
--
 timestamp | sip | dip | etype
--
 State Definition: sA
 1025390156 |201.199.184.56|87.231.216.115| PKT_ICMP

State Definition: ~> [<= 1 s] sB [ecount >= 59]
 1025390156 |201.199.184.56|87.231.216.115| PKT_ICMP
 1025390156 |201.199.184.56|87.231.216.115| PKT_ICMP
<truncated output containing remaining 57 events>

Instance : 2 of 2 (Total Event Count: 60)
--
 timestamp | sip | dip | etype
--
 State Definition: sA
 1025390157 |53.232.170.113|87.134.184.48 | PKT_ICMP

State Definition: ~> [<= 1 s] sB [ecount >= 59]
 1025390157 |33.138.213.170|87.134.184.48 | PKT_ICMP
 1025390157 |33.138.213.181|87.134.184.48 | PKT_ICMP
<truncated output containing remaining 57 events>

(b) Behavior instances satisfying the DDOS HYP model.

Figure 4: Behavior model for confirming a hypothesis and correspond-

ing behavior instances from network traces satisfying the model.

rate exceeds 40,000 packets/sec. We demonstrate the ad-

vantages of behavior model-based analysis by defining

a model to test for the two heuristics listed above using

10 seconds of the trace file containing the start of an at-

tack. We normalize the packet traces to 142,530 PKT IP

events.

Referring to the model script shown in Figure 4(a),

lines 2–5 define the model header. Line 4 does not

specify any qualifying conditions, that is, filters, for the

events it can process. Line 5 imports the IPFLOW model

from the knowledge base. Lines 7–8 define the neces-

sary state propositions. Line 7 defines sA, a simple state

which just captures an IP packet from some source to

destination. Line 8 defines a state sB with a dependency

that its dip has to be equal to the dip in sA. State sA

thus provides a context for sB.

Line 10 expresses the first hypothesis that there should

be more than 60 sources connecting to the same destina-

tion for an attack. We apply the� operator to denote that

we expect sA to occur before sB. The behavior constraint

bcount (refer Section 3.4) applied to sA limits number of

events returned to 1, whereas it is applied to sB so that at-

least 59 events should occur since the event matching sA

occurred. Additionally, the operator constraint [<=1s]

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 137

The presentation engine is responsible for extracting

the output from the analysis stage and presenting it in a

summarized format. We currently support printing the

output in a tabular format as shown in Figure 3(c). We

next present a brief analysis of the algorithm.

Algorithm Analysis As described in Section 3.3,

state propositions could either contain constant attribute-

values (cStates), such as 10.1.1.2; dependent values

(dStates), such as $s1.dip; or dynamic values (iStates),

such as $$. A simple behavior consists of a combination

of these states using one or more combinations of oper-

ators and constraints. We assume a constant processing

time for all operators and constraints. Then, given an

input of N events, processing a state proposition can in-

volve two important operations which influence the run-

time: (i) querying using the state expression and (ii) pro-

cessing the results of the query if any. In the case of

cStates and iStates, there is exactly one query made, and

it generates at most N responses. Thus, the worst case

for processing thoseN responses isO(N). In the case of
a dstate, given N events, there are N queries to be made

and in the worst case every query may return O(N) re-
sults that have to be processed. Thus, processing depen-

dent states involves a worst case of O(N2) operations.
We present our performance results in Section 6.

5 Case Studies

In this section, we evaluate the utility of our semantic

framework by applying it to five different analysis sce-

narios: (a) confirming a hypothesis on collected net-

work traces, (b) specifying expected system behavior

during network experimentation, (c) modeling worm be-

havior as an example security threat, (d) modeling dy-

namic change, and (e) rapidly composing models to cre-

ate higher-level behaviors. We present detailed explana-

tion of input, the behavior model and analysis output for

the first two cases. Due to space constraints, we briefly

discuss the remaining three cases with their correspond-

ing behavior models, demonstrating features of our se-

mantic analysis framework.

5.1 Modeling Hypothesis

Researchers frequently need to validate hypothesis or test

results presented by other researchers. We emulate one

such scenario by validating the results presented by Hus-

sain et al. [5] to demonstrate how behavior models can be

rapidly created to reproduce results. We also discuss the

syntax involved in writing a complete behavior model.

In the above referenced paper, a threshold-based

heuristic was presented to identify DDoS attacks in

traces captured at an ISP. Attacks on a victim were iden-

tified by testing for two thresholds on anonymized traces:

(a) the number of sources that connect to the same des-

tination within one second exceeds 60, or (b) the traffic

1. [header]
2. NAMESPACE=NET.ATTACKS
3. NAME=DDOS_HYP
4. QUALIFIER={}
5. IMPORT=NET.BASE_PROTO.IPFLOW

6. [states]
7. sA=IPFLOW.ip_s2d()
8. sB=IPFLOW.ip_s2d(dip=$sA.dip)

9. [behavior]
10.hyp_1=(sA)[bcount=1] ~>[<=1s] (sB)[bcount>=59]
11.hyp_2=(sA)[rate > 40000]

12.[model]
13.DDOS_HYP(timestamp,sip,dip,etype)= (hyp_1 or hyp_2)

(a) DDOS HYP models two thresholds for detecting DDoS attacks.

Summary : DDOS_HYP_hyp1
========================
Total Matching Instances: 2
Instance : 1 of 2 (Total Event Count: 60)
--
 timestamp | sip | dip | etype
--
 State Definition: sA
 1025390156 |201.199.184.56|87.231.216.115| PKT_ICMP

State Definition: ~> [<= 1 s] sB [ecount >= 59]
 1025390156 |201.199.184.56|87.231.216.115| PKT_ICMP
 1025390156 |201.199.184.56|87.231.216.115| PKT_ICMP
<truncated output containing remaining 57 events>

Instance : 2 of 2 (Total Event Count: 60)
--
 timestamp | sip | dip | etype
--
 State Definition: sA
 1025390157 |53.232.170.113|87.134.184.48 | PKT_ICMP

State Definition: ~> [<= 1 s] sB [ecount >= 59]
 1025390157 |33.138.213.170|87.134.184.48 | PKT_ICMP
 1025390157 |33.138.213.181|87.134.184.48 | PKT_ICMP
<truncated output containing remaining 57 events>

(b) Behavior instances satisfying the DDOS HYP model.

Figure 4: Behavior model for confirming a hypothesis and correspond-

ing behavior instances from network traces satisfying the model.

rate exceeds 40,000 packets/sec. We demonstrate the ad-

vantages of behavior model-based analysis by defining

a model to test for the two heuristics listed above using

10 seconds of the trace file containing the start of an at-

tack. We normalize the packet traces to 142,530 PKT IP

events.

Referring to the model script shown in Figure 4(a),

lines 2–5 define the model header. Line 4 does not

specify any qualifying conditions, that is, filters, for the

events it can process. Line 5 imports the IPFLOW model

from the knowledge base. Lines 7–8 define the neces-

sary state propositions. Line 7 defines sA, a simple state

which just captures an IP packet from some source to

destination. Line 8 defines a state sB with a dependency

that its dip has to be equal to the dip in sA. State sA

thus provides a context for sB.

Line 10 expresses the first hypothesis that there should

be more than 60 sources connecting to the same destina-

tion for an attack. We apply the� operator to denote that

we expect sA to occur before sB. The behavior constraint

bcount (refer Section 3.4) applied to sA limits number of

events returned to 1, whereas it is applied to sB so that at-

least 59 events should occur since the event matching sA

occurred. Additionally, the operator constraint [<=1s]

10

(a) DNS Kaminsky experiment setup.

(b) Set of possible experiment behaviors.

1. [header]
2. NAMESPACE = NET.ATTACKS
3. NAME = DNSKAMINSKY
4. QUALIFIER = {etype='PKT_DNS'}
5. IMPORT = NET.APP_PROTO.DNSREQRES

6. [states]
7. # Attacker to victim query
8. AtoV_query = DNSREQRES.dns_req()

9. # Victim to real ns query
10. VtoR_query= DNSREQRES.dns_req(sip=$AtoV_query.dip,
 dnsquesname=$AtoV_query.dnsquesname)

11.# Real NS to victim real response
12.RtoV_resp = DNSREQRES.dns_res($VtoR_query,

 dnsauth=fakens.fake.com)

13.# Attacker to victim CORRECT fake response
14.AtoV_resp = DNSREQRES.dns_res($VtoR_query,
 dnsauth=realns.eby.com) [bcount>=1]

15.# Attacker to victim INCORRECT response case
16.AtoV_noresp = DNSREQRES.dns_res($VtoR_query,
17. dnsid != $VtoR_query.dnsid) [bcount>=1]

18.[behavior]
19.initial_query = (AtoV_query ~> VtoR_query)
20.b_1 = initial_query~>RtoV_resp ~> (AtoV_resp xor
 AtoV_noresp)
21.b_2 = initial_query ~> AtoV_noresp ~> RtoV_resp
22.b_3 = initial_query ~> AtoV_resp ~> RtoV_resp

23.[model]
24.FAILURE(sip,dip,sport,dport,dnsid,dnsauth) = b_1 or b_2
25.SUCCESS(sip,dip,sport,dport,dnsid,dnsauth) = b_3

(c) DNSKAMINSKY models complete experiment behavior.

Figure 5: Experiment setup, possible set of behaviors and corresponding behavior model for validating a networked experiment.

binds sA and sB to occur within a second in the order

specified.

Line 11 defines the second hypothesis that requires

that the packet rate be ≥ 40,000 by using the rate con-

straint on state proposition sA. Lastly, line 13 defines

the behavior model DDOS HYP which asserts that either

hyp 1 or hyp 2 or both are valid. The four attributes

timestamp,sip,dip,etype are reported in the final

output.

When the model is applied to the packet trace, it pro-

duces an output as shown Figure 4(b). We see that there

are two instances reported matching hypothesis hyp 1

both with 60 events within a 1 second interval. The out-

put also shows the corresponding state or behavior def-

initions matching the following events. The two desti-

nation IPs that are under attack are 87.231.216.115 and

87.134.184.48. This output is consistent with the find-

ings reported in the original paper [5].

This example clearly demonstrates the ease with

which simple hypotheses could be modeled and vali-

dated. The original authors wrote about 2,000 lines of

C code to identify attacks. The same validation was ex-

pressed in about five lines as a behavior model. Addition-

ally, this model can now be shared and easily modified

and extended.

5.2 Modeling Experiment Behavior

Running experiments on a testbed, such as DETER [2],

is challenging since it is hard to ascertain the validity of

the experiment manually. With our framework, a model

can be used to capture the “definition of validity” which

includes possible successful and failed behaviors for an

experiment and then confirmatory analysis can verify if

it was met. Such a model can also be easily shared with

other experimenters promoting sharing and reuse of ex-

periments.

We present an experiment emulating Dan Kaminsky’s

popular DNS attack [7] using the metasploit [11] frame-

work. Referring to Figure 5(a), the attackers objective is

to poison the cache of the victimns so that any requests to

eby.com are redirected to a fake nameserver (fakens) in-

stead of the real nameserver (realns). We refer the reader

to [7] for a detailed understanding of the attack. Since the

attack exploits a race condition, our experiment setup has

to permit successful occurrences as well as failed occur-

rences of the attack.

Figure 5(b) captures the experiment behavior as a tree

of possibilities where the nodes are the experiment states

and the paths connecting the states are possible experi-

ment behaviors. These states are not exhaustive but suffi-

cient to capture most of the semantics of the experiment.

Specifically, we see that there are three possible behav-

iors that can lead to failures and one behavior that can

lead to success.

The behavior model script is shown in Figure 5(c).

Lines 2–4 define the model as DNSKAMINSKY over events

of type PKT DNS. Line 5 imports the DNSREQRES model

that already defines states and behaviors relevant to the

DNS protocol.

Lines 7–17 define five different states that are relevant

to the experiment. Line 8 defines the first DNS query

from attacker to victim and provides a context for further

11

138 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Summary : DNSKAMINSKY_SUCESS
========================
Total Matching Instances: 1

 etype | timestamp | sip | dip | sport | dport | dnsid | dnsauth

 PKT_DNS | 1275515488 | 10.1.11.2 | 10.1.4.2 | 38323 | 53 | 59439 |
 PKT_DNS | 1275515488 | 10.1.4.2 | 10.1.6.3 | 32778 | 53 | 59439 |
 PKT_DNS | 1275515488 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 59439 |fakens.fakeeby.com
 PKT_DNS | 1275515488 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 59439 |realns.eby.com

Summary : DNSKAMINSKY_FAILURE
========================
Total Matching Instances: 622

<truncated output>

 etype | timestamp | sip | dip | sport | dport | dnsid | dnsauth

 PKT_DNS | 1275515486 | 10.1.11.2 | 10.1.4.2 | 6916 | 53 | 47217 |
 PKT_DNS | 1275515486 | 10.1.4.2 | 10.1.6.3 | 32778 | 53 | 15578 |
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 15578 |realns.eby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com
 PKT_DNS | 1275515486 | 10.1.6.3 | 10.1.4.2 | 53 | 32778 | 47217 |fakens.fakeeby.com

 PKT_DNS | 1275515486 | 10.1.11.2 | 10.1.4.2 | 28902 | 53 | 50921 |
<truncated output>

Figure 6: Behavior instances satisfying the DNSKAMINSKY model.

states. Line 10 defines a query from the victim to real

nameserver by requiring that the source IP address of this

query be same as the destination IP address of the previ-

ous query and the DNS questions of both states be iden-

tical. This makes sure that the forwarded query by the

victim nameserver is the same as the one received. Line

12 defines the response from the real nameserver to the

victim nameserver. The response is related to the request

in line 10 by using the state identifier of the query state

VtoR query. To specifically distinguish this response

from the attacker’s response, we mention the value of the

dnsauth attribute that is expected in the response. There

are two cases for specifying the attacker’s response. Line

14 defines the attacker’s response same as the real name-

server response except that we mention the fake name-

server as value of the dnsauth attribute. Line 16 defines

the case where the attacker’s response is incorrect due

to a wrongly guessed DNS transaction id. The bcount

constraint specifies that any number of responses can be

matched since the attacker can send multiple forged re-

sponses. Attribute values not defined in the above states

default to their definitions in DNSREQRES.

Lines 19–22 specify four possible behaviors corre-

sponding to the four different paths in Figure 5(b). Line

20 uses the xor operator to merge two behavior paths.

The other behaviors use the � operator to capture the

causation between the states. Finally, the behavior model

is defined in the model section using FAILURE and

SUCCESS behaviors. Referring to Figure 5(b), we see

that b 1 and b 2, where b 1 is a composite of two be-

haviors, lead to FAILURE and b 3 leads to SUCCESS.

By default, the framework composes the final model by

or’ing the behaviors specified in the model section.

After running the experiment and capturing DNS

packets, we normalize the last 10,000 packets to

PKT DNS events since they contain a successful attack

along with failures representative of rest of the capture.

The framework outputs one SUCCESS instance and 622

FAILURE instances as shown in Figure 6.

1. scan_A = {etype=SCAN, src=$infect_A.host, dst=$$}
2. infect_A = {etype=INFECT, host=$scan_A.dst}
3. single_spread = (scan_A ~> infect_A)
4. spread_chain = (single_spread ~> spread_chain)
5. WORMSPREAD(host) = (spread_chain)

(a) Modeling the worm infection chain over IDS alerts.

1. IMPORT = NET.APP_PROTO.HTTP
2. http_pkt = HTTP.HTTP_PKT(sip=$$, dip=$$)
3. attack_event = {etype=DOSATTACK,src=$$,dst=http_pkt.dip}
4. http_stream_at100 = ((http_pkt)[rate=100])
5. http_stream_below50 = ((http_pkt)[rate=0:50])
6. attack_start=(http_stream_at100 ew[<= 5s](attack_event))
7. DYNAMIC_CHANGE = (attack_start ~> http_stream_below50)

(b) Modeling change in rate of packet streams.

1. IMPORT = NET.ATTACKS.DNSKAMINSKY,NET.ATTACKS.WORMSPREAD
2. worm_attack= WORMSPREAD.single_spread(host=$$)
3. dns_attack = DNSKAMINSKY.SUCCESS(sip=$worm_attack.host)
4. COMBINED_ATTACK = (worm_attack ~> (dns_attack))

(c) Modeling an attack by composing WORMSPREAD and
DNSKAMINSKY models.

Figure 7: Excerpts from behavior models for (a) modeling a security

threat, (b) modeling a dynamic change and (c) composing higher-level

models. We refer the reader to the framework webpage [17] for details.

This case study demonstrates the ease with which the

full system behavior was semantically modeled at the

level of user’s understanding. Additionally, the model

was composed using existing models from the knowl-

edge base, extended with user’s context-specific values

for attributes and then validated.

5.3 Modeling a Security Threat

In this case study, we define a behavior model of a typical

worm spread detected by IDS alerts collected from mul-

tiple hosts. Assume a network with IDSes on each host

reporting two types of timestamped alerts: a SCAN alert

when a scan is detected by a host and an INFECT alert

when the host is found infected. Assume an event log

created by normalizing the alerts to two types of events

with their corresponding attributes. Given the event log,

our objective here is to define a behavior model to extract

all possible infection chains of any length and report the

hosts involved.

We model the worm spread behavior as shown

in Figure 7(a) in two stages; by first defining a

single spread behavior using events from a sin-

gle host and then defining the spread chain as a

chain of related single spread occurrences. The

single spread behavior, concerning a vulnerable host

A, is a sequence of two dependent and casual events: (a) a

scan A event with its src attribute pointing to an earlier

infected host, followed by (b) an infect A event with

its host attribute the same as scan A.dst. A worm

spread chain (spread chain) is then simply defined by

a recursive occurrence of related single spread be-

haviors. Referring to the model, the forward-dependent

attribute src in the definition of scan A connects suc-

cessive single spread behaviors by requiring the src

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 139

of the next scan to be the same as the previously infected

host. The forward-dependent attribute src is initialized

automatically the first time single spread is parsed by

considering it to be a dynamic ($$) variable. The next

iteration over spread chain then uses the values as de-

termined dynamically by single spread.

5.4 Modeling Dynamic Change

Dynamic changes are a fundamental characteristic of

networked and distributed environments. One example

of a dynamic change is the change in rate of a stream

of packets due to an anomalous condition such as a DoS

attack. Our objective in this case study is to model an

expected reduction in the rate of legitimate HTTP traffic

due to DoS attack on a server. Our raw data consists of

IDS DoS attack alerts and HTTP packets.

The DYNAMIC CHANGE model, containing only the

relevant aspects is described in Figure 7(b). Line 2 de-

fines a state capturing a HTTP packet between a source

and destination. Line 3 defines a state capturing a DoS

attack alert, additionally requiring the destination to be

same as the destination in the HTTP packet. Lines 4 and

5 describe the HTTP packet stream rates before and af-

ter the attack respectively. The change boundary is de-

fined by the attack event that is triggered once the

attack starts. Since attack event represents a single

event, it has the same starttime and endtime. Line 6 use

the ew (endswith) operator to define the attack start

condition, which specifies that the http stream at100

behavior end within five seconds of the attack event.

The DYNAMIC CHANGE model is then an assertion that

the HTTP stream rate reduces following the attack.

5.5 Composing Models

Our final case study demonstrates the ease of compos-

ing and extending existing models to define semantically

relevant higher-level behavior.

We combine our previously defined mod-

els DNSKAMINSKY and WORMSPREAD to create a

COMBINED ATTACK scenario as shown in Figure 7(c).

Line 2 captures the behavior where a worm infects a

host machine and scans and infects another host. Line

3 describes the behavior where the worm launches a

DNS Kaminsky attack on some DNS server from the

last infected host. We do not specify any server for the

DNS Kaminsky attack due to the abstractness of the

DNSKAMINSKY model which infers the destination dy-

namically. Line 4 is the final behavior model combining

both the attacks. In line 3, we only constrain the sip

and leave other attributes unspecified. This demonstrates

the ability to extend the imported models with only

the desired attribute values while leaving the others as

defined in the imported model.

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Total Events Processed

b1 = cState
b2 = iState

b3 = iState ~> iState
b4 = iState ~> dState

b5 = iState ~> dState ~> dState ~> dState

Figure 8: Plot of runtime against number of events for five types

of behavior complexity. Behaviors containing dependent value states

(dStates) result in quadratic complexity.

6 Performance Analysis

A common approach for semantic-level analysis involves

use of custom scripts or tools encoding context-specific

semantics. Since custom scripts and tools can be written

using a variety of programming and optimization tech-

niques, any evaluation of our generic framework against

them would be very subjective and thus flawed. Instead,

we choose to report the raw runtime performance of our

prototype implementation on five basic analyses tasks

over event datasets of increasing size.

The runtime performance of the framework depends

on the language constructs, input data, analysis algorithm

and implementation mechanisms used. Since our pri-

mary focus in this paper is on enabling semantic func-

tionality, we prototyped the framework in Python using a

SQLite database as backend for storing events. The input

events used were PKT DNS events collected for the case

study in Section 5.2. The performance analysis was con-

ducted on a laptop with an Intel Pentium-M processor

running at 1.86 GHz and with a memory of 2 GB.

We measure runtime as a function of two variables:

(a) the number of events input to the algorithm, (b) the

behavior complexity, defined as the processing complex-

ity of state propositions in a behavior formula. As dis-

cussed in Section 3.3, there are three types of state propo-

sitions based on attribute assignments; constant value at-

tributes denoted as cState, dependent value attributes de-

noted as dState, and dynamic attribute values denoted as

iState. These states can be combined to form five ba-

sic behaviors, each representing a basic semantic anal-

ysis task: b1 = (cState), represents extracting events

with known attributes and values; b2 = (iState), repre-

sents extracting events with particular attributes but un-

known values; b3 = (iState� iState), represents extract-

ing causally correlated yet value-independent events; b4

= (iState � dState), represents extracting causally cor-

related and value-dependent events; and b5 = (iState �

13

140 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dState � dState � dState), represents extracting a long

chain of causal events. Although we limit our analysis

to the � operator, all operators incur uniform process-

ing overhead in the algorithm, thus resulting in similar

performance results. The chosen event set along with the

behaviors are representative of a worst-case input to the

framework. We measure the performance using above

behaviors over event sets in increments of 10,000 events.

We stop at the event set when runtime exceeds 60 min-

utes.

The results are averaged over three runs and are shown

in Figure 8. The plots for behaviors consisting of cStates

and iStates b1, b2 and b3 tend to be linear as discussed in

Section 4.4. One would expect that behavior b5, contain-

ing three dStates would show significantly higher run-

time than behavior b4 containing only one dState. Both

show quadratic performance, since, in a chain of depen-

dent states, the states further in the chain process lesser

events than states in front of the chain. We thus see that

runtime quickly becomes quadratic given a worst-case

set of events and behaviors containing dependent state

propositions. The current Python and SQLite-based im-

plementation also add penalty to the framework runtime.

We investigate these issues as part of our future work.

7 Conclusion and Future Work

In this paper, we presented a behavior-based semantic

analysis framework that allows the user to analyze data

at a higher-level of abstraction. Typically, system experts

rely on their intuition and experience to manually ana-

lyze and categorize scenarios and then hand-craft rules

and patterns for analysis. Hence due to the manual and

ad-hoc nature of this analysis process, there is limited

extensibility and composibility of analysis strategies. In

this paper we show that our approach is more system-

atic, can retain expert knowledge, and supports compos-

ing behaviors from existing models. We evaluated the

utility of our framework against five analyses scenarios

which demonstrated the ease with which a user’s higher-

level understanding of system operation was expressed

as behavior models over data.

Our future work includes investigating the scale and

efficiency issues that arise during processing large vol-

umes of data in both offline and real-time settings like in-

trusion detection. We will investigate stream-based SQL

query extensions [6] to improve performance. We will

also investigate extending our logic with existential and

universal quantifiers. Currently, our framework requires

a user to either manually specify behavior models or use

existing models from the knowledge base to explore data.

To further exploratory analysis, we would need to alert

users to interesting unanticipated behaviors. We are ex-

ploring data mining algorithms to automatically discover

and compose behavior models from data.

The fundamental goal of the behavior-based semantic

analysis framework is to introduce a semantic approach

to data analysis in networked and distributed systems re-

search and operations. We hope that this paper serves as

a catalyst for further research on semantic data analysis.

References
[1] ALLEN, J. Maintaining Knowledge about Temporal Intervals.

Communications of the ACM 26, 11 (Nov. 1983), 832–843.

[2] BENZEL, T., BRADEN, R., KIM, D., NEUMAN, C., JOSEPH,

A., SKLOWER, K., OSTRENGA, R., AND SCHWAB, S. Experi-

ence with DETER: A Testbed for Security Research. In 2nd Intl.

Conf. on Testbeds and Research Infrastructures for the Devel. of

Networks and Communities - TRIDENTCOM (2006), p. 10.

[3] BÉRARD, B. Systems and Software Verification: Model-checking

Techniques and Tools. Springer, 2001.

[4] ELLIS, D. R., AIKEN, J. G., ATTWOOD, K. S., AND

TENAGLIA, S. D. A Behavioral Approach to Worm Detection.

In Proc. of the ACM workshop on Rapid malcode (2004), pp. 43–

53.

[5] HUSSAIN, A., HEIDEMANN, J., AND PAPADOPOULOS, C. A

Framework For Classifying Denial of Service Attacks. Proc. of

the Conf. on Applications, Technologies, Architectures, and Pro-

tocols for Comp. Comm. - SIGCOMM (2003), 99.

[6] JAIN, N., MISHRA, S., SRINIVASAN, A., GEHRKE, J.,

WIDOM, J., BALAKRISHNAN, H., ÇETINTEMEL, U., CHERNI-

ACK, M., TIBBETTS, R., AND ZDONIK, S. Towards a Streaming

SQL Standard. Proc. VLDB Endow. 1 (August 2008), 1379–1390.

[7] KAMINSKY, D. Multiple DNS Implementations Vulnerable to

Cache Poisoning. http://www.kb.cert.org/vuls/id/800113, 2008.

[8] KINDER, J., KATZENBEISSER, S., SCHALLHART, C., AND

VEITH, H. Detecting Malicious Code by Model Checking. In In-

trusion and Malware Detection and Vuln. Assessment, K. Julisch

and C. Kruegel, Eds., vol. 3548 of Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2005, pp. 174–187.

[9] LAMPORT, L. The Temporal Logic of Actions. ACM Trans.

Program. Lang. Syst. 16, 3 (1994), 872–923.

[10] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E.,

HELLERSTEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R.,

ROSCOE, T., AND STOICA, I. Declarative Networking: Lan-

guage, Execution and Optimization. In Proc. of ACM SIGMOD

(2006), pp. 97–108.

[11] Metasploit Framework Website. http://www.metasploit.com/.

[12] MIRKOVIC, J., SOLLINS, K., AND WROCLAWSKI, J. Managing

the Health of Security Experiments. In Proc. of the conf. on Cyber

Security Experimentation and Test (2008), USENIX, pp. 7:1–7:6.

[13] NALDURG, P., SEN, K., AND THATI, P. A Temporal Logic

Based Framework for Intrusion Detection. In Proc. of the 24th

IFIP Intl. Conf. on Formal Tech. for Net. & Dist. Sys. (2004).

[14] PAXSON, V. Bro: A System for Detecting Network Intruders in

Real-time. Comput. Networks 31, 23-24 (1999), 2435–2463.

[15] ROGER, M., AND GOUBAULT-LARRECQ, J. Log Auditing

through Model-Checking. In Proc. of the 14th IEEE Computer

Security Foundations Workshop (2001), pp. 220–236.

[16] Splunk Website. http://www.splunk.com/.

[17] Semantic Analysis Framework Website.

http://thirdeye.isi.deterlab.net/.

[18] VAARANDI, R. SEC - A Lightweight Event Correlation Tool.

IEEE Workshop on IP Operations and Management (2002), 111

– 115.

[19] Wireshark Website. http://www.wireshark.org/.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 141

Paxos Replicated State Machines as the Basis of a High-Performance
Data Store

William J. Bolosky*, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters and Peng Li
Microsoft and *Microsoft Research

{bolosky, dexterb, rhaagens, norbertk, pengli}@microsoft.com

Abstract
Conventional wisdom holds that Paxos is too expensive to use for high-volume, high-throughput, data-intensive
applications. Consequently, fault-tolerant storage systems typically rely on special hardware, semantics weaker than
sequential consistency, a limited update interface (such as append-only), primary-backup replication schemes that
serialize all reads through the primary, clock synchronization for correctness, or some combination thereof. We
demonstrate that a Paxos-based replicated state machine implementing a storage service can achieve performance
close to the limits of the underlying hardware while tolerating arbitrary machine restarts, some permanent machine
or disk failures and a limited set of Byzantine faults. We also compare it with two versions of primary-backup. The
replicated state machine can serve as the data store for a file system or storage array. We present a novel algorithm
for ensuring read consistency without logging, along with a sketch of a proof of its correctness.

1. Introduction
Replicated State Machines (RSMs) [31, 35] provide
desirable semantics, with operations fully serialized
and durably committed by the time a result is re-
turned. When implemented with Paxos [20], they
also tolerate arbitrary computer and process restarts
and permanent stopping faults of a minority of com-
puters, with only very weak assumptions about the
underlying system--essentially that it doesn’t exhibit
Byzantine [22] behavior. Conventional wisdom
holds that the cost of obtaining these properties is too
high to make Paxos RSMs useful in practice for ap-
plications that require performance. For instance,
Birman [4] writes:

Given that it offers stronger failure guarantees,
why not just insist that all multicast primitives
be dynamically uniform [his term for what
Paxos achieves]? … From a theory perspec-
tive, it makes sense to do precisely this. Dy-
namic uniformity is a simple property to formal-
ize, and applications using a dynamically uni-
form multicast layer are easier to prove cor-
rect.

But the bad news is that dynamic uniformity is
very costly [emphasis his].

On the other hand, there are major systems
(notably Paxos…) in which … dynamic uni-
formity is the default. … [T]he cost is so high
that the resulting applications may be unac-
ceptably sluggish.

We argue that at least in the case of systems that are
replicated over a local area network and have opera-
tions that often require using hard disks, this simply
is not true. The extra message costs of Paxos over
other replication techniques are overwhelmed by the
roughly two orders of magnitude larger disk latency
that occurs regardless of the replication model. Fur-
thermore, while the operation serialization and com-
mit-before-reply properties of Paxos RSMs seem to
be at odds with getting good performance from disks,
we show that a careful implementation can operate
disks efficiently while preserving Paxos’ sequential
consistency. Our measurements show that a Paxos
RSM that implements a virtual disk service has per-
formance close to the limits of the underlying hard-
ware, and better than primary-backup for a mixed
read-write load.

The current state of the art involves weakened se-
mantics, stronger assumptions about the system, re-
stricted functionality, special hardware support or
performance compromises. For example, the Google
File System [13] uses append-mostly files, weakens
data consistency and sacrifices efficiency on over-
writes, but achieves very good performance and scale
for appends and reads. Google’s Paxos-based imple-
mentation [8] of the Chubby lock service [5] relies on
clock synchronization to avoid stale reads and re-
stricts its state to fit in memory; its published perfor-
mance is about a fifth of ours1. Storage-area network
(SAN) based disk systems often use special hardware

1 Though differences in hardware limit the value of
this comparison.

142 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

such as replicated battery-backed RAM to achieve
fault tolerance, and are usually much more costly
than ordinary computers, disks and networks. There
are a number of flavors of primary-backup replication
[4], but typically these systems run at the slower rate
of the primary or the median backup, and may rely on
(often loose) clock synchronization for correctness.
Furthermore, they typically read only from the prima-
ry, which at worst wastes the read bandwidth of the
backup disks and at best is unable to choose where to
send reads at runtime, which can result in unneces-
sary interference of writes with reads. Many Byzan-
tine-fault tolerant (BFT) [1, 9, 18] systems do not
commit operations to stable storage before returning
results, and so cannot tolerate system-wide power
failures without losing updates. In contrast, our Pax-
os-based RSM runs on standard servers with directly
attached disks and an ordinary Ethernet switch,
makes no assumptions about clock synchronization to
ensure correctness, delivers random read perfor-
mance that grows nearly linearly in the number of
replicas and random write performance that is limited
by the performance of the disks and the size of the
write reorder buffer, but is not affected by the dis-
tributed parts of the system. It performs 12%-69%
better than primary-backup replication on an online
transaction processing load.

The idea of an RSM is that if a computation is deter-
ministic, then it can be made fault-tolerant by running
copies of it on multiple computers and feeding the
same inputs in the same order to each of the replicas.
Paxos is responsible for assuring the sequence of
operations. We modified the SMART [25] library
(which uses Paxos) to provide a framework for im-
plementing RSMs. SMART stored its data in SQL
Server [10]; we replaced its store and log and made
extensive internal changes to improve its perfor-
mance, such as combining the Paxos log with the
store’s log. We also invented a new protocol to order
reads without requiring logging or relying on time for
correctness. To differentiate the original version of
SMART from our improved version, we refer to the
new code as SMARTER2. We describe the changes
to SMART and provide a sketch of a correctness
proof for our read protocol.

Disk-based storage systems have high operation la-
tency (often >10ms without queuing delay) and per-
form much better when they’re able to reorder re-
quests so as to minimize the distance that the disk
head has to travel [39]. On the face of it, this is at
odds with the determinism requirements of an RSM:
If two operations depend on one another, then their

2 SMART, Enhanced Revision.

order of execution will determine their result. Reor-
dering across such a dependency could in turn cause
the replicas’ states to diverge. We address this prob-
lem by using IO parallelism both before and after the
RSM runs, but by presenting the RSM with fully se-
rial inputs. This is loosely analogous to how out-of-
order processors [37] present a sequential assembly
language model while operating internally in parallel.

This paper presents Gaios3, a reliable data store con-
structed as an RSM using SMARTER. Gaios can be
used as a reliable disk or as a stream store (something
like the i-node layer of a file system) that provides
operations like create, delete, read, (over-)write, ap-
pend, extend and truncate. We wrote a Windows
disk driver that uses the Gaios RSM as its store, cre-
ating a small number of large streams that store the
data of a virtual disk. While it is beyond the scope of
this paper, one could achieve scalability in both per-
formance and storage capacity by running multiple
instances of Gaios across multiple disks and nodes.

We use both microbenchmarks and an industry
standard online transaction processing (OLTP)
benchmark to evaluate Gaios. We compare Gaios
both to a local, directly attached disk and to two vari-
ants of primary-backup replication. We find that
Gaios exposes most of the performance of the under-
lying hardware, and that on the OLTP load it outper-
forms even the best case version of primary-backup
replication because SMARTER is able to direct reads
away from nodes that are writing, resulting in less
interference between the two.

Section 2 describes the Paxos protocol to a level of
detail sufficient to understand its effects on perfor-
mance. It also describes how to use Paxos to imple-
ment replicated state machines. Section 3 presents
the Gaios architecture in detail, including our read
algorithm and its proof sketch. Section 4 contains
experimental results. Section 5 considers related
work and the final section is a summary and conclu-
sion.

2. Paxos Replicated State Ma-
chines
A state machine is a deterministic computation that
takes an input and a state and produces an output and
a new state. Paxos is a protocol that results in an
agreement on an order of inputs among a group of
replicas, even when the computers in the group crash

3 Gaios is the capital and main port on the Greek is-
land of Paxos.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 143

and restart or when a minority of computers perma-
nently fail. By using Paxos to serialize the inputs of
a state machine, the state machine can be replicated
by running a copy on each of a set of computers and
feeding each copy the inputs in the order determined
by Paxos.

This section describes the Paxos protocol in sufficient
detail to understand its performance implications. It
does not attempt to be a full description, and in par-
ticular gives short shrift to the view change algo-
rithm, which is by far the most interesting part of
Paxos. Because view change happens only rarely and
is inexpensive when it does, it does not have a large
effect on overall system performance. Other papers
[20, 21, 23] provide more in-depth descriptions of
Paxos.

2.1 The Paxos Protocol
As SMART uses it, Paxos binds requests that come
from clients to slots. Slots are sequentially num-
bered, starting with 1. A state machine will execute
the request in slot 1, followed by that in slot 2, etc.
When thinking about how SMART works, it is help-
ful to think about two separate, interacting pieces:
the Agreement Engine and the Execution Engine.
The Agreement Engine uses Paxos to agree on an
operation sequence, but does not depend on the state
machine’s state. The Execution Engine consumes the
agreed-upon sequence of operations, updates the state
and produces replies. The Execution Engine does not
depend on a quorum algorithm because its input is
already linearized by the Agreement Engine.

The protocol attempts to have a single computer des-
ignated as leader at any one time, although it never
errs regardless of how many computers simultane-
ously believe they are leader. We will ignore the
possibility that there is not exactly one leader at any
time (except in the read-only protocol proof sketch in
Section 3.3.2) and refer to the leader, understanding
that this is a simplification. Changing leaders (usually
in response to a slow or failed machine) is called a
view change. View changes are relatively light-
weight; consequently, we set the view change
timeout in SMART to be about 750ms and accept
unnecessary view changes so that when the leader
fails, the system doesn’t have to be unresponsive for
very long. By contrast, primary-backup replication
algorithms often have to wait for a lease to expire
before they can complete a view change. In order to
assure correctness, the lease timeout must be greater
than the maximum clock skew between the nodes.

Figure 1 shows the usual message sequence for a
Paxos read/write operation, leaving out the computa-

tion and disk IO delays. When a client wants to
submit a read/write request, it sends the request to the
leader (getting redirected if it’s wrong about the cur-
rent leader). The leader receives the request, selects
the lowest unused slot number and sends a proposal
to the computers in the Paxos group, tentatively bind-
ing the request to the slot. The computers that re-
ceive the proposal write it to stable storage and then
acknowledge the proposal back to the leader. When
more than half of the computers in the group have
written the proposal (regardless of whether the leader
is among the set), it is permanently bound to the slot.
The leader then informs the group members that the
proposal has been decided with a commit message.
The Execution Engines on the replicas process com-
mitted requests in slot number order as they become
available, updating their state and generating a reply
for the client. It is only necessary for one of them to
send a reply, but it is permissible for several or all of
them to reply. The dotted lines on the reply messages
in Figure 1 indicate that only one of them is neces-
sary.

Figure 1: Read/Write Message Sequence

When the write to stable storage is done using a disk
and the network is local, the disk write is the most
expensive step by a large margin. Disk operations
take milliseconds or even tens of milliseconds, while
network messages take tens to several hundred mi-
croseconds. This observation led us to create an al-
gorithm for read-only requests that avoids the logging
step but uses the same number of network messages.
It is described in section 3.3.2

2.2 Implementing a Replicated
State Machine with Paxos
There are a number of complications in building an
efficient replicated state machine, among them avoid-
ing writing the state to disk on every operation.
SMART and Google’s later Paxos implementation
[8] solve this problem by using periodic atomic
checkpoints of the state. SMART (unlike Google)
writes out only the changed part of the state. If a

Commit

Leader Follower Follower

Request
Propose

Propose

Ack

Ack

Client

Commit
Reply

Reply

144 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

node crashes other than immediately after a check-
point, it will roll back its state and re-execute opera-
tions, which is harmless because the operations are
deterministic. Both implementations also provide for
catching up a replica by copying state from another,
but that has no performance implication in normal
operation and so is beyond the scope of this paper.

3. Architecture
SMARTER is at the heart of the Gaios system as
shown in Figure 2. It is responsible for the Paxos
protocol and overall control of the work flow in the
system. One way to think of what SMARTER does
is that it implements an asynchronous Remote Proce-
dure Call (RPC) where the server (the state machine)
runs on a fault-tolerant, replicated system.

Figure 2: Gaios Architecture

Gaios’s state machine implements a stream store.
Streams are named by 128-bit Globally Unique IDs
(GUIDs) and contain of a sparse array of bytes. The
interface includes create, delete, read, write, and
truncate. Reads and writes may be for a portion of a
stream and include checksums of the stream data.

SMARTER uses a custom log to record Paxos pro-
posals and the Local Stream Store (LSS) to hold state
machine state and SMARTER’s internal state. The
system has two clients, one a user-mode library that
exposes the functions of the Gaios RSM and the se-
cond a kernel-mode disk driver that presents a logical

disk to Windows, and backs the disk with streams
stored in the Gaios RSM.

3.1 SMARTER
Among the changes we made to SMART4 were to
present a pluggable interface for storage and log pro-
viders, rather than having SQL Server hardwired for
both functions; to have a zero-copy data path; to al-
low IO prefetching at proposal time; to batch client
operations; to have a parallel network transport and
deal with the frequent message reorderings that that
produces; to detect and handle some hardware errors
and non-determinism; and to have a more efficient
protocol for read-only requests. SMARTER per-
forms the basic Paxos functions: client, leadership,
interacting with the logging subsystem and RSM,
feeding committed operations to the RSM, and man-
aging the RSM state and sending replies to the client.
It is also responsible for other functions such as view
change, state transfer, log trimming, etc.

The SMARTER client pipelines and batches requests.
Pipelining means that it can allow multiple requests
to be outstanding simultaneously. In the implementa-
tion measured in this paper, the maximum pipeline
depth is set to 6, although we don’t believe that our
results are particularly sensitive to the value. Batch-
ing means that when there are client requests waiting
for a free pipeline slot, SMARTER may combine
several of them into a single composite request.

Unlike in primary-backup replication systems,
SMART does not require that the leader be among
the majority that has logged the proposal; any majori-
ty will do. This allows the system to run at the speed
of the median member (for odd sized configurations).
Furthermore, there is no requirement that the majori-
ty set for different operations be the same. Neverthe-
less all Execution Engines will see the same binding
of operations to slots and all replicas will have identi-
cal state at a given slot number.

The leader’s network bandwidth could become a bot-
tleneck when request messages are large. In this case
SMARTER forwards the propose messages in a chain
rather than sending them directly as shown in Figure
1. Because the sequential access bandwidth of a disk
is comparable to the bandwidth of a gigabit Ethernet
link, this optimization is often important.

4 When we refer to “SMART” in the text, we mean
either the original system, or to a part of SMARTER
that is identical to it.

 Application
written for

Gaios

Standard App

NTFS

Gaios Disk
Driver

SMARTER Client

SMARTER Server

Log

Gaios
RSM

NTFS

xN

Network

Stream
Store

User

Kernel

User
Kernel

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 145

3.2 The Local Stream Store
Gaios uses a custom store called the Local Stream
Store for its data (but not for its log). The LSS in
turn uses a single, large file in NTFS against which it
runs non-cached IO.

The LSS writes in a batch mode. It takes requests,
executes them in memory, and then upon request
atomically checkpoints its entire state. The LSS is
designed so that it can overlap (in-memory) operation
execution with most of the process of writing the
checkpoint to disk, so there is only a brief pause in
execution when a checkpoint is initiated.

The LSS maintains checksums for all stream data.
The checksum algorithm is selectable; we used
CRC32 [17] for all experiments in this paper, result-
ing in 4 bytes of checksum for 4K of data, or 0.1%
overhead. The checksums are stored separately from
the data so that all accesses to data and its associated
checksum happen in separate disk IOs. This is im-
portant in the case that the disk misdirects a read or
write, or leaves a write unimplemented [3]. No sin-
gle misdirected or unimplemented IO will undetecta-
bly corrupt the LSS. Checksums are stored near each
other and are read in batches, so few seeks are needed
to read and write the checksums.

The LSS provides deterministic free space. Regard-
less of the order in which IOs complete and when and
how often the store is checkpointed, as long as the set
of requests is the same the system will report the
same amount of free space. This is important for
RSM determinism, and would be a real obstacle with
a store like NTFS [28] that is subject to space use by
external components and in any case is not determin-
istic in free space.

3.2.1 Minimizing Data Copies
Because SMART used SQL Server as its store, it
wrote each operation to the disk four times. When
logging, it wrote a proposed operation into a table
and then committed the transaction. This resulted in
two writes to the disk: one into SQL’s transaction log
and a second one to the table. The state machine
state was also stored in a set of SQL tables, so any
changes to the state because of the operation were
likewise written to the disk twice.

For a service that had a low volume of operations this
wasn’t a big concern. However, for a storage service
that needs to handle data rates comparable to a disk’s
100 MB/s it can be a performance limitation. Elimi-
nating one of the four copies was easy: We imple-
mented the proposal store as a log rather than a table.

Once the extra write in the proposal phase was gone,
we were left with the proposal log, the transaction log
for the final location and the write into the final loca-
tion. We combined the proposal log and the transac-
tion log into a single copy of the data, but it required
careful thinking to get it right. Just because an opera-
tion is proposed does not mean that it will be execut-
ed; there could be a view change and the proposal
may never get quorum. Furthermore, RSMs are not
required to write any data that comes in an opera-
tion—they can process it in any way they want, for
example maintaining counters or storing indices, so
it’s not possible to get rid of the LSS’s transaction
log entirely.

We modified the transaction log for the LSS to allow
it to contain pointers into the proposal log. When the
LSS executes a write of data that was already in the
proposal log, it uses a special kind of transaction log
record that references the proposal log and modifies
the proposal log truncation logic accordingly. The
necessity for the store to see the proposal log writes
is why it’s shown as interposing between SMARTER
and the log in Figure 2. In practice in Gaios data is
written twice, to the proposal log and to the LSS’s
store.

It would be possible to build a system that has a sin-
gle-write data path. Doing this, however, runs into a
problem: Systems that do atomic updates need to
have a copy of either the old or new data at all times
so that an interrupted update can roll forward or
backward [14]. This means that, in practice, single-
write systems need to use a write-to-new store rather
than an overwriting store. Because we wanted Gaios
efficiently to support database loads, and because
databases often optimize the on-disk layout assuming
it is in-order, we chose not to build a single-write
system. This choice has nothing to do with the repli-
cation algorithm (or, in fact, SMARTER). If we re-
placed the LSS with a log-structured or another
write-to-new store we could have a single-write path.

3.3 Disk-Efficient Request Pro-
cessing
State machines are defined in terms of handling a
single operation at a time. Disks work best when
they are presented with a number of simultaneous
requests and can reorder them to minimize disk arm
movements, using something like the elevator
(SCAN) algorithm [12] to reduce overall time. Rec-
onciling these requirements is the essence of getting
performance from a state-machine based data store
that is backed by disks.

146 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Gaios solves this problem differently for read-only
and read-write requests. Read-write requests do their
writes exclusively into in-memory cache, which is
cleaned in large chunks at checkpoint time in a disk-
efficient order. Read-only requests (ordinarily) run on
only one replica. As they arrive, they are reordered
and sent to the disk in a disk efficient manner, and
are executed once the disk read has completed in
whatever order the reads complete.

3.3.1 Read-Write Processing
SMART’s handling of read-write requests is in some
ways analogous to how databases implement transac-
tions [14]. The programming model for a state ma-
chine is ACID (atomic, consistent, isolated and dura-
ble), while the system handles the work necessary to
operate the disk efficiently. In both, atomicity is
achieved by logging requests, and durability by wait-
ing for the log writes to complete before replying to
the user. In both, the system retires writes to the non-
log portion of the disk efficiently, and trims the log
after these updates complete.

Unlike databases, however, SMART achieves isola-
tion and consistency by executing only one request at
a time in the state machine. This has two benefits: It
ensures determinism across multiple replicas; and, it
removes the need to take locks during execution.
The price is that if two read-write operations are in-
dependent of one another, they still have to execute
in the predetermined order, even if the earlier one has
to block waiting for IO and the later one does not.

SMARTER exports an interface to the state machine
that allows it to inspect an operation prior to execu-
tion, and to initiate any cache prefetches that might
help its eventual execution. SMARTER calls this
interface when it first receives a propose message.
This allows the local store to overlap its prefetch with
logging, waiting for quorum and any other operations
serialized before the proposed operation. It is possi-
ble that a proposed operation may never reach quor-
um and so may never be executed. Since prefetches
do not affect the system state (just what is in the
cache), incorrect prefetches are harmless.

During operation execution, any reads in read/write
operations are likely to hit in cache because they’ve
been prefetched. Writes are always applied in
memory. Ordinarily writes will not block, but if the
system has too much dirty memory SMARTER will
throttle writes until the dirty memory size is suffi-
ciently small. The local stream store releases dirty
memory as it is written out to the disk rather than
waiting until the end of a flush, so write throttling
does not result in a large amount of jitter.

3.3.2 Read-Only Processing
SMARTER uses five techniques to improve read-
only performance: It executes a particular read-only
operation on only one replica; it uses a novel agree-
ment protocol that does not require logging; it reor-
ders the reads into a disk-efficient schedule, subject
to ordering constraints to maintain consistency; it
spreads the reads among the replicas to leverage all
of the disk arms; and, it tries to direct reads away
from replicas whose LSS is writing a checkpoint, so
that reads aren’t stuck behind a queue of writes.

Since a client needs only a single reply to an opera-
tion and read-only operations do not update state
there is no reason to execute them on all replicas.
Instead, the leader spreads the read-only requests
across the (live), non-checkpointing replicas using a
round-robin algorithm. By spreading the requests
across the replicas, it shares the load on the network
adapters and more importantly on the disk arms. For
random read loads where the limiting factor is the
rate at which the disk arms are able to move there is a
slightly less than linear speedup in performance as
more replicas are added (see Section 4). It is sub-
linear because spreading the reads over more drives
reduces read density and so results in longer seeks.

When a load contains a mix of reads and writes, they
will contend for the disk arm. It is usually the case
that on the data disk reads are more important than
writes because SMARTER acknowledges writes after
they’ve been logged and executed, but before they’ve
been written to the data disk by an LSS checkpoint.
Because checkpoints operate over a large number of
writes it is common for them to have more sequenti-
ality than reads, and so disk scheduling will starve
reads in favor of writes. SMARTER takes two steps
to alleviate this problem: It tries to direct reads away
from replicas that are processing checkpoints, and
when it fails to do that it suspends the checkpoint
writes when reads are outstanding (unless the system
is starving for memory, in which case it lets the reads
fend for themselves). The leader is able to direct
reads away from checkpointing replicas because the
replicas report whether they’re in checkpoint both in
their periodic status messages, and also in the
MY_VIEW_IS message in the read-only protocol,
described immediately hereafter.

A more interesting property of read-only operations
is that to be consistent as seen by the clients, they do
not need to execute in precise order with respect to
the read/write operations. All that’s necessary is that
they execute after any read/write operation that has
completed before the read-only request was issued.
That is, the state against which the read is run must

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 147

reflect any operation that any client has seen as com-
pleted, but may or may not reflect any subsequent
writes.

SMARTER’s read-only protocol is as follows:

1. Upon receipt of a read-only request by a
leader, stamp it with the greater of the high-
est operation number that the leader has
committed in sequence and the highest oper-
ation number that the leader re-proposed
when it started its view.

2. Send a WHATS_MY_VIEW message to all
replicas, checking whether they have recog-
nized a new leader.

3. Wait for at least half of all replicas (includ-
ing itself) to reply that they still recognize
the leader; if any do not, discard the read-
only request.

4. Dispatch the read-only request to a replica,
including the slot number recorded in step 1.

5. The selected replica waits for the stamped
slot number to execute, and then checks to
see if a new configuration has been chosen.
If so, it discards the request. Otherwise, it
executes it and sends the reply to the client.

In practice, SMARTER limits the traffic generated in
steps 2 & 3 by only having one view check outstand-
ing at a time, and batching all requests that arrive
during a given view check to create a single subse-
quent view check. We’ll ignore this for purposes of
the proof sketch, however.

SMARTER’s read-only protocol achieves the follow-
ing property: The state returned by a read-only re-
quest reflects the updates made by any writes for
which any client is aware of a completion at the time
the read is sent, and does not depend on clock syn-
chronization among any computers in the system. In
other words, the reads are never stale, even with an
asynchronous network.

We do not provide a full correctness proof for lack of
space. Instead we sketch it; in particular, we ignore
the possibility of a configuration change (a change in
the set of nodes implementing the state machine),
though we claim the protocol is correct even with
configuration changes.

Proof sketch: Consider a read-only request R sent by
a client. Let any write operation W be given such
that W has been completed to some client before R is
sent. Because W has completed to a client, it must
have been executed by a replica. Because replicas
execute all operations in order and only after they’ve
been committed, W and all earlier operations must

have been committed before R was sent. W was ei-
ther first committed by the leader to which R is sent
(call it L), or by a previous or subsequent leader (ac-
cording to the total order on the Paxos view ID). If it
was first committed by a previous leader, then by the
Paxos view change algorithm L saw it as committed
or re-proposed it when L started; if W was first
committed by L then L was aware of it. In either
case, the slot number in step 1 is greater than or equal
to W’s slot number.

If W was first committed by a subsequent leader to
L, then the subsequent leader must have existed by
the time L received the request in step 1, because by
hypothesis W had executed before R was sent. If
that is the case, then by the Paxos view change algo-
rithm a majority of computers in the group must have
responded to the new view. At least one of these
computers must have been in the set responding in
step 3, which would cause R to be dropped. So, if R
completes then W was not first committed by a lead-
er subsequent to L. Therefore, if R is not discarded
the slot number selected in step 1 is greater than or
equal to W’s slot number.

In step 5, the replica executing R waits until the slot
number from step 1 executes. Since W has a slot
number less than or equal to that slot number, W
executes before R. Because W was an arbitrary write
that completed before R was started SMARTER’s
read-only protocol achieves the desired consistency
property with respect to writes. The protocol did not
refer to clocks and so does not depend on clock syn-
chronization■

3.4 Non-Determinism
The RSM model assumes that the state machines are
deterministic, which implies that the state machine
code must avoid things like relying on wall clock
time. However, there are sources of non-determinism
other than coding errors in the RSM. Ordinary pro-
gramming issues like memory allocation failures as
well as hardware faults such as detected or undetect-
ed data corruptions in the disk [3], network, or
memory systems [30, 36] can cause replicas to mis-
behave and diverge.

Divergent RSMs can lead to inconsistencies exposed
to the user of the system. These problems are a sub-
set of the general class of Byzantine faults [22], and
could be handled by using a Byzantine-fault-tolerant
replication system [7]. However, such systems re-
quire more nodes to tolerate a given number of faults
(at least 3f+1 nodes for f faults, as opposed to 2f+1
for Paxos [26]), and also use more network commu-
nication. We have chosen instead to anticipate a set

148 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of common Byzantine faults, detect them and turn
them into either harmless system restarts or to stop-
ping failures. The efficacy of this technique depends
on how well we anticipate the classes of failures as
well as our ability to detect and handle them. It also
relies on external security measures to prevent male-
factors from compromising the machines running the
service (which we assume and do not discuss fur-
ther).

Memory allocation failures are a source of nondeter-
minism. Rather than trying to force all replicas to fail
allocations deterministically, SMART simply induces
a process exit and restart, which leverages the fault
tolerance to handle the entire range of allocation
problems.

In most cases, network data corruptions are fairly
straightforward to handle. SMARTER verifies the
integrity of a message when it arrives, and drops it if
it fails the test. Since Paxos is designed to handle
lost messages this may result in a timeout and retry of
the original (presumably uncorrupted) message send.
In a system with fewer than f failed components,
many messages are redundant and so do not even
require a retransmission. As long as network corrup-
tions are rare, message drops have little performance
impact. As an optimization, SMARTER does not
compute checksums over the data portion of a client
request or proposal message. Instead, it calls the
RSM to verify the integrity of these messages. If the
RSM maintains checksums to be stored along with
the data on disk (as does Gaios), then it can use these
checksums and save the expense of having them
computed, transported and then discarded by the
lower-level SMARTER code.

Data corruptions on disk are detected either by the
disk itself or by the LSS’s checksum facility as de-
scribed in Section 3.2. SMARTER handles a detect-
ed, uncorrectable error by retrying it and if that fails
declaring a permanent failure of a replica and re-
building it by changing the configuration of the
group. See the SMART paper [25] for details of con-
figuration change.

In-memory corruptions can result in a multitude of
problems, and Gaios deals with a subset of them by
converting them into process restarts. Because Gaios
is a store, most of its memory holds the contents of
the store, either in the form of in-process write re-
quests or of cache. Therefore, we expect at least
those memory corruptions that are due to hardware
faults to be more likely to affect the store contents
than program state. These corruptions will be detect-

ed as the corrupted data fails verification on the disk
and/or network paths.

4. Experiments
We ran experiments to compare Gaios to three differ-
ent alternatives: a locally attached disk and two ver-
sions of primary-backup replication. We ran micro-
benchmarks to tease out the performance differences
for specific homogeneous loads and an industry
standard online transaction processing benchmark to
show a more realistic mixed read/write load. We
found that SMARTER’s ability to vector reads away
from checkpointing (writing) replicas conveyed a
performance advantage over primary-backup replica-
tion.

4.1 Hardware Configuration
We ran experiments on a set of computers connected
by a Cisco Catalyst 3560G gigabit Ethernet switch.
The switch bandwidth is large enough that it was not
a factor in any of the tests.

The computers had three hardware configurations.
Three computers (“old servers”) had 2 dual core
AMD Opteron 2216 processors running at 2.4 GHz, 8
GB of DRAM, four Western Digital WD7500AYYS
7200 RPM disk drives (as well as a boot drive not
used during the tests), and a dual port NVIDIA
nForce network adapter, with both ports connected to
the same switch. A fourth (“client”) had the same
hardware configuration except that it had two quad-
core AMD Opteron 2350 processors running at 2.0
GHz. The remaining two (“new servers”) had 2
quad-core AMD Opteron 2382 2.6 GHz processors,
16 GB of DRAM, four Western Digital
WS1002FBYS 7200 RPM 1 TB disk drives, and two
dual port Intel gigabit Ethernet adapters. All of the
machines ran Windows Server 2008 R2, Enterprise
Edition. We ran the servers with a 128 MB memory
cache and a dirty memory limit of 512 MB. We used
such artificially low limits so that we could hit full-
cache more quickly so that our tests didn’t take as
long to run, and so that read-cache hits didn’t have a
large effect on our microbenchmarks.

4.2 Simulating Primary-Backup
In order to compare Gaios to a primary-backup (P-B)
replication system, we modified SMARTER in three
ways:

1. Reads are dispatched without the quorum
check in the SMARTER read protocol, on
the assumption that a leasing mechanism

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 149

of common Byzantine faults, detect them and turn
them into either harmless system restarts or to stop-
ping failures. The efficacy of this technique depends
on how well we anticipate the classes of failures as
well as our ability to detect and handle them. It also
relies on external security measures to prevent male-
factors from compromising the machines running the
service (which we assume and do not discuss fur-
ther).

Memory allocation failures are a source of nondeter-
minism. Rather than trying to force all replicas to fail
allocations deterministically, SMART simply induces
a process exit and restart, which leverages the fault
tolerance to handle the entire range of allocation
problems.

In most cases, network data corruptions are fairly
straightforward to handle. SMARTER verifies the
integrity of a message when it arrives, and drops it if
it fails the test. Since Paxos is designed to handle
lost messages this may result in a timeout and retry of
the original (presumably uncorrupted) message send.
In a system with fewer than f failed components,
many messages are redundant and so do not even
require a retransmission. As long as network corrup-
tions are rare, message drops have little performance
impact. As an optimization, SMARTER does not
compute checksums over the data portion of a client
request or proposal message. Instead, it calls the
RSM to verify the integrity of these messages. If the
RSM maintains checksums to be stored along with
the data on disk (as does Gaios), then it can use these
checksums and save the expense of having them
computed, transported and then discarded by the
lower-level SMARTER code.

Data corruptions on disk are detected either by the
disk itself or by the LSS’s checksum facility as de-
scribed in Section 3.2. SMARTER handles a detect-
ed, uncorrectable error by retrying it and if that fails
declaring a permanent failure of a replica and re-
building it by changing the configuration of the
group. See the SMART paper [25] for details of con-
figuration change.

In-memory corruptions can result in a multitude of
problems, and Gaios deals with a subset of them by
converting them into process restarts. Because Gaios
is a store, most of its memory holds the contents of
the store, either in the form of in-process write re-
quests or of cache. Therefore, we expect at least
those memory corruptions that are due to hardware
faults to be more likely to affect the store contents
than program state. These corruptions will be detect-

ed as the corrupted data fails verification on the disk
and/or network paths.

4. Experiments
We ran experiments to compare Gaios to three differ-
ent alternatives: a locally attached disk and two ver-
sions of primary-backup replication. We ran micro-
benchmarks to tease out the performance differences
for specific homogeneous loads and an industry
standard online transaction processing benchmark to
show a more realistic mixed read/write load. We
found that SMARTER’s ability to vector reads away
from checkpointing (writing) replicas conveyed a
performance advantage over primary-backup replica-
tion.

4.1 Hardware Configuration
We ran experiments on a set of computers connected
by a Cisco Catalyst 3560G gigabit Ethernet switch.
The switch bandwidth is large enough that it was not
a factor in any of the tests.

The computers had three hardware configurations.
Three computers (“old servers”) had 2 dual core
AMD Opteron 2216 processors running at 2.4 GHz, 8
GB of DRAM, four Western Digital WD7500AYYS
7200 RPM disk drives (as well as a boot drive not
used during the tests), and a dual port NVIDIA
nForce network adapter, with both ports connected to
the same switch. A fourth (“client”) had the same
hardware configuration except that it had two quad-
core AMD Opteron 2350 processors running at 2.0
GHz. The remaining two (“new servers”) had 2
quad-core AMD Opteron 2382 2.6 GHz processors,
16 GB of DRAM, four Western Digital
WS1002FBYS 7200 RPM 1 TB disk drives, and two
dual port Intel gigabit Ethernet adapters. All of the
machines ran Windows Server 2008 R2, Enterprise
Edition. We ran the servers with a 128 MB memory
cache and a dirty memory limit of 512 MB. We used
such artificially low limits so that we could hit full-
cache more quickly so that our tests didn’t take as
long to run, and so that read-cache hits didn’t have a
large effect on our microbenchmarks.

4.2 Simulating Primary-Backup
In order to compare Gaios to a primary-backup (P-B)
replication system, we modified SMARTER in three
ways:

1. Reads are dispatched without the quorum
check in the SMARTER read protocol, on
the assumption that a leasing mechanism

would accomplish the same thing without
the messages.

2. Read/Write operation quorums must include
the leader, so for example in a 3-node con-
figuration if the two non-leader nodes finish
their logging first the system will still wait
for the leader.

3. All read/write replies come only from the
leader.

Because we didn’t implement a leasing mechanism,
the modified SMARTER might serve stale reads after
a view change. We simply ignored this possibility
for performance testing.

Because P-B systems read only from the primary,
they cannot take advantage of the random read per-
formance of their backup nodes. The consequences
of this may be limited by having many replication
groups that spread primary duties (and thus read
load) over all of the nodes. In the best case, they will
uniformly spread their reads over all of the nodes as
SMARTER does.

To capture the range of possible read spreading in P-
B systems we implemented two versions: worst and
best cases. The worst case version is called PB1 be-
cause it reads from only one node. It assumes that
spreading is completely ineffective and sends all
reads to the primary. The best case is called PBN
and simulates perfect spreading by sending reads to
all N nodes. Rather than implementing multiple
groups, we simply used SMARTER’s existing read
distribution algorithm, but without the quorum check
and without the check to avoid sending reads to
nodes that are checkpointing.

The latter point is the crucial difference between the
two systems. While PBN is able to use all of the disk
arms for reads, it can’t dynamically select which arm
to use for a particular read because it must send reads
to the primary, and it achieves spreading only by dis-
tributing the work of the primaries for many groups.
Moving a primary is far too heavy-weight to do on
each read. SMARTER, on the other hand, tries to
move reads away from checkpointing replicas so that
writes don’t interfere with reads. It also adds some
randomness into the decision about when to check-
point to avoid having replicas checkpoint in lockstep.
In the mixed read/write transaction processing load
measured in section 4.4 Gaios achieves 12% better
performance tan PBN because of this ability (and is
68% faster than PB1).

4.3 Microbenchmarks
We ran microbenchmarks on Gaios and P-B replica-
tion as well as directly on an instance of each of the
two types of disks used in our servers, varying the
number of servers from 1 to 5. We expect that most
applications would want to run with a group size of 3,
though a requirement for greater fault tolerance or
improved read performance argues for more replicas.
In all of the experiments where we varied the degree
of replication, we used the three old servers first fol-
lowed by the two new servers, so for instance the 4
replica data point has three old and one new server.

We used the sqlio [33] tool running on NTFS over
the Gaios disk driver (or directly on the local drive,
as appropriate). Gaios exported a 20 GB drive to
NTFS and sqlio used a 10GB file. Gaios used two
identical drives on each replica, one for log and one
for the data store. Each data point is the mean of 10
measurements and was taken over a five minute peri-
od, other than the burst writes shown in Figure 4,
which ran for 10 seconds. We ran all tests with the
disks set to write through their cache, so all writes are
durable. We ran the P-B variants only on two or
more nodes because they’re identical to Gaios on one
node, and we ran only one P-B variant on the write
tests, since PB1 and PBN differ only for reads.

Figure 3: Random IO Performance

Figure 3 shows the performance of 8 kilobyte random
reads and writes. In this and the other microbench-
mark figures, we show the results for the new server
disks at the 4 replica position both to provide visual
separation from the old replica disks and to help point
out that at 4 replicas we started adding new servers to
the mix.

0

100

200

300

400

500

600

1 2 3 4 5

I
O
/
s

Replicas

Gaios Read Gaios Write
PB1 Read PB Write
Old Local Read Old Local Write
New Local Read New Local Write
PBN Read

150 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The writes were measured with a dirty cache. Write
performance does not vary much with degree of rep-
lication or Gaios vs. P-B and is roughly 500 IO/s, a
little more than twice the local disk’s. This is be-
cause the server is able to reorder the writes in a disk-
efficient manner over its 512MB of write buffer
without the possibility of loss because the data is
already logged, while the raw disks can reorder only
over the simultaneously outstanding operations. The
overhead of replication and checkpoints is negligible
compared to disk latency, and performance is in-
creased by SMARTER’s batching.

A simple back-of-the-envelope computation shows
how fast we expect the disk to be able to retire ran-
dom writes, and demonstrates that SMARTER
achieves that bound, meaning that (at least for ran-
dom writes) the bottleneck is at the disk, not else-
where. The disks we used have tracks about ¾ of a
megabyte in size, so the 10GB sqlio file was around
14K tracks. SMARTER is using 512MB of cache,
which is 64K 8KB-sized individual writes, or about
4.7 writes/track. The 7200 RPM disk takes 8.3ms for
a complete rotation. 4.7 writes per each 8.3ms rota-
tion is about 570 writes/s, which is just a little more
than Gaios’ performance.

The random read test used 35 simultaneous outstand-
ing reads. Gaios’ and PBN’s random reads (also
shown in Figure 3) scale slightly sub-linearly with
the number of replicas. They improve with the num-
ber of replicas because SMARTER is able to employ
the disk arms on the replicas separately, but the im-
provement is less than linear because as it scales each
replica has fewer simultaneous reads over which to
reorder. Single replica Gaios has a read rate about
14% lower than the local disk. PB1 didn’t vary in the
count of replicas since it only reads from one node.

Figure 4: Burst Write Performance

Figure 4 shows the write rates for 10 second bursts of
8K random writes with 200 writes outstanding at a
time. In this test, Gaios and PB logged and executed

the writes and returned the replies to the client, but
because the volume of data written was smaller than
the 512MB dirty cache limit, it was bounded only by
logging not by the seek rate of the data disk. Because
SMARTER answers writes when they’re written to
the log, it does random write bursts at the rate of se-
quential writes, while the local disk does them at the
rate of random writes.

Figure 5: Sequential Bandwidth

Figure 5 shows Gaios’ performance for sequential
IO. This test used megabyte size requests with 40
simultaneously outstanding for writes and 10 eight
megabyte requests for reads. It’s difficult to see on
the graph, but the (old) local disk writes at about 88
MB/s, while Gaios is at 67 MB/s. The difference is
due to a difficulty in getting the data through the
network transport. Writes for both Gaios and PB
slow down marginally as they’re distributed across
more nodes (and as they need to write the slower new
disks at 4 and 5 replicas). PBN and Gaios’ reads are
more interesting: unlike random IO, sequential IO is
harder to parallelize because distributing sequential
IO requests adds seeks, which reduces efficiency,
sometimes more than the increase in bandwidth that’s
achieved by adding extra hardware. This shows up in
the PBN and Gaios lines, which perform at the local
disk rate on a single replica, peak at 2 replicas (but at
only 1.3 times the rate of a local disk) and drop off
roughly linearly after. SMARTER probably would
benefit from getting hints from the RSM about how
to distribute reads.

Figure 6 shows the operation latency for 8K reads
and writes. Unlike the other microbenchmarks, this
test only allowed a single operation to be outstanding
at a time. For reads, Gaios is about 8% slower than a

1
10

100
1000

10000

1 2 3 4 5

I
O
/
s

Replicas

Gaios Old Local

PB New Local

40
60
80

100
120
140
160

1 2 3 4 5

M
B
/
s

Replicas

Gaios Read Gaios Write

PB1 Read PB Write

Old Local Read Old Local Write

New Local Read New Local Write

PBN Read

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 151

local disk in the single replica case and 20% slower
for 2-3 replicas. The difference in going from one to
two replicas is that there is extra network traffic in
the server to execute the read-only algorithm (see
Section 3.3.2). Both versions of PB are about 2%
faster than Gaios at 2 nodes, and 10-15% faster at 5
(where Gaios has to touch three nodes for its quorum
check).

Figure 6: Single Operation Latency

Write latency is more interesting. In Gaios and P-B,
the main contributor to latency is writing into the log,
because the write rate is slow enough that the system
doesn’t throttle behind the replica checkpoint even
for a 5 minute run. Writing one item to the log, wait-
ing a little while and the writing again causes the log
disk to have to take an entire 8.3ms rotation before
being able to write the next log record, which ac-
counts for the bulk of the time in Gaios. Latency
goes down at three replicas because only 2 of three of
them need to complete their log write for the opera-
tion to complete. As the replication grows PB gets
slower than Gaios because of its requirement that the
primary always be in every quorum.

The reason for storing data in an RSM is to achieve
fault tolerance. To measure how Gaios performs
when a fault occurs we ran a 60 second version of the
3 replica sequential read test and induced the failure
of a replica half way through each of the runs. The
resultant bandwidth was 127 MB/s, roughly equiva-
lent to the 128MB/s of the non-faulty three node
case. However, the maximum operation latency in-
creased from 1500ms to 1960ms, because requests
outstanding at the time of the failure had to time out
and be retried. The large max latency in the non-
failure case was due to the disk scheduling algorithm
starving one request for a while and because of queu-

ing delay (which is substantial with 10 8MB reads
simultaneously outstanding).

4.4 Transaction Processing
In order to observe Gaios in a more realistic setting
(and with a mixed read/write load), we ran an indus-
try standard online transaction processing (OLTP)
benchmark that simulates an order-entry load. We
selected the parameters of the benchmark and config-
ured the database so that it has about a 3GB log file
and a 53GB table file. We housed the log and tables
on different disks. In Gaios (and P-B) we ran each
virtual disk as a separate instance of Gaios sharing
server nodes, but using distinct data disks on the
server. SMARTER shared a single log disk, so each
server node used three disks: the SMARTER log, the
SQL log and the SQL tables.

This benchmark does a large number of small trans-
actions of several different types, and generates a
load of about 51% reads and 49% writes to the table
file by operation count, with the average read size
about 9K and the average write about 10K. We con-
figured the benchmark to offer enough load that it
was IO bound. The CPU load on the client machine
running SQL Server was negligible.

We used 64-bit Microsoft SQL Server 2008 Enter-
prise Edition for the database engine. For each data
point, we started by restoring the database from a
backup, which resulted in identical in-file layout. We
then ran the benchmark for three hours, discarded the
result from the first hour in order to avoid ramp-up
effects and used the transaction rate for the second
two hours. This benchmark is sensitive to two
things: write latency to the SQL Server log, and read
latency to the table file. The writes are offered nearly
continuously as SQL Server writes out its check-
points and are mixed with the reads.

Even though the load is half writes, the replicas spent
significantly less than half of their time writing. This
is because the writes were more sequential than the
reads because they came from SQL’s database clean-
er which tries to generate sequential writes, and they
were further grouped by SMARTER’s checkpoint
mechanism. Because of this, Gaios usually had one
or more replicas that were not in checkpoint to which
to send reads. Even though the load at the client was
about half reads and half writes, at the server nodes it
was ¾ writes because each write ran on all three
nodes, while reads ran only on one. This limited the
effect of the increased random read performance of
Gaios and PBN.

6

8

10

12

1 2 3 4 5

m
s

Replicas

Gaios Read Gaios Write

PB1 Read PB Write

Old Local Read Old Local Write

New Local Read New Local Write

PBN Read

152 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7 shows the performance of Gaios and the two
PB versions running on a three node system in trans-
actions per second normalized to the local-machine
performance. Each bar is the mean of ten runs. Gai-
os runs a little faster than the local node because its
increased random read performance more than com-
pensates for the added network latency and checksum
IO. Because PBN is unable to direct its reads away
from checkpointing nodes it is somewhat slower,
while PB1 suffers even more due to its inability to
extract read parallelism.

Figure 7: OLTP Performance

5. Related Work
Google [8] used a Paxos replicated state machine to
re-implement the Chubby [5] lock service. They
found that it provided adequate performance for their
load of small updates to a state that was small enough
to fit in memory (100MB). It serviced all reads from
the leader (there being no need to take advantage of
parallel disk access because of in-memory state), and
used a time-based leasing protocol to prevent stale
reads, similar to primary-backup. Their highest re-
ported update rate was 640 small operations per se-
cond and 949 KB/s on a five node configuration,
about one fifth and one sixtieth respectively of Gaios’
comparable performance on 5 nodes, though because
the hardware used was different it’s not clear how
meaningful this comparison is.

Petal [24] was a distributed disk system from DEC
SRC that used two-copy primary-backup replication
to implement reliability. It used a Paxos-based RSM
to determine group membership, but not for data.
Data writes happened in two phases, first taking a
lock on the data and then writing to both copies. On-
ly when the writes to both copies completed was the
lock released and the operation completed to the user.
Much like Gaios, Petal used write-ahead logging and
group commit to achieve good random write perfor-
mance. Castro and Liskov [7] implemented a version

of NFS that stored all of its data in a BFT replicated
state machine. However, their only performance
evaluation was with the Andrew Benchmark [16],
which has been shown [38] to be largely insensitive
to underlying file system performance. BFT replica-
tion differs from Paxos in that it tolerates arbitrary,
potentially malicious failures of less than a third of its
replicas. It uses many more messages and a number
of cryptographic operations to achieve this property.

Several BFT agreement protocols [1, 9, 18] have
much lower latency than Gaios. They achieve this by
not logging operations before executing them and
returning results to the client. Because of this, these
systems cannot tolerate simultaneous crashes of too
many nodes (such as would be caused by a datacenter
power failure) without permanently failing or rolling
back state. As such, they do not provide sufficiently
tight semantics to implement tasks that require write
through such as the store for a traditional database.
They also are not evaluated on state that is larger than
memory. Furthermore, because they tolerate general
Byzantine faults, they need at least 3f+1 (and some-
times more) replicas to tolerate f faults (though f of
these replicas can be witnesses that do not hold exe-
cution state [40]). Gaios tolerates many non-
malicious (hardware or programming-error caused)
Byzantine faults without the extra complexity of
dealing with peers that are trying to corrupt the sys-
tem.

The Federated Array of Bricks (FAB) [34] built a
store out of a set of industry-standard computers and
disks, much like Gaios. It used a pair of custom rep-
lication algorithms, one for mirrored data and one for
erasure-coded. Unlike Paxos, it did not have a leader
function or views; rather (in the mirroring case), it
took a write lock over a range of bytes using a major-
ity algorithm. Once the write lock was taken, it sent
the write data to all nodes, and updated both the data
and a timestamp. After a majority of the nodes com-
pleted the write, it completed the operation back to
the caller. To read data, it sent the read to all repli-
cas, with one designated to return the data. The other
nodes returned only timestamps; if the returned data
did not have the latest timestamp, it retried the read.
This scheme achieves serializability without needing
to achieve a total order of operations as happens in an
RSM. However, because its read algorithm requires
accessing a per-block timestamp, it employed
NVRAM to avoid the need to move the disk arms to
read the timestamps; SMARTER’s algorithm simply
asks for a copy of in-memory state from all of the
replicas, and does the disk IO on only one and so
does not need NVRAM.

50%

60%

70%

80%

90%

100%

110%

Gaios PBN PB1

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
ns

/s

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 153

Figure 7 shows the performance of Gaios and the two
PB versions running on a three node system in trans-
actions per second normalized to the local-machine
performance. Each bar is the mean of ten runs. Gai-
os runs a little faster than the local node because its
increased random read performance more than com-
pensates for the added network latency and checksum
IO. Because PBN is unable to direct its reads away
from checkpointing nodes it is somewhat slower,
while PB1 suffers even more due to its inability to
extract read parallelism.

Figure 7: OLTP Performance

5. Related Work
Google [8] used a Paxos replicated state machine to
re-implement the Chubby [5] lock service. They
found that it provided adequate performance for their
load of small updates to a state that was small enough
to fit in memory (100MB). It serviced all reads from
the leader (there being no need to take advantage of
parallel disk access because of in-memory state), and
used a time-based leasing protocol to prevent stale
reads, similar to primary-backup. Their highest re-
ported update rate was 640 small operations per se-
cond and 949 KB/s on a five node configuration,
about one fifth and one sixtieth respectively of Gaios’
comparable performance on 5 nodes, though because
the hardware used was different it’s not clear how
meaningful this comparison is.

Petal [24] was a distributed disk system from DEC
SRC that used two-copy primary-backup replication
to implement reliability. It used a Paxos-based RSM
to determine group membership, but not for data.
Data writes happened in two phases, first taking a
lock on the data and then writing to both copies. On-
ly when the writes to both copies completed was the
lock released and the operation completed to the user.
Much like Gaios, Petal used write-ahead logging and
group commit to achieve good random write perfor-
mance. Castro and Liskov [7] implemented a version

of NFS that stored all of its data in a BFT replicated
state machine. However, their only performance
evaluation was with the Andrew Benchmark [16],
which has been shown [38] to be largely insensitive
to underlying file system performance. BFT replica-
tion differs from Paxos in that it tolerates arbitrary,
potentially malicious failures of less than a third of its
replicas. It uses many more messages and a number
of cryptographic operations to achieve this property.

Several BFT agreement protocols [1, 9, 18] have
much lower latency than Gaios. They achieve this by
not logging operations before executing them and
returning results to the client. Because of this, these
systems cannot tolerate simultaneous crashes of too
many nodes (such as would be caused by a datacenter
power failure) without permanently failing or rolling
back state. As such, they do not provide sufficiently
tight semantics to implement tasks that require write
through such as the store for a traditional database.
They also are not evaluated on state that is larger than
memory. Furthermore, because they tolerate general
Byzantine faults, they need at least 3f+1 (and some-
times more) replicas to tolerate f faults (though f of
these replicas can be witnesses that do not hold exe-
cution state [40]). Gaios tolerates many non-
malicious (hardware or programming-error caused)
Byzantine faults without the extra complexity of
dealing with peers that are trying to corrupt the sys-
tem.

The Federated Array of Bricks (FAB) [34] built a
store out of a set of industry-standard computers and
disks, much like Gaios. It used a pair of custom rep-
lication algorithms, one for mirrored data and one for
erasure-coded. Unlike Paxos, it did not have a leader
function or views; rather (in the mirroring case), it
took a write lock over a range of bytes using a major-
ity algorithm. Once the write lock was taken, it sent
the write data to all nodes, and updated both the data
and a timestamp. After a majority of the nodes com-
pleted the write, it completed the operation back to
the caller. To read data, it sent the read to all repli-
cas, with one designated to return the data. The other
nodes returned only timestamps; if the returned data
did not have the latest timestamp, it retried the read.
This scheme achieves serializability without needing
to achieve a total order of operations as happens in an
RSM. However, because its read algorithm requires
accessing a per-block timestamp, it employed
NVRAM to avoid the need to move the disk arms to
read the timestamps; SMARTER’s algorithm simply
asks for a copy of in-memory state from all of the
replicas, and does the disk IO on only one and so
does not need NVRAM.

50%

60%

70%

80%

90%

100%

110%

Gaios PBN PB1

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
ns

/s

Oceanstore [19] was designed to store the entire
world’s data. It modified objects by generating up-
dates locally and then running conflict resolution in
the background, in the style of Bayou [11].
Oceanstore used a Byzantine-agreement protocol to
serialize and run conflict resolution, but stored the
data using simple lazy replication (or replication of
erasure coded data).

The Google File System [13] is designed to hold very
large files that are mostly written via appends and
accessed sequentially via reads. It relaxes traditional
file system consistency guarantees in order to im-
prove performance. In particular, write operations
that fail because of system problems can leave files in
an “inconsistent” state, meaning that the values re-
turned by reads depend on which replica services the
read. Furthermore, concurrent writes can leave file
regions in an “undefined” state, where the result is
not consistent with any serialization of the writes, but
rather is a mixture of parts of different writes. After
a period of time, the system will correct these prob-
lems. GFS uses write-to-all, so faults require the
system to reconfigure before writes can proceed.

Berkeley’s xFS [2] and Zebra [15] file systems
placed a log structured file system [32] on top of a
network RAID. They worked by doing write-to-all
on the RAID stripes, and then using a manager to
configure out failed storage nodes. The xFS proto-
type described in the paper did not “implement the
consensus algorithm needed to dynamically reconfig-
ure manager maps and stripe group maps.”

Boxwood [27] offered a set of storage primitives at a
higher level than the traditional array of blocks, such
as B-trees. It used Paxos only to “store global system
state such as the number of machines.”

Everest [29] is a system that offloads work from busy
disks to smooth out peak loads. When off-loading, it
writes multiple copies of data to any stores it can find
and keeps track of where they are in volatile memory.
After a crash and restart, the client scans all of the
stores to find the most up-to-date writes, and as long
as one copy of each write is available, it recovers.
This protocol works because there is only ever one
client for a particular set of data.

TickerTAIP [6] was a parallel RAID system that dis-
tributed the function of the RAID controller in order
to tolerate faults in the controller. It used two-phase
commit [14] to ensure atomicity of updates to the
RAID stripes.

6. Summary and Conclusion
Conventional wisdom holds that while Paxos has
theoretically desirable consistency properties, it is too
expensive to use for applications that require perfor-
mance. We argue that compared to disk access laten-
cies, the overhead required by Paxos on local net-
works is trivial and so the conventional wisdom is
incorrect. While replicated state machines’ in-order
requirement seems to be at odds with the necessity of
doing disk operation scheduling, careful engineering
can preserve both.

We presented Gaios, a system that provides a virtual
disk implemented as a Paxos RSM. Gaios achieves
performance comparable to the limits of the hardware
on which it’s implemented on various microbench-
marks and the OLTP load, while providing tolerance
of arbitrary machine restarts, a sufficiently small set
of permanent stopping failures and some types of
Byzantine failures. We compared Gaios to primary-
backup replication and found that it performs compa-
rable to or in some cases better than P-B’s best case.
We presented a novel read-only algorithm for
SMARTER, and showed that because it allows reads
to run on any node SMARTER can often avoid hav-
ing reads and writes contend for a particular disk,
giving significant performance improvements over
even the best case of primary-backup replication for
the mixed read/write workload of the OTLP bench-
mark.

Bibliography

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M.
Reiter, and J. Wylie. Fault-scalable Byzantine
fault-tolerant services. In Proc. SOSP, 2005.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,
D. Roselli and R. Wang. Serverless network file
systems. In Proc. SOSP, 1995.

[3] L. Bairavasundaram, G. Goodson, B. Schroeder,
A. Arpaci-Dusseau and R. Arpaci-Dusseau. An
analysis of data corruption in the storage stack.
In Proc. FAST, 2008.

[4] K. Birman. Reliable Distributed Systems Tech-
nologies, Web Services and Applications.
Springer, 2005

[5] M. Burrows. The Chubby lock service for loose-
ly-coupled distributed systems. In Proc. OSDI,
2006.

[6] P. Cao, S. Lim, S. Venkataraman, and J. Wilkes.
The TickerTAIP parallel RAID architecture. In
Proc. ISCA, 1993.

154 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[7] M. Castro and B. Liskov, Practical Byzantine
fault tolerance. In Proc. OSDI, 1999.

[8] T. Chandra, R. Griesemer and J. Redstone. Paxos
made live: an engineering perspective. In Proc.
PODC, 2007. Invited talk.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues,
and L. Shira. HQ replication: a hybrid quorum
protocol for Byzantine fault tolerance. In Proc.
OSDI, 2006.

[10] K. Delaney, P. Randal, K. Tripp and C. Cun-
ningham. Microsoft SQL Server 2008 Internals.
Microsoft Press, 2009.

[11] A. Demers, K. Peterson, M. Spreitzer, D. Terry,
M. Theimer and B. Welch. The Bayou architec-
ture: Support for data sharing among mobile us-
ers. In Proc. IEEE Workshop on Mobile Compu-
ting Systems & Applications, 1994.

[12] R. Eager and A. Lister. Fundamentals of Oper-
ating Systems. Springer-Verlag, 1995.

[13] S. Ghemawat, H. Gobioff and S-T. Leung. The
Google file system. In Proc. SOSP, 2003.

[14] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann,
1993.

[15] J. Harman and J. Ousterhout. The Zebra striped
network file system. ACM Transactions on Com-
puter Systems, 13(3), 1995.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West.
Scale and performance in a distributed file sys-
tem. ACM Transactions on Computer Systems,
6(1), 1988.

[17] IEEE 802.3 Standard, 1983-2008.
[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement and

E. Wong. Zyzzyva: speculative Byzantine fault
tolerance. In Proc. SOSP, 2007.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-
ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells and B.
Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proc. ASPLOS, 2000.

[20] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2), 1998.

[21] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4), 2001.

[22] L. Lamport, R. Shostak, and M. Pease. The
Byzantine generals problem. ACM Transactions
on Programming Languages and Systems. 4(3),
1982.

[23] B. Lampson. The ABCD’s of Paxos. In Proc.
PODC, 2001.

[24] E. Lee and C. Thekkath. Petal: Distributed vir-
tual disks. In Proc. ASPLOS, 1996.

[25] J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J.
Douceur and J. Howell. The SMART way to mi-

grate replicated stateful services. In Proc. Eu-
rosys, 2006.

[26] N. Lynch. Distributed Algorithms. Morgan
Kauffman, 1996.

[27] J. MacCormick, N. Murphy, M. Najork, C.
Thekkath, and L. Zhou. Boxwood: Abstractions
as the foundation for storage infrastructure. In
Proc. OSDI, 2004.

[28] R. Nagar. Windows NT File System Internals.
O’Reilly, 1997.

[29] D. Narayanan, A. Donnelly, E. Thereska, S.
Elnikety, and A. Rowstron. Everest: Scaling
down peak loads through I/O off-loading. In
Proc. OSDI, December, 2008.

[30] E. Nightingale, J. Douceur and V. Orgovan.
Cycles, Cells and Platters: An empirical analysis
of hardware failures on a million commodity PCs.
To appear in Proc. EuroSys, 2011.

[31] B. Oki. Viewstamped replication for highly
available distributed systems. Ph.D. thesis.
Technical Report MIT/LCS/TR-423, MIT, 1988.

[32] M. Rosenblum and J. Ousterhout. The design
and implementation of a log-structured file sys-
tem. ACM Transactions on Computer Systems,
10(1), 1992.

[33] M. Ruthruff. SQL Server best practices article:
predeployment I/O best practices. In IEEE Com-
puter, 27(3), 1994.

[34] Y. Saito, S. Frølund, A. Veitch, A. Merchant and
S. Spence. FAB: Building distributed enterprise
disk arrays from commodity components. In
Proc. ASPLOS, 2004.

[35] F. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: a tutorial.
ACM Computing Surveys, 22(4), 1990.

[36] B. Schroeder, E. Pinheiro, and W-D. Weber.
DRAM Errors in the wild: A large-scale field
study. In Proc. SIGMETRICS/Performance, 2009.

[37] R. Tomasulo. An Efficient Algorithm for Ex-
ploiting Multiple Arithmetic Units, IBM Journal
of Research and Development, 11(1), 1967.

[38] A. Traeger, E. Zadok, N. Joukov and C. Wright.
A nine year study of file system and storage
benchmarking. ACM Transactions on Storage,
4(2), 2008.

[39] B. Worthington, G. Ganger, and Y. Patt. Sched-
uling Algorithms for Modern Disk Drives. In
Proc. SIGMETRICS, 1994.

[40] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi
and M. Dahlin. Separating agreement from exe-
cution for Byzantine fault tolerant services. In
Proc. SOSP, 2003.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 155

Bootstrapping Accountability in the Internet We Have

Ang Li Xin Liu Xiaowei Yang

Dept. of Computer Science

Duke University

{angl,xinl,xwy}@cs.duke.edu

Abstract

Lack of accountability makes the Internet vulnerable

to numerous attacks, including prefix hijacking, route

forgery, source address spoofing, and DoS flooding at-

tacks. This paper aims to bring accountability to the In-

ternet with low-cost and deployable enhancements. We

present IPA, a design that uses the readily available top-

level DNSSEC infrastructure and BGP to bootstrap ac-

countability. We show how IPA enables a suite of secu-

rity modules that can combat various network-layer at-

tacks. Our evaluation shows that IPA introduces modest

overhead and is gradually deployable. We also discuss

how the design incentivizes early adoption.

1 Introduction

Accountability, the ability to identify misbehaving en-

tities and deter them from misbehaving further, plays a

critical role in achieving real-world security [41]. How-

ever, the Internet design has little built-in accountability:

malicious hosts can send denial of service (DoS) flooding

packets with spoofed source addresses to evade punish-

ment; and malicious Autonomous Systems (ASes) can

announce other ASes’ IP prefixes or assume their identi-

ties in the inter-domain routing system BGP.

Lack of accountability has led to many of the In-

ternet’s security vulnerabilities [20, 58], including dis-

tributed DoS attacks that may disable a country’s Inter-

net access [48, 49, 52], and prefix hijacking attacks that

once made YouTube worldwide unreachable [25]. In

this work, we ask the question: can we overcome the

Internet’s main security weaknesses with a minimal set

of gradually deployable changes? That is, we aim to

explore an approach that can fix the Internet’s security

problems without replacing or breaking the deployed In-

ternet base. We are attracted to this approach because

of its practical value, as it can deliver benefits without

building everything from scratch.

In this paper, we present a design called IPA (IP made

Accountable) that bootstraps accountability in the In-

ternet with only low-cost and gradually deployable en-

hancements. We show how the IPA design enables other

security modules that together fix many of the Internet’s

security problems, including preventing prefix hijacking,

route forgery, and source address spoofing attacks, and

limiting large-scale DoS attacks. We note that this work

does not aim to provide all forms of accountability. For

instance, IPA does not provide the type of strong ac-

countability that offers evidence of correct execution, or

audit and challenge interfaces [32, 60]. Rather, it aims

to bring a similar form of network-layer accountability

as defined in [20, 54] to the Internet, i.e., the ability to

accurately identify the sources of all traffic and defend

against malicious sources.

We identify two key challenges in bootstrapping ac-

countability in the existing Internet. The first one is

how to securely bind an entity’s identity to its crypto-

graphic keys in a lightweight manner, and the second one

is how to do so in an adoptable manner, including being

gradually deployable and incentivizing early adoption.

Network-layer accountability requires a secure binding

between an entity’s identity and its cryptographic keys

to prevent impersonation and identity white-washing at-

tacks [31]. The Internet uses two types of identifiers, IP

addresses and AS numbers (ASNs), to identify network

attachment points and ASes, but it lacks a lightweight

and adoptable mechanism to create the secure bindings

between an IP address (or an ASN) and a network entity.

Previous work [38, 46, 56, 57] proposes to use a cen-

tralized global public key infrastructure (PKI) or web-of-

trust to bind an IP prefix or an ASN to its owner’s public

key. However, a dedicated PKI is too heavyweight [35],

and web-of-trust lacks an authoritative trust chain to re-

solve conflicting IP prefix or ASN claims.

IPA uses three mechanisms to address these chal-

lenges. First, it uses the top-level reverse DNSSEC hi-

erarchy as a lightweight PKI to bind an IP prefix to its

owner’s public key (§ 3.2), and the hash of an AS’s

public key as its self-certifying ASN (§ 3.1). This de-

sign securely certifies an IP prefix’s ownership without

a separate PKI, and obviates another PKI to certify an

ASN’s ownership. We use DNSSEC [21, 22, 23, 50]

because one can create a one-to-one mapping between

an IP prefix delegation and a reverse DNS zone delega-

tion, as the chains of trust in both delegation processes

share the same root: the Internet Assigned Number Au-

thority (IANA). Thus, we can use an IP prefix’s corre-

sponding reverse DNSSEC record as its owner’s IP pre-

fix delegation certificate. Moreover, Internet registries

are rapidly deploying the top-level reverse DNSSEC in-

frastructure [4, 6, 18, 19]. The root, the arpa, and

the in-addr.arpa zones are already signed. Deploy-

ment documents from key Regional Internet Registries

(RIRs) [1, 2, 5] all suggest that the top-level reverse

DNSSEC infrastructure would soon be fully deployed.

1

156 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Second, IPA uses an efficient in-band protocol piggy-

backed in BGP messages to “push” the IP prefix certifi-

cates to all ASes to secure routing (§ 3.3). This design

avoids the dependency loop between secure routing and

online certificate distribution, and eliminates the need

for a separate out-of-band certificate distribution mecha-

nism. We strive to make the in-band distribution protocol

efficient and capable of supporting complex operations

such as certificate revocations and key rollovers (§ 4).

Third, we design IPA to be compliant with the exist-

ing protocols to be gradually adoptable. It uses the BGP

optional and transitive attributes to carry IPA-specific in-

formation so that legacy ASes can pass this information

to deployed ASes without interpreting them (§ 7.3.1).

Different ASes can deploy IPA at different times with-

out a “flag day.” Furthermore, because we use the top-

level reverse DNSSEC hierarchy to bind IP prefixes to

their owners’ public keys, the ASes who obtain their IP

prefixes from the Internet registries can obtain their pre-

fix ownership certificates from the registries without de-

pending on other infrastructures. This feature enables

those ASes, which amount to 78% of all ASes on today’s

Internet (§ 7.3.2), to form a deployed “club” to prevent

various network-layer attacks within the club (§ 5).

We further show how IPA enables several security

building blocks, including a secure routing protocol such

as S-BGP [38], a source authentication system [43], and

a DoS defense system [45] (§ 5). These security build-

ing blocks are also gradually adoptable [26, 43, 45], and

together can prevent prefix hijacking, route forgery, and

source address spoofing attacks, and suppress DoS flood-

ing traffic near its sources.

We have implemented IPA using XORP [33] and inte-

grated other security modules with it (§ 6). We evaluate

IPA’s performance and adoptability using trace-driven

experiments (§ 7.2), live Internet experiments (§ 7.3.1),

and analysis (§ 7.3.2). The results suggest that IPA is

lightweight and gradually deployable in the current Inter-

net. Our trace-driven experiments show that IPA’s query

overhead on an Internet registry’s DNS servers is less

than 0.1% of a single root DNS server’s regular work-

load. Its in-band certificate distribution protocol intro-

duces modest overhead to a router. A single-threaded

IPA implementation running on a commodity PC can

process all messages a RouteViews server [53] receives

at their arrival rate. We expect that the server’s workload

is representative of a large ISP’s BGP router’s workload,

because the number of peers it has (37) is the top 6%

largest among all ASes [8].

Our live Internet experiments show that IPA’s proto-

col messages piggybacked in BGP can pass standard-

compliant legacy routers. Our analysis suggests that

IPA lowers the deployment cost for early adopters com-

pared to previous work that requires dedicated PKIs [38,

46, 56, 57], but offers equivalent or stronger security

strength. Thus, it is more likely to be adopted.

To the best of our knowledge, IPA is the first de-

sign that brings accountability to the Internet in a secure,

lightweight, and gradually adoptable manner.

2 System Models and Goals

Before we present the IPA design, we first describe its

system models and design goals.

2.1 System Models

Network Model: IPA adopts the same two-level hier-

archical network model (nodes and ASes) as the present

Internet. For inter-AS routing and forwarding, we treat

an AS as one trust and fate-sharing unit. AS boundaries

are also trust boundaries. For clarity, we abstract each

AS as a node when describing AS-level operations.

Trust Model: IPA assumes the same external trust enti-

ties as the present Internet. The global root of trust is the

Internet Assigned Numbers Authority (IANA).

Threat Model: We assume that both hosts and routers

can be compromised. Compromised nodes (hosts or

routers) can collude into groups and launch arbitrary at-

tacks. We also assume that an AS may be malicious, and

malicious ASes can also collude.

2.2 Design Goals

IPA’s central design goal is to securely bootstrap ac-

countability in the Internet with lightweight and adopt-

able enhancements. We elaborate it in more detail.

Secure: IPA aims to enable cryptographically provable

network-layer identities. As we show in § 5, this ability

further enables various security modules that can prevent

prefix hijacking [34, 38], route forgery [34, 38], source

address spoofing [43], and DoS flooding attacks [45].

Lightweight: We aim to introduce only lightweight en-

hancements to the Internet. We believe that enhancing

the existing infrastructures with new functions has lower

deployment costs than rolling out new global infrastruc-

tures. For this reason, IPA does not require new global

infrastructures, unlike [12, 38, 57]; nor does it require

trusted hardware at end systems (although it can help),

unlike [20]. Moreover, we aim to add little performance

overhead to the deployed Internet base.

Adoptable: We aim to make IPA adoptable, which im-

plies two sub-goals:

• Gradually Deployable: We aim to make IPA com-

patible with the legacy Internet and ready to be de-

ployed on the Internet. IPA-enabled ASes (or hosts)

should be able to run IPA-related protocols even if

they are connected by legacy ASes.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 157

• Incentivizing Early Adoption: IPA should require

low deployment costs and provide immediate secu-

rity benefits to early adopters to incentivize deploy-

ment. That is, the group of early adopting ASes

should gain security benefits within the deployed

region without requiring other entities outside the

group to deploy IPA.

3 Overview

This section presents a high-level overview of IPA. We

present more design details in the following section. IPA

uses two key mechanisms to be lightweight and gradu-

ally deployable: 1) it uses the top-level reverse DNSSEC

infrastructure as a lightweight PKI to bind an IP prefix

to its owner’s public key; and 2) it uses the BGP routing

system to distribute IP prefix certificates in-band.

3.1 A Hybrid Approach to Secure Identifiers

The present Internet uses two types of identifiers: 1) a

hierarchically allocated IP address (or prefix) to loosely

identify a network attachment point (or a group of them

in the same network), and 2) a flat AS number to identify

an autonomous system. IANA is the root of trust and the

owner of all IP addresses, i.e., the owner of 0/0. It del-

egates sub-prefixes to RIRs, which in turn delegate even

smaller sub-prefixes to ASes. ASes may further sub-

delegate IP prefixes to their customers. Figure 1 shows

an example of the address delegation hierarchy.

To be gradually deployable, IPA retains the hierarchi-

cal structure of IP addresses, and uses the existing chain

of trust in the IP address allocation process to bind an IP

prefix to its owner’s public key. Since ASNs do not have

a hierarchical structure, IPA replaces them with ASes’

self-certifying identifiers, i.e., the hash of their public

keys. This design reduces the deployment overhead at

an Internet registry, as a registry need not bind an AS’s

identifier to its public key. This new ASN format can be

gradually deployed in a manner similar to how the 32-bit

ASN was recently deployed [55].

3.2 DNSSEC as a Lightweight PKI

The IPA design uses the top-level DNSSEC infrastruc-

ture as a lightweight PKI for Internet registries to issue

IP prefix delegation certificates. DNSSEC is originally

designed to protect the integrity of DNS replies. Sim-

ilar to a PKI, it allows a parent entity to use its key to

certify a DNS zone delegation to a child entity. Each

zone owner signs the DNS records in its zone, and pub-

lishes their signatures in DNS for verification. When a

client performs a DNSSEC query for a domain name, it

can verify the authenticity of the answer by following the

DNS hierarchy to obtain the relevant DNSSEC records.

Using DNSSEC to certify IP prefix delegation has sev-

eral advantages. First, we can create a one-to-one map-

IANA

APNICRIPE ARIN

165.in-addr.arpa. DS Hash(K)

ATT SPRINT

Surewest Kendaco

IANA

APNICRIPE ARIN

106.14.32/21

106.12/14

106/8
165/8

ATT SPRINT
165.72/16

106.12.208/20
Surewest Kendaco

ARIN

106.in-addr.arpa. DS Hash(K)ARIN

72.165.in-addr.arpa. DS Hash(K)ATT

12/14.106.in-addr.arpa. DS Hash(K)SPRINT

Figure 1: Left: the IP prefix allocation hierarchy; Right:

the corresponding DNSSEC records that bind the prefixes

to their owners’ public keys.

ping between a reverse DNS zone delegation and an IP

prefix delegation, as the reverse DNS hierarchy and the

IP address hierarchy share the same root (IANA). For

example, when IANA delegates an IP prefix 165/8 to

an RIR (ARIN), it can also delegate the corresponding

reverse DNS zone, 165.in-addr.arpa, to ARIN (Fig-

ure 1). This delegation further enables ARIN to create

a one-to-one mapping between the IP sub-prefixes and

the reverse DNS zone’s sub-delegations, e.g., delegat-

ing 165.72/16 and 72.165.in-addr.arpa to an AS

(AT&T). A prefix owner can use the DNSSEC records

that certify its reverse DNS zone delegation as a certifi-

cate authorizing its prefix ownership (§ 4.1). We refer

to this type of certificate as an IP prefix delegation cer-

tificate or a prefix certificate. This design reduces IPA’s

deployment costs at an Internet registry, as it need not

maintain a separate PKI to certify IP prefix delegations.

The second advantage is that Internet registries are

rapidly deploying DNSSEC [7, 29, 50]. The root zone

was signed in July 2010 [19], and later the arpa and

the in-addr.arpa zones. IANA will further sign the

sub-zone delegations from in-addr.arpa in late March

2011 [7]. Moreover, the three largest RIRs, ARIN, RIPE,

and APNIC, have all stated in their websites that they are

ready to or will soon be ready to sign reverse zone sub-

delegations [1, 2, 5]. Since these RIRs own 142 out of

175 sub-zones of in-addr.arpa [14], we expect that the

top-level reverse DNSSEC will soon be fully deployed

by all Internet registries.

Finally, because DNSSEC supports online queries, an

Internet registry can use it to publish new IP prefix cer-

tificates to support key rollovers (§ 4.5) or revocations

(§ 4.2), in addition to issuing certificates. An AS can

query the DNS to download its up-to-date prefix certifi-

cates and the Internet registries’ revocation lists.

3.2.1 IP Prefix Sub-delegation

After an AS obtains its IP prefixes, it may delegate sub-

prefixes to its customers. For instance, Sprint in Fig-

ure 1 allocates a sub-prefix 106.12.208/20 to its cus-

tomer Surewest. The IPA design allows an AS to flex-

ibly choose the infrastructure it uses to manage these

sub-delegation certificates. An AS can choose to use

DNSSEC, as does an Internet registry. Alternatively, it

3

158 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

may use a certificate authority server to issue the IP pre-

fix certificates. In the latter case, an AS should also sup-

port a certificate publishing mechanism (e.g., a secure

web server or an FTP server) to enable its customers to

download their up-to-date certificates online. This re-

quirement is to support automatic key rollovers (§ 4.5).

We believe that an AS has incentives to manage and pub-

lish its customers’ certificates, because this effort can

protect its customers from prefix hijacking attacks.

For clarity, in the IP prefix delegation process, we refer

to the delegator as the parent owner, and the delegatee as

the child owner.

3.3 In-band Certificate Distribution

To prevent routing attacks, ASes must use a secure rout-

ing protocol (e.g., S-BGP [38], § 5.1) to validate prefix

origins and AS paths in BGP messages. This requires

ASes to first obtain valid IP prefix certificates.

IPA uses BGP itself to distribute these certificates in-

band to ASes that need them. That is, when an AS orig-

inates an IP prefix in a BGP message, it piggybacks the

chain of certificates that can prove its prefix ownership

in the message. We use a BGP feature, the transitive and

optional path attribute, to carry the certificates. An AS

can first obtain the chain of certificates offline when it

obtains the IP prefix from its parent AS or an Internet reg-

istry. Later, it can periodically download the full chain of

the latest certificates, as we will describe in § 4.5.

This design has several advantages. First, it avoids the

dependency loop between secure routing and online cer-

tificate distribution. If we use an alternative approach

where each AS downloads the prefix certificates from

online distribution servers (e.g., DNSSEC servers), a de-

pendency loop between routing and certificate distribu-

tion may occur. This is because to obtain a prefix p’s cer-

tificate Cp, an AS X must first establish a valid path to

an AS Y that hosts Cp’s distribution server. Recursively,

to establish a valid path to AS Y , X must validate the

BGP messages advertising AS Y ’s prefixes, which re-

quires AS X to have obtained AS Y ’s prefix certificates.

These certificates may be served by a distribution server

in yet another AS Z , and to establish a valid path to Z , X
needs the certificates for Z’s prefixes, and so on. These

dependencies may eventually form a loop, preventing AS

X from obtaining the certificates needed to validate the

prefix p’s ownership.

In contrast, in-band distribution does not introduce

such dependencies. This is because it does not require an

AS to establish an a priori valid path to an online distri-

bution server. BGP messages are propagated hop-by-hop

(at the AS level). An AS will first obtain valid certificates

from its neighbors, and then from its neighbors’ neigh-

bors, and so on, until it obtains the valid certificates from

all ASes in the routing system.

Second, in-band distribution lowers deployment costs,

as it does not need an out-of-band channel to distribute

the certificates, unlike [38, 56]. IPA also uses standard

BGP features to encode the certificates so that different

ASes may gradually adopt the distribution mechanism

without breaking BGP.

Finally, including a prefix p’s full chain of certificates

ensures that any AS that receives a BGP message origi-

nating p can immediately validate p’s owner’s public key.

This further ensures that an AS can promptly validate the

prefix origin and AS path in the BGP message (§ 5.1) and

propagate the message and the chain of certificates fur-

ther to its neighbors. These neighbors can in turn use the

certificates to validate the BGP message and propagate

it further, until all ASes have received and validated the

BGP message. We refer to this property as liveness, and

provide a formal proof of it in [42]. We discuss how to

validate a certificate in § 4.4.

Attaching a full chain of certificates in a BGP message

incurs significant communication overhead. IPA uses a

simple but effective technique to reduce this overhead:

each AS caches the certificates that it has sent to a neigh-

bor and only sends to the neighbor the certificates that it

has not sent yet. We describe it in more detail in § 4.3.

4 Design Details

This section presents more design details of IPA, includ-

ing how to use DNSSEC records to encode an IP pre-

fix certificate (§ 4.1), certificate revocation (§ 4.2), effi-

cient certificate distribution (§ 4.3), certificate validation

(§ 4.4), and key management (§ 4.5).

4.1 DNSSEC Records as IP Prefix Certificates

IPA uses three types of a reverse DNS name’s resource

records to encode a prefix certificate: the designated

signer (DS) record, the public key (DNSKEY) record,

and the signature (RRSIG) record of the DS record.

Figure 2 shows the DNSSEC records that form the cer-

tificate for the prefix 165/8, which IANA allocates to

ARIN (Figure 1). These records are associated with the

DNSSEC entry 165.in-addr.arpa created by IANA.

IANA uses the DS record to store the hash of ARIN’s

pubic key, and signs the DS record using its private

key. It sets the inception and expiration times of the sig-

nature record (RRSIG) to the inception and expiration

times of the prefix allocation, and publishes the entry

165.in-addr.arpa on its DNS servers. This process

follows the standard DNSSEC practice, and also applies

to IPv6 address allocation.

A slight complication arises as not all IP address

allocations fall on a reverse DNS domain boundary.

For instance, as shown in Figure 1, ARIN may allo-

cate an IP prefix 106.12/14 to Sprint. We address

this issue by extending the encoding format of a re-

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 159

Figure 2: This figure shows the DNSSEC records that en-

code the prefix 165/8’s certificate. The size of each record is

estimated assuming that the signatures are generated using

2048bit RSA/SHA-1.

verse DNS name. For instance, we use the reverse

DNS name 12/14.106.in-addr.arpa to encode the

IP prefix 106.12/14. The encoding/decoding rules

are straightforward and compatible with the DNS stan-

dard [47]. We omit them due to the lack of space, but

describe them in [42]. We choose not to use the exist-

ing techniques that support classless reverse zone dele-

gations [27, 30], because they either only support alloca-

tions in chunks smaller than a /24 prefix [30], or are no

longer supported by popular DNS servers [9, 27].

4.2 Revoking an IP Prefix Certificate

An Internet registry or an AS may revoke a certificate

allocated to a child before it expires. This may occur if

the prefix is re-assigned to a new child owner, or the child

owner’s key is compromised, or the child owner violates

the terms of use or switches to a different ISP.

In the IPA design, a parent owner issues a new pre-

fix certificate to explicitly revoke the old one. The new

certificate binds the IP prefix to a new public key with a

newer inception time. The new key could be a new child

owner’s key, or the present child owner’s new key, or the

parent’s own key if it reclaims the IP prefix from a child.

As we discuss in § 3.3, IPA distributes IP prefix certifi-

cates in the routing system for ASes to validate routing

messages. To use a certificate to validate a routing mes-

sage, an AS must know whether the certificate has been

revoked or not. IPA uses both push and pull mechanisms

to notify an AS of a certificate’s revocation status.

Pushing New Certificates via Routing: Because a new

certificate explicitly revokes an old one, a new certifi-

cate’s owner can immediately announce the new certifi-

cate in BGP using the in-band distribution mechanism to

notify other ASes of the old certificate’s revocation.

Periodic Pulling From Internet Registries: When

an Internet registry revokes a prefix certificate, the reg-

istry may be unable to notify other ASes using the

push-based mechanism, because it does not participate

in routing. We use a DNSSEC-based revocation list

to address this problem. A revocation list includes the

set of IP prefixes an Internet registry reclaims from

its children, or re-assigns to its children that are also

Internet registries. The registry can publish the list

using a TXT record with a special DNS name, e.g.,

revoked.arin.in-addr.arpa, and sign the list using

DNSSEC. An entry in a revocation list includes the re-

voked IP prefix and the revocation time. It revokes any

older prefix certificate signed by the same registry and

whose address range overlaps with the revoked prefix.

Each AS periodically (e.g., daily) downloads the re-

vocation lists from all Internet registries to invalidate re-

voked certificates (§ 4.4). An AS does not query DNS at

the certificate validation time to reduce DNS load. Peri-

odic downloads may delay a certificate’s revocation, but

we consider this delay acceptable, as it will not lead to

prefix hijacking attacks. Only the IP prefixes not allo-

cated to any AS will suffer this delay, as an AS that owns

an IP prefix can immediately announce its new certificate

in BGP to revoke the old one.

4.3 Efficient Certificate Distribution

As we describe in § 3.3, IPA uses a BGP message itself to

distribute the full chain of certificates of the IP prefix that

the message advertises. We now describe how to make

this in-band distribution protocol efficient.

Each AS maintains several certificate caches to record

what it has sent to a neighbor and to maintain certificate

validation state, as shown in Figure 3. The caches in-

clude: 1) an incoming certificate cache that stores all cer-

tificates received from its neighbors; 2) a trusted certifi-

cate cache that stores the certificates it has validated; and

3) a per-neighbor outgoing certificate cache that records

the hash of each certificate it has sent to the neighbor.

An AS organizes the certificates in its trusted cache in a

tree-like structure following the IP allocation hierarchy

to assist certificate validation (§ 4.4).

When an AS receives a prefix certificate from a neigh-

bor, it first stores the certificate in its incoming cache, and

then validates the certificate as we describe next. When

the AS sends a BGP message to a neighbor announcing

the IP prefix, it will retrieve the full chain of certificates

from its trusted certificate cache, and compare them with

those in the neighbor’s outgoing certificate cache. It will

only send the certificates that are not in the neighbor’s

outgoing cache, and then insert them in the outgoing

cache to avoid sending them to the neighbor again.

When an AS loses the peering connection to a neigh-

bor, e.g., due to a router reboot or link failure, it will re-

move all entries in the neighbor’s outgoing cache. When

the AS resumes its connection with the neighbor, it will

re-send the full chain of certificates for each prefix it an-

nounces to the neighbor.

4.4 Validating IP Prefix Certificates

When an AS receives a BGP message that advertises

a prefix pn and includes a list of certificates from a

neighbor, it must validate these certificates to verify pn’s

5

160 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: An example of the certificate caches an AS main-

tains. It shows only one outgoing cache of the AS.

owner’s public key. It considers a prefix pn’s certificate

Cpn
valid if Cpn

meets the following conditions:

1. Cpn
is not on any Internet registry’s revocation list

or revoked by a newer certificate (§ 4.2).

2. Cpn
has a valid parent certificate Cpn−1

such that 1)

Cpn
is signed by its parent certificate Cpn−1

’s pri-

vate key; 2) pn is a subset of its parent certificate’s

prefix pn−1. If pn is the prefix 0/0, Cpn
need not

have a parent but must be self-signed by IANA.

Algorithm 1 shows the pseudo-code for the validation

algorithm. Most steps of the algorithm check whether

Cpn
satisfies the above conditions. We note two things.

First, if Cpn
does not have a valid parent certificate, Cpn

becomes unverifiable. Unverifiable certificates may ex-

ist temporarily during a key rollover event (§ 4.5). The

algorithm returns failure but leaves Cpn
in the incoming

cache, as it may become valid later after its parent certifi-

cate has arrived. Second, the last section of the code (line

23–26) adds the newly validated Cpn
to the AS’s trusted

cache and checks whether any previously unverified cer-

tificate Ci is now verifiable, which may happen if Cpn
is

its parent. If such a certificate Ci exists, the algorithm

recursively validates it and its child certificates.

4.5 Key Management

Like any cryptography-based system, IPA’s accountabil-

ity builds on the secrecy of private keys. In addition to

the standard practice to protect secret keys, IPA takes two

additional measures: 1) separating an AS’s identity keys

from the keys the AS uses to sign routing messages, and

2) periodic key rollovers.

4.5.1 Separating Identity Keys from Routing Keys

To secure routing, an AS must store its private key on-

line to sign routing messages (§ 5.1). Yet it is desirable

to keep a private key offline to reduce the risk of key

compromise. To balance security and functionality, IPA
separates an AS’s identity keys from the keys it uses to

sign routing messages. We refer to the pair of keys asso-

ciated with an AS’s self-certifying identifier as its iden-

tity keys, or its identity key when we refer to either the

AS’s private or public key.

Algorithm 1 validate(Cpn): pseudo-code to validate the cer-

tificate Cpn in an incoming BGP update message msg.

Input: Cpn
, the incoming certificate to be validated; pn,

the prefix of Cpn
; msg, the incoming BGP message;

cachetr/cachein, the current trusted/incoming cer-

tificate cache; rlist[r], the most recent revocation

list of registry r
1: if is registry(Cpn

.signer)

and pn ∈ rlist[Cpn
.signer] then

2: cachein.remove(Cpn
)

3: return false

4: end if

5: Cpn−1
⇐ cachetr.lookup parent(Cpn

)

6: if Cpn−1
== NULL then

7: Cpn−1
⇐ msg.lookup parent(Cpn

)

8: if Cpn−1
== NULL or not validate(Cpn−1

) then

9: return false

10: end if

11: end if

12: for Cs ∈ cachetr.get children certs(Cpn−1
) do

13: if overlap(pn, ps) then

14: if Cpn
.inception > Cs.inception then

15: cachetr.recursive remove(Cs)

// remove all certificates in Cs’s subtree

16: cachein.remove(Cs)

17: else

18: cachein.remove(Cpn
)

19: return false

20: end if

21: end if

22: end for

23: cachetr.insert(Cpn
)

24: for Ci ∈ cachein and Ci /∈ cachetr do

25: validate(Ci)

26: end for

27: return true

An AS generates a separate pair of public/private keys

to sign routing messages. We refer to this pair of keys as

an AS’s routing keys. For each IP prefix it owns, an AS

will use its identity key to sign a routing certificate that

binds the IP prefix to its routing key. The AS keeps its

identity private key offline, and uses its routing private

key to sign routing messages. An AS will include a pre-

fix’s routing certificate in its BGP messages. Other ASes

can validate it using the algorithm described in § 4.4.

4.5.2 Routing Key Rollover

By separating identity keys from routing keys, an AS

can periodically expire its routing keys, issue new ones,

and sign its new routing certificates with its identity key,

all without changing its identifier, or re-signing its prefix

sub-delegation certificates.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 161

4.5.3 Identity Key Rollover

An entity should also change its identity keys periodi-

cally to improve security. To change its identity keys, an

entity must 1) request new certificates from its parents,

2) revoke its old certificates, and 3) re-sign each child

certificate with its new private key. As can be seen, this

process is more complicated than routing key rollover.

Thus, an entity should change its identity keys at a lower

frequency than its routing keys.

A key challenge we face is how to make a child certifi-

cate remain valid throughout a parent key rollover event

so that other ASes can verify the child’s routing mes-

sages. We address this challenge by “pre-releasing” a

child’s new prefix certificate, a technique similar to how

DNSSEC manages key rollovers [39]. With this mecha-

nism, both a child’s old and new certificates remain valid

during a key rollover event.

For clarity, we first describe the identity key rollover

process for an AS, and then for an Internet registry. Fig-

ure 4 shows this process. Let D be an AS that wishes to

rollover to a new identity key Knew. D will first use its

old key Kold to generate a transient certificate certifying

Knew for each prefix it owns. The transient certificates

are only available during key rollovers, and will expire

afterwards. Meanwhile, D generates a new certificate

for each sub-prefix it delegates to a child using its new

key Knew. D will also generate new certificates to cer-

tify its routing keys using Knew. At this point, both Kold

and Knew are valid identity keys of D, because each of

them can be certified by a valid chain of certificates, as

shown in Figure 4(b). D will then publish the child cer-

tificates signed using its new key Knew via its certificate

publishing system as described in § 3.2.1.

Each AS will periodically (e.g., once a day) query its

certificate issuers’ publishing systems to download its

latest chains of certificates. If the AS obtains IP prefix al-

locations directly from an Internet registry, it will query

the corresponding reverse DNS names of its IP prefixes

starting from the root servers. Otherwise, the AS queries

its parent ASes’ certificate publishing systems. This on-

line certificate downloading step does not have a depen-

dency loop with routing, because each AS’s old certifi-

cate chain is already in the routing system, and can be

used to establish valid paths. If an AS C downloads a

new certificate signed by its parent D’s new key, it will

immediately announce its new certificate in BGP. Other

ASes will consider C’s new prefix certificate valid, be-

cause it is certified by a valid chain of trust, including

the link provided by the parent D’s self-signed transient

certificate, as shown in Figure 4(b).

Finally, the rekeying AS D requests each of its parents

P that has delegated an IP prefix to its old key Kold to

issue a new certificate to its new key Knew, after waiting

for a long enough period d. The waiting period d should

Figure 4: This figure shows IPA’s key rollover process.

Each node represents a key; an arrow points from a par-

ent’s signing key to a child’s signed key. Figure (a) shows

the chain of trust before the key rollover; (b) shows the

chains of trust during the key rollover, where the rekey-

ing entity D signs a transient certificate to certify its new

key Knew using its old key Kold; (c) shows when the key

rollover process finishes, the old key Kold becomes invalid.

be long enough to ensure that each child AS of D has

successfully downloaded and announced its new certifi-

cates in BGP. D can then announce its new certificate for

its new key Knew in BGP to revoke its old certificate.

The child AS C’s certificate will remain valid, as shown

in Figure 4(c). An AS D will also re-send its BGP routes

to its neighbors using its new identifier.

An Internet registry’s key rollover procedure is similar,

except that the registry need not announce a new certifi-

cate in BGP, as its children will obtain it via DNSSEC.

4.5.4 Recovering From Key Compromise

With the preventive measures we describe above, we ex-

pect key compromise to be a rare event in IPA. For com-

pleteness, we briefly describe how to recover from it and

leave the details to [42].

Recovering from key compromise resembles a key

rollover event, except that an entity may resort to con-

tacting its parents and children offline to obtain its new

certificates and distribute its children’s new certificates.

This is because when an attacker compromises an en-

tity’s identity keys, it may also hijack the entity’s IP pre-

fixes, making it unreachable online.

5 Use of IPA

In this section, we describe how IPA enables various

security modules that collectively achieve accountable

routing and forwarding, and DoS attack mitigation. Each

of the modules we describe here is also gradually adopt-

able [26, 38, 43, 45].

5.1 Accountable Routing

IPA enables secure routing protocols such as S-

BGP [38], because it provides ASes with the necessary

7

162 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

certificates to achieve origin authentication and AS path

authentication.

Origin Authentication: An AS O that owns a prefix p
can now sign its BGP messages when it announces the

prefix, because other ASes can use the chain of certifi-

cates piggybacked in the BGP messages to verify the se-

cure binding between the prefix p and O’s public key

(§ 3.3), preventing other ASes from originating p.

AS Path Authentication: Each transit AS can sign a

BGP update using its private key when it prepends its

self-certifying AS identifier to the update and propagates

the update to a neighbor. A malicious AS cannot forge

another AS’s identifier, nor can it truncate the AS path,

because it cannot generate a valid signature of another

AS. A transit AS can piggyback its public key in a BGP

message similar to how IPA distributes prefix certificates

(§ 3.3). We can also apply the same caching technique

described in § 4.3 to reduce the message overhead.

Self-certifying ASNs prevent path forgery, but raise

a different security concern: an AS may mint arbitrary

identifiers, which complicates BGP policy configura-

tions. The IPA design addresses this concern by binding

a self-certifying ASN to an IP prefix. If an AS path con-

tains an ASN that is not a hash of a public key found in

a valid IP prefix certificate, other ASes can consider the

path not trustworthy, and configure their BGP policies to

avoid this path. Moreover, an AS can use IP prefixes to

configure its BGP policies, because other ASes cannot

arbitrarily change their IP prefixes.

5.2 Accountable Forwarding

The ability to securely sign BGP messages enables Pass-

port [43], a system that can achieve both packet source

authentication and forwarding path inconsistency detec-

tion. Passport uses a distributed Diffie-Hellman key ex-

change piggybacked in BGP to establish a shared secret

between every pair of ASes. With IPA, an AS O can sign

the BGP messages that originate both its prefixes and its

Diffie-Hellman public value. Other ASes can securely

bind the secrets they share with AS O with O’s prefixes

to enable AS-level packet source authentication and path

inconsistency detection.

Packet Source Authentication: To authenticate a

packet’s source address, a source AS stamps a sequence

of message authentication codes (MACs) into a packet

header using the secret keys it shares with each AS en

route to the packet’s destination. ASes along the path

can re-compute the MACs to validate the packet’s origin

AS, as packets with spoofed source addresses will not

have valid MACs.

Forwarding Path Inconsistency Detection: A mali-

cious AS may attempt to advertise one legitimate AS

path but forward packets along a different one that con-

flicts with a source AS’s routing policies. The MACs that

a source AS stamps into a packet header can help detect

this misbehavior. This is because if a packet’s forward-

ing path differs from the AS path its source AS selects to

use, an AS on the path will detect an invalid MAC, but

the destination AS will detect a valid one. A destination

AS can use this discrepancy to notify the source AS of

the forwarding path inconsistency.

5.3 DoS Attack Mitigation

Finally, because IPA enables source authentication, it

also enables DoS defense systems that use authen-

tic source addresses to suppress attack traffic near its

sources, e.g., a filter based system StopIt [44], or Net-

Fence [45], a system based on unspoofable congestion

policing feedback.

As an example, we describe briefly how NetFence can

use IPA to suppress DoS flooding traffic near its sources.

NetFence introduces a secure congestion policing frame-

work in the network. A NetFence packet carries un-

spoofable congestion policing feedback in a shim layer.

An on-path AS updates this feedback to notify an access

router of its local congestion conditions, and an access

router uses this feedback to regulate a sender’s sending

rate. The on-path AS and the source AS use the secret

they share via Passport to protect this feedback from be-

ing tampered by malicious routers or end systems. When

malicious sources and receivers collude to flood a link in

the network, NetFence provides a legitimate sender its

fair share of bandwidth. When a receiver is an inno-

cent DoS victim, NetFence enables the receiver to use

the unspoofable congestion feedback as network capa-

bilities [59] to suppress the bulk of unwanted traffic.

We introduce AS-level hierarchical accountability to

NetFence to accommodate IPA’s self-certifying ASNs.

The original NetFence design uses AS-level queues at a

router to hold each source AS accountable for its traffic.

With IPA, we use hierarchical queuing [24] that follows

the IP allocation hierarchy to hold each AS accountable.

That is, the traffic from all IP prefixes allocated to an

AS’s public key will share one queue; a router may sub-

divide the queue into multiple lower-level queues, if the

AS delegates sub-prefixes to its customers, and so on. A

router sets a queue’s weight according to the size of the

IP prefixes associated with the queue, not by the number

of ASes sharing the IP prefixes. This mechanism pre-

vents an AS from gaining unfair network resources by

dividing its IP prefixes into many smaller ones and dele-

gating them to minted identifiers.

6 Implementation

We have implemented a prototype of IPA’s in-band cer-

tificate distribution mechanism (§ 3.3) using XORP [33].

The implementation includes a standalone C++ library

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 163

libipa that other BGP implementations can use. The li-

brary libipa implements certificate distribution and val-

idation, and supports downloading revocation lists and

new certificates from DNSSEC.

Our implementation addresses several practical issues

that arise when an IPA router peers with a legacy router.

First, we disable the optimization technique (§ 4.3) on

an IPA router’s interface facing a legacy router, because

a legacy router does not cache any certificate or public

key. Furthermore, legacy BGP has a 4KB limit on the

size of an update message. To bypass this limitation,

an IPA router breaks a message longer than 4KB into

smaller ones, each of which carries a subset of the certifi-

cates and public keys of the original message. The router

sends them in sequence to its legacy neighbor. The IPA

router waits for a period of time longer than the BGP’s

MRAI timer (e.g., a few minutes) between sending out

two consecutive messages to prevent the first message

from being overwritten by the second one.

We have also extended previous implementations of S-

BGP, Passport, and NetFence and incorporated them into

the IPA prototype. We defer a systematic evaluation on

the integrated architecture to future work.

7 Evaluation

In this section, we evaluate IPA along four dimensions.

First, we use small-scale testbed experiments to validate

the design and implementation. Second, we use trace-

driven benchmarks to measure the design’s performance

and overhead. Third, we use live Internet experiments

and analysis to evaluate the design’s adoptability. Fi-

nally, we analyze IPA’s security properties.

7.1 Testbed Experiments

We use DETERlab [28] experiments to validate the

design and implementation of IPA. These experiments

include 1) bootstrapping experiments, 2) key rollover

experiments, and 3) prefix hijacking experiments. We

sample a small test topology from the AS-level Internet

topology inferred from BGP table dumps. This topology

includes six university ASes and all ASes on the shortest

AS paths between the six ASes. It contains 17 ASes and

54 uni-directional links. We desire to run larger-scale

experiments, but are limited by the number of testbed

machines we can obtain. For simplicity, we assume each

AS owns one prefix, and choose the prefix to be the

largest one the AS owns in reality. Finally, we assume all

ASes use DNSSEC to issue and publish their certificates,

and use the signing tool included in BIND9 [3] to gen-

erate the certificates. The topology includes four levels

of IP prefix allocation: IANA, RIRs, top-level ASes, and

customer ASes. We randomly pick three ASes to host the

root and two RIRs’ DNSSEC servers. We assume each

AS’s DNSSEC server is inside its network. Each node

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

IANA ARIN RIPE APNIC LACNIC AFRINIC

Av
er

ag
e

Lo
ad

 (K
bp

s)

Revocation list
Certificates

Figure 5: This figure shows the average DNS traffic load of

each Internet registry to serve the revocation list and the IP

prefix certificates.

in a testbed experiment corresponds to an AS. Each AS

is configured with an initial IP prefix certificate chain.

We summarize the testbed experiment results as fol-

lows. In a bootstrapping experiment, each node can val-

idate all certificates and store them in its trusted cache,

suggesting that the system can successfully bootstrap,

consistent with the liveness property of IPA’s in-band

certificate distribution protocol (§ 3.3). In a key rollover

experiment, the rekeying ASes can successfully propa-

gate their new certificates, and each prefix always has at

least one valid chain of certificates during the rollover

period. Finally, we run our S-BGP module using the cer-

tificates distributed by IPA. We launch a prefix hijack-

ing attack from an AS. All other ASes reject the update

message because there does not exist a certificate chain

certifying the AS’s ownership of the hijacked prefix.

7.2 Performance

IPA adds overhead to both DNS and BGP. We use trace-

driven benchmarks to evaluate this overhead. The results

show that IPA’s overhead on DNS and BGP is accept-

able. We use a PC with Xeon 3GHz CPU and 2GB mem-

ory to run all of our experiments unless otherwise noted.

7.2.1 DNS Overhead

IPA uses a signed TXT record in DNS to publish an Inter-

net registry’s revocation list (§ 4.2). An AS periodically

downloads the revocation list from each registry. Each

entry in a revocation list can be encoded in ≤30 bytes

(≤18 bytes for an IPv4 prefix in the dotted-decimal for-

mat, one byte for space, 10 bytes for the revocation time,

and one byte for the line break). A publisher can com-

press a list (e.g., using gzip) to reduce overhead. An AS

also needs to download the list’s signature (∼300 bytes)

and a few other DNSSEC records.

We assume that at any time, a registry at most revokes

1% of the total prefixes that it owns and does not re-

allocate them to others. We use gzip to compress each

revocation list, and use base64 to encode a compressed

list so that it can be stored as a text record. The BGP re-

port of February 2011 [15] shows that there are a total of

9

164 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

BGP Table Dump

Date collected 08/01/2010

Number of ASes 35728

Number of IP prefixes 337K

BGP Update Trace

Vantage point route-view2.oregon-ix.net

Number of peers 37

Date collected 08/01/2010∼08/31/2010

Number of updates 118 million

Average arrival rate 44.1 updates/s

Table 1: This table summarizes the BGP data we use in

evaluating IPA’s routing overhead.

37K ASes on the Internet. We assume that an AS down-

loads a revocation list once per day. This downloading

frequency is acceptable, because it at most allows a pre-

fix’s previous owner to use the prefix for one extra day.

Figure 5 shows the average traffic load for serving the

list at each Internet registry’s DNS servers. As can be

seen, even for the busiest registry ARIN, the estimated

communication overhead is less than 10Kbps. This over-

head is negligible compared to the regular load of a top-

level DNS server, e.g., the “M” root DNS server’s regular

load is over 32Mbps [10].

In the IPA design, an AS may also periodically down-

load its certificate chains from the Internet registries to

deal with key rollovers (§ 4.5). To evaluate this overhead,

we assume that all ASes publish the IP prefix certifi-

cates they delegate to their children using DNSSEC. This

places an upper bound on the top-level DNS servers’

load. Each certificate includes three DNSSEC records

and is about 650 bytes long (§ 4.1). We assume that each

AS downloads its certificates once every day for each

prefix it owns. Figure 5 shows the average traffic load

from all registries for serving the certificate downloads.

As can be seen, the IANA’s DNS servers have the high-

est certificate serving overhead, but it is still much lower

than a root DNS server’s regular load, which suggests

that IPA is unlikely to stress DNS.

7.2.2 Routing Overhead

We use trace-driven experiments to evaluate the over-

head of IPA’s in-band certificate distribution mechanism.

We obtain a real BGP update trace from a RouteViews

server [53]. Table 1 summarizes the BGP data we use.

We then add IPA specific fields and updates to the trace

to obtain a synthetic IPA BGP trace. We use the synthetic

IPA trace to estimate the message overhead of distribut-

ing IP prefix certificates in-band. We also feed the IPA

trace to a PC router running our IPA implementation, and

measure the router’s processing and memory overhead.

We generate the IPA BGP trace in three steps: 1) in-

ferring IP prefix delegation hierarchy; 2) adding certifi-

cates for newly allocated and re-assigned prefixes; and

3) adding updates triggered by key rollover events. We

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

Fr
ac

tio
n

of
 P

re
fix

es

Delegation Depth

Figure 6: The distribution of the depth of each prefix in the

inferred IP prefix delegation hierarchy.

describe each step in more detail.

First, we infer a prefix’s delegation hierarchy to de-

cide what certificates to add to a BGP update message

announcing that prefix. We use a BGP table dump to in-

fer this information. If an AS originates an IP prefix in

the BGP table, we assume that it is the prefix’s owner.

If a prefix p′ includes another prefix p, and both prefixes

appear in the BGP table, we infer that p′’s owner AS del-

egates the prefix p to p’s owner. We also combine the IP

prefix allocation records obtained from RIRs and IANA’s

websites to build the entire IP prefix delegation hierar-

chy. Figure 6 shows the distribution of the depth of the

inferred hierarchy. More than 80% prefixes have a dele-

gation depth of 3 or 4, suggesting that most ASes obtain

IP prefixes directly from the RIRs or from provider ASes

that directly obtain IP prefixes from the RIRs.

Second, we add prefix certificates to BGP updates that

announce newly allocated or re-assigned IP prefixes. Ac-

cording to the IPA design (§ 3.3), an AS only sends an

IP prefix certificate to a neighbor if it has not sent the

certificate to the neighbor before. Thus, after the rout-

ing system has bootstrapped, only two types of updates

carry IP prefix certificates: 1) an update that announces

a newly allocated or re-assigned prefix, and 2) an up-

date that carries new certificates generated during key

rollovers (§ 4.5) for a previously announced prefix. We

treat any IP prefix that has not appeared in the trace be-

fore as a newly allocated prefix, and any prefix whose

origin AS has changed as a re-assigned prefix. To esti-

mate the upper bound on the message overhead, we add

the full certificate chain to each BGP update announcing

a newly allocated or re-assigned prefix.

Finally, we add the update messages triggered by key

rollover events to the IPA trace. Let a key rollover inter-

val be Tr seconds. We let each AS randomly choose a

key rollover time t during the Tr interval. We then add

BGP updates that include the rekeying AS’s new certifi-

cates for all its prefixes and its child ASes’ prefixes at

time t in our trace. We add updates for both routing and

identity key rollovers (§ 4.5). We assume that as an upper

bound, each AS changes its routing keys once a week,

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 165

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Update Message Size (KB)

IPA
vanilla BGP

Figure 7: The cumulative distribution of an IPA BGP up-

date message size.

 1

 10

 100

 1000

 10000

08/01 08/02 08/03 08/04 08/05 08/06 08/07 08/08A
v
e
ra

g
e
 U

p
d
a
te

 T
ra

ff
ic

 (
K

B
/s

)

Time

IPA
vanilla BGP

Figure 8: The update traffic rate a RouteViews server sees

averaged over 1-minute intervals during one week.

and its identity keys once a month.

Message Overhead: Figure 7 shows the cumulative dis-

tribution of an IPA message size in one day’s trace (Au-

gust 1, 2010). The distributions in other days are similar

and hence omitted. For comparison, we also show the

distribution of an original BGP message size. As can be

seen, over 80% of the IPA messages are smaller than 500

bytes. Given that each IP prefix certificate is around 650

bytes (§ 4.1), we can infer that over 80% of the messages

do not carry any certificate, indicating that the caching

mechanism described in § 4.3 is effective in reducing

message overhead.

Figure 8 shows the IPA BGP update rate averaged over

1-minute bins in one week (August 1–7). The results

during other weeks are similar and are omitted for clar-

ity. For comparison, we also show the vanilla BGP up-

date rate. The RouteViews server we use peers with 37

large ISPs. So we expect that the update process it sees

is representative of what a BGP router sees in a large

ISP [8]. The rate shown in Figure 8 is the aggregate ar-

rival rate over all peers of the server. As can be seen, IPA
increases the update traffic rate compared to the vanilla

BGP. The 1-minute average aggregate update rate is usu-

ally less than 200KB/s. Since there are 37 peers, each

peer on average receives less than 6KB/s update traffic.

We think this overhead is acceptable compared to today’s

core routers’ link capacities (10Gbps or 40Gbps).

Processing Overhead: We evaluate an IPA router’s pro-

cessing overhead by measuring 1) the fraction of CPU

time it takes to process IPA’s BGP messages, and 2) each

 0

 10

 20

 30

 40

 50

 60

 0 20000 40000 60000 80000

C
P

U
 T

im
e
 (

s
e
c
o
n
d
)

Time (second)

IPA
vanilla BGP

Figure 9: The CPU time taken to process the messages re-

ceived per 1-minute bin.

 0

 20000

 40000

 60000

 80000

 0 0.5 1 1.5 2 2.5 3

T
im

e
 (

s
e
c
o
n
d
)

Msg # (million)

arrival time
departure time

Figure 10: The arrival and departure time of each message

received during a day. The message number is in the unit

of million (M).

message’s processing latency. We aggregate the BGP up-

date messages into 1-minute bins to measure the CPU

utilization. We feed the messages arrived in each bin to

our IPA router implementation, measure the aggregate

processing time, and compare it with the bin size.

Figure 9 shows the result during a one-day period (Au-

gust 1, 2010) with 1-minute bins. The results for other

days are similar and we omit them for clarity. For com-

parison, we also show the CPU time a XORP BGP router

spends to process the original BGP trace. For each time

bin, IPA takes more time to process the messages than

the vanilla BGP, because it needs to validate new certifi-

cates piggybacked in the incoming messages. However,

the CPU time that the router spends to process each 1-

minute bin messages is usually less than 30 seconds, in-

dicating that the router’s CPU utilization is less than 50%

and CPU is not a bottleneck. We may further improve

our implementation’s efficiency by applying instruction-

level optimization to the RSA algorithm [40].

We further evaluate IPA’s processing latency and ex-

amine whether it can keep up with the update arrival rate.

We feed each update to the IPA router implementation

according to the time it arrives. Figure 10 shows the ar-

rival and departure time of each message. As can be seen,

the arrival and departure lines almost overlap with each

other, indicating that our implementation running on a

commodity PC can keep up with the update arrival rate

of the RouteViews server.

Memory Overhead: To evaluate IPA’s memory over-

11

166 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

OIX LINX EQIX ISC WIDE

of

 U
pd

at
es

All updates
Updates carrying the attribute

Figure 11: The number of updates received by each Route-

Views vantage point.

head, we feed the IPA BGP trace to our IPA implementa-

tion, and measure the memory needed to store all certifi-

cate caches. With our implementation, the trusted certifi-

cate cache consumes around 356MB memory using the

BGP table data shown in Table 1. Our implementation

stores only one physical copy for each certificate. The

same certificates in different caches are pointers to the

physical copy. The incoming cache uses ∼1.5MB mem-

ory to store the pointers. An outgoing cache uses at most

7MB, because it only need store a hash value for each

certificate. This memory overhead is moderate because

a router need not use these certificates in the packet for-

warding time and can store them in low-cost DRAM.

7.3 Adoptability

In this section, we use real Internet experiments and anal-

ysis to evaluate IPA’s adoptability. An adoptable design

must satisfy two conditions: gradually deployable and

providing incentives to early adopters.

7.3.1 Gradual Deployment

IPA uses the top-level DNSSEC infrastructure and BGP

to certify and distribute IP prefix certificates. We evalu-

ate whether early adopters can gradually deploy IPA in

each system.

DNSSEC: First, we evaluate whether a legacy DNSSEC

implementation can serve the DNSSEC records and re-

vocation lists needed by IPA. We deploy a BIND9 DNS

server which supports DNSSEC natively and has the

largest installation base [16]. We use the DNSSEC sign-

ing tool bundled with the server software to generate the

DNSSEC zone records for the IP prefixes allocated by

IANA and all five regional Internet registries, and con-

figure the server to serve the records and the revocation

lists. We then use a legacy DNS client dig to fetch them.

The dig client successfully retrieves all the records, in-

dicating that the Internet registries can directly serve the

DNSSEC records required by IPA without modifying

DNS servers or breaking DNS clients.

BGP: We use BGP’s transitive and optional path at-

tributes to carry IPA-related fields. This design allows

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6 7 8 10

Fr
ac

tio
n

of
 U

pd
at

es

AS Path Length

Figure 12: The AS path length distribution of the received

updates that carry the optional and transitive test attribute

we inject. The path is from a RouteViews vantage point to

the injection location.

upgraded ASes to run the IPA protocols even if they are

connected by legacy routers. This is because according

to the BGP standard [51], legacy routers should forward

any transitive and optional attribute.

To test IPA’s compatibility with legacy BGP routers,

we use a modified Quagga [11] BGP daemon to inject a

BGP update with a transitive and optional attribute. We

then monitor the propagation of this update from multi-

ple RouteViews’ vantage points. On August 27, 2010,

we injected one such update to BGP using the BGP bea-

con platform maintained by RIPE RIS [13]. The update

includes a previously unused prefix and a 3KB path at-

tribute with an unknown type code 99. Figure 11 shows

the number of updates observed by each RouteViews

vantage point and among them how many still carry the

attribute. For the updates still carrying the attribute, Fig-

ure 12 shows the AS path length distribution from their

vantage points to the injection point. As can be seen,

each vantage point observes at least one update carry-

ing the attribute, and most of the updates carrying the at-

tribute have successfully traversed multiple legacy ASes.

The RouteViews vantage points also receive many up-

dates without the attribute. We suspect that this is caused

by a Cisco software bug triggered by the injected up-

date [17]. The bug causes certain Cisco router models to

corrupt the path attribute. Consequently, a downstream

router may reset the connection or remove the corrupted

attribute. Given the prevalence of Cisco routers, we think

that the result is encouraging. We expect that the affected

routers will soon patch up this bug, and we will observe

much more updates carrying the test attribute if we repeat

this experiment.

7.3.2 Incentives for Early Adopters

We now discuss how the IPA design provides incentives

for early adopters. Our analysis is based on the adopt-

ability model presented in [26, 43]. The model assumes

that each potential adopter is rational, and will have in-

centives to adopt a security mechanism if the security

benefits outweigh the adoption costs. Because it is diffi-

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 167

cult to quantify costs, we use the model to qualitatively

argue that IPA provides stronger incentives for adoption

than previous work [34, 38, 46, 56, 57]. Thus, it is more

likely to be adopted than previous work from a cost-

effective perspective. We do not claim that IPA will be

adopted, as many other factors (e.g., politics) may affect

the adoption process.

IPA’s deployment involves four key parties: Internet

registries, ASes, router vendors, and OS vendors. For

simplicity, we focus on discussing the deployment incen-

tives for the Internet registries and ASes, as past experi-

ences of deploying DNSSEC [50] and IPv6 [36] suggest

that they are often the deployment bottlenecks.

For the Internet registries, IPA achieves similar secu-

rity benefits as previous work that requires a PKI [34,

38, 46, 56, 57], but has significantly lower deployment

and management costs. This is because IPA uses the top-

level DNSSEC infrastructure to bind an IP prefix to its

owner’s key. A DNSSEC-enabled registry need not de-

ploy or manage any additional infrastructure to deploy

IPA. Therefore, we believe that the Internet registries will

have stronger incentives to deploy IPA than deploy a ded-

icated PKI required by previous work.

The IPA design also provides stronger deployment in-

centives for ASes than previous work, because ASes

need not wait for the Internet registries to deploy a PKI

and need not deploy additional certificate distribution in-

frastructures. Once the Internet registries have deployed

IPA using DNSSEC, the top-level ASes that obtain IP

prefixes directly from those registries can obtain imme-

diate security benefits by distributing their IP prefix cer-

tificates in BGP and signing their BGP messages. These

ASes will form a “club” to prevent prefix hijacking at-

tacks within the club [26]. Using the IP prefix delegation

hierarchy inferred in § 7.2.2, we find that such top-level

ASes account for more than 78% of the total ASes. Once

the top-level ASes have deployed IPA, their customers

can obtain security benefits by adopting IPA, and so on.

As the size of the protected club increases, the immedi-

ate security benefits that an adopter obtains also increase,

which encourages more adopters, and can lead to a net-

work effect of adoption [26].

7.4 Security Analysis

IPA bootstraps accountability with cryptography-based

secure identifiers. Its security builds on the secrecy of

private keys. The design stores private identity keys of-

fline and uses periodic key rollovers to protect private

keys. As long as the private keys remain secret, other se-

curity modules can use IPA to achieve accountable rout-

ing and forwarding, and DoS mitigation (§ 5).

The IPA design uses self-certifying AS identifiers. An

AS may mint non-existent child AS identifiers by del-

egating sub-prefixes to those minted child ASes. How-

ever, because the minted identifiers are associated with

sub-prefixes inside the AS’s address space, the network

can hold malicious ASes accountable by their address

spaces to prevent them from evading traffic policing or

gaining unfair shares of network resources (§ 5.3). An

AS may inflate the AS path length in a BGP message

by inserting the minted child AS identifiers, but it can

achieve this goal by padding its own identifier in the mes-

sage, which is a common BGP practice.

8 Related Work

The most related work in scope is the AIP architec-

ture [20], which uses self-certifying identifiers as host

addresses and domain identifiers. IPA retains the hier-

archical IP addressing structure, but uses self-certifying

AS identifiers. Unlike AIP, IPA’s deployment does not

require host re-numbering or trusted host hardware, but

it requires the global root of trust of today’s Internet

(IANA) to continue to exist and function.

Public Key Infrastructures (PKIs) offer a hierarchical

way to securely bind an identifier to a public key. Much

existing work on secure routing, such as S-BGP [38],

soBGP [57], psBGP [56], SPV [34], and Origin Authen-

tication [46], requires the Internet registries to establish

dedicated global PKIs to certify IP prefix ownerships or

AS number ownerships. IPA obviates such requirements

by using the existing top-level DNSSEC infrastructure

to certify IP prefix allocations and using self-certifying

identifiers as AS numbers. soBGP proposes to use a new

type of BGP message to distribute various certificates in

the routing system, while IPA uses a standard BGP ex-

tension to distribute IP prefix certificates.

The DNS CERT resource record (RR) [37] provides a

generic way to store multiple types of certificates such

as X.509, SPKI, and PGP with a DNS name. These cer-

tificates do not necessarily certify the DNS zone delega-

tions, and hence do not certify IP prefix delegations. In

contrast, IPA uses the Designated Signer and DNSKEY

RRs rather than the CERT RR to map a reverse DNS

zone delegation to an IP prefix delegation.

Simon et al. define network-layer accountability as

traffic source identification and malicious traffic deter-

rence [54]. Their design assumes pairwise and transitive

trust between ASes, and uses ingress filtering and an evil-

bit in a packet header to stop DoS flooding traffic. How-

ever, if an AS within the trusted accountable group be-

comes compromised or malicious, it may fail to perform

ingress filtering or set the evil-bit, rendering the design

ineffective. IPA provides a similar form of accountabil-

ity, but uses cryptography to establish accountability and

is robust to malicious or compromised ASes.

An early version of IPA [58] outlines its main design

modules. This work provides essential design details, an

IPA prototype, and a comprehensive evaluation regarding

13

168 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

IPA’s performance, adoptability, and security properties.

9 Conclusion

Lack of accountability makes the Internet vulnerable to

many attacks, including source address spoofing, DoS

flooding, prefix hijacking, and route forgery attacks. This

work presents IPA, a design that bootstraps accountabil-

ity in today’s Internet with deployable and low-cost en-

hancements. IPA uses the top-level DNSSEC infrastruc-

ture to securely bind an IP prefix to an AS’s public key

and distributes these secure bindings using the routing

system itself to lower deployment costs. We show that

IPA enables a suite of security solutions [38, 43, 45] that

collectively can combat the aforementioned network-

layer attacks. We have presented the detailed IPA design,

evaluated its performance, and shown that it is gradu-

ally deployable and provides stronger incentives for early

adoption than previous proposals [34, 38, 46, 56, 57].

Acknowledgment

We thank Jeff Chase and the NSDI reviewers for their

useful comments, and David Andersen for shepherding

the paper. This work is supported in part by NSF awards

CNS-0845858, CNS-1040043, and CNS-1017858.

References
[1] APNIC DNSSEC Service. http://www.apnic.net/services/

services-apnic-provides/registration-services/dnssec.

[2] ARIN DNSSEC Deployment Plan. https://www.arin.net/
resources/dnssec/index.html.

[3] BIND. https://www.isc.org/software/bind.

[4] DNSSEC Keys. http://www.ripe.net/dnssec-keys/index.html.

[5] DNSSEC Policy and Practice Statement. http://www.ripe.net/rs/

reverse/dnssec/dps.html.

[6] DNSSEC Trust Anchors From ARIN. https://www.arin.net/

resources/dnssec/trust_anchors.html.

[7] in-addr.arpa Transition. http://in-addr-transition.icann.org.

[8] Internet AS-level Topology on March 1st, 2011.

http://irl.cs.ucla.edu/topology.

[9] IPv6 Support in BIND 9. http://www.bind9.net/manual/bind/9.3.

2/Bv9ARM.ch04.html.

[10] M Root DNS Server. http://m.root-servers.org.

[11] Quagga Routing Suite. http://www.quagga.net.

[12] RADb: Routing Assets Database. http://www.radb.net.

[13] RIS Routing Beacons. http://www.ripe.net/projects/ris/docs/

beacon.html.

[14] SecSpider the DNSSEC Monitoring Project. http://secspider.cs.

ucla.edu.

[15] CIDR Report. http://www.cidr-report.org, 2006.

[16] DNS Survey: October 2009. http://dns.measurement-factory.

com/surveys/200910.html, 2009.

[17] Cisco Patches Bug That Crashed 1 Percent of Internet. http://www.

reuters.com/article/idUS418825996320100831, 2010.

[18] DNSSEC Signatures in Reverse DNS Zones Now Enabled. http://www.

apnic.net/publications/news/2010/dnssec-signatures, 2010.

[19] Root DNSSEC Status Update, 2010-07-16. http://www.root-dnssec.
org/2010/07/16/status-update-2010-07-16, 2010.

[20] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker. Accountable Internet Protocol (AIP). In ACM SIGCOMM,

2008.

[21] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security

Introduction and Requirements. RFC 4033, 2005.

[22] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Mod-

ifications for the DNS Security Extensions. RFC 4035, 2005.

[23] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource

Records for the DNS Security Extensions. RFC 4034, 2005.

[24] J. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms.

IEEE/ACM ToN, 5(5), 1997.

[25] M. A. Brown. Pakistan Hijacks YouTube. http://www.renesys.com/
blog/2008/02/pakistan-hijacks-youtube-1.shtml, 2008.

[26] H. Chan, D. Dash, A. Perrig, and H. Zhang. Modeling Adoptability of

Secure BGP Protocols. In ACM SIGCOMM, 2006.

[27] M. Crawford. Binary Labels in the Domain Name System. RFC 2673,

1999.

[28] Deterlab. http://www.deterlab.net.

[29] DNS Deployment Initiative. http://www.dnssec-deployment.org.

[30] H. Eidnes, G. de Groot, and P. Vixie. Classless IN-ADDR.ARPA Delega-

tion. RFC 2317, 1998.

[31] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and

Whitewashing in Peer-to-Peer Systems. IEEE JSAC, 24(5):1010–1019,

2006.

[32] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Practical Ac-

countability for Distributed Systems. In ACM Symposium on Operating

Systems Principles, 2007.

[33] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov. Design-

ing Extensible IP Router Software. In USENIX/ACM NSDI, 2005.

[34] Y. Hu, A. Perrig, and M. Sirbu. SPV: Secure Path Vector Routing for Se-

curing BGP. In ACM SIGCOMM, 2004.

[35] Y.-C. Hu, D. McGrew, A. Perrig, B. Weis, and D. Wendlandt.

(R)Evolutionary Bootstrapping of a Global PKI for Securing BGP. In ACM

HotNets-V, 2006.

[36] G. Huston. Measuring IPv6 Deployment. http://www.internetac.
org/wp-content/uploads/2010/02/apnic-v6-oecd1.pdf, 2009.

[37] S. Josefsson. Storing Certificates in the Domain Name System (DNS). RFC

4398, 2006.

[38] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol (S-BGP).

IEEE JSAC, 2000.

[39] O. Kolkman and R. Gieben. DNSSEC Operational Practices. RFC 4641,

2006.

[40] M. E. Kounavis, X. Kang, K. Grewal, M. Eszenyi, S. Gueron, and

D. Durham. Encrypting the Internet. In ACM SIGCOMM, 2010.

[41] B. Lampson. Accountability and Freedom. http://research.
microsoft.com/en-us/um/people/blampson/Slides/

AccountabilityAndFreedomAbstract.htm, 2005.

[42] A. Li, X. Liu, and X. Yang. Dirty-Slate Accountable Internet Design.

Technical Report 2010-07 (available at http://www.cs.duke.edu/nds/

papers/ipa-tr.pdf), Duke University, 2010.

[43] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and Adoptable

Source Authentication. In USENIX/ACM NSDI, 2008.

[44] X. Liu, X. Yang, and Y. Lu. To Filter or to Authorize: Network-Layer DoS

Defense Against Multimillion-node Botnets. In ACM SIGCOMM, 2008.

[45] X. Liu, X. Yang, and Y. Xia. NetFence: Preventing Internet Denial of

Service from Inside Out. In ACM SIGCOMM, 2010.

[46] P. McDaniel, W. Aiello, K. Butler, and J. Ioannidis. Origin Authentication

in Interdomain Routing. Computer Networks, 50(16):2953–2980, 2006.

[47] P. Mockapetris. Domain Names – Concepts and Facilities. RFC 1034,

1987.

[48] J. Nazario. Estonian DDoS Attacks - A Summary to

Date. http://asert.arbornetworks.com/2007/05/
estonian-ddos-attacks-a-summary-to-date, 2007.

[49] J. Nazario. Georgia DDoS Attacks - A Quick Summary of Ob-

servations. http://asert.arbornetworks.com/2008/08/

georgia-ddos-attacks-a-quick-summary-of-observations,

2008.

[50] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quantifying the Opera-

tional Status of the DNSSEC Deployment. In IMC, 2008.

[51] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).

RFC 4271, 2006.

[52] P. Roberts. Massive Denial Of Service Attack Severs Myan-

mar From Internet. http://threatpost.com/en_us/blogs/

massive-denial-service-attack-severs-myanmar-internet-110310,

2010.

[53] RouteViews Project. http://www.routeviews.org.

[54] D. R. Simon, S. Agarwal, and D. A. Maltz. AS-based Accountability as a

Cost-effective DDoS Defense. In USENIX HotBots, 2007.

[55] Q. Vohra and E. Chen. BGP Support for Four-octet AS Number Space.

RFC 4893, 2007.

[56] T. Wan, E. Kranakis, and P. van Oorschot. Pretty Secure BGP (psBGP). In

NDSS, 2005.

[57] R. White. Securing BGP Through Secure Origin BGP. The Internet Proto-

col Journal, 2003.

[58] X. Yang and X. Liu. Internet Protocol Made Accountable. In ACM HotNets-

VIII, 2009.

[59] X. Yang, D. Wetherall, and T. Anderson. A DoS-Limiting Network Archi-

tecture. In ACM SIGCOMM, 2005.

[60] A. R. Yumerefendi and J. S. Chase. Strong Accountability for Network

Storage. ACM Transactions on Storage, 3(3), 2007.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 169

Privad: Practical Privacy in Online Advertising
Saikat Guha, Bin Cheng, Paul Francis

Microsoft Research India, and MPI-SWS
saikat@microsoft.com, {bcheng,francis}@mpi-sws.org

Abstract
Online advertising is a major economic force in the In-

ternet today, funding a wide variety of websites and ser-
vices. Today’s deployments, however, erode privacy and
degrade performance as browsers wait for ad networks
to deliver ads. This paper presents Privad, an online ad-
vertising system designed to be faster and more private
than existing systems while filling the practical market
needs of targeted advertising: ads shown in web pages;
targeting based on keywords, demographics, and inter-
ests; ranking based on auctions; view and click account-
ing; and defense against click-fraud. Privad occupies a
point in the design space that strikes a balance between
privacy and practical considerations. This paper presents
the design of Privad, and analyzes the pros and cons of
various design decisions. It provides an informal anal-
ysis of the privacy properties of Privad. Based on mi-
crobenchmarks and traces from a production advertising
platform, it shows that Privad scales to present-day needs
while simultaneously improving users’ browsing experi-
ence and lowering infrastructure costs for the ad network.
Finally, it reports on our implementation of Privad and
deployment of over two thousand clients.

1 Introduction
Online advertising is a key economic driver in the In-
ternet economy, funding a wide variety of websites and
services. Internet advertisers increasingly work to pro-
vide more personalized advertising. Unfortunately, per-
sonalized online advertising comes at the price of indi-
vidual privacy [23]. Privacy advocates would like to put
an end to advertising models that violate privacy, and in-
deed have had some success with startups in the early
stages of deployment [19]. On the other hand, they have
had little success with the more entrenched ad brokers
like Google and Yahoo! [11]. Arguably the reason why
privacy advocates have failed here is that they offer no
viable alternatives, and so the privacy solution they pro-
pose is effectively to end on-line advertising. This paper
presents a practical and substantially more private online
advertising system that attempts to offer that alternative.

To effect real change in the privacy of commercial ad-
vertising systems, we require that our design goals for
Privad include commercial viability. This in turn requires
that Privad:

1. is private enough that privacy advocacy groups1

support it,
2. targets ads well enough to produce better click-

through rates (or conversion rates, etc.) than current
systems,

3. is as or less expensive to deploy than current sys-
tems, and

4. fits within the current business framework for on-
line advertising, and therefore more likely has a vi-
able business model. In particular, the interaction
between Privad and end users, advertisers, and pub-
lishers, should not significantly change.

These goals are contradictory in nature, and much of
the design challenge is finding the right balance of pri-
vacy and practicality. Although our arguments for scal-
ability (goal 3) are strong and are buttressed by trace-
based analysis, microbenchmarks, and deployment, we
cannot definitively say that we have satisfied the other
goals. While we hope to demonstrate better targeting
through an experimental deployment (goal 2), this re-
mains future work. The business model (goal 4) can ulti-
mately only be demonstrated through a successful com-
mercial deployment. While we have discussed our de-
sign with a number of privacy advocates, and have got-
ten favorable responses (goal 1), it is nevertheless hard
to predict how they would react to a serious commercial
deployment.

In practice we believe that a commercial deployment
of Privad would be a constant balancing act between the
goals listed above: the broker would gauge the reaction
of privacy advocates, and strengthen or weaken privacy
in response. In the absence of this commercial deploy-
ment and meaningful feedback from privacy advocates,
our design assumes that privacy advocates will be hard
to win over, and therefore favors privacy concerns over
business concerns. In other words, our design attempts
to produce the most private system possible within the
constraint of achieving a merely feasible business model.
In this paper, we nail down a design, present arguments
as to why our practical goals are feasibly satisfied, and

1Private organizations like the Electronic Frontier Foundation
(EFF) and the American Civil Liberties Union (ACLU), and govern-
ment organizations like the Federal Trade Commission (FTC) and Eu-
roprise.

1

170 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

describe the security and scalability properties that our
design ultimately achieves.
Privad preserves privacy by maintaining user profiles

on the user’s computer instead of in the cloud. A small
amount of information necessarily leaves the user’s com-
puter: coarse-grained classes of ads a user is interested
in, the ads the user has viewed or clicked on and the
websites that carried the ads, and the ranking of ads for
auctions. This information, however, is handled in such
a way that no party can link it back to the individual user,
or link together multiple pieces of information about the
same user. An anonymizing proxy hides the user’s net-
work address, while encryption prevents the proxy from
learning any user information. A trusted open-source ref-
erence monitor at the user’s computer prevents any Per-
sonally Identifying Information (PII) other than network
address from leaving the computer.

By contrast, current advertising systems, such as
Google and Yahoo!, are in a deep architectural sense not
private: they gather information about users and store
it within their data centers. These systems do not lend
themselves to being audited by privacy advocates or reg-
ulators. Users are essentially required to completely trust
these systems to not do anything bad with the informa-
tion. This trust can easily be violated, as for instance in
a confirmed case where a Google employee spied on the
accounts of four underage teens for months before the
company was notified of the abuses [4].

Privad is considerably more private than current sys-
tems (though admittedly this is a low bar; we believe
that privacy advocates will hold us to a much higher stan-
dard). Privad does not, for instance, require trust in any
single organization. Additionally, Privad is designed to
be auditable by third-parties. Most of this auditing is au-
tomatic, through the use of a simple reference monitor
in the client. While Privad makes it much harder for an
organization to gather private user information, Privad’s
privacy protocols are not bullet-proof (for instance with
respect to collusion and covert channels), and so Privad
allows the use of human-assisted or learning-based mon-
itoring to detect misbehavior at the semantic level.

The anonymizing proxy (called dealer) is a significant
change to the current business framework (goal 4). The
dealer is run by an untrusted third-party organization,
e.g. datacenter operators. We discuss in later sections
the justification behind the dealer model, auditing mech-
anisms, and the feasibility of providing the service. We
estimate the dealer’s operating cost at around a cent per
user per year (Section 4). This can easily be met with
funding from privacy-advocates or levies on brokers.
The other significant change is client software on the

users’ computers. A key challenge, then, is incentivis-
ing deployment of this client software. Privad is not
aimed for users that disable ads altogether. For users

Figure 1: The Privad architecture

that do view and occasionally click ads, deploying re-
quires first that Privad not degrade user experience in
any way. We can ensure this by only showing ads in the
same ad boxes that are common today (unlike previous
adware, which employed disruptive advertising). Sec-
ond, especially early on there must be some positive in-
centive for users to install it. This could be done through
bundling other useful software, shopping discounts, or
other incentives. Finally, it requires that privacy advo-
cates endorse Privad. This at least prevents anti-virus
software from actively removing the Privad client. Ide-
ally, it even leads to privacy-conscious browser vendors
(e.g. Firefox), anti-virus companies, or operating sys-
tems installing it by default.

The contributions of this paper are as follows: it
presents a complete practical private advertising sys-
tem. It describes the design of Privad, presents a fea-
sibility study, and contributes a security analysis in-
cluding both privacy and click-fraud aspects. It also
gives a performance evaluation of our complete proof-
of-concept implementation and pilot deployment of over
two thousand users. Overall, Privad represents an argu-
ment that highly-targeted practical online advertising and
good user-privacy are not mutually exclusive.

2 Privad Overview
There are six components in Privad: client software,
client reference monitor, publisher, advertiser, broker,
and dealer (see Figure 1). Publisher, advertiser, and bro-
ker all have analogs in today’s advertising model, and
play the same basic business roles. Users visit publisher
webpages. Advertisers wish their ads to be shown to
users on those webpages. The broker (e.g. Google)
brings together advertisers, publishers, and users. For

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 171

each ad viewed or clicked, the advertiser pays the bro-
ker, and the broker pays the publisher.

There are three new key components for privacy in Pri-
vad. First, the task of profiling the user is done at the
user’s computer rather than at the broker. This is done
by client software running on the user’s computer. Sec-
ond, all communication between the client and the bro-
ker is proxied anonymously by a kind of proxy called the
dealer. The dealer also coordinates with the broker (us-
ing a protocol that protects user privacy) to identify and
block clients participating in click-fraud. Finally, a thin
trusted reference monitor between the client and the net-
work ensures that the client conforms to the Privad proto-
col and provides a hook for auditing the client software.
Encryption is used to prevent the dealer from seeing the
contents of messages that pass between the client and the
broker. The dealer prevents the broker from learning the
client’s identity or from linking separate messages from
the same client.

At a high level, the operation of Privad goes as fol-
lows. The client software monitors user activity (for
instance webpages seen by the user, personal informa-
tion the user inputs into social networking sites, possibly
even the contents of emails or chat sessions, and so on)
and creates a user profile which contains a set of user at-
tributes. These attributes consist of short-term and long-
term interests and demographics. Interests include prod-
ucts or services like sports.tennis.racket or outdoor.lawn-
care. Demographics include things like gender, age,
salary, and location.

Advertisers submit ads to the broker, including the
amount bid and the set of interests and demographics tar-
geted by each ad. The client requests ads from the broker
by anonymously subscribing to a broad interest category
combined with a few broad non-sensitive demographics
(gender, language, region). The broker transmits a set of
ads matching that interest and demographics. These ads
cover all other demographics and fine-grained locations
within the region, and so are a superset of the ads that
will ultimately be shown to the user. The client locally
filters and caches these ads. If the user has multiple in-
terests, there is a separate subscription for each interest,
and privacy mechanisms prevent the broker from linking
the separate subscriptions to the same user.

Ad auctions determine which ads are shown to the user
and in what order. The ranking function, identical to the
one used in industry today, uses in addition to the bid
information, both user and global modifiers. User mod-
ifiers are based on things like how well the targeting in-
formation matches the user, and the user’s past interest in
similar ads. Global modifiers are based on the aggregate
click-through-rate (CTR) observed for the ad, the quality
of the advertiser webpage, etc.

Figure 2: The Client framework

When the user browses a website that provides ad
space, or runs an application like a game that includes
ad space, the client selects an ad from the local cache
and displays it in the ad space. A report of this view is
anonymously transmitted to the broker via the dealer. If
the user clicks on the ad, a report of this click is like-
wise anonymously transmitted to the broker. These re-
ports identify the ad and the publisher on who’s webpage
or application the ad was shown. Privacy mechanisms
prevent multiple reports from the same user from being
linked together by the broker. The broker uses these re-
ports to bill advertisers and pay publishers.

Unscrupulous users or compromised clients may
launch click-fraud attacks on publishers, advertisers, or
brokers. Both the broker and dealer are involved in de-
tecting and mitigating these attacks (Section 3.4). When
the broker detects an attack, it indicates to the dealer
which reports relate to the attack. The dealer then traces
these back to the clients responsible, and suppresses fur-
ther reports from attacking clients, mitigating the attack.

Users, or privacy advocates operating on behalf of
users, must be able to convince themselves that the client
cannot undetectably leak private information. While hav-
ing a trusted third-party write the client software might
appear at first glance to be an option, it doesn’t solve the
problem — a trusted client simply moves the trust users
place on brokers today to the third-party. At the same
time, it requires brokers to make their trade-secret profil-
ing algorithms known to the third party, and to parties au-
diting the client. Instead, Privad places a thin trusted ref-
erence monitor between the client and the network giving
users and privacy advocates a hook to detect privacy vi-
olations (Section 3.5). It treats the client in a black-box
manner (Figure 2), allowing the broker to use existing
technological and legal frameworks for protecting trade-
secret code. The reference monitor itself is simple, open
source, and open to validation so its correctness can be
verified, and can therefore be trusted by the user.

Note that Figure 1 does not portray the interaction that
takes place between client and advertiser after an ad is
clicked. For the purpose of this paper, we assume that a
click brings the client directly to the advertiser as is the
case today. We realize that this is a problem, because the
finer-grained targeting of Privad gives unscrupulous ad-

3

172 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

vertisers more information than they get today. The Pri-
vad architecture leaves open the possibility of privately
proxying the post-click session between client and ad-
vertiser, and even protecting the client from inadvertently
releasing sensitive information. Because of space limita-
tions, we do not further discuss this option, and only con-
sider protecting the user from the broker and dealer. Pri-
vad does not modify today’s relationship between client
and publisher.

3 Privad Details
This section provides details on ad dissemination, ad
auctions, view/click reporting, click-fraud defense and
the reference monitor. It also puts forth some of the ra-
tionale for our design decisions. These details represent
a snapshot of our current thinking. While ad dissemi-
nation, reporting, and reference monitor are quite stable,
the click-fraud defense, and auctions may easily evolve
as we do more analysis and testing. We present them
here so as to present a complete argument for Privad’s
viability.

3.1 Ad Dissemination

The most privacy-preserving way to disseminate ads
would be for the broker to transmit all ads to all clients.
In this way, the broker would learn nothing about the
clients. In [13], we measured Google search ads and con-
cluded that there are too many ads and too much ad churn
for this kind of broadcast to be practical. We observed
that the number of impressions for ads is highly skewed:
a small fraction of ads (10%) garner a disproportionate
fraction of impressions (80%). Furthermore, this 10% of
ads tend to be more broadly targeted and therefore of in-
terest to many users. It may therefore be cost effective
to disseminate only this small fraction of ads to all users,
for instance using a BitTorrent-like mechanism. For the
remaining 90%, however, a different approach is needed.
We therefore design a privacy-preserving pub-sub mech-
anism between the broker and client to disseminate ads.

The pub-sub protocol (Figure 3) consists of a client’s
request to join a channel (defined below), followed by
the broker serving a stream of ads to the client.
Each channel is defined by a single interest attribute

and limited non-sensitive broad demographic attributes,
for instance wide geographic region, gender, and lan-
guage. The purpose of the additional demographics is to
help scale the pub-sub system: limiting an interest by re-
gion or language greatly reduces the number of ads that
need to be sent over a given channel while still main-
taining a large number of users in that channel (in the
k-anonymity sense). Channels are defined by the bro-
ker. The complete set of channels is known to all clients,
for instance by having dealers host a copy (signed by

Figure 3: Message exchange for pub-sub ad dissemination.
Ex(M) represents the encryption of message M under key x.
B is the public key of the broker. C is a symmetric key gener-
ated by the client for only this subscription.

the broker). A client joins a channel when its profile at-
tributes match those of the channel.

The join request is encrypted with the broker’s public
key (B) and transmitted to the dealer. The request con-
tains the pub-sub channel (chan), and a per-subscription
symmetric key (C) generated by the client and used by
the broker to encrypt the stream of ads sent to the client.
The dealer generates for each subscription a unique (ran-
dom) request ID (Rid). It stores a mapping between Rid

and the client, and appends the Rid to the message for-
warded to the broker. The broker attaches the Rid with
ads published, which the dealer uses to lookup the in-
tended client to forward the ads to.

The broker determines which ads should be sent and
for how long they should be cached at the client. For
instance, the broker stops sending ads for an advertiser
when the advertiser nears his budget limit. Note that not
all ads transmitted are appropriate for the user, and so
may not be displayed to the user. For instance, an ad
may be targeted towards a married person, while the user
is single. Because the subscription does not specify mari-
tal status, the broker sends all ads independent of marital
status or other targeting, and the client filters out those
that do not match. Over time, the broker can estimate the
number of ads that must be sent out for a particular ad-
vertiser to generate a target number of views and clicks.

3.2 Ad Auctions

Auctions determine which ads are shown to the user and
in what order. For the advertiser, the auction provides a
fair marketplace where the advertiser can influence the
frequency and position of its ads through its bids. The
broker additionally wants to maximize revenue, primar-
ily by maximizing click-through rates (CTR). This is be-
cause most of today’s advertising systems charge adver-
tisers for clicks, not views. The broker also wants to min-
imize auction churn, generally by using a second-price
auction [8]. A second-price auction is one whereby the
bidder pays not the amount he bid, but the amount bid by
the next lower bidder. This prevents the bidder from hav-
ing to frequently change its bid in an attempt to probe for
the bid value one unit higher than the next lower bidder.

Compared to today’s brokers, which have full infor-
mation about the system and can decide exactly which
ads are shown where, in Privad both the client and the
broker influence which ads are shown. This changes

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 173

Figure 4: Industry-standard GSP Auction. Client annotates ads (across all channels) with quality of match, or random number if
the ad doesn’t match the user. Dealer mixes annotations from multiple clients. Broker ranks ads by bid, global click-through rate,
advertiser quality, and match quality, and annotates the result with opaque bid information. Dealer slices auction result by client.
Client filters out non-matching ads. Client reports encrypted second-price bid on click.

many aspects of the auction: for instance when the auc-
tion is run, over what set of ads, and the criteria by which
second price is decided. The design space for Privad auc-
tions is very large, and its complete exploration is a topic
of further study. Nevertheless we describe two proof-of-
concept auctions here.

A simple auction from this design space goes as fol-
lows. The broker periodically runs the auction over the
set of ads targeted to a given pub-sub interest channel,
producing a ranked set of ads. The ranking is preserved
when ads are sent to clients. Clients filter out non-
matching ads, slightly modify the ranking according to
the quality of the demographic match for each ad, and
show ads to users based on the modified ranking. When
the broker receives a click report, it uses its original rank-
ing to select the second price.

This auction is clearly different from Google’s GSP
auction [8]. For instance, with GSP, the auction is run
when the browser requests a set of ads, and the second
price is based on the ad below the clicked ad on the ac-
tual web page. We cannot necessarily say that our simple
auction is worse than or better than GSP—this is a com-
plex question and depends on, among other things, the
evaluation criteria. As a demonstration of commercial
viability, however, we now present a more complex auc-
tion that is identical to the industry-standard GSP auction
mechanism.

In this second approach (Figure 4), the broker con-
ducts the auction in a separate exchange. First, ads are
sent to clients using pub-sub as originally described. The
broker attaches a unique instance ID (Iid) to each copy
of the ad published (not shown in figure). For each ad,
the client computes a coarse score (U), typically between
1 and 5, as follows: for ads that match the user, the score
reflects the quality of match with 5 signifying the best
possible match. For ads that don’t match the user, the
score is a random number. To rank ads, the client sends

(Iid, U) tuples for all ads in the client’s database to the
dealer. The dealer aggregates and mixes tuples for dif-
ferent clients before forwarding them to the broker. The
broker ranks all the ads in the message. The ranking is
based on both global and user modifiers (e.g. bids, CTR,
advertiser quality, and client score). Note the ranked re-
sult contains all ads from the same client in the correct
order, interspersed with ads for other clients (also in their
correct order). The broker returns this ranked list to the
dealer. The dealer uses the Iid to slice the list by client
and forwards each slice to the appropriate client. The
client discards the ads that do not match the user, and
stores the rest in ranked order.

To obtain the GSP second price, the broker encrypts
the bid information with a symmetric key (K) known
only to the broker and sends it along with the ad. When
a set of ads are chosen to be shown to the user, the client
pairs up the encrypted bid information for ad n + 1 with
that of ad n. This encrypted bid pair is sent as part of
the click report, which the broker decrypts to determine
what the advertiser should be charged.

3.3 View/Click Reporting

Ad views and clicks, as well as other ad-initiated user ac-
tivity (purchase, registration, etc.) needs to be reported
to the broker. The protocol for reporting ad events (Fig-
ure 5) is straightforward. The report containing the ad
ID (Aid), publisher ID (Pid), and type of event (view,
click, etc.) is encrypted with the broker’s public-key and
sent through the dealer to the broker. The dealer attaches
a unique (random) request ID (Rid) and stores a map-
ping between the request ID and the client, which it uses
later to trace suspected click-fraud reports in a privacy-
preserving manner.

5

174 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Message exchange for view/click reporting and
blocking click-fraud. B is the public key of the broker. Aid

identifies the ad. Pid identifies publisher website or applica-
tion where the ad was shown. For second-price auctions, the
opaque auction result is included. Rid uniquely identifies the
report at the dealer.

3.4 Click-Fraud Defense

Click-fraud consists of users or bots clicking on ads for
the purpose of attacking one or more parts of the system.
It may be used to drive up a given advertiser’s costs, or
to drive up the revenue of a publisher. It can also be used
to drive up the click-through-ratio of an advertiser so that
that advertiser is more likely to win auctions.

Generally speaking, privacy makes click-fraud more
challenging because clients are hidden from the bro-
ker. Privad addresses this challenge through an explicit
privacy-preserving protocol between broker and dealer.
Both the broker and dealer participate in detecting and
blocking click-fraud; the dealer by measuring view and
click volumes from clients, the broker by looking at over-
all click behavior for advertisers and publishers.

Blocking a fraudulent client once an attack is detected
is straightforward. When a publisher or advertiser is un-
der attack, the broker tells the dealer which report IDs are
suspected as being involved in click-fraud. The dealer
traces the report ID back to the client, and if the client
is implicated more than some set threshold, subsequent
reports from that client are blocked.

As with today’s ad networks, there is no silver bullet
for detecting click-fraud. And like ad networks today,
the approach we take is defense in depth — a number of
overlapping detection mechanisms (described below) op-
erate in parallel; each detection mechanism can be fooled
with some effort; but together, they raise the bar.

Per-User Thresholds. The dealer tracks the number
of subscriptions, and the rates of view/click reports for
each client (identified by their IP address). Clients that
exceed thresholds set by the broker are flagged as suspi-
cious. The broker may provide a list of NATed networks
or public proxies so higher thresholds may apply to them.

Blacklist. Dealers flag clients on public blacklists,
such as lists maintained by anti-virus vendors or net-
work telescope operators that track IP addresses partici-
pating in a botnet. Dealers additionally share a blacklist
of clients blocked at other dealers.

Honeyfarms. The broker operates honeyfarms that
are vulnerable to botnet infection. Once infected, the
broker can directly track which publishers or advertis-
ers are under attack. When a report matching the attack

signature is received, the broker asks the dealer to flag
the originating client as suspicious.

Historical Statistics. The dealer and broker maintains
respectively a number of per-client, and per-publisher
and per-advertiser statistics including volume of view re-
ports, and click-through rates. Any sudden increase in
these statistics cause clients generating the reports to be
flagged as suspicious.

Premium Clicks. Based on the insight behind [21], a
user’s purchase activity is used as an indication of hon-
est behavior. Clicks from honest users command higher
revenues. The broker informs the dealer which reports
are purchases. The dealer flags the origin client as “pre-
mium” for some period of time, and attaches a single
“premium bit” to subsequent reports from these clients.

Bait Ads. An approach we are actively investigating
is something we term “bait ads” (similar to [14]), which
can loosely be described as a cross between CAPTCHAs
and the invisible-link approach to robot detection [27].
Basically, bait ads contain the targeting information of
one ad, but the content (graphics, flash animation) of a
completely different ad. For instance, a bait ad may ad-
vertise “dog collars” to “cat lovers”. The broker expects
a very small number of such ads to be clicked by humans.
A bot clicking on ads, however, would unwittingly trig-
ger the bait. It is hard for a bot to detect bait, which
for image ads amounts to solving semantic CAPTCHAs
(e.g. [9]). Bait ads are published by the broker just like
normal ads. When a click for a bait ad is reported, the
broker informs the dealer, which flags the client as po-
tentially suspicious.

These mechanisms operate in concert as follows: per-
user thresholds force the attacker to use a botnet. Hon-
eyfarms help discover botnets, and blacklists limit the
amount of time individual bots are of use to the attacker.
Historical statistics block high-intensity attacks, instead
forcing the attacker to gradually mount the attack, which
buys additional time for honeyfarms and blacklists to
kick in before significant financial damage is caused. At
the same time, bait ads disseminated proactively can de-
tect low volume attacks due to the strong signal gener-
ated by a relatively small number of clicks, while dis-
seminated reactively, bait ads can reduce false positives.
And finally, premium ads, by forcing the attacker to
spend money to acquire and maintain “premium” status
for each bot, apply significant economic pressure, which
is magnified by bots being blacklisted.

Overall these mechanisms have the effect of more-or-
less putting Privad back on an even footing with current
ad networks as far as click-fraud is concerned.

3.5 Reference Monitor

The reference monitor has six functions geared towards
making it difficult for the black-box client to leak pri-

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 175

vate information. We model the reference monitor on
Google’s Native Client (NaCl) sandbox [34] that allows
running untrusted native code within a browser. As with
NaCl, the sandbox presents a highly narrow and hard-
ened API to untrusted code, and is itself open to valida-
tion by security experts and privacy advocates.
The reference monitor is hardened in at least the five

following ways. First, the reference monitor validates
that all messages in and out of the client follow Privad
protocols. For this, the client is operated in a sandbox
such that all network communication must go through
the reference monitor in the clear (Figure 2). Second,
it is the monitor that encrypts outbound messages from
the client (and decrypts inbound messages). Third, the
monitor is the source of all randomness in messages (e.g.
session keys, randomized padding for encryption etc.).
Fourth, the monitor may additionally provide cover traf-
fic or introduce noise to protect user privacy in certain
Privad operations. Fifth, the monitor arbitrarily delays
messages or adds jitter to disrupt certain timing attacks.

Technological means for disrupting covert channels is,
of course, not enough since the client may attempt to leak
information through semantic means. For instance, the
client might send lima-beans when it really means no-
health-insurance. The sixth and final function of the ref-
erence monitor is therefore to provide an auditing hook,
which can be used for instance to interpose a human-in-
the-loop. Interested users may occasionally inspect mes-
sages for accuracy, and/or privacy advocates may set up
honeyfarm clients, train them with specific profiles, and
monitor them for inconsistent behavior using automated
techniques presented in [12].

3.6 User Profiling

Even though the client is ultimately in charge of pro-
filing the user, it can nevertheless leverage existing
cloud-based crawlers and profilers through a privacy-
preserving query mechanism. At a high level the query
protocol is similar to the pub-sub protocol (Figure 3) op-
erating as a single request-response pair; the request con-
tains the website URL and the response contains profile
attributes. Beyond this, the client can locally scrape and
classify pages, incorporate social feedback, or even al-
low publisher websites to explicitly influence the profile.
Overall, the user profiling options in Privad adds to ex-
isting cloud-based algorithms while preserving privacy,
and therefore has the potential to target ads better than
existing systems.

4 Feasibility
To validate the basic feasibility of Privad, we estimate
worst-case network and storage overhead based on a
trace of ads delivered by Microsoft’s advertising plat-
form (processing overhead is measured in Section 6).

Network and storage overhead at the client is due pri-
marily to pub-sub ad dissemination. We use a trace
of Bing search ads to determine an expected number
of channels per client and ads per channel. We make
the pessimistic assumption that all ads associated with a
channel are transmitted to all subscriptions for that chan-
nel. We expect to be far more efficient than this in prac-
tice, since we can design our pub-sub service so that
clients receive only fractionally more ads than necessary
to fill their ad boxes (subject to k-anonymity and adver-
tiser budget constraints). Summarizing our results, as-
suming compression and a 1MB local cache, we estimate
the client will download less than 100kB per day on aver-
age (worst case: 20MB cache, 1.25MB daily download:
less than a typical MP3 song). Even adjusting for the
fact that our trace represents a good fraction, but a frac-
tion nevertheless, of the search advertising market, and
doesn’t include contextual advertising, this load poses
little concern.

We arrive at these estimates as follows: The Bing trace
we used (for over 2M users in the USA sampled on Sep.
1, 2010) classifies users and ads into 128 interest cate-
gories. On average, each user is mapped to 2 interest cat-
egories on a given day (9 categories in the 99th percentile
case). Using 2–4 coarse-grained geographic regions per
state, we obtain several tens of thousand distinct interest-
region-gender Privad channels. Remapping Bing ads to
these channels results, on average, in slightly less than
2K ads for each channel (10K in the 99th percentile);
note, an ad may be mapped to multiple channels. Each
ad is roughly 250 bytes of text including the URL. This
results in an average unoptimized daily download size
of around 1MB (and less than 25MB in the worst case).
Compressing ad content (in bulk) reduces download size
by a factor of 10.

Of these, only the subset matching the user’s other de-
mographic attributes need to be stored in the client’s lo-
cal cache. Using the Bing trace’s age-group classification
alone, we get a factor of 5 reduction in storage. Occupa-
tion, education, marital-status etc. may further reduce
storage requirements but we lack data to estimate these.
Cached ad data can then be used to further reduce client
network traffic. This requires a slight modification to the
pub-sub protocol to periodically transfer a bitmap of ac-
tive/inactive ads on the channel. Based on two weeks of
trace data, we find that 54% of ads on a channel were
seen the previous day (and around 70% within the pre-
vious 4 days; there is little added benefit for caching
beyond 4 days). Thus with a warmed up 1MB cache,
the client needs to download on average 100kB (1.25MB
worst case) of compressed ad content plus a few tens of
kilobytes of periodic bitmap data per day. Privad does
not change the number of ads viewed by the user; based

7

176 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on the Bing trace we estimate the client’s upload traffic
will be less than 20kB per day on average.

Consequently, we estimate the broker will send around
100kB and receive around 20kB per client per day, while
the dealer acting as a proxy will send (and receive)
around 120kB per client per day. While broker network
overhead is more than today, the Privad broker trades-off
network for lower processing overhead. There is, how-
ever, no simple comparison of Privad broker processing
overhead with that of existing systems. Todays systems
are synchronous: they request a small number of ads fre-
quently, and ad selection plus auction plus ad delivery
must occur in milliseconds. Privad is asynchronous: a
large number of ads are requested infrequently, and these
do not have to be delivered immediately (overhead quan-
tified in Section 6). Thus comparing overall broker costs
depends, among other factors, on the reduction in broker
processing overhead and corresponding reduction in dat-
acenter provisioning costs, versus bandwidth costs. As
for the dealer, the network overhead works out to less
than 88MB per user per year. Assuming the dealer leases
datacenter resources at market prices, this amounts to
less than $0.01 per user per year (based on current Ama-
zon EC2 pricing [2]).

5 Implementation and Pilot Deployment
We have implemented the full Privad system and de-
ployed it on a small scale. The system comprises a
client implemented as a 210KB addon for the Firefox
web browser, a dealer, and a broker. Out of the 11K to-
tal lines of code, the dealer consists of only 700 lines —
well within limits of what can be manually audited.

We have deployed Privad with a small group of users
comprised primarily of 2083 volunteers2 we recruited us-
ing Amazon’s Mechanical Turk service [1]. The primary
purpose of the deployment is to convince ourselves that
Privad represents a complete system. To this end the de-
ployment exercises all aspects of Privad including user
profiling (by scraping the user’s Facebook profile and
Google Ad Preferences), pub-sub ad dissemination, GSP
auctions, view/click reporting, and basic click-fraud de-
fense. For test ad data we scrape and re-publish Google
ads through our system; since we lack targeting informa-
tion for these ads, we target randomly. The system has
been in continuous operation since Jan 1, 2010, with over
271K ads viewed and 238 ads clicked as of Jan 6, 2011.

The primary implementation challenge is the effort re-
quired to scrape webpages for profiling purposes. Face-
book’s and Google’s layout changed on multiple occa-

2Users were offered an average one-time reward of $0.40 (for the
1 minute it took on average to install the addon) with mechanisms in
place to prevent cheating. While users were required to leave the addon
installed for at least a week to get paid, most users either forgot about
it or chose to leave it installed for longer. As of Jan 6, 2011, 429 users
still have the addon installed.

sions during our deployment, which required us to up-
date the client code (using the addon’s autoupdate mech-
anism). We are presently working on a higher-level lan-
guage (and interpreter) for scraping webpages that will
allow us to react more quickly to website changes.

6 Experimental Evaluation
We use microbenchmarks to evaluate our system at scale.

Broker: We benchmark first the performance of sub-
scribe and report messages at the broker since they in-
volve public-key operations. Without optimizations, as
expected, performance is bottlenecked by RSA decryp-
tions. While crypto optimizations could be offloaded
to hardware [18], since the broker is in any event un-
trusted, we additionally have the option of offloading to
idle (untrusted) clients in the system (without impacting
privacy guarantees). With this optimization, the broker
needs only perform symmetric-key (AES) and hashing
(SHA1) operations, which can be done at line speed us-
ing dedicated hardware [22]. Our software-based imple-
mentation achieved a throughput of 6K subscribe and
report requests per second (on a single core of a 3GHz
workstation), can publish 8.5K ads per second, and per-
form around 30K auctions per second. We note that re-
quest throughput in our broker is in the same ballpark
as production systems today (based on the traces men-
tioned earlier); although this is somewhat of an apples-
to-oranges comparison since brokers in Privad are much
simpler.

In all cases the measured performance did not depend
on the number of subscriptions or unique ads since all
lookups at the broker are O(1); all runtime state (sub-
scriptions, ads) is cached in memory and backed by per-
sistent storage. The broker is designed with no shared
state so it can trivially scale out to multiple cores.

Dealer: Our dealer can forward 15K requests per sec-
ond (on the same hardware) in both directions, which is
sufficient for handling nearly 200K online clients (based
on request rates from our deployment). The bottleneck is
due to client-side polling which arises from implement-
ing Privad’s asynchronous protocols on top of a request-
response based transport (HTTP). With the emerging
WebSockets standard [16], we believe we can eliminate
this polling and support well over a million clients per
dealer core.

Client: Finally we focus on how Privad improves
a user’s web browsing experience by eliminating net-
work round-trips in the critical path of rendering web-
pages. Figure 6 compares Privad performance to exist-
ing ad networks. The figure compares the delay added
for both populating ad boxes (on the 20 most popular
sites as ranked by Alexa), and for completing the redi-
rect to the advertiser webpage after a click. For Privad,
we measured the time taken to populate ad boxes as we

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 177

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Populate Ad Box
(synchronous)

Follow Ad Click
(synchronous)

D
el

ay
 (m

s)

Client Ad
DB size:

1M

100K
10K

Privad: <1ms

D

A

Y

G

M

Privad
Doubleclick

AOL (AdTech)
Yahoo (YieldManager)

Google (AdWords)
Microsoft (Atlas)

Figure 6: Privad eliminates network RTTs for showing ads,
and reporting clicks. Whiskers for Privad show performance as
the number of (relevant) ads in the client’s database scales to
1 million. Whiskers and boxes for existing ad networks show
minimum and maximum latencies, and quartiles.

scale the number of (relevant) ads cached in the client
database. As mentioned, we estimate the typical num-
ber of cached ads to be between 10K (average) to 100K
(worst case); we benchmark with a factor of ten margin.
As one might expect, our client implementation outper-
forms existing ad networks since displaying ads requires
only local disk access. Our client can populate ad boxes,
based on keywords or website context, in 31ms. In exist-
ing networks, we found the delay was dominated by the
ad selection process; downloading the actual ad content
(e.g. 30kB flash file) took less than 2ms. Doubleclick,
which to our knowledge does not perform demographic
or context sensitive advertising, took 129ms in the me-
dian case, and Google, which does perform context sen-
sitive advertising, took 670ms. With regards to reporting
clicks, existing ad networks must perform a synchronous
redirect through the ad network, which consumes several
RTTs. Since Privad reports clicks asynchronously (when
browser is idle), the redirect is unnecessary, thus allow-
ing much faster advertiser page-loads.

Our client scrapes webpages, pre-fetches ads, con-
ducts auctions, and sends reports in the background.
Messages that require public-key encryptions take be-
tween 68ms (on a workstation) to 160ms (on a net-
book) to construct, but since they are performed when
the browser is idle, they are imperceptible to the user.
The client uses negligible memory since ads are stored
on disk; there is no appreciable change in the browser’s
memory footprint whether the client is enabled or dis-
abled. During our 12 month deployment, we have not
received any negative feedback, performance related or
otherwise, from users3.

3or, for that matter, positive feedback.

7 Privacy Analysis
Broadly speaking, Privad uses technological means to
protect user privacy. Privad provides privacy through
unlinkability [28] (described below), and uses the dealer
mechanism to ensure this. It is worth considering briefly
alternative design points that we opted against.

Considering it is believed to be impossible to design
systems that are secure against covert channels and col-
lusion [17, 26], neither we, nor privacy advocates expect
bulletproof privacy. Privacy advocates instead have the
much softer requirement that “individuals [be] able to
control their personal information”, and if privacy is vio-
lated, the ability to “hold accountable organizations [re-
sponsible]” [5]. Privad trivially satisfies the first require-
ment by storing all personal information on the user’s
computer and assuring unlinkability. In the absence of
covert channels or collusion, this prevents any organi-
zation from learning about users, thereby preventing pri-
vacy violations in the first place. In the presence of covert
channels or collusion, the organization’s willing and ex-
plicit circumvention of technological privacy safeguards
strongly implies malicious intent (in the legal sense) to
which they can be held accountable.

As a result, the oversight task for privacy advocates is
reduced from detecting any kind of privacy violation, in-
cluding those purely internal to a broker, to detecting col-
lusion and the use of covert channels. As we discuss be-
low, Privad incorporates existing (and future) techniques
to disrupt or detect covert channels through the reference
monitor mechanism and careful protocol design. Detect-
ing collusion is easier with the dealer mechanism as com-
pared to, say, a mixnet like TOR [6]. Not only does TOR
not meet business needs by giving up any visibility into
click fraud, TOR’s threat model is a poor match for Pri-
vad since a single entry node colluding with the broker
can compromise the anonymity of all users connecting
through that node [3]. In contrast to mixnet nodes, a
dealer organization (e.g. datacenter operators) can be
contractually bound, and its non-collusionary involve-
ment be monitored by privacy advocates. This model is
in use today and is approved for instance by the European
privacy certification organization Europrise [10].

Given that Privad relies to an extent on accountabil-
ity, one might ask why a purely regulatory solution
doesn’t suffice. There are two problems. First, en-
trenched players like Google have strong incentives, lob-
bying power, and the capital needed to maintain the sta-
tus quo. Indeed many parallels can be drawn to the
network-neutrality battle where powerful ISPs success-
fully resisted new regulations threatening their business
model [33]. Second, even if regulations were passed, en-
forcement would require third-party auditing of all bro-
ker operations, which is impractical due to the complex-
ity and scale of these systems. Market forces, such as

9

178 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

competition from a startup offering better ROI to adver-
tisers through deeper personalization (with backing from
privacy advocates), can arguably effect change more eas-
ily.
In the remainder of this section we first define infor-

mally what we mean by user privacy and our trust as-
sumptions. We then address the technical measures per-
taining to covert channels. We then consider a series of
attacks on the system, the defense to the attack, and a
discussion of the extent to which the defense truly solves
the attack.

7.1 Defining Privacy
Our privacy goals are based on Pfitzmann and Köhn-
topp’s definition of anonymity [28] which is unlinkabil-
ity of an item of interest (IOI) and some logical user iden-
tifier. Privad has three types of IOI; IP address, and inter-
est attributes and demographic attributes. Pfitzmann and
Köhntopp consider anonymity in terms of an anonymity
set, which is the set of users that share the given item of
interest — the larger this set, the “better” the anonymity.
Personally Identifiable Information (PII) is information
for which the anonymity set comprises a single (or a very
small number of) elements; e.g., the IP address is PII. Ex-
amples of non-PII anonymity sets in Privad include: the
set of users that join a pub-sub channel, the set of users
that visit a given publisher, and the set of users that view
or click a given ad (i.e. probably share some or all of the
ad’s attributes).
In our definition of privacy we draw a distinction be-

tween IOI that contain PII and IOI that do not, as follows:

P1) Profile Anonymity: No single player can link any
PII for a user with any attribute in the user’s profile.

P2) Profile Unlinkability: No single player can link to-
gether more than a threshold number of (non-PII)
profile attributes for the same user, which would
otherwise allow them to, over time, construct a
unique profile that could be deanonymizedusing ex-
ternal databases.

Existing ad networks, of course, satisfy neither Profile
Anonymity nor Profile Unlinkability.
Note that for Profile Unlinkability we use “number of

profile attributes” rather than the size of the anonymity
set even though the former doesn’t per se map directly
onto the latter. Different attributes imply different sizes
of anonymity sets (e.g., music vs. sports.skiing.cross-
country). Ideally, Privad would dynamically guarantee a
minimum anonymity set size at runtime, but this is not
possible because any such approach is easily attacked
with Sybils [7], e.g. a botnet of clients masquerading
as members of that set. It is possible, however, to esti-
mate offline the rough expected anonymity set size for an
attribute with outside semantic knowledge.

The approach towards privacy in Privad is then as fol-
lows: 1) offline semantic analysis by privacy advocates
establishes per-message thresholds for Profile Unlinka-
bility; this is enforced at runtime by the monitor as we
discuss later in Attack A9. 2) Mechanisms in Privad en-
sure multiple messages from the same client cannot be
linked together, and therefore the system as a whole can-
not violate Profile Unlinkability. And 3) since the dealer
is the only party that learns PII (IP address) and nothing
else about the user, Profile Anonymity is trivially satis-
fied.

7.2 Trust Assumptions

The user trusts only the reference monitor; the client soft-
ware, dealer and broker are all untrusted. Privacy advo-
cates are expected to play a watchdog role by validating
the reference monitor, monitoring dealer operation, and
running honeyfarms to detect covert channels. The bro-
ker does not trust clients, dealers, or reference monitors.
Attack A4 below discusses malicious dealers including
those that may engage in click fraud. Privad does not
modify any interactions users or brokers have with pub-
lishers or advertisers. The advertiser and publisher, like
today, can see the user’s browsing behavior on their own
site, and trust the broker to perform accurate billing.

7.3 Covert Channels

A malicious broker may distribute a malicious client that
attempts to leak data using covert channels. The band-
width of covert channels is reduced by bounding non-
determinism in messages. Note first of all that the covert
channel must come from Privad application message
fields, not encapsulating protocol fields such as those in
the crypto messages. This is because it is the reference
monitor that takes care of crypto and message delivery
functions. In addition, it is also the monitor that gener-
ates the one-time shared keys (for subscriptions) which
otherwise represent the best covert channel opportunity.
Note next that the values of most message fields are

driven by user behavior (outside client-control) and are
subject to audit by privacy advocates or users. This in-
cludes the channel ID in subscriptions, and the type, pub-
lisher ID, and ad ID in reports, which together compose
all remaining bits in subscribe and report messages. The
next best opportunity for a covert channel would come
from the user score in the GSP auction message (Fig-
ure 4). That is because this is the only client-controlled
message field, albeit only 2 or 3 bits in size since the
user score need only be in a small range. This bounds
the information that can be leaked by a single message.

The Privad protocol and reference monitor make it
hard to construct a covert channel across multiple mes-
sages. Since messages from the same source cannot, by
design, be linked based on content, the attacker must use

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 179

some time-based watermarking technique (e.g., [32]).
The reference monitor adds arbitrary delay or jitter to
messages to disrupt such attempts. For this reason, all
Privad protocols are designed to be asynchronous and use
soft-state without any acknowledgments.

A computer system cannot completely close all covert
channels, but by at least making it possible for privacy-
advocates to detect them, and by establishing malicious
intent by requiring attackers to circumvent multiple tech-
nical hurdles, Privad significantly increases the risk of
being caught and thus decreases the utility of covert
channels. This is in contrast to today where third-parties
can neither detect privacy-violations, nor establish intent
when violations are revealed [29].

7.4 Attacks and Defenses

This section outlines a set of key attacks on user privacy.
Space constraints prevent us from discussing in detail at-
tacks on advertiser and broker privacy. We do however
briefly note the following. Broker privacy, in the form
of trade secrets for profiling mechanisms, is maintained
because client software is a black-box that does not need
to be audited; and the broker can use the same legal and
technical mechanisms used by desktop software compa-
nies today. Advertiser privacy is weakened because it is
slightly easier to learn an ad’s targeting information as
compared to today’s systems. Privad does not however
change the ease with which an attacker can learn an ad-
vertiser’s bids.

7.4.1 Attacker at Client

Attack A1: The attacker installs malware on a user’s
computer which provides the profile information to the
attacker or otherwise exploits it.
Defense D1: Privad does not protect against malware
reading the profile it generates. Our general stance is that
even without Privad, malware today can learn anything
the client is able to learn, and so not protecting against
this threat does not qualitatively change anything. Hav-
ing said that, obviously the existence of the profile does
make the job of malware easier. It saves the malware
from having to write its own profiling mechanisms. It
also allows the malware to learn the profile more quickly
since it doesn’t have to monitor the user over time to
build up the profile.
Ultimately what goes into the profile is a policy ques-

tion that privacy advocates and society need to answer.
Clearly information like credit card number, passwords,
and the like have no place in the profile (though malware
can of course get at this information anyway). Whether
a user has AIDS probably also does not belong there.
Whether a user is interested in AIDS medication, how-
ever, arguably may belong in the profile.

Indeed, there are pros and cons to keeping profile con-
tents open. On the pro side, this makes it easier for pri-
vacy advocates to monitor the client and to an extent bro-
ker operation. On the con side, it makes life easier for
malware. One option, if the operating system supports it,
is to make the profile available only to the client process
(e.g. through for instance SELinux [25]). This would
protect against userspace malware, but not rootkits that
compromise the OS. Another option is to leverage trusted
hardware (e.g. [31]) when available. How best to handle
the profile from this perspective is both an ongoing re-
search question and a policy question.

7.4.2 Attacker at Dealer

A2: The attacker attempts to learn user profile informa-
tion by reading messages at the dealer.
D2: The dealer proxies five kinds of messages: sub-
scribe, publish, auction request and response, and re-
ports. Of these, the dealer cannot inspect the contents
of subscribe, report, and publish messages since the first
two are encrypted with the broker’s public key, and the
last is encrypted with a symmetric key that is exchanged
via the encrypted subscribe message. Auction messages,
which are unencrypted, contain a random single-use Iid

that identifies the ad at the broker and the client (ex-
changed over the encrypted publish message), but is
meaningless to the dealer.
A3: The attacker injects messages at the dealer in order
to learn a user’s profile information.
D3: The dealer cannot inject a fake publish message
since it would not validate at the client after decryption.
If the dealer injects a fake subscribe message, all result-
ing publish messages would be discarded by the client
since the client would not have a record of the subscribe
or the associated key. The dealer cannot inject fake auc-
tion messages since the client would not have a record of
the Iid. The dealer could reorder the auction result, but
would not learn which ad the client viewed or clicked
since reports are encrypted. The dealer injecting fake re-
ports has no impact on the client; it is, however, identical
to dealer-assisted click-fraud, which we consider next.
A4: The dealer itself engages in click-fraud, or other-
wise does not comply with the broker’s request to block
fraudulent clients.
D4: The broker can independently audit that the dealer
is operating as expected both actively and passively. The
broker can passively track view/click volumes, and his-
torical statistics on a per-dealer basis to identify anoma-
lous dealers. Additionally the broker can passively mon-
itor the rate of fraudulent clicks (e.g. using bait ads)
on a per-dealer basis. The broker can detect suspicious
dealer behavior if after directing dealers to stem a par-
ticular attack the rate of fraudulent clicks through one
dealer does not drop (or drops proportionally less) than

11

180 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for other dealers. Finally, the broker can actively test a
dealer by launching a fake click-fraud attack from fake
clients, and ensuring the dealer blocks them as directed.
A5: A particularly sneaky attack aimed at learning which
users send view or click reports for a given publisher (or
advertiser) is as follows. The dealer first launches a click-
fraud attack on the given publisher (or advertiser). The
broker identifies the attack. When a user sends a legiti-
mate report for that publisher (or advertiser), the broker
mistakenly suspects the report as fraudulent and asks the
dealer to block the client. The dealer can now infer that
the encrypted report it proxied must have matched the
attack signature it helped create.
D5: First note that this attack applies only in the sce-
nario where there are no other click-fraud attacks taking
place other than the one controlled by the dealer (and the
dealer somehow knows this). As part of the Privad pro-
tocol (Figure 5), however, the dealer does not learn how
many attacks are taking place (even if there is only one
ongoing attack), or which publishers or advertisers are
under attack, or which attack the client was implicated
in. Thus there is too much noise for the dealer to reach
any conclusions about implicated clients.

7.4.3 Attacker at Broker

A6: The broker attempts to link multiple messages from
the same user using passive or active approaches.
D6: We are only concerned with subscribe and reports
messages since the dealer mixes auction requests. Pri-
vad messages do not contain any PII, unique identi-
fier, or sequence number. The monitor ensures the per-
subscription symmetric keys are unique and random.
Additionally, the monitor disrupts timing based correla-
tion, for instance by staggering bursts of messages (e.g.
when the client starts up, or views a website with many
adboxes). Altogether these defenses prevent the broker
from linking two subscriptions, or two reports from the
same user.

The broker may attempt to link a report with a sub-
scription. The only way to do this is by publishing an ad
with a unique ad ID, and waiting for a report with that ID.
Privacy advocates can detect this by running honeyfarms
of identical clients and ensuring ad IDs are repeated.
A7: During the GSP auction mechanism the broker
attempts to link two ads published to the same client
through different pub-sub subscriptions, thereby effec-
tively linking two subscriptions.
D7: The property of the mix constructed at the dealer is
such that tuples from the same client but for ads on dif-
ferent pub-sub channels are indistinguishable from tuples
from two different clients each subscribed to one of the
channels. The pub-sub protocol provides the same prop-
erty. Thus the broker doesn’t learn anything new from
the auction protocol.

Note the broker can obviously link which ads it sent
for the same subscription, but cannot determine which of
them actually matched the user. This is because the client
submits all ads received on a channel for auction whether
or not it matched the user (enforced by the monitor); bo-
gus user scores for non-matching ads prevents the broker
from distinguishing between the two.
A8: The broker masquerades as a dealer and hijacks the
client’s messages thus learning the client’s IP address.
Possible methods of hijacking the traffic may include
subverting DNS or BGP.
D8: The solution is to require Transport Layer Security
(TLS) between client and dealer, and to use a trusted cer-
tificate authority. The reference monitor can insure that
this is done correctly.
A9: The broker creates a channel with a large enough
number of attributes that an individual user is uniquely
defined. When that user joins the channel, the broker
knows that a user with those attributes exists. This could
be done for instance to discover the whereabouts of a
known person or to discover additional attributes of a
known person. For instance, if n attributes are known to
uniquely define the person, then any additional attributes
associated with a joined channel can be discovered.
D9: It is precisely for this reason that pub-sub chan-
nels definitions are static, well-known, and public (Sec-
tion 3.1). Privacy advocates can look at channel def-
initions and ensure they meet a minimum expected
anonymity set size. Additionally, the monitor can filter
out channel definitions when the attributes for that chan-
nel exceed some set threshold.
Similar restrictions apply to the set of profile attributes

an ad can target, with one difference. In the context
of second-price auctions, the broker needs to necessar-
ily link adjacent ads. Thus the monitor needs to enforce
that the sum of attributes of the two ads involved in a
click-report is below the threshold.

Note the ability to link two ads applies only to clicks.
View reports do not contain second price information
since otherwise a page with many ads would allow the
broker to link each consecutive pair of ads, and therefore
a whole chain of ads. While the same problem exists if
the user were to click on the whole chain of ads, since
clicks are rare this is not a big concern.

8 Related Work
There is surprising little past work on the design of pri-
vate advertising systems, and what work there is tends to
focus on isolated problems rather than a complete system
like Privad. This related work section focuses only on
systems that target private advertising per se, and mainly
concentrates on the privacy aspects of those systems.
In particular, we look at Juels [20], Adnostic [30], and
Nurikabe [24].

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 181

Juels by far predates the other work cited here, and in-
deed is contemporarywith the first examples of the mod-
ern advertising model (i.e. keyword-based bidding). As
such, Juels focuses on the private distribution of ads and
does not consider other aspects such as view-and-click
reporting or auctions. Privad’s dissemination model is
similar to Juels’ in that a client requests relevant ads
which are then delivered. Indeed, Juels’ trust model is
stronger than Privad’s. Juels proposes a full mixnet be-
tween client and broker, thus effectively overcoming col-
lusion. We believe this trust model is overkill, and that
his system pays for this both in terms of efficiency and in
the mixnet’s inability to aid the broker in click fraud.

Like Juels and Privad, Adnostic also proposes client-
side software that profiles and protects user privacy.
When a user visits a webpage containing an adbox, the
URL of the webpage is sent to the broker as is done to-
day. The broker selects a group of ads that fit well with
the ad page (they recommend 30), and sends all of them
to the client. The client then selects the most appropriate
ad to show the user. The novel aspect of Adnostic is how
to report which ad was viewed without revealing this to
the broker. Adnostic uses homomorphic encryption and
efficient zero-knowledge proofs to allow the broker to
reliably add up the number of views for each ad without
knowing the results (which remain encrypted). Instead,
they send the results to a trusted third-party which de-
crypts them and returns the totals. By contrast to views,
Adnostic treats clicks the same as current ad networks:
the client reports clicks directly to the broker.

The privacy model proposed by Adnostic is much
weaker than that of Privad. Privad considers users’ web
browsing behavior and click behavior to be private, Ad-
nostic does not. Indeed, we would argue that the knowl-
edge that Adnostic provides to the broker allows it to
very effectively profile the user. A user’s web browsing
behavior says a lot about the user interests and many de-
mographics. Knowledge of which ads a user has clicked
on, and the demographics to which that ad was targeted,
allow the broker to even more effectively profile the user.
Finally, the user’s IP address provides location demo-
graphics and effectively allows the broker to identify the
user. Adnostic’s trust model for the broker is basically
honest-and-not-curious. If that is the case, then today’s
advertising model should be just fine.

Nurikabe also proposes client-side software that pro-
files the user and keeps the profile secret. With Nurik-
abe, the full set of ads are downloaded into the client.
The client shows ads as appropriate. Before clicking any
ads, the client requests a small number of click tokens
from the broker. These tokens contain a blind signature,
thus allowing the tokens to later be validated at the bro-
ker without the broker knowing who it previously gave
the token to. The user clicks on an ad, the click report

is sent to the advertiser along with the token. The adver-
tiser sends the token to the broker, who validates it, and
this validation is returned to the client via the advertiser.

Nurikabe has an interesting privacy model. They ar-
gue that, since the advertiser anyway is going to see the
click, there is no loss of privacy by having the advertiser
proxy the click token. By taking this position, Nurik-
abe avoids the need for a separate dealer. Our problem
with this approach is that Nurikabe basically gives up on
the problem of privacy from the advertiser altogether. It
cannot report views without exposing this to the adver-
tiser, thus reducing user privacy from the advertiser even
more than today. View reporting is important, in part be-
cause it allows the advertiser to compute the CTR and
know how well its ad campaign is going. Nurikabe also
gives up any visibility into click fraud. Nurikabe miti-
gates click fraud only by rate limiting the tokens it gives
to every user. As a result, the attacker need only Sybil
itself behind a botnet and solve CAPTCHAs to launch a
massive click-fraud attack which cannot be defended. Fi-
nally, in [13] the authors find through ad measurements
that there are simply far too many ads (with too much
churn) to be able to distribute them all to all clients.

Some aspects of Privad have previously been explored
in [13, 15]. The seed idea behind Privad was planted
in [15], a short paper revisiting the economic case for ad-
vertising agents on the endhost (i.e., distinguishing “ad-
ware” from “badware”), which presents a rough sketch
of privacy-aware click reporting. In [13] we use mea-
surement data to guide our design and explore the feasi-
bility of building such a system. This paper presents the
resulting detailed design, experimental evaluation, and
security analysis of a full advertising system.

9 Summary and Future Directions
This paper describes a practical private advertising sys-
tem, Privad, which attempts to provide substantially bet-
ter privacy while still fitting into today’s advertising busi-
ness model. We have designs and detailed privacy analy-
sis for all major components: ad delivery and reporting,
click fraud defense, advertiser auctions, user profiling,
and optimizations for scalability.

We are actively working on getting a better under-
standing of a number of Privad components. Foremost
among these are how best to do profiling, how best to run
auctions, the bait approach to click-fraud, and privacy
from the advertiser. Another important problem is how
to allow brokers and advertisers to gather rich statistical
information about user behavior in a privacy-preserving
way. Towards this end, we are looking at distributed
forms of differential privacy. We are also working with
application developers to deploy at Internet scale to give
researchers a platform for experimenting with real users
and advertisements.

13

182 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Besides pursuing the technical aspects of Privad, we
have discussed Privad with a number of privacy advo-
cates and policy makers, and have applied for a Euro-
prise privacy seal. We hope that Privad and other recently
proposed private advertising systems spur a rich debate
among researchers and privacy advocates as to the best
ways to do private advertising, the pros and cons of the
various systems, and how best to move private advertis-
ing forward in society.

References
[1] Amazon Mechanical Turk. http://www.mturk.com.
[2] Amazon Inc. Amazon Elastic Compute Cloud (Amazon

EC2), Sept. 2010. http://aws.amazon.com/ec2/.
[3] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and

D. Sicker. Low-Resource Routing Attacks Against Tor.
In Proceedings of the 2007 Workshop on Privacy in the
Electronic Society (WPES), Alexandria, VA, Oct. 2007.

[4] A. Chen. GCreep: Google Engineer Stalked Teens, Spied
on Chats. Sept. 2010. http://gawker.com/5637234.

[5] J. Chester, S. Grant, J. Kelsey, J. Simpson, L. Tien,
M. Ngo, B. Givens, E. Hendricks, A. Fazlullah, and
P. Dixon. Letter to the House Committee on Energy and
Commerce. http://tinyurl.com/y85h98g, Sept.
2009.

[6] R. Dingledine, N. Mathewson, and P. Syverson. TOR:
The Second-Generation Onion Router. In Proceesings of
USENIX Security Symposium ’04.

[7] J. R. Douceur. The Sybil Attack. In Proceedings of
IPTPS ’02.

[8] B. Edelman, M. Benjamin, and M. Schwarz. Internet
Advertising and the Generalized Second-Price Auction:
Selling Billions of Dollars Worth of Keywords. American
Economic Review, 97(1):242–259, Mar. 2007.

[9] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra: A
CAPTCHA that Exploits Interest-Aligned Manual Image
Categorization. In Proceedings of CCS ’07.

[10] Europrise. European Privacy Seal DE-080006p. http:
//tinyurl.com/2dckmpx.

[11] G. Gross. FTC Sticks With Online Advertising Self-
regulation. IDG News Service, Feb. 2009.

[12] S. Guha, B. Cheng, and P. Francis. Challenges in Mea-
suring Online Advertising Systems. In Proceedings of
IMC ’10.

[13] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and
P. Francis. Serving Ads from localhost for Performance,
Privacy, and Profit. In Proceedings of HotNets ’09.

[14] H. Haddadi. Fighting Online Click-Fraud Using Bluff
Ads. SIGCOMM CCR, 40(2):22–25, Apr. 2010.

[15] H. Haddadi, S. Guha, and P. Francis. Not All Adware
is Badware : Towards Privacy-Aware Advertising. In
Proceedings of 9th IFIP conference on e-Business, e-
Services, and e-Society, Nancy, France, Sept. 2009.

[16] I. Hickson. The WebSocket API. http://dev.w3.
org/html5/websockets/.

[17] N. Hopper, J. Langford, and L. V. Ahn. Provably Secure
Steganography. In Proceedings of Crypto ’02.

[18] K. Jang, S. Han, S. Han, S. Moon, and K. Park.

SSLShader: Cheap SSL Acceleration with Commodity
Processors. In Proceedings of NSDI ’11.

[19] A. Jesdanun. Ad Targeting Based on ISP Tracking Now
in Doubt. Associated Press, Sept. 2008.

[20] A. Juels. Targeted Advertising ... And Privacy Too. In
Proceedings of the 2001 Conference on Topics in Cryp-
tology, pages 408–424, London, UK, 2001.

[21] A. Juels, S. Stamm, and M. Jakobsson. Combating Click
Fraud via Premium Clicks. In Proceesings of USENIX
Security Symposium ’07, pages 1–10.

[22] M. Kounavis, X. Kang, K. Grewal, M. Eszenyi,
S. Gueron, and D. Durham. Encrypting the Internet. In
Proceesings of SIGCOMM ’10.

[23] B. Krishnamurthy and C. E. Wills. Cat and Mouse: Con-
tent Delivery Tradeoffs in Web Access. In Proceedings
of WWW ’06.

[24] D. Levin, B. Bhattacharjee, J. R. Douceur, J. R. Lorch,
J. Mickens, and T. Moscibroda. Nurikabe: Private yet
Accountable Targeted Advertising. Under submission.
Contact johndo@microsoft.com for copy, 2009.

[25] P. Loscocco and S. Smalley. Integrating Flexible Support
for Security Policies into the Linux Operating System.
In Proceedings of the 2001 USENIX Annual Technical
Conference, Boston, MA, June 2001.

[26] I. S. Moskowitz and M. H. Kang. Covert Channels -
Here to Stay? In Proceedings of the 9th Annual Confer-
ence on Computer Assurance (COMPASS), pages 235–
243, Gaithersburg, MD, July 1994.

[27] K. Park, V. S. Pai, K.-W. Lee, and S. Calo. Securing Web
Service by Automatic Robot Detection. In Proceesings
of USENIX Annual Technical Conference ’06.

[28] A. Pfitzmann and M. Köhntopp. Anonymity, Unobserv-
ability, and Pseudonymity — A Proposal for Terminol-
ogy. Designing Privacy Enhancing Technologies, 2001.

[29] B. Stone. Google Says It Inadvertently Collected Per-
sonal Data. The New York Times, May 2010. http:
//tinyurl.com/2946cql.

[30] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum,
and S. Barocas. Adnostic: Privacy Preserving Targeted
Advertising. In Proceedings of NDSS ’10.

[31] Trusted Computing Group. TPM Specification Version
1.2. http://www.trustedcomputinggroup.org/.

[32] X. Wang, S. Chen, and S. Jajodia. Tracking Anonymous
Peer-to-Peer VoIP Calls on the Internet. In Proceedings
of CCS ’05.

[33] E. Wyatt. U.S. Court Curbs F.C.C. Authority on Web
Traffic. The New York Times, Apr. 2010. http://
tinyurl.com/yamowhd.

[34] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, , and N. Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native
Code. In Proceedings of Oakland ’09.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 183

Bazaar: Strengthening user reputations in online marketplaces

Ansley Post†‡ Vijit Shah∗ Alan Mislove∗

∗Northeastern University †MPI-SWS ‡Rice University

Abstract

Online marketplaces are now a popular way for users to

buy and sell goods over the Internet. On these sites, user

reputations—based on feedback from other users con-

cerning prior transactions—are used to assess the likely

trustworthiness of users. However, because accounts

are often free to obtain, user reputations are subject to

manipulation through white-washing, Sybil attacks, and

user collusion. This manipulation leads to wasted time

and significant monetary losses for defrauded users, and

ultimately undermines the usefulness of the online mar-

ketplace.

In this paper, we propose Bazaar, a system that ad-

dresses the limitations of existing online marketplace

reputation systems. Bazaar calculates user reputations

using a max-flow-based technique over the network

formed from prior successful transactions, thereby limit-

ing reputation manipulation. Unlike existing approaches,

Bazaar provides strict bounds on the amount of fraud that

malicious users can conduct, regardless of the number

of identities they create. An evaluation based on a trace

taken from a real-world online marketplace demonstrates

that Bazaar is able to bound the amount of fraud in prac-

tice, while only rarely impacting non-malicious users.

1 Introduction

Online marketplaces like eBay, Overstock Auctions, and

Amazon Marketplace enable buyers and sellers to con-

nect regardless of each other’s location, allowing even

the most esoteric of products to find a market. These

marketplaces have greatly expanded the set of people

who can act as a buyer or seller and, thus, can be viewed

as democratizing commerce. These sites are extremely

popular with users; in 2009, over $60 billion worth of

goods was exchanged on eBay alone.

This new freedom, however, does not come without

challenges. Online marketplaces are known to suffer

from fraud, and often rely on user reputations—formed

from the feedback provided by other users—in an ef-

fort to mitigate the effects of malicious activities on their

sites. For example, on eBay, potential buyers often ex-

amine the reputation of the seller to determine the seller’s

trustworthiness. In fact, it has been observed [13, 15, 19]

that sellers with highly positive reputations tend to sell

goods at a higher price when compared to sellers with

lower reputations, demonstrating the central role that

user reputations play in online marketplaces. Malicious

buyers (who do not pay for goods purchased) and ma-

licious sellers (who do not deliver the promised goods)

quickly gain bad reputations and are avoided [11].

One challenge, however, is that accounts on online

marketplaces are often free to create (usually only requir-

ing filling out a form and solving a CAPTCHA [23]), to

avoid discouraging potential users. As a result, reputa-

tions derived from user feedback are still subject to three

types of manipulation:

• Malicious users whose accounts have a bad reputa-

tion can effectively white-wash their reputation by

creating a new account with a blank reputation.

• Malicious users can collude by providing positive

feedback on each other’s transactions, thereby im-

proving both of their reputations.1

• Malicious users can create fake identities, known as

Sybils [7], and use these to provide positive feed-

back on fictitious transactions between the various

identities, thereby inflating their reputations.

Reputation manipulation can lead to significant mone-

tary losses for defrauded users. For example, a single

malicious eBay user was recently found to have created

260 different accounts, fabricated positive feedback, and

stolen over $717,000 from over 5,000 users [24]. This

1In fact, this type of abuse can be plainly viewed on eBay by search-

ing for auctions that are selling “positive feedback.” As of this writing,

350 such auctions exist for prices ranging from $0.01 to $0.99.

184 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

case is hardly unique: Another malicious eBay user was

arrested after defrauding others of over $1 million [20].

In this paper, we propose Bazaar, a system that

strengthens user reputations in online marketplaces in

the face of collusion, white-washing, and Sybil attacks.

Bazaar creates and maintains a risk network in order to

predict whether potential transactions are likely to be

fraudulent. The risk network consists of weighted links

between pairs of users who have successfully conducted

transactions in the past. When a transaction is about

to be completed, Bazaar calculates the max-flow be-

tween the buyer and seller; if it is lower than the amount

of the transaction, the transaction is flagged as poten-

tially fraudulent. Since Bazaar only needs to determine

whether the max-flow is above a given value (instead of

calculating the exact max-flow), Bazaar stores the risk

network using a novel multi-graph representation. We

demonstrate that this results in a substantial speed-up

of Bazaar’s max-flow calculation while imposing only a

modest storage overhead.

Bazaar provides a number of useful security proper-

ties: First, malicious users in Bazaar cannot conduct

more fraud together than they could separately, and as

a result, there is no incentive for malicious users to col-

lude. Second, malicious users cannot gain any advantage

from conducting Sybil attacks, and thus, there is no in-

centive to create multiple identities. Third, Bazaar ex-

plicitly allows users to create as many identities as they

wish; this is sometimes a desired feature in online mar-

ketplaces, where sellers may own multiple businesses or

wish to maintain separate identities for different types of

goods. Fourth, Bazaar provides a strict guarantee that

each user can only defraud others by up to the amount of

valid transactions the user has participated in, regardless

of the number of identities the user possesses, thereby

bounding the potential damage.

We evaluate Bazaar using a trace collected from eBay,

the largest online marketplace. We collected a 90-day

history of five of the most popular categories on the eBay

United Kingdom site, encompassing over 3 million users

and 8 million auctions. Simulating Bazaar on this data

set, we demonstrate that Bazaar successfully bounds the

amount of fraudulent transactions that malicious users

can conduct, while only rarely impacting the transactions

that occur between non-malicious users. We demonstrate

that if Bazaar had been deployed on eBay during the 90-

day period and in the five categories we study, it would

have flagged over £164,000 of auctions that eventually

resulted in negative feedback as potentially fraudulent,

substantially increasing the reliability of the online mar-

ketplace.

The rest of this paper is organized as follows. Sec-

tion 2 describes the approaches that are currently taken to

secure online marketplaces, and Section 3 provides more

detail on different types of fraud that are still present to-

day. Section 4 describes the design of Bazaar in detail,

and Section 5 details the multi-graph representation of

the risk network. Section 6 presents an evaluation of

Bazaar. Section 7 details related work and Section 8 con-

cludes.

2 Background

Online marketplaces often use site-specific mechanisms

for fraud prevention, but many of these can be reduced to

a few simple techniques:

Making joining the market difficult Certain market-

places only allow trusted users or organizations to par-

ticipate as sellers, often requiring upfront fees or ac-

counts backed by difficult-to-forge financial information.

An example of such such an approach is Amazon Mer-

chants [3], which requires bank account information, a

$40-per-month fee, and pre-approval for listing high-

fraud-risk goods. However, by making it more difficult

to join, this approach reduces the usefulness of the mar-

ketplace and severely restricts the population of sellers.

Using a trusted broker In some marketplaces, a mid-

dleman participates in the transaction and holds payment

until the buyer is satisfied with the transaction. For exam-

ple, on eBay, there are escrow services that hold money

for transactions until the buyer has received the good.

However, brokers typically charge a fixed fee and a per-

centage of the sale,2 increasing the transaction cost and

making escrow practical only for expensive goods (rep-

resenting a small minority of the goods on typical mar-

ketplaces).

Requiring in-person transactions Other marketplaces

such as Craigslist require buyers and sellers to be within

the same geographical area, ensuring that the participants

can meet in person to complete a transaction. This ap-

proach allows buyers to inspect goods, and sellers to ver-

ify payment, before going through with the transaction.

However, this approach also severely restricts who is able

to buy and sell goods from each other (as the buyer and

seller must live close to each other), limiting its useful-

ness to local marketplaces.

Providing insurance Certain marketplaces offer buyer

and seller insurance programs, either by default or for a

fee. However, coverage is generally limited to certain

geographic regions and the cost of the insurance pay-

outs and program administration results in higher fees

for marketplace users. Nevertheless, the information that

Bazaar provides can be viewed as an estimate of risk be-

2For example, eBay’s recommended escrow service charges a min-

imum of $22 and up to 3% of the transaction cost.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 185

tween two parties, and can therefore be used as an input

when choosing the appropriate the insurance premium.

Paying via trusted services Because certain payment

methods (e.g., money orders) are difficult to recover,

many marketplaces suggest or require that trusted on-

line payment services (e.g., PayPal) be used. Ideally,

such services would link accounts to real-world financial

information, making the creation of multiple accounts

difficult. However, this is not the case: For example,

receiving money with a PayPal account only requires

an email address (although financial information is re-

quired to withdraw funds). Thus, malicious users can

receive money with networks of email-backed accounts,

and then send that money to the single, “real” account

that is able to withdraw money.

Leveraging feedback Finally, many online market-

places use feedback provided by users who have par-

ticipated in transactions. For example, eBay’s feedback

mechanism calculates a score for each user, consisting

of the amount of positive feedback minus the amount of

negative feedback. Users with highly positive feedback

scores are considered to be more trustworthy, and have

been observed to sell goods for higher prices [13,15,19].

This approach has the advantage of not restricting mar-

ketplace membership and allowing any buyer and seller

to participate in a transaction. However, as we will ob-

serve in the next section, using feedback is often subject

to manipulation by malicious users.

Ideally, we would like to prevent fraud without un-

necessarily restricting participation in the online market-

place. The first four approaches above artificially restrict

the marketplace by making it either harder to join, more

expensive to use, segmenting it based on geography, or

spreading the cost of fraud to all users. Thus, we focus

on the last approach, leveraging feedback, for the design

of Bazaar and present a design that is not subject to the

manipulation of existing approaches. Focusing on user

feedback also has the advantage that is the mechanism

used by the largest online marketplaces, such as eBay,

meaning Bazaar could be directly applied to such sites.

3 Examples of malicious behavior

We motivate the design of Bazaar by examining several

types of fraud that have been observed in online market-

places today. The eBay dataset that we use for illustra-

tion is fully described in Section 6, however, our purpose

here is simply to provide a few motivating examples. In

this section, we focus on malicious sellers who attempt

to defraud buyers, as sellers are largely protected from

malicious buyers by being allowed to verify payment be-

fore shipping the good. To define the fraud we observe,

we look at various sellers’ feedback history, consisting

of entries recording whether the buyer was satisfied with

the transaction.

For clarity, we begin by examining the feedback his-

tory of a typical seller, shown in Figure 1 (a). Even

though over 99% of the seller’s feedback is positive, a

few items of negative feedback can be observed. A cer-

tain low level of negative feedback is expected even for

non-malicious sellers, as some buyers may have been un-

satisfied with their purchase (e.g., due to the good being

lost or damaged in transit, a miscommunication between

the participants, or buyer’s remorse). We will use similar

timeline diagrams throughout the rest of this section.

3.1 Leaving the marketplace

One of the most common types of fraud occurs when a

seller participates in the marketplace as a non-malicious

user for a period of time, and then turns malicious (often

by starting to conduct transactions without ever shipping

the goods). As a result, the unsuspecting buyers who

have not yet received their goods are defrauded. This

type of fraud can be detected once the buyers begin to

provide negative feedback, serving as a warning to oth-

ers. However, malicious users often take advantage of

the “window of opportunity” before the negative feed-

back appears: They can advertise and accept payment

for a large number of goods before any user realizes that

a fraud has occurred.

An example of such a malicious seller is shown in Fig-

ure 1 (b). Towards the end of the seller’s timeline, he lists

a significant number of goods that are never delivered

and eventually result in negative feedback. In fact, this

user made significantly more money in aggregate from

the fraudulent transactions than from the non-fraudulent

transactions. The underlying problem is that in-progress

transactions are not counted against a seller’s reputa-

tion, enabling malicious users to establish a reputation,

defraud users with the window of opportunity, and then

re-join the site with a new account.

3.2 Hiding fraud in the noise

As an alternative to leaving the marketplace, malicious

users have also been observed to “hide the fraud in the

noise” by participating in many non-fraudulent trans-

actions, but conducting fraudulent transactions for (rel-

atively) expensive goods. As a result, their feedback

history has only a small amount of negative feedback,

and only a close inspection of the transaction values re-

veals the fraud. An example of a malicious user con-

ducting such fraud is shown in Figure 1 (c), where

the user made more money through the two fraudulent

transactions than through the hundreds of non-fraudulent

186 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Auction feedback history over time for three eBay sellers: (a) a typical seller, (b) a malicious seller who

leaves the marketplace, and (c) a malicious seller who hides the fraud in the noise by conducting a few, large fraudulent

transactions. Positive feedback is shown in green, neutral feedback in blue, and negative feedback in red and below

the line. The size of each bar correspond to the log of the value of the auction.

transactions. The underlying problem is that the value

of transactions is not considered when determining a

seller’s reputation, enabling malicious users to conduct

a high-value fraudulent transactions with the same effec-

tive penalty (one piece of negative feedback) as a low-

value fraudulent transaction.

3.3 Conducting fictitious transactions

Malicious users have also been observed to conduct fic-

titious transactions and provide fictitious positive feed-

back. The ultimate goal of these transactions is not to

sell a good, but rather, to improve the user’s feedback

score, making the user look more like an non-malicious

user. For example, numerous auctions on eBay are la-

beled with “Positive Feedback Guaranteed.” Often, these

auctions ostensibly offer a copy of a digital picture or

other token item, so as to appear as a legitimate auction.

Thus, it is easy for a malicious user to arbitrarily ma-

nipulate his feedback score by adding spurious positive

feedback, so as to appear as a legitimate seller. The un-

derlying problem is that feedback counts the same, re-

gardless of the other user providing the feedback. This

allows malicious users to conspire to inflate each other’s

feedback score (or, a single malicious user to do the same

via a Sybil attack).

3.4 Summary

In this section, we described three of the most common

types of reputation manipulation that are present in the

online marketplaces of today. In the next section, we de-

scribe the design of Bazaar, which addresses each type

of manipulation by (a) considering outstanding transac-

tions, (b) taking into account the value of transactions

with positive and negative feedback, and (c) discriminat-

ing between different users’ feedback, in order to pre-

vent malicious users from artificially inflating their repu-

tation.

4 Bazaar design

We now describe the design of Bazaar.

4.1 Overview

Bazaar is intended to augment an online marketplace, run

by a marketplace operator, where buyers and sellers may

have no previous relationship and accounts are free to ob-

tain. In such systems, buyers must rely on the reputation

of the sellers, represented by feedback from other buy-

ers, to distinguish between non-malicious and malicious

users. Thus, the goal of Bazaar is to protect buyers from

malicious sellers who manipulate their reputation so as

to appear non-malicious. Additionally, we aim to keep

the existing model and basic user operations, while sig-

nificantly reducing the vulnerability to fraud. By doing

so, Bazaar serves as a drop-in component applicable to

numerous marketplaces.

Now, let us introduce a few definitions that we use for

the remainder of this section. A user corresponds to an

actual person in the offline world. An identity is an online

account with a particular username associated with it. A

user can have a potentially arbitrary number of identities.

A transaction is an event where two identities agree to a

sale, which has some value. Note that both identities in a

transaction may correspond to the same user.

Bazaar relies on two insights. First, successful trans-

actions between different users require significant effort

and risk for both parties. Both users are trusting the other

to complete the transaction, by providing payment or de-

livering the good. We refer to this as shared risk be-

tween two users. Second, once a transaction has been

successfully completed, the two users are more likely to

enter into a transaction together in the future. Note, how-

ever, this risk in not unbounded, and is dependent on the

type of transaction that has occurred: The amount of risk

that two users are willing to undertake is likely propor-

tional to the amount of risk that has been successfully

rewarded.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 187

4.2 Risk network

We view a successful transaction as linking two identi-

ties in an undirected fashion, where the weight of the

link is the aggregate monetary value of all success-

ful transactions—successfully rewarded shared risk—

between the two identities. For example, if identities A

and B participated in two successful transactions for $5

and $10, there would be an A ↔ B link with weight $15.

Note that link weights must always be non-negative.

The set of all such links forms an undirected network,

which we refer to as the risk network. An example of

such a network is shown in Figure 2 (a). Note that

the risk network has a particularly useful property: The

weights are automatically generated by user actions, and

do not have to be explicitly provided by users. As we

demonstrate below, the risk network can be used not only

to gauge the risk between two identities who have con-

ducted a transaction in the past, but also between arbi-

trary identities who may not have directly interacted in

the past.

4.3 Design

Bazaar is run behind-the-scenes by the online market-

place operator. The basic operation of Bazaar is sim-

ple: When a buyer is about to enter into a transaction,

the marketplace operator queries Bazaar, which calcu-

lates the max-flow in the risk network between the buyer

and the seller. If the max-flow is below the amount of the

potential transaction, the marketplace operator flags the

transaction as potentially fraudulent. We discuss ways in

which this output can be used by the marketplace oper-

ator in Section 4.5, but for now, we assume that flagged

transactions are blocked.

The intuition for this approach lies in the observation

above about shared risk. Consider a risk network with

only two identities, connected by a link of weight w. The

identities may be willing to engage in another transaction

of value w, and if that is successful, then another trans-

action for a higher amount. Bazaar generalizes this intu-

ition, allowing identities who are not directly connected

to engage in a transaction as long as there is a set of paths

of sufficient weight connecting them. For example, in the

network shown in Figure 2 (a), if A was about to buy a

good from D, Bazaar would consider the flow on paths

A ↔ B ↔ D and A ↔ C ↔ D in order to determine

D’s reputation from A’s perspective.

In existing online marketplaces, feedback-based rep-

utations are “global,” in the sense that everyone has the

same view of a given user’s reputation. In Bazaar, repu-

tations are a function of both the user who is being asked

about as well as the user who is asking. As we demon-

strate below, this approach allows Bazaar to mitigate rep-

utation manipulation: Malicious users who conspire to

inflate their reputations do not necessarily increase their

reputations from the perspective of non-malicious users.

4.3.1 Putting credit “on hold”

The design of Bazaar is complicated by the fact that the

buyer may not be able to determine whether the transac-

tion was fraudulent immediately after sending payment

for the good; generally, there is a delay between when

he agrees to the transaction and when the good arrives.

In order to prevent malicious sellers from abusing these

outstanding transactions in the manner observed in Sec-

tion 3.1, when the buyer decides to go through with the

transaction, Bazaar first determines a path set3 between

the buyer and seller that has a total weight of at least the

transaction amount. Such a path set must exist, as, other-

wise, the max-flow between the buyer and seller is lower

than the transaction amount (meaning Bazaar would have

flagged the transaction as potentially fraudulent).

Once the path set is determined, Bazaar temporarily

lowers the weights on these paths (in aggregate) by the

transaction amount. In essence, this puts the weight on

these paths “on hold” until feedback concerning the suc-

cess or failure of the transaction is received. Since each

link weight must always be non-negative, this approach

prevents the malicious users from leveraging the weight

that is “on hold” in order to conduct additional transac-

tions.

Continuing with our running example in Figure 2, the

initial state of the risk network is shown in Figure 2

(a), with each identity having participated in transactions

with two other identities. Then, suppose that A con-

ducts a $10 transaction with D. Bazaar determines that

the max-flow between A and D is greater than $10, and

therefore allows the transaction to go through without be-

ing flagged. In doing so, Bazaar temporarily lowers the

links along the path set by a total of $10 (specifically, $2

is lowered off of the A ↔ B ↔ D path and $8 is low-

ered off of the A ↔ C ↔ D path). This is shown in

Figure 2 (b).

4.3.2 Responding to feedback

Finally, once the buyer provides feedback about the

transaction, Bazaar makes changes to the risk network.

These changes depend on the feedback from the buyer:

• Positive feedback If the buyer reports a success-

ful transaction, indicated by positive feedback,

Bazaar restores the temporarily lowered weight and

additionally creates a new link directly between

3If multiple path sets exist that have sufficient weight, Bazaar sim-

ply picks one of these sets randomly.

188 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

$8

$7 $2

$10

$15

$2

$10

$10

$15

$2

$10

$10 $8

$15 $7

$2 $0

$10 $2

$10

Figure 2: State of the risk network while A conducts a $10 transaction with D. The state is shown (a) before the

transaction, (b) while waiting for feedback, (c) if the buyer reports an negative feedback, (d) if the buyer reports a

positive feedback, and (a) again, if the buyer reports neutral feedback or the timeout expires.

the buyer and seller weighted by the transaction

amount.4 This has the effect of both restoring the

network to its previous state, and creating a new

risk link between the buyer and seller. The intuition

for this action follows from the discussion above,

whereby the buyer and seller are more likely to en-

ter into a future transaction together.

• Neutral feedback If the buyer reports a par-

tially successful transaction, indicated by neutral

feedback, Bazaar restores the temporarily lowered

weight, but does not create a new link. This has the

effect of restoring the network to its previous state,

with no changes. The intuition for this action is that

users who provide neutral feedback are not claim-

ing that the transaction was fraudulent, but are not

completely satisfied. Thus, the buyer is not likely

to enter into a future transaction with the seller, but

does not wish to punish the seller by providing neg-

ative feedback.

• Negative feedback If the buyer reports an un-

successful transaction, indicated by negative feed-

back, Bazaar makes the temporary lowering of the

weights permanent and does not create any new

links. This has the effect of reducing weight on the

seller’s links, thereby decreasing the seller’s ability

to conduct transactions in the future without having

them flagged. In particular, if the seller conducts

many transactions that end up with negative feed-

back, eventually, all of his links will be exhausted,

and he will be unable to conduct any non-flagged

transactions.

• No feedback Finally, if the buyer does not report

feedback at all, a configurable timeout of T is used,

after which Bazaar responds as if the buyer pro-

vided neutral feedback (i.e., the temporarily low-

ered weight is restored, but no new link is created).

This is similar to existing sites, which often have a

time cutoff for providing feedback.

4If a direct link already existed, then Bazaar simply increases that

link’s weight by the transaction amount.

Returning to our running example in Figure 2, sup-

pose that the feedback is received or the timeout occurs.

Bazaar either makes the weight reductions permanent if

the buyer reports negative feedback (Figure 2 (c)), re-

stores the previous weights and also forms a new A ↔ D

link if the buyer reports positive feedback (Figure 2 (d)),

or restores the previous weights if the buyer reports neu-

tral feedback or the timeout occurs (Figure 2 (a)).

The intuition for why Bazaar is able to prevent fraud is

demonstrated by the network shown in Figure 3, where a

malicious user X has created a number of identities (X1

... X5) and has conducted fictitious transactions between

them (in essence, the weight on these links can be ar-

bitrarily set by X). Without Bazaar, potential victim Z

would only see X1’s fictitious feedback consisting of a

number of positive entries. Not knowing that all of this

positive feedback was from other identities owned by the

same underlying user, Z would likely be defrauded. With

Bazaar, however, the fictitious transactions do not con-

tribute to the max-flow between Z and X1, and Bazaar

is likely to flag the transaction as potentially fraudulent

(even though Bazaar had no a priori knowledge that all

Xi identities belong to the same user). Moreover, should

$500

$250
$10

$100

$5$75

Figure 3: Example risk network, showing why Bazaar

secures reputations (links represent previous real transac-

tions, and double links represent fictitious transactions).

Honest identity Z is considering entering into a trans-

action with malicious identity X1 (owned by the same

user as X2 ... X5). Without Bazaar, X1 appears to be a

reputable seller. With Bazaar, the fictitious transactions

do not increase the max-flow ($5) between Z and X1,

thereby preventing the reputation manipulation.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 189

X use one of these identities to conduct a fraud—of no

more than $5, since anything greater would be automat-

ically flagged as potentially fraudulent—the Y ↔ X1

link will have credit put “on hold” and eventually re-

duced (once the buyer provides negative feedback), re-

gardless of which identity X selects as the seller. This is

the case regardless of the number of identities X creates

or how he creates fictitious transactions between them.

In effect, Bazaar forces X to participate in successful

transactions with other non-malicious users in order to

increase his max-flow, and penalizes these links when-

ever X conducts fraud.

4.3.3 Bootstrapping

New users, by definition, have no transaction history

and therefore have a max-flow of 0 to all other users.

To allow new users to participate without having all

of their transactions flagged as potentially fraudulent,

Bazaar uses two techniques. First, Bazaar allows users

to create virtual links to their real-world friends (in the

same manner as malicious users can create links in the

risk network between their identities by conducting ficti-

tious transactions). This mechanism allows users to ob-

tain a few “starter” links from the friends, without open-

ing a new security vulnerability: Since the user’s friends

are, in effect, vouching for the new user, the friends are

putting their existing links on-the-line. If the new user

defrauds others, not only would his links be penalized,

but the links of his friends would be as well.

Second, if the new user does not have any real-world

friends in the marketplace, Bazaar allows him to option-

ally provide the marketplace operator with an amount of

money to hold in escrow. In return, the marketplace op-

erator creates links between the new user’s identity and

other, random identities with a total value of the amount

in escrow. These newly created links allow the new user

to participate in the marketplace. At some later time,

the new user can request that the escrowed money be

returned (and the marketplace operator will remove the

created links). However, if the created links represent

weight on hold, or if the they have been lost (due to a

fraudulent transaction), the marketplace operator would

refuse to return the escrowed money. This approach does

not open up a new vector for attack, as (a) the most

the new user could defraud is the amount of escrowed

money, and (b) if the user does commit such a fraud, he

would lose his escrowed money. In essence, such an at-

tack would not allow a malicious user to gain any money.

4.4 Guarantees

We now discuss the guarantees that Bazaar provides. In

brief, Bazaar ensures that malicious users can only de-

fraud others up to the total amount of successful transac-

tions that they have participated in with non-malicious

users. To see this, let us imagine a malicious user

X , whose identity has outgoing links with weight to-

taling aX . Each time X conducts a fraudulent transac-

tion, some of his links are reduced, in aggregate, by the

amount that he defrauds. Thus, once X has defrauded

a total of aX , all of his links have been removed and

he is prevented from participating in transactions in the

future. Moreover, X cannot use the “window of oppor-

tunity” (discussed in Section 3) to conduct fraud before

feedback is provided, as Bazaar puts link weights on hold

until the feedback is received.

Moreover, the same analysis holds for any subgraph

or any cut in the network. Thus, collusion between ma-

licious users does not help; the users can only defraud

together for the total of what they could defraud sepa-

rately. This argument also explains why creating fake

identities also does not help, as it is the cut in the net-

work between the user’s identities and the rest of the net-

work that bounds the amount that the user can defraud,

instead of the number of identities the user has or the

amount of fictitious feedback. The upshot is that Bazaar

does not explicitly detect Sybil nodes or malicious users

in the network, rather, it provides a strict guarantee on

the amount of fraud that they are able to conduct.

The implication of this analysis is that we can charac-

terize the amount of fraud the malicious users are able

to conduct, in aggregate. Let us partition the network

in two groups: G, containing non-malicious identities

who do not conduct fraudulent transactions, and M , con-

taining malicious identities whose goal is to defraud oth-

ers. Let us consider the cut in the network between these

two sets, with total value cMG. We make two observa-

tions: First, any links that lie along this cut must repre-

sent non-fraudulent transactions between non-malicious

users and malicious users; in essence, these represent in-

stances where the malicious users were non-malicious.

Second, any time one of the malicious users defrauds a

non-malicious user, this cut is reduced by the amount of

the fraud. Thus, malicious users can only defraud non-

malicious users of up to cMG before the two groups are

partitioned and all of the malicious users’ transactions

are flagged as potentially fraudulent to the non-malicious

users.

It is worth noting that this is a much stronger guar-

antee than what can be provided today. For example,

today, a user can potentially purchase a large amount of

fictitious positive feedback with a low monetary invest-

ment, use that feedback to appear as an non-malicious

seller, and then defraud users of a significant amount of

money. This problem is exacerbated by the fact that the

defrauded users have to realize that they have been de-

frauded before they can provide negative feedback and

190 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

warn others, leaving a significant window of vulnerabil-

ity. Moreover, the malicious user can simply repeat this

process with a new identity. By putting this bound in

place, we are able to force the malicious user to par-

ticipate in valid transactions with non-malicious users,

thereby significantly reducing the attractiveness of com-

mitting such a fraud.

4.5 Discussion

We now discuss a few deployment issues with Bazaar.

User interaction The marketplace operator can use the

output of Bazaar in multiple ways. For example, the mar-

ketplace operator can provide strong fraud guarantees by

not allowing flagged transactions to go through. Alterna-

tively, the marketplace operator can require that flagged

transactions use an escrow service or insurance service,

or can more closely scrutinize the transaction. The lat-

ter options represent an additional incentive for the mar-

ketplace operator to deploy Bazaar, as selling additional

services such as escrow or insurance may increase their

revenue while at the same time attracting customers due

to a decrease in fraud.

Providing honest feedback An additional concern is

whether buyers are incentivized to provide honest feed-

back on transactions in Bazaar. First, rational buyers

have no incentive to provide incorrect negative feedback:

By doing so, they penalize their own links and they pre-

vent the creation of a new link between themselves and

the seller. Since having more links is desirable (as it

allows a user to participate in more and higher-valued

transactions), buyers are disincentivized from providing

incorrect negative feedback. Second, rational buyers also

have no incentive to provide incorrect positive feedback.

In particular, if they were unhappy with the transaction,

providing positive feedback creates a new direct link to

the seller; this is likely to be highly undesirable if the

buyer felt defrauded, as it risks the buyer’s existing links.

Targeted attacks Another possible concern is whether

Bazaar introduces a new attack vector by allowing a ma-

licious user to conduct a targeted attack on a seller by

purchasing their goods and then always providing nega-

tive feedback (thereby damaging the seller’s reputation).

First, such an attack is possible in existing marketplaces,

as malicious users can conduct this attack by creating nu-

merous free identities and then purchasing the victim’s

goods. Thus, Bazaar does not open up a new avenue for

attack. Second, we note that Bazaar raises the bar on this

attack, making it more difficult to conduct: With today’s

marketplaces, the malicious users can purchase the vic-

tim’s goods immediately after creating another identity.

With Bazaar, the malicious users must first conduct non-

fraudulent transactions in order to obtain enough links

to be able to conduct the attack, making such an attack

significantly more difficult and less attractive.

Compromised accounts If a user’s account password is

compromised, an attacker can conduct fraudulent trans-

actions on the user’s behalf, eventually causing the user

to run out of links. However, this attack is not unique

to Bazaar, since attackers could conduct the same attack

with the reputation systems in-use today. Moreover, with

Bazaar, the amount of fraud that can be conducted is still

subject to the Bazaar bounds, whereas without Bazaar, it

is potentially unbounded.

Protecting sellers Bazaar, as described so far, focuses

on protecting buyers from being defrauded by malicious

sellers who manipulate their reputation. However, in cer-

tain marketplaces, it may be necessary to protect sellers

as well (e.g., from buyers who use fraudulent payment

mechanisms like stolen credit cards). We leave protect-

ing sellers to future work, with one comment: The need

to protect sellers is somewhat mitigated by the fact that

marketplace operators generally allow sellers to verify

payment before shipping the good.

Maintaining full network knowledge The design of

Bazaar proposed so far requires knowledge of the com-

plete risk network. This is not an unreasonable assump-

tion, as online marketplaces are generally run by a sin-

gle operator that has full knowledge of all transactions.

Given this information, the marketplace operator can cre-

ate and update the risk network as necessary. It may be

possible to decentralize knowledge of the risk network,

but this remains an open research question and is a sub-

ject of future work. A decentralized system has several

advantages with regards to privacy and scalability, but

as we do not know of any decentralized online market-

places, the path to deploy a decentralized solution is un-

clear.

5 Calculating max-flow using multi-graphs

The Bazaar design described so far relies on finding the

max-flow path between two nodes in order to calcu-

late the amount of risk embedded in a potential trans-

action. Since the risk network may have large number

nodes and links, finding the max-flow between nodes us-

ing traditional approaches like Ford-Fulkerson [8] and

Goldberg-Rao [9] may prove to be expensive. Similarly,

pre-computing max-flow values through techniques like

Gomory-Hu Trees [12] may also prove too costly, and are

complicated by the fact that the risk network is chang-

ing over time. Instead, Bazaar uses a novel approach

called multi-graphs in order to reduce the computation

required. In this section, we first describe useful obser-

vations on risk networks and of our desired max-flow al-

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 191

gorithm, detail the multi-graph data structure, and finally

demonstrate how multi-graphs reduce the complexity of

finding max-flow values.

5.1 Observations

We begin by making two observations concerning the

risk networks in online marketplaces and the properties

of the max-flow calculation in Bazaar.

1. Dense core First, like social networks [16], the risk

networks we observe in real-world online market-

places tend to have a dense core, meaning a small

minority of users possess the majority of the links.

Moreover, the higher-valued links (representing risk

relationships with higher values) also tend to fall

in this “core.” As a result, the risk network tends

to shrink rapidly if links with less than a specified

weight are discarded. We demonstrate this with

real-world data in the following section.

2. Actual max-flow not needed Second, and most im-

portant, Bazaar does not need to actually calculate

the value of the max-flow between a potential buyer

and seller. Instead, Bazaar simply needs to verify

whether the max-flow is above a certain value (i.e.,

the value of the potential transaction). This implies

that the complexity of calculating the max-flow in

Bazaar may not be as high as a general max-flow

calculation.

The multi-graph optimization, described next, leverages

both of these observations in order to reduce the com-

plexity of the max-flow calculation in Bazaar.

5.2 Multi-graphs

Formally, we define a multi-graph M to be a set of graphs

M = {G0, G1, ..., Gn}

where each graph Gi = (Vi, Ei). These graphs are re-

lated: First, G0 is defined to be the entire risk network.

Second, Gi is defined to be the subgraph of Gi−1 with

Ei = {e ∈ Ei−1 : w(e) ≥ k
i
}

Vi = {v : (v, ·) ∈ Ei}

where w(e) represents the weight of edge e and k is a

configurable system parameter with a suggested value of

2. Thus, the multi-graph contains a series of risk net-

works, where each subsequent network is a subgraph of

the previous containing only those links with an expo-

nentially higher weight. An example of converting a risk

network into a multi-graph is shown in Figure 4.

Figure 4: Conversion of a risk network (left) to a risk

multi-graph (right). Links with higher weights are shown

with thicker lines. Graphs at higher levels in the multi-

graph only include links with exponentially increasing

weights (e.g., with k = 2, the three levels of the multi-

graph would represent all links, links with weight $2 and

higher, and links with weight $4 and higher).

Note that a multi-graph contains multiple copies of a

given link, the weights of which need to be kept consis-

tent. There are three operations on the risk network under

which Bazaar must maintain consistency:

• Link addition When a new link is added, it is sim-

ply added to all of the graphs to which it belongs

(e.g., if the link weight is w, the link is added to

{Gi : w ≥ k
i
}).

• Link weight change When the weight of a link

is changed, it is simply added to or removed from

the appropriate graphs. Conceptually, this can be

viewed as removing the link from all graphs, fol-

lowed by adding it back at its new value.

• Link weight temporary adjustment Recall that

Bazaar may temporarily lower the weight of a link

when a transaction is in progress. Conceptually, this

can be viewed as changing the weight of the link.

Later, if the adjustment is undone, this can again be

viewed as a weight change.

5.3 Max-flow on multi-graphs

Now, let us consider what happens when Bazaar calcu-

lates whether a path set of total weight w exists between

a source and destination. With a normal risk network,

Bazaar must use an algorithm like Goldberg-Rao, which

runs over the entire risk network and is optimized to de-

termine the actual max-flow between the source and des-

tination.In contrast, with a multi-graph, Bazaar proceeds

by first finding the highest-weight network Gm where

both the source and the destination are present. Then,

Bazaar runs any existing max-flow algorithm on Gm,

looking for a set of paths of collective weight w. If such a

192 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

set is found, then the algorithm returns that set and is fin-

ished. If no such set is found, Bazaar repeats the process

with the next-lowest graph Gm−1. This process contin-

ues until either a set of paths of weight w is found, or

Bazaar cannot find such a set of paths in the lowest graph

G0. The latter case indicates that the max-flow in the

original risk network was lower than w, demonstrating

that finding the max-flow in a multi-graph is guaranteed

to have the same outcome as finding the max-flow in the

original risk network.

It is worth noting that multi-graphs require an increase

in storage costs, since multiple copies of many links must

be stored. However, as we demonstrate in the evaluation,

the storage requirements of the multi-graphs are modest

and are easily met by today’s computing hardware.

5.4 Benefit of multi-graphs

We now describe how the use of multi-graphs speeds up

the max-flow calculation in Bazaar. Consider the case of

a transaction of value w. First, because of observation

1 above, the sizes of the graphs Gi decrease extremely

rapidly as i increases. Thus, running a max-flow algo-

rithm over Gi is significantly faster than running it over

Gi−1. Second, because of observation 2, it is possible to

modify the max-flow algorithm to terminate as soon as it

finds a path set of weight w, instead of continuing to find

the actual max-flow. For example, if we are using Ford-

Fulkerson, only a few rounds may be are needed in order

to find a set of paths of weight w. Third, the increasing

link weights in higher Gi further reduce the running time

of the max-flow algorithm, as the path set in higher Gi

is likely to consist of only a few paths. As we demon-

strate in the evaluation, these effects allow multi-graphs

to significantly speed up the calculation in practice.

6 Evaluation

In this section, we present an evaluation of Bazaar. In

particular, we use data collected from a real-world on-

line marketplace to determine if the max-flow technique

employed by Bazaar is able to detect and prevent fraud-

ulent transactions. We describe the data collected, verify

our observations in the previous section, demonstrate the

performance gains of using multi-graphs, and present an

evaluation of Bazaar on real-world data.

6.1 Auction data

In order to evaluate Bazaar, we collect data from eBay,

the largest online marketplace. We focus on collect-

ing data from the ebay.co.uk site, containing United

Kingdom auctions.

Category Purchases Users Avg. Price

Clothes 3,311,878 1,436,059 £9.73

Collectibles 940,815 454,773 8.90

Computing 964,925 661,285 21.31

Electronics 861,108 652,350 20.67

Home/Garden 2,795,795 1,426,785 16.57

Total 8,874,521 3,168,455 £14.12

Table 1: Distribution and monetary values of feedback

seen in our trace.

eBay makes the feedback for all users public. Each

piece of feedback consists of the feedback value (posi-

tive, negative, or neutral), the auction the feedback was

for, the identity of the user providing feedback, and a

short message from that user explaining the feedback.

Feedback can be provided by both the buyer and seller, so

each auction can result in two pieces of feedback. eBay

only makes detailed feedback available for 90 days, after

which time, information about the auction the feedback

is for is removed, and only the feedback value, message,

and providing user remain. Thus, we are only able to

collect detailed feedback for the previous 90 days.

eBay provides an API to collect data, but rate limits the

requests to a very low rate. Instead, we use web scrap-

ing to collect data. We start from one user and crawl

their feedback profile. From this profile, we learn about

other users and proceed to crawl them. We continue this

process until we exhaust all known users, effectively per-

forming a breadth-first-search of the feedback graph.

In order to make our data collection process tractable,

we only consider auctions and feedback that occur in five

of the largest auction categories, shown in Table 1. Thus,

we do not crawl other users that appear in the feedback

history if the auction is not in one of these five categories.

Since eBay allows users to participate in international

transactions, not all users we discover are located in the

United Kingdom. We restrict our crawl to only consider

users located in United Kingdom, leaving us with a to-

tal of 3,168,455 distinct users (note that users may par-

ticipate in multiple categories). Finally, because Bazaar

focuses on protecting buyers from malicious sellers, we

only collect feedback from buyers to sellers (and ignore

feedback from sellers to buyers). In total, our dataset

contains information on 8,874,521 items of feedback.

6.2 Dense core of risk networks

We now turn to validate our observation in Section 5 that

motived our multi-graph design. Specifically, we exam-

ine whether there tends to be a dense “core” of users

in the risk network, which was necessary for the multi-

graph representation to have acceptable overhead. To do

so, we use a similar approach to prior studies [16] and ex-

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 193

 0

 0.25

 0.5

 0.75

 1

 1 10 100 1000

F
ra

c
ti

o
n

 o
f

L
in

k
s

R
e
m

a
in

in
g

Link Threshold (£)

clothes
collectibles
computing
electronics

home

 0

 0.25

 0.5

 0.75

 1
F

ra
c
ti

o
n

 o
f

R
e
m

a
in

in
g

N
o

d
e
s
 i
n

 L
a
rg

e
s
t

S
C

C

Figure 5: Fraction of links remaining (bottom) and frac-

tion of the remaining nodes in the largest SCC (top) as

only higher-weighted links are considered. Even as the

majority of links are discarded, the largest SCC still con-

tains most nodes, indicating the presence of a core.

amine the subgraph consisting of highly weighted links.

We are interested in both the size and the connectedness

of these subgraphs. Figure 5 shows how these two at-

tributes vary as only higher-weighted links are consid-

ered. As the threshold rises from £1 to £20, almost 80%

of the links are discarded. However, the vast majority of

the remaining nodes are still in the largest strongly con-

nected component (SCC), indicating the presence of a

strong core. For some of the categories, the largest SCC

does not disintegrate until only links of over £100 are

considered. This validates our observation from the pre-

vious section, and indicates that multi-graphs are likely

to speed up Bazaar’s max-flow calculations in practice.

6.3 Multi-graph performance

We now turn to evaluate the benefits of using the multi-

graph representation on the performance of finding max-

flow paths. Specifically, we examine the tradeoff be-

tween memory and speed; since multi-graphs store mul-

tiple copies of certain links, they naturally have higher

memory requirements than only using a risk network.

First, we show the number of multi-graph levels and the

resulting memory overhead, relative to the single graph,

of storing a multi-graph in Bazaar in Table 2. As can be

seen from the table, while the relative storage overhead

is a 3- to 4-fold, the absolute overhead is small.

Next, we turn to evaluate the speedup of verifying

whether a max-flow exists using a multi-graph in Bazaar.

To do so, we create separate risk networks from each

of the five categories by aggregating our feedback trace,

creating links between users who participated in transac-

tions with positive feedback. We then randomly select

Size Overhead

Category (MB) Levels Rel. Abs. (MB)

Clothes 7.38 12 234.6% 17.3

Collectibles 2.01 14 221.0% 4.44

Computing 3.47 13 282.9% 9.83

Electronics 3.23 13 255.9% 8.25

Home/Garden 7.31 13 251.8% 18.4

Table 2: Memory requirements of a single graph repre-

sentation of the risk network, and number of levels and

overhead (both relative and absolute) of a multi-graph

representation, with k = 2.

1,000 pairs of nodes from each category and an amount

from the prices in the observed auction trace. We cal-

culate the time required to verify whether a set of paths

exist with at least the selected auction amount between

the pair of users. For this experiment, we used a machine

with a 2.83 GHz Intel Xeon processor.

Table 3 presents the results of this experiment. Using

the multi-graph representation shows a significant per-

formance gain, with speed-ups ranging between 1.92×

and 2.86×. In fact, with the multi-graph, most of the

max-flow calculations take less than 6 seconds to com-

plete. However, most of the calculations that are suc-

cessful (e.g., a set of paths is found with at least the

specified weight) finish quickly, while the calculations

that eventually fail (e.g., no such set is found) take much

longer to finish, thereby inflating the average. This trend

is expected since a failure must traverse every graph in

the multigraph, whereas a success has the potential to

end early. This observation suggests a further avenue

for speeding up the max-flow calculation in practice, by

considering calculations that run longer than a specified

amount of time to have failed. For example, in the Com-

puting category, if all calculations that take longer than

two seconds are considered to have failed, this would

only misclassify 5.5% of the eventually to-succeed cal-

culations, and would lower the average running time

from 1.66 to 0.70 seconds.

Regardless, even without this further optimization, the

average max-flow calculations in the largest category we

examine (Clothes) required 6.29 seconds, meaning that

13,736 calculations could be completed per server per

day. Using our trace, we determined that the highest

number of auctions closing on a single day in this cat-

egory was 80,846, meaning that Bazaar could be de-

ployed in this category by purchasing a server with at

least 6 cores. Of course, synchronization would need to

be maintained to ensure that two cores were not using a

single link at once. We observed, though, that such con-

flicts occur rarely (0.0165% of the time in this category),

implying that parallelism of the max-flow algorithm [1]

is likely to provide significant performance gains.

194 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Time (s)

Category Single Multi-graph Speedup

Clothes 18.0 6.29 2.86×

Collectibles 2.53 1.18 2.14×

Computing 3.78 1.66 2.27×

Electronics 2.71 1.41 1.92×

Home/Garden 11.6 5.34 2.15×

Table 3: Average max-flow calculation times, and rela-

tive speedup when using multi-graphs with k = 2.

6.4 Detecting fraud with Bazaar

We now turn to examine how well Bazaar is able to de-

tect fraudulent transactions. In particular, we are inter-

ested in three aspects of Bazaar’s performance: First,

what is the impact on non-malicious users? In other

words, how often are non-malicious users’ transactions

incorrectly flagged as potentially fraudulent? Second, is

Bazaar able to bound the amount of fraud that malicious

users are able to conduct? Third, what impact, in terms

of the amount of fraud prevented, could we expect from

Bazaar if it were deployed on a online marketplace?

To conduct the evaluation, we use a random subset of

80% of the feedback data to create a risk network for

each of the five categories, and then use the remaining

20% of the feedback data to simulate the operation of

Bazaar. Because our data only represents a 90-day pe-

riod, many of the users participate only in a single trans-

action (and therefore have a max-flow of 0 to all other

users). In order to reduce the bias caused by our short

time-window of data, we only simulate users who we ob-

serve to participate in at least five transactions during the

time range. Finally, for each data point, we repeat the

experiment 10 times using different random seeds.

To simulate Bazaar, we need a few pieces of informa-

tion from each auction transaction: the identity of the

buyer and seller, the price of the auction, the purchase

and feedback time, and the feedback itself. Our crawled

data unfortunately only contains the purchase time for

54.6% of the data.5 So, for the auctions where the pur-

chase time is not available, we artificially select a pur-

chase time by subtracting a random “delay” from the

feedback time. This delay is randomly drawn from the

observed purchase-time-to-feedback-time delay distribu-

tion of the other auctions.

6.4.1 Impact on non-malicious users

Our first evaluation examines the potential negative im-

pact that Bazaar has on non-malicious buyers and sellers.

The primary form that such impact takes is incorrectly

5In more detail, the purchase time of fixed-price auctions—where a

user sells multiple, identical items at a fixed price—is not available, as

these auctions have multiple buyers purchasing the items.

Fraction of transactions

Category incorrectly flagged

Clothes 1.11%

Collectibles 1.12%

Computing 3.23%

Electronics 4.68%

Home/Garden 2.43%

Table 4: Fraction of non-fraudulent transactions that are

incorrectly flagged as fraudulent by Bazaar. The fraction

flagged incorrect is never higher than 5%, indicating that

non-malicious users are largely unaffected.

flagging transactions as potentially fraudulent. To de-

termine the frequency with which this happens, we sim-

ulate Bazaar without any malicious users and calculate

the fraction of transactions that had positive feedback

but that would have been flagged by Bazaar due to in-

sufficient max-flow. The results of this experiment are

shown in Table 4, listing the fraction of non-fraudulent

transactions which are flagged as potentially fraudulent

by Bazaar. The results show that no more than 5% of all

non-fraudulent transactions are flagged, indicating that

non-malicious users in Bazaar are largely unaffected.

6.4.2 Blocking malicious users

We now evaluate whether Bazaar is able to bound the

amount of fraud that malicious users can conduct in prac-

tice. Recall that Bazaar guarantees that each user is only

able to conduct fraudulent transactions up to the amount

of non-fraudulent transactions that he has participated in.

Thus, we are interested in comparing how much fraud

malicious users can conduct, relative to the amount of

non-fraudulent transactions they participated in.

To simulate the behavior of malicious users, consistent

with prior studies [22], we randomly select 1% of the

users to be malicious. For each user, we simulate Bazaar

running with other, randomly selected users purchasing

items from the malicious user. We then calculate the total

amount of fraudulent transactions that each user can con-

duct, until the point at which Bazaar flags all transactions

with the malicious user as potentially fraudulent.

Figure 6 presents the results from conducting this ex-

periment, by plotting the amount of fraudulent transac-

tions a malicious user can conduct versus the sum of

the malicious user’s initial links. As can clearly be seen

in the figure, Bazaar’s bound on the amount of fraudu-

lent transactions holds: the amount of possible fraud is

strictly bounded by the sum of the non-fraudulent trans-

actions that the malicious user has participated in so far.6

6A careful reader will note that malicious users are sometimes

bounded to less than the actual total of their previous successful trans-

actions. This occurs when, for example, a malicious user is the only

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 195

 1

 10

 100

 1000

 1 10 100 1000

T
o

ta
l

F
ra

u
d

 P
o

s
s

ib
le

B
e

fo
re

 D
e

te
c

ti
o

n
 (

£
)

Total of Previous Successful Transactions (£)

Expected

clothes
collectables

computing
electronics

home

Figure 6: Aggregate amount of fraudulent transactions

that malicious users can conduct versus the aggregate

value of previous successful transactions. Also included

is the expected bound (y = x). As expected, Bazaar en-

sures that malicious users can only commit fraud up the

amount of successful transactions that they have partici-

pated in previously.

Even if the malicious user whitewashes his account (by

creating a new identity), or conducts a Sybil attack (by

creating multiple identities and linking them by fictitious

transactions), he is unable to conduct any more transac-

tions that are not flagged as potentially fraudulent.

6.4.3 Preventing fraud

As a final point of evaluation, we examine the amount of

fraud that Bazaar would prevent, were it to be deployed

on a real-world online marketplace. In other words, what

impact could we expect from Bazaar?

To evaluate this, we use the same 90-day trace from the

five eBay categories. Then, for each seller, we calculate

the total amount of goods sold with positive feedback,

and the total with negative feedback. Recall that Bazaar

prevents any user from having more (price weighted)

negative feedback than positive feedback, so the auctions

that represent the excess negative feedback would have

been flagged as potentially fraudulent. We therefore cal-

culate the total of this excess, and determine what frac-

tion of the overall negative feedback it represents.

Table 5 presents the results. Bazaar would have

flagged between 29% and 42% of all auctions that re-

sulted in negative feedback as being potentially fraud-

ulent, thereby possibly preventing these auctions from

occurring. While we cannot say that all of these trans-

actions represent fraud (e.g., the negative feedback could

simply represent buyer’s remorse), the fact that these all

come from sellers whose weighted negative feedback is

greater than their weighted positive feedback strongly

suggests so. In total, the auctions that Bazaar would have

prevented represent £164,791.55 worth of goods, signifi-

user that another user is linked to: Even though the malicious user’s

total is increased, this link does not increase the max-flow to any other

users (much in the manner of the X2...X5 identities in Figure 3).

Fraction of all

Category Total flagged negative feedback

Clothes £28,291.34 29.9%

Collectibles 4,995.04 38.2%

Computing 48,742.66 39.7%

Electronics 34,476.87 42.6%

Home/Garden 47,285.64 32.4%

Total £164,791.55 36.0%

Table 5: Total number of auctions with negative feed-

back that would be flagged as potentially fraudulent,

and the fraction of all auctions with negative feedback

that this represents. Overall, Bazaar would have flagged

£164,791.55 worth of auctions that eventually resulted in

negative feedback, representing 36% of all such auctions.

cantly bolstering the reliability of the online marketplace.

Moreover, this amount is only for a 90-day period in the

five categories we study; the amount is likely to be sig-

nificantly higher if Bazaar were deployed on the entire

marketplace and over a longer period of time.

7 Related work

Researchers have previously studied approaches to de-

tecting auction fraud, usually relying on machine-

learning techniques [4, 18] based on bidding behavior.

While these techniques succeed at detecting some fraud-

ulent users, they rely on characteristics of malicious be-

havior. As a result, unlike Bazaar, these approaches do

not provide a bound on the amount of fraud any user can

conduct. Additionally, researchers have developed tech-

niques [14, 21] to detect shill bidding, where users con-

spire with others to artificially inflate the selling price of

their auctions. Bazaar is complementary to this work, as

it is not concerned with shill bidding, but rather, fraud

caused by reputation manipulation.

Other work [5, 10] has examined building reputations

based on social relationships between users. While some

of the techniques used are similar to Bazaar, Bazaar must

determine pairs of trusting users itself (instead of as-

suming pairwise trust is externally provided). This in-

troduces significant challenges, but enables Bazaar to be

deployed on existing sites.

There is also significant work that studies the network

formed by users who trust each other, and a number of

research systems have already been proposed to lever-

age this trust. Perhaps the most well known of these are

the PGP web of trust [27] and the Advagato trust met-

ric [2]. However, these systems are generally concerned

with providing a stronger notion of identity, instead of

bounding the amount of malicious activity.

More generally, recent work has focused on detecting

Sybil accounts using social networks [6, 25, 26]. These

196 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

approaches are not directly applicable to online market-

places for two reasons: First, they assume the existence

of a social network that is not necessarily present, and

second, they only bound the number of Sybil accounts

that are admitted, not on the amount of fraud that mali-

cious users can conduct. Thus, even with Sybil detection

algorithms, malicious users are still able to conspire to

arbitrarily inflate each others’ reputations.

Like other work [22], Bazaar uses a mechanism that

is loosely based on the one used in Ostra [17], a system

that uses a social network to block senders of unwanted

communication. However, Bazaar differs from Ostra in

three important ways. First, while Ostra is based on a rel-

atively stable, unweighted social network, Bazaar uses a

weighted risk network that is changing with every trans-

action (e.g., links are added and removed, and the links

weights can grow and shrink over time). Second, Os-

tra assumes the trust network is given from an external

source, while Bazaar constructs the risk network dur-

ing the operation of the system. This requires Bazaar

to face additional challenges, as malicious users are able

to create links by participating in transactions (this is not

possible in Ostra, as Ostra’s assumption is simply that

links to non-malicious users take effort to form and main-

tain). Third, Bazaar works by calculating the max-flow

in the risk network, instead of simply finding a single

path (as in Ostra). This induces significant engineering

challenges and results in a system with a different set of

guarantees.

8 Conclusion

In this paper, we presented Bazaar, a system that

strengthens user reputations in online marketplaces.

Bazaar is based on max-flow calculations over a risk

network, a data structure that encodes the amount of

rewarded shared risk between participants. Using data

on over 8 million purchases from a real-world online

marketplace, we demonstrated that Bazaar is able to ef-

fectively bound the fraud that malicious users are able

to conduct, while only rarely impacting the transactions

conducted between non-malicious users.

Given the popularity of online marketplaces and the

large amount of fraud that such marketplaces currently

experience, our hope is that Bazaar can be used as a drop-

in component on real-world sites. Bazaar is designed to

be readily applied to such marketplaces.

Acknowledgements

We thank the anonymous reviewers, Peter Druschel,

Lakshmi Subramanian, Bimal Viswanath, and our shep-

herd, Dina Katabi, for their helpful comments. This re-

search was supported in part by NSF grant IIS-0964465

and an Amazon Web Services in Education Grant.

References

[1] R. J. Anderson and J. Setubal. On the parallel implementation of

Goldberg’s maximum flow algorithm. SPAA, 1992.
[2] Advagato Trust Metric. http://www.advogato.org/

trust-metric.html.

[3] Amazon Merchants and Marketplace. http://www.

amazonservices.com/content/sell-on-amazon.

[4] D. H. Chau, S. P, and C. Faloutsos. Detecting fraudulent person-

alities in networks of online auctioneers. PKDD, 2006.

[5] D. DeFigueiredo and E. T. Barr. TrustDavis: A Non-Exploitable

Online Reputation System. CEC, 2005.
[6] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil Nodes using

Social Networks. NDSS, 2009.

[7] J. Douceur. The Sybil Attack. IPTPS, 2002.

[8] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.

Can. J. Math., 8, 1956.

[9] A. Goldberg and S. Rao. Flows in Undirected Unit Capacity Net-

works. FOCS, 1997.

[10] A. Ghosh, M. Mahdian, D. Reeves, D. Pennock, and R. Fugger.
Mechanism Design on Trust Networks. WINE, 2007.

[11] D. G. Gregg and J. E. Scott. The Role of Reputation Systems

in Reducing on-Line Auction Fraud. Int. J. Elec. Comm., 10(3),

2006.

[12] R. E. Gomory and T.C. Hu. Multi-Terminal Network Flows.

SIAM, 9(4), 1961.

[13] D. Houser and J. Wooders. Reputation in Auctions: Theory, and
Evidence from eBay. Econ. Strat., 15, 2006.

[14] R. J. Kauffman and C. A. Wood. Running up the bid: Detecting,

predicting, and preventing reserve price shilling in online auc-

tions. ICEC, 2003.

[15] D. Lucking-Reiley, D. Bryan, N. Prasad, and D. Reeves. Pennies

from eBay: The determinants of price in online auctions. Indus.

Econ., 55(2), 2007.

[16] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B.
Bhattacharjee. Measurement and Analysis of Online Social Net-

works. IMC, 2007.

[17] A. Mislove, A. Post, K. P. Gummadi, and P. Druschel. Ostra:

Leverging trust to thwart unwanted communication. NSDI, 2008.

[18] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe:

a fast and scalable system for fraud detection in online auction

networks. WWW, 2007.

[19] P. Resnick and R. Zeckhauser. Trust Among Strangers in Internet
Transactions: Empirical Analysis of eBay’s Reputation System.

The Economics of the Internet and E-Commerce, volume 11, El-

sevier Science, 2002.

[20] B. Sullivan. Man arrested in huge eBay fraud. 2003. http:

//www.msnbc.msn.com/id/3078461/.

[21] H. S. Shah, N. R. Joshi, A. Sureka, and P. R. Wurman. Mining

eBay: Bidding strategies and shill detection. WebKDD, 2002.

[22] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-Resilient On-
line Content Voting. NSDI, 2009.

[23] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:

Using Hard AI Problems for Security. EuroCrypt, 2003.

[24] J. Weaver. How a bold eBay scam was tracked to South Florida.

The Miami Herald, 2010.

[25] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit:

A Near-Optimal Social Network Defense Against Sybil Attacks.
IEEE S&P, 2008.

[26] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-

Guard: Defending Against Sybil Attacks via Social Networks.

SIGCOMM, 2006.

[27] P. R. Zimmermann. The Official PGP User’s Guide. MIT Press,

1994.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 197

Dewdrop: An Energy-Aware Runtime for Computational RFID

Michael Buettner∗, Ben Greenstein† and David Wetherall∗†
University of Washington∗and Intel Labs Seattle†

Abstract
Computational RFID (CRFID) tags embed sensing and
computation into the physical world. The operation of
the tags is limited by the RF energy that can be harvested
from a nearby power source. We present a CRFID run-
time, Dewdrop, that makes effective use of the harvested
energy. Dewdrop treats iterative tasks as a scheduling
problem to balance task demands with available energy,
both of which vary over time. It adapts the start time
of the next task iteration to consistently run well over a
range of distances between tags and a power source, for
different numbers of tags in the vicinity, and for light
and heavy tasks. We have implemented Dewdrop on top
of the WISP CRFID tag. Our experiments show that,
compared to normal WISP operation, Dewdrop doubles
the operating range for heavy tasks and significantly in-
creases the task rate for tags receiving the least energy,
all without decreasing the rate in other situations. Using
offline testing, we find that Dewdrop runs tasks at better
than 90% of the best rate possible.

1 Introduction

Computational RFID (CRFID) tags are an emerging
technology in which sensing and computational abilities
are added to traditional RFID tags. Passive UHF RFID
tags run and transmit an identifier using energy gathered
from the transmissions of nearby RFID readers; they are
very small and have no battery or long-term energy store.
This ability makes them widely useful in commercial set-
tings to, for example, automate interactions with pass-
ports and drivers licenses, identify animals, and track re-
tail goods in manufacturing and supply chains. The ad-
dition of sensing and computation with CRFIDs enables
a broader range of sensing applications, including cold-
chain monitoring, access control, embedded monitoring
of bridges and planes, gestural interfaces, activity recog-
nition, and non-intrusive physiological monitoring [2].
These and other applications depend on very small, long-
lived nodes that can be deeply embedded into the physi-
cal environment in ways that go beyond sensor nodes and
approach the original vision of “smart dust” [28].

The research agenda associated with CRFIDs is now
becoming defined as the community uses prototype tags
to experiment with applications [3, 6, 9]. A fundamental
problem for these devices is the efficient use of energy.

Energy is the scarce resource that limits the amount of
computation that can be performed because it must be
harvested at low rates from signals transmitted by readers
meters away. Further, to remain physically small and to
power-up quickly, CRFIDs have miniscule energy stores
compared to sensor network nodes. For example, the en-
ergy store of the WISP [24] prototype tag is eight or-
ders of magnitude smaller than the battery of the popu-
lar Telos sensor mote[18]. This means that CRFIDs will
typically exhaust and recharge their energy stores many
times a second. In turn, it means that runtimes for sensor
networks are of little use for CRFIDs. Sensor node run-
times seek to keep long-term expenditures below long-
term harvesting or to maximize node lifetimes measured
in days [14]. In contrast, CRFID runtimes must take a
short-term view to match lifetimes measured in millisec-
onds.

The problem we tackle in this paper is how CRFID
tags can make efficient use of the available energy. The
naive RFID power model on which CRFIDs are based
is for the tag to turn on and run whenever it is powered
by the reader. This approach works for traditional RFID
tags because tag functionality is very simple (a state ma-
chine with memory) and can be run in the worst case
at the limit of the energy harvesting range. However,
CRFID tasks consume greater energy with more compli-
cated tasks that use sensors and computation. By adopt-
ing the model of running whenever there is power, cur-
rent CRFID designs reduce the range at which a CRFID
tag functions and limit the kinds of tasks that can be run.
Prior work has looked at tuning the CRFID hardware
constants (e.g., capacitor sizes) to better match available
energy to a specific task [8]. Instead, our approach is
to view the need to match harvested energy to task con-
sumption as a scheduling problem. We wake the tag out
of deep sleep only when it is likely to execute a task ef-
ficiently. This enables devices to run a range of tasks
efficiently without requiring hardware modications.

We present the design and evaluation of Dewdrop, an
energy-aware runtime for CRFID tags. We have imple-
mented Dewdrop on the Intel WISP tag, and have exper-
imented by powering the tags using a commodity Impinj
UHF RFID reader for a range of distances, number of
competing tags, and light and heavy CRFID tasks. By
waking tags at the right times, we find that we can run
tasks where they previously could not run, and about as
often as possible given the energy that the RF environ-
ment provides. Prior to our work, the WISP had an oper-

1

198 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ating range sufficient for point demonstrations. With our
runtime, it is possible to use a single RFID reader to track
CRFID tags on everyday objects in a room with enough
responsiveness for activity inference.

While Dewdrop is conceptually simple, we found a
practical design difficult to achieve for several reasons.
First, the energy needed to run a task and the input RF
power both vary greatly over time due to factors such
as non-deterministic protocols and reader frequency hop-
ping. This hampers predictions of when to start the next
task execution. Second, our intuition about energy stor-
age as a simple reservoir proved wrong because a fixed
amount of energy is more or less expensive to store de-
pending on when it is gathered, and the rate at which
it is consumed depends on when it is spent. This leads
us to track other forms of waste. Finally, it is costly to
gather the basic information needed to make scheduling
decisions because CRFIDs are so energy impoverished.
This required opportunistic measurement strategies and
careful implementation.

We make three contributions. First, we formulate the
task scheduling problem for CRFID tags with limited en-
ergy storage. Second, we present the design of a runtime
that enables CRFID tags to adapt their behavior to best
match task energy requirements to available energy over
the factors that most affect efficiency. Third, we show by
experimentation with the WISP tag and an Impinj RFID
reader that our design is much more effective than prior
techniques for real energy costs and RF conditions. Dew-
drop doubles the operating range for heavyweight tasks
as compared to the WISP hardware that runs tasks when-
ever there is power, and keeps overhead low to match
the performance for lightweight tasks to which the WISP
hardware is well suited.

The rest of this paper is organized as follows. We
start with background in Section 2 and then define the
task scheduling problem for CRFIDs in Section 3. We
present the design of Dewdrop and its implementation in
Sections 4 and 5. Our experimental evaluation is in Sec-
tion 6. We follow with related work in Section 7 and
conclude in Section 8.

2 Background

We begin with relevant background on computational
RFID because it is an emerging research area.

CRFID tags and the WISP. CRFID tags combine RFID
technology for energy harvesting and backscatter com-
munication with computation and sensing. The proto-
type CRFID tag that we use is the Intel Wireless Identi-
fication and Sensing Platform (WISP) [24]. Other pro-
totype CRFID tags exist [21, 30], but the WISP is the
most widely used because it is available to the academic

Figure 1: Gen 2 tag, Intel WISP, Telos mote.

community.1
Figure 1 shows the WISP in comparison to a Gen 2

UHF RFID tag and a Telos mote. Like an RFID tag, it is
small, thin, and battery-free. It runs only when powered
by energy harvested from an EPC Gen 2 RFID reader
and communicates with the reader using a low-energy
form of signaling called backscatter. The current WISP
can harvest sufficient power to operate at up to 4m. As
advances in processor and sensor technology continue to
reduce power consumption, the range of WISP tags will
increase accordingly.

Like a very low-end mote, the WISP is fully pro-
grammable, capable of running small programs, and
equipped with sensors. The WISP runs programs written
in C on an ultra-low power 16-bit MSP430 microcon-
troller and has 8K of flash memory, a 3D accelerometer,
and temperature and light sensors.

However, unlike an RFID tag, the WISP consumes
considerably more power when computing, communicat-
ing and sensing than can normally be harvested from the
reader signal. Consequently, the WISP must duty cycle
between a low-power sleep mode, in which the energy
needed to run is gathered into a short-term energy buffer,
and an active mode in which stored energy is consumed.

We expect future CRFID tags to be more capable
than the WISP, but to remain very-low end devices,
even compared to sensor nodes. As the power efficiency
of the devices improves slowly over time, so too will
the sensing and processing demands that are placed on
them; thus, the disparity between harvestable power and
operating power will remain.

CRFID Applications. CRFID tags and readers are en-
ablers for ubiquitous computing applications that benefit

1See wisp.wikispaces.com for open-source WISP software
and hardware designs. WISPs are in use at more than 30 universities.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 199

from instrumentation on or as part of objects in the phys-
ical world. For example, the WISP has been used to pro-
totype applications for gesture-based access control [6],
cold chain monitoring [29], and activity recognition for
eldercare [3].

We delve into the last scenario to give one example of
a workload that Dewdrop is intended to support. The au-
tomatic recognition of the activities of elderly people can
improve quality of life by helping elders remain in their
own homes for longer with inexpensive care. It does this
by tracking key indicators of well-being such as medi-
cation adherence, mobility and exercise, food and water
intake, changes in routine, and safety [17]. The use of
CRFIDs for activity recognition can deliver a solution
that is inexpensive and non-intrusive. CRFIDs with ac-
celerometers can be affixed to objects in an elder’s home,
and data gathered from the tags can be used to determine
activity. This has advantages over existing solutions as
it requires neither monitoring by cameras, which can in-
vade privacy, nor on-body sensors, which can be incon-
venient for elders. Additionally, this type of deployment
would be difficult using motes because of their size and
cost.

In earlier work, we prototyped such a system by tag-
ging objects an elderly person normally interacts with—
her medicine cabinet, tea kettle, teacup, toothbrush,
etc.—with CRFIDs with onboard accelerometers [3].
RFID readers were placed out of sight in the ceiling.
Each CRFID repeatedly sampled its accelerometer and
transmitted its value to the readers. The readers detected
tags that moved by looking for changes in those values,
for instance, when a CRFID-tagged medicine bottle is
picked up. Activities such as preparing a meal and tak-
ing medicine were then inferred from sequences of object
use.

We built our earlier system using WISPs and found
that the system worked, albeit with a smaller coverage
region and lower response rates than we expected. This
meant that we needed to deploy multiple readers per
room, and even then some tags responded infrequently,
which degraded activity inference. After some investiga-
tion, we determined that the WISPs were wasting much
of the available energy. That discovery led to our work
on Dewdrop.

3 Problem

Our goal is to run programs on CRFID tags in a way that
makes the best use of the available energy, which in turn
extends operational range and increases responsiveness.
In this section, we formulate this goal as a scheduling
problem and describe the key challenges.

Figure 2: Example message exchange of a reader identi-
fying a tag.

3.1 Task Model
In our setting, a reader powers one or more nearby tags
and requests that they perform tasks. Tags may come
and go from the range of a given reader as the RF envi-
ronment changes or the tag or reader moves. In keeping
with other CRFID and RFID applications, we assume
that each CRFID tag repeatedly executes a single fixed
operation as often as possible (e.g., reporting a sample),
but from time to time may be retasked to perform a differ-
ent operation (e.g., switch from sampling the accelerom-
eter to measuring the light level). Additionally, tags in
the deployment may be executing different tasks. As a
tag considers only one type of task at a time, scheduling
the order and execution of multiple tasks on a single tag
is both unnecessary and out of scope.
We define a task to mean a short program that is run

to completion without pause. While it may be possi-
ble to break some tasks into phases, the timing require-
ments of the tag hardware, the RFID protocol, and ap-
plication requirements make it impractical to interrupt
many tasks once they start. Due to the operating con-
straints of a tag, tasks are fairly inflexible and have lim-
ited functionality. They can support modest processing,
e.g., for lightweight encryption, but generally consist of
sensing and reporting operations. Even with this limited
task diversity, tasks have very different power require-
ments. For example, measuring the light level consumes
much less power than activating and sampling the ac-
celerometer. We experiment with examples at the lower
and higher ends of this spectrum later in the paper.

We assume that CRFID tags will be powered by a
standard Gen 2 RFID reader, at least in the near future.
This is likely, as it allows CRFID tags to take advan-
tage of deployed and commodity infrastructure. Tasks
often return a result to the reader. Contention between
the transmissions of multiple tags is managed by the EPC
Gen 2 MAC protocol [7] that is based on Framed Slot-
ted Aloha [25]. To gather tag IDs, the reader transmits
a Query command that indicates the number of slots in
the frame. Tags then randomly choose a slot in which to
reply, and transmit a 16-bit random number in their slot.

3

200 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The reader ACKs this random number and the tag replies
with a 96-bit identifier. An example of this exchange is
shown in Figure 2, where no tag chooses the first two
slots, and one tag responds in the third slot. Tags that
collide in a slot are not ACKed and respond again after
the next Query. The reader iteratively modifies the frame
size to best match the number of tags that are present.
Sensor and other data is transferred on top of this pro-
tocol, either by overloading the identifier bits or using
further commands that read and write tag memory. New
MAC protocols specially designed for CRFIDs are also
of interest, but we leave them to future work.

3.2 Task Scheduling Goal
Given that tags repetitively execute a task whenever pos-
sible and the reader power is not controlled by the tags,
maximizing energy efficiency is equivalent to maximiz-
ing the rate at which tasks successfully complete. We
use task completion rate, in terms of how many task it-
erations succeed over a given time period, as a metric to
evaluate the performance of Dewdrop in the steady state.
Since energy falls off with distance (at least as quickly as
distance squared), we expect the completion rate to fall
with distance. But, it should not fall more quickly than
the available energy.

CRFID tags like the WISP collect the energy har-
vested from RF signals into a capacitor that matches
the fluctuating input power to the steady output power
needed to run the tag. Energy is harvested whenever a
nearby reader is transmitting an RF signal. Like an RFID
tag, the WISP hardware begins task execution whenever
a fixed, hardware-defined power level that is sufficient
to activate the tag is reached. Once a task iteration has
started, it may either run to completion or fail if the CR-
FID tag runs out of energy first. We use this fixed, hard-
ware approach as a baseline for comparison in our eval-
uation.

Dewdrop replaces the fixed, hardware approach with
an adaptive software strategy. There is only one decision
that a tag can make to improve energy efficiency: to defer
the start of a task it could otherwise begin, sleeping until
the energy store becomes more full. This is useful be-
cause the larger store of energy increases the chance that
the task will run to completion. However, it is waste-
ful in terms of time and energy if the task would have
succeeded anyway. The runtime’s job is to decide when
to run and when to sleep depending on the task and RF
environment.

3.3 Challenge: Varying Task Needs
A good runtime will not start a task unless there is
(likely) sufficient energy to complete it, as failing a

task consumes energy without doing useful work. Yet
whether a task will succeed is difficult to predict because
task energy requirements vary greatly due to two main
factors.
Different size tasks. The energy consumption of differ-
ent tasks can vary widely depending on the sensors they
use, the computation they perform, and their communi-
cation patterns. In our experiments, we consider a light
task that simply takes an accelerometer reading, and a
much heavier task that additionally uses the RFID com-
munication protocol to send the accelerometer data to the
reader by embedding it in the tag identifier. We refer to
these as the SENSE and SENSETX tasks, respectively.
Non-deterministic tasks. Tasks may be non-
deterministic, which causes their energy requirements to
vary from execution to execution. An important source
of non-determinism is the RFID MAC protocol. The
number of messages that a tag must process to commu-
nicate with the reader depends on both the number of
other tags present and the collisions that happen to oc-
cur. As a consequence of the way the protocol works, a
tag that chooses to take part in a communication round
must complete the transaction; it cannot sleep or it will
lose synchronization with the reader. Other sources of
non-determinism may come from sensor data itself, the
timing of reader queries (which a tag cannot control or
predict) or random numbers used in security protocols.

3.4 Challenge: Platform Inefficiencies
The variation in task energy requirements suggest that a
better strategy might be to overestimate the task needs.
For example, a tag could harvest energy until its buffer
is completely full before executing a task. In this way, it
would run with “a full tank” to avoid preventable failures
and top off between tasks. Unfortunately, storing excess
energy is wasteful due to platform characteristics.
Sublinear charging. CRFIDs use capacitors for energy
storage as they are well suited to energy harvesting de-
vices [12]. They charge quickly, recharge indefinitely,
are small and inexpensive, and are non-toxic. How-
ever, capacitors store energy faster when they are close to
empty than when nearly fully charged. This nonlinearity
is fundamental to the way capacitors work. As the ca-
pacitor voltage, which increases with increasing charge,
approaches the voltage supplied by the energy harvesting
circuitry, the charging current decreases to zero. Thus, to
increase the task rate, it makes sense to operate with a
lightly charged capacitor.
Superlinear discharge. Regulating circuitry must ad-
just the supplied (input or stored) voltage to the operat-
ing voltage. Differences in voltage levels inevitably lead
to some voltage-dependent conversion losses. For exam-

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 201

ple, the WISP uses a linear regulator that sheds the volt-
age difference by dissipating heat, which wastes energy.
Other techniques are possible but come with their own
tradeoffs (e.g., switching regulators are more efficient but
have greater leakage, don’t work when the input voltage
is near the target voltage, and are inefficient when they
start up2). To minimize energy wasted while discharg-
ing, the tag again should operate with its capacitor at a
minimal charge.
The exact inefficiencies will vary with the CRFID, but

we believe that all real platforms will have these kinds of
nonlinearities. The implication is that a quantum of en-
ergy may cost (or be worth) a different amount depend-
ing on when it is gathered (or spent), with excess energy
being more wasteful.

3.5 Challenge: Varying Input Power
Even assuming that the tag runtime could accurately esti-
mate tasks costs, it is difficult to know how long to sleep
to store sufficient energy because the rate at which a tag
harvests energy changes over time.
Widely varying input powers. RF power received at a
tag decreases at least as fast as the square of its distance
from the reader. In practice, this means that the available
energy varies by more than an order of magnitude over
useful ranges. Hardwiring tags to operate at the low end
of the power scale wastes a significant opportunity at the
high end of the scale, and restricting tags to operate at
the high end of the scale limits operational range. Ad-
ditionally, CRFIDs harvest energy even when the task is
being executed. When the tag is close to a reader less
energy will be drained from the energy store than when
further from the reader. Consequently, when close to the
reader, less energy needs to be stored before execution
can begin.
Frequency selective fading. RFID systems operate in
the 900MHz ISM band, so the reader must frequency
hop every 400ms to obey FCC regulations. Multipath ef-
fects result in different frequencies being attenuated dif-
ferently. This means that the received power at tags can
vary widely over short time scales.

4 Design

We now develop the design of our energy-aware runtime,
Dewdrop. The main scheduling decision is when to start
the next task iteration. Starting too soon wastes energy
when the tag runs out of power and the task fails. Start-
ing too late collects excess energy, which is inefficient
to both store and use. Our approach is to minimize both

2This and other parts and design tradeoffs make the linear regulator
the best choice for the WISP.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Distance (m)
1 1.5 2 2.5 3 3.5 4

D
ro

p
in

 V
ol

ta
ge

Figure 3: Voltage drop forSENSETX (upper black items)
and SENSE (lower blue items).

forms of waste. As we develop our design, we present
microbenchmarks using the WISP to show the impor-
tance of the different factors we identified as challenges.

4.1 Design Goals

From our problem formulation, the overarching goal of
Dewdrop is to convert all available energy into completed
task iterations. This goal is equivalent to two sub-goals
that help to enable new applications:

Increased range. We want our runtime to execute a
task at greater distances from the reader than the base-
line WISP hardware. Each task should work from next
to the reader out to the distance at which the tag can no
longer harvest enough energy for the task.

Improved responsiveness. At all distances, we want to
increase responsiveness compared to the baseline WISP
hardware. We never want to noticeably decrease respon-
siveness.

Both goals are met by maximizing the task completion
rate for a given task and distance from the reader. In
practice, achieving them implies that we must meet two
other goals:

Low overhead. The implementation of Dewdrop must
be extremely lightweight. Operations such as checking
the level of the energy store or calculating sleep periods
consume scarce energy. Even a modest amount of over-
head can easily negate the benefits of scheduling tasks.

Adaptation. Tags must operate well across a range of
deployment scenarios. For example, they may be config-
ured to run either heavy or lightweight tasks, and they
must run their task efficiently both when near and far
from a reader. Our performance sub-goals are stated
across these factors, so Dewdrop must adapt to the en-
vironment at runtime.

5

202 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.2 Variation in Task Costs

To predict when to start a task, Dewdrop must estimate
how much energy the task will need over and above the
energy that will be harvested by the tag while it runs the
task. This depends on the factors we previously identi-
fied: the task itself, other tags competing for the medium,
the distance from the reader and the frequency on which
the reader is transmitting, and the amount of energy al-
ready in the capacitor. All of these factors are fundamen-
tal. However, they may differ in magnitude with implica-
tions for system design. For example, if the energy needs
depend mostly on the type of task, then each task could
be profiled offline to characterize its fixed energy need.

To understand how much these factors matter in
practice, we ran an experiment with the SENSE and
SENSETX tasks running on a WISP. For the WISP, the
energy consumption of a task can be measured by the
drop in the voltage of the capacitor that acts as a short-
term energy buffer3. Figure 3 shows this voltage drop as
a function of distance for the two tasks. Box plots show
the distributions over at least 300 task executions at each
distance.

The SENSE task is deterministic. However, we see that
the voltage drop is significantly larger when the tag is far
from the reader than when it is close to the reader; it
more than triples. This is because the input power from
the reader varies by more than an order of magnitude. A
second effect is that the variance is larger when the task
is run close to the reader because the input power supple-
ments stored energy and varies with the reader transmit
frequency. At 1m this variance is approximately 0.3V
compared to 0.1V at 4m.

Looking at the SENSETX task, the drop in voltage is
almost three times larger than for SENSE. At 4m, the
WISP cannot store sufficient energy to execute the task4.
The variation is also higher at all distances because this
task is non-deterministic. Its energy consumption de-
pends on randomization in the Gen 2 MAC protocol, and
the variation would be even greater if there were multiple
WISPs (which we study as part of our evaluation).

These results imply that Dewdrop should adapt to both
the task and the environment in which the tag is operat-
ing. Any fixed energy target at which to start a task will
be either too low, causing the tag to fail at a distance
when it could still run, or too high, causing the tag to run
tasks more infrequently than it is capable of sustaining.
A second implication is that it is likely not feasible to
accurately estimate the energy needs of a particular task
execution due to inherent variation. Instead, Dewdrop

3The energy stored in a capacitor is calculated as 1
2
CV 2, where C

is the capacitance and V is the measured voltage.
4To even run the task over a range of distances we needed to modify

the baseline WISP behavior.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Time (ms)

Vo
lta

ge

1 m
2 m
4 m

Figure 4: WISP capacitor voltage over time

must adapt an estimate of energy needs that captures the
effects of the distribution.

4.3 Minimizing Wasted Energy

Sources of waste. Energy is wasted when the CRFID tag
starts too early and fails to complete the task, or waits
too long and inefficiently collects excess energy. How
much energy is wasted in these cases depends on how
CRFID tags convert reader energy into harvested energy
and consume this energy.

To gain some insight, we performed a simple exper-
iment by charging a WISP without running any task.
Figure 4 shows the voltage of the WISP capacitor as it
charges at different distances. (The RF source powers on
at approximately 200 ms.) This is the expected behavior.
A capacitor’s charging rate decreases by a factor of e ev-
ery RC seconds, where R and C are the resistance and
capacitance of the RC circuit and e is the base of nat-
ural logarithms, and asymptotically approaches zero as
the capacitor charges to the voltage of the power source.

This charging behavior has two implications. First, it
shows the effects of distance. Far from the reader, the
low received power limits the maximum energy that can
be stored. At 4m the capacitor approaches only 2.75V,
while at 1m it rises quickly to 5.8V (at which point an
over-voltage protection circuit kicks in). This means
that heavy tasks will not run as far from the reader as
lightweight tasks no matter how long the tag sleeps.
The second implication is that, even for a fixed input

power, it is inefficient to charge to a higher voltage than
necessary. Because the rate at which energy accumulates
in a capacitor decreases exponentially as it charges, stor-
ing excess energy wastes time. There is a penalty for
charging too high and leaving spare energy in the capac-
itor. In a sense, that leftover energy was “cheaper” to
store. This effect is magnified by the linear regulator of
the WISP, which consumes more power when there is a
higher charge on the capacitor.

To capture these factors, Dewdrop estimates waste in

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 203

terms of time. This directly accounts for the energy con-
sumed by a task, even if it fails, and also for how long it
took to store that energy. While the details will differ, all
platforms are likely to have nonlinearities with respect
to storing and consuming energy that make it useful to
measure waste in terms of time. For instance, capaci-
tors are the natural choice for short-term energy storage,
and all CRFIDs that use capacitors will have this kind of
inefficiency.
Balancing sources of waste. Intuitively, starting tasks
later, at a higher energy level, will decrease the time
wasted due to tasks failing but increase the time wasted
due to excess charging. Our goal is to minimize the total
wasted time due to both causes. Since the energy cost of
executing a task cannot be estimated precisely, Dewdrop
aims to reduce the expected wasted time in the follow-
ing manner. Let P (fail|Vs) be the probability that the
task will fail given a starting voltage level Vs. The run-
time’s job is to choose a Vs in the range [V0, Vmax] that
minimizes the wasted time:

twasted(Vs) = P (fail|Vs)tunder

+ (1− P (fail|Vs))tover

where tunder is the time to charge back to Vs after a fail-
ure and tover is the time spent overcharging, i.e., the time
spent charging beyond the energy level that would have
been sufficient. Note that this implies that some rate of
failures may be desirable as charging high enough to as-
sure success incurs a penalty that accumulates on every
execution.
A naive approach to finding the Vs that minimizes

wasted time would be to try every value of Vs. This is
impractical, as the tag would need to examine a suffi-
ciently long series of task execution attempts at each Vs

to determine which had the best performance. Further-
more, this search would need to be repeated periodically
as the RF environment and other factors change.

To avoid this search, we use our intuition that the two
kinds of wasted time tradeoff against each other to find an
approximate solution. Let Pf be the current task failure
rate at a fixed starting voltage Vs and Tunder = Pf ∗
tunder and Tover = (1−Pf)∗tover . If Tover >> Tunder,
then the runtime is too conservative; it could have chosen
a lower Vs. If Tunder >> Tover then it is being too
aggressive; Vs is too low and tasks are failing too often.

Dewdrop uses the heuristic that balancing the two
sources of waste tends to minimize overall wasted time;
this at least finds a reasonable operating point by ensur-
ing that neither factor is a major source of inefficiency.
Additionally, tracking and comparing the two sources
of wasted time requires minimal computation which is
key for any viable solution. The balance point can be
found by slowly updating Vs to trade Tunder against

Tover . To do this, Dewdrop maintains separate estimates
of Tunder and Tover that are updated with an exponen-
tially weighted moving average (with parameter α) each
time a task executes depending on its success or failure.
The two estimates are then compared, and the energy
level Vs is adjusted by β in the direction that will bal-
ance the averages. That is, it is increased if more time is
being wasted on failures than on charging too high.

More precisely, let Ve be the voltage at the end of run-
ning a task, and V0 be the voltage at which the tag ceases
to operate, and ε be a small voltage. A task succeeds if
and only if Ve ≥ V0 + ε. Dewdrop computes estimates
and uses them to adjust the target energy level, Vs as fol-
lows:

Tover =

{

(1− α)Tover + αtover , if Ve ≥ V0 + ε

(1− α)Tover, if Ve < V0 + ε

Tunder =

{

(1− α)Tunder, if Ve ≥ V0 + ε

(1− α)Tunder + αtunder , if Ve < V0 + ε

Vs =

{

Vs − β, if Tover > Tunder

Vs + β, if Tunder > Tover

Of course, there are degenerate cases where this
heuristic will fail, e.g., tasks that exhibit bimodal energy
consumption where some executions consume a lot of
energy and some executions consume very little. But,
based on applications we have seen in the literature, our
approach is a good fit and has the benefit of being both
simple and efficient.

4.4 Charging to a Target Energy Level
Given a target energy level, the CRFID runtime must ar-
range for the task to begin execution when stored energy
reaches that target. The baseline WISP uses hardware
support in the form of a voltage supervisor to start exe-
cution when the capacitor voltage reaches a fixed level of
2V. Unfortunately, there are no designs for variable volt-
age supervisors that can be used in CRFIDs to the best of
our knowledge.

Instead, Dewdrop uses a software polling approach to
determine when the target energy level has been reached
and execution should begin. It sleeps while energy is
being harvested, and occasionally wakes up to sample
the capacitor voltage using an analog to digital converter
(ADC). This is a general strategy that can be used on
most platforms regardless of how the target energy level
is determined.
However, polling is difficult to achieve at low cost be-

cause charge times can vary over orders of magnitude

7

204 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and waking up and sampling the capacitor consumes pre-
cious energy. In our experiments with the WISP, we
found that reaching a given threshold can take less than
10ms or 100s of ms depending on the input power. This
variation, combined with the non-trival cost of waking
up to take a sample, means that polling at any fixed inter-
val is problematic. If the tag is close to the reader, a long
interval means that the tag will store excess energy and
miss opportunities to execute tasks. Conversely, if the
tag is far from the reader, it will accumulate energy very
gradually and pay a disproportionately greater overhead
if the interval is short.

To gather energy over a large range of input pow-
ers and target voltages, Dewdrop uses an exponentially
adapted polling interval. Specifically, let Vr be the volt-
age a tag has gained since it last woke up, and t be the
current sleep interval. Then,

tnext =

2t, if Vs − V > 2Vr

t/2, if Vs − V < Vr/2

t, otherwise.

This mechanism is very lightweight because it only
involves shift operations to scale the polling interval, not
multiply, divide, or floating point operations (which are
not likely to be available in hardware). In our evaluation
we find it to be responsive, sleeping for short amounts
of time at high input power, and to have low overhead,
gathering energy out to low input power levels.

5 Implementation

The WISP firmware is written in a mix of C and assem-
bly, for timing sensitive operations. The code can be
broken down into two main components: the Dewdrop
runtime and task support. The Dewdrop runtime code
must execute quickly and infrequently to reduce over-
head. Task support includes the Gen 2 RFID communi-
cation protocol, which requires tags to respond to reader
commands quickly, generally within 10s of microsec-
onds. This section describes our implementation of a
functioning prototype as it relates to these challenges.

5.1 WISP Hardware
The WISP draws approximately 600µA when the CPU
is in active mode and 1.5µA when in a state-preserving
sleep mode. By default, the WISP wakes up at a fixed
power level; a voltage supervisor waits for sufficient
power to operate (defined by its capacitor reaching 2V)
and then triggers a hardware interrupt to wake the de-
vice. We use the term HwFixed to refer to this hardware
method of waking up at a fixed voltage. Dewdrop dis-

ables this mechanism and instead uses a timer interrupt
to wake the device.

The WISP stores energy in a 10µF capacitor and the
voltage of the capacitor can be sampled via its analog to
digital converter.5 If the voltage of the capacitor drops
below 1.5V, the WISP will black out and lose all state.
We found that the time to fully charge the capacitor var-
ied from 10s to 100s of milliseconds, depending on dis-
tance. Discharging a full capacitor to below 1.5V in the
absence of a reader signal takes 10s of ms when active,
but more than 8s when in sleep mode. Thus, the WISP
can carry state across relatively long periods of reader
inactivity by sleeping.

5.2 Dewdrop

Low power wake-up. Dewdrop puts the WISP into a
deep sleep state for a specified period to gather energy,
and the CPU is woken up by the timer interrupt. The
process is repeated until the target wake-up voltage, Vs,
is reached. This approximates the behavior of a hard-
ware voltage supervisor, which wakes a device when a
specified voltage is reached, but allows us to vary Vs. A
potential drawback to this approach is an increased cur-
rent draw due to keeping the crystal oscillator active to
drive the timer, but in practice this increase is acceptably
small (2 µA vs 1.5 µA with the crystal off).
Low cost voltage sampling. Dewdrop checks the capac-
itor voltage to see if enough energy has been stored to
warrant starting a task, and goes back to sleep if not. The
energy overhead of this polling approach is determined
by the polling interval and how long the WISP must be
awake for each sample. The per sample cost is directly
proportional to how long the WISP must stay in active
mode. Sampling the capacitor voltage should take 90µs
according to the MSP430 data sheet instructions for us-
ing the ADC. However, we found that ADC values stabi-
lized much faster—20µs including setup time—with suf-
ficient accuracy (10mV). This shorter awake time drasti-
cally reduced the cost of voltage sampling.
Calculating the energy storage rate. Dewdrop also
tracks how quickly energy is being stored, as it uses this
information to adapt the sleep period and to calculate
how much time is wasted overcharging. Our adaptive
sleep function generally results in a series of sleep peri-
ods, where the WISP wakes up and checks its voltage,
adjusts the sleep period, and returns to sleep. When a
task completes, Ve − Vo tells us how much energy is
leftover. We use the last period’s charging rate and the
average charging rate over all periods to estimate how
much time was wasted overcharging. When a task fails,

5A 10 µF capacitor is a reasonable trade-off between charge time (a
smaller capacitor charges faster) and charge capacity.

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 205

Vs − Vo tells us how much energy was wasted. We use
the average charging rate to calculate the time wasted un-
dercharging.

5.3 Task Support

Order of operations. The computation and sensing
components of tasks must take place before or after com-
municating with the reader; the deadlines imposed by the
Gen 2 protocol are too tight to interleave task processing
and message handling. Therefore, in the SENSETX task,
for example, the WISP samples the sensor immediately
after waking up and then begins decoding reader com-
mands and waiting for the next Query.

Detecting task failures. To avoid blacking out and los-
ing state, the WISP needs to detect when task failures are
imminent and then quickly enter sleep mode. In other
words, if the voltage drops below Vo + ε (see Section 4),
the task must be aborted. In future hardware revisions of
the WISP, we would like to trigger an interrupt when a
minimum voltage threshold is reached. In the meantime,
we approximate this behavior by manually inserting calls
to the voltage sampling function in the task code. We
found that an ε of 0.15V was sufficient to protect against
blackout. That is, if any voltage sample measures below
1.65V, the WISP will sleep and record a task failure.

Sampling the voltage during the communication phase
proved difficult, but it was necessary because message
processing is a major factor in energy consumption. The
Gen 2 message timing constraints are such that the WISP
does not have time to take a sample between messages
without losing synchronization with the reader, even with
a sampling time of only 20µs. However, we found that
we could carefully schedule a voltage sample during the
preamble of every reader command, so long as the in-
spection of the sample was deferred until after the com-
mand was decoded. As the WISP must be in active mode
to accurately track the preamble, this approach amortizes
the cost of keeping the CPU active for decoding. This
strategy makes it possible for us to closely track the volt-
age of the capacitor at every reader command with es-
sentially zero overhead.

Randomness. The Gen 2 MAC protocol requires that
tags choose slots randomly. As a source of randomness,
we sample the voltage in the capacitor once immedi-
ately when the WISP first powers up, and use this value
as a seed for a pseudo-random number generator. The
variance in this voltage sample, due to input power and
noise in the ADC, gives us sufficient randomness. Alter-
natively, we could have used SRAM state as a random
source, with similar efficiency [11].

5.4 Monitoring Support

Monitoring WISP state and operation for debugging and
experimentation is difficult. Traditional methods for de-
bugging embedded systems, such as a JTAG connection,
would supply power to the WISP and change its behav-
ior. Instead, we use a custom monitoring board we devel-
oped for debugging WISPs [19]. The board communi-
cates with a PC via USB, attaches to the debug and other
output pins of the WISP, but does not add to or consume
energy harvested by the WISP. The monitor board can
also sample the voltage in the WISP’s capacitor. For our
study, we instrument the WISP to toggle debug pins at
key points in its operation, and the monitor board records
what event happened and immediately samples the WISP
capacitor to determine its voltage. This results in a trace
of WISP operations from which we can determine task
costs, and response rates even for tasks that do not com-
municate with the reader.

6 Evaluation

In this section, we evaluate Dewdrop experimentally. We
show that our approach of balancing sources of waste
generally achieves 90% of the best possible response rate
for the SENSETX and SENSE tasks and across a wide
range of RF environments. Dewdrop improves perfor-
mance over the default WISP runtime, providing appli-
cations a benefit in terms of both improved coverage and
higher response rates.

6.1 Experimental Setup

Our experiments were conducted using an Impinj Speed-
way RFID reader that continuously transmits energy and
commands. This is the normal reader behavior. For ex-
periments involving a single tag, the WISP was placed on
a poster board 1m from the reader antenna and the out-
put power was variably attenuated from 30dBm (1 Watt),
the maximum allowed for “Gen 2” readers, to 18dBm.
This method increases repeatability by limiting the mul-
tipath effects that would occur if we moved the WISPs.
We present results in terms of an equivalent distance that
is calculated using free-space propagation, as we find
them to be more intuitive than results in terms of transmit
power.

In all experiments, we ran Dewdrop and the default
WISP hardware, which we call HwFixed, that starts tasks
at a fixed energy level of 2.0V. HwFixed provides a base-
line for comparison. When possible, we also report re-
sults for Oracle as the best result found from an exhaus-
tive offline search of starting energy levels (at which the
WISP wakes-up and starts a task) using 0.03V steps. We

9

206 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

Distance (m)

Ta
sk

 R
at

e
(p

er
 s

ec
on

d) Sense (Dewdrop)
Sense (HwFixed)
SenseTx (Dewdrop)
SenseTx (HwFixed)

Figure 5: Response rates when using Dewdrop and the
HwFixed runtimes.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Distance (m)

N
or

m
al

iz
ed

 T
as

k
R

at
e

Sense (Dewdrop)
Sense (HwFixed)
SenseTx (Dewdrop)
SenseTx (HwFixed)

Figure 6: Response rates for Dewdrop and HwFixed
compared to an oracle.

report results for both the SENSE and SENSETX tasks
described in Section 4.2.

To evaluate our approach in a realistic deployment,
complete with multipath effects, we deployed 11 WISPs
with accelerometers on a 1.2m x .75m table of a model
apartment at Intel Labs Seattle. This deployment is sim-
ilar to that seen in [3], though we only consider a single
workspace instead of the complete apartment. An RFID
reader was installed in the ceiling and equipped with
one antenna approximately 2m above the table point-
ing downwards. We configured the reader to run the
SENSETX task to gather samples continuously for one
minute. We performed three separate trials for each con-
figuration to allow for variability from both the RF envi-
ronment and communication protocol.

6.2 Using Energy More Effectively

Dewdrop performance. We first assess how well Dew-
drop performs compared to HwFixed for a single WISP.

Figure 5 compares the response rate of SENSE and
SENSETX when using the two runtimes. We find that
the performance of Dewdrop consistently matches or ex-
ceeds that of HwFixed. For the light SENSE task, the per-
formance of Dewdrop closely matches that of HwFixed

1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Wake−up Voltage

N
or

m
al

iz
ed

 T
as

k
R

at
e

Sense (1.5 m)
Sense (3 m)
SenseTx (1.5 m)
SenseTx (3 m)

Figure 7: Response rates for both tasks at 1.5 and 3m.
X’s indicate the operating point found by for Dewdrop.

2 2.2 2.4 2.6 2.8 3 3.2
0

0.2

0.4

0.6

0.8

1

Wake−up Voltage

N
or

m
al

iz
ed

 V
al

ue
Response Rate
Charge Waste
Fail Waste

Figure 8: Response rate and wasted time for SENSE and
SENSETX at 3m.

and actually performs better at 1m. This is because, at
close range, the received power supplements stored en-
ergy enough to allow an energy level 0.2V below Hw-
Fixed’s fixed value.

In the case of the heavier SENSETX task, Dewdrop’s
response rate decreases smoothly as reader power falls
to 3.5m. HwFixed fails to execute the task beyond 1.5m.
Dewdrop adapts to the higher energy requirements of this
task, and stores more energy before beginning execution,
whereas HwFixed does not. This improvement more than
doubles the operating range of the tag.
To find an upper bound on how well Dewdrop could

work, we compare to the Oracle results. Gathering this
test data takes hours and is thus not a candidate for a
practical CRFID runtime. Figure 6 again shows the re-
sponse rates for the two tasks when using HwFixed and
Dewdrop, but the rates are normalized by the best rates
found using the Oracle. We find that Dewdrop generally
achieves better than 90% of the maximum rate seen by
Oracle for both tasks. Interestingly, Oracle always beat
HwFixed. This means that the fixed 2 V energy level was
never the best choice.

Evaluating Dewdrop’s choices. To understand why
Dewdrop performs well, we looked at the starting energy

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 207

1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

Distance (m)

C
ha

rg
e

Ti
m

e
(m

s)
Dewdrop
HwFixed
Fixed Period, 10 ms
Fixed Period, 100 ms

Figure 9: Charging time from 1.5V to 2V.

levels it selects. Dewdrop must choose starting energy
levels that are close to the best level found by the Oracle
if it is to be efficient. To show that this is a non-trivial
task, Figure 7 shows examples of response rate versus
energy level curves. The figure is based on data from the
Oracle for both tasks at 1.5 and 3m.

We see that the best starting energy level varies widely
for different tasks and at different distances. For SENSE,
the best energy level is 1.9V at 1.5m, when input power
close to the reader supplements stored power, and 2.1V
at 3m. Similarly, for SENSETX the best level varies from
2.5 to 3V over the same distance. These results empha-
size that no fixed threshold will work either for all tasks
or for all distances. For example, the best energy level
for SENSETX at 3m is 3V. This level achieves only 50%
of the maximum response rate for SENSE at the same
distance. It is even worse if the best level for SENSE at
3m is chosen, as SENSETX cannot execute the task even
once at 3m with an energy level of 2.1V.
The figure also shows the operating points found by

Dewdrop marked with Xs. We see that our runtime finds
points very close to the best energy level despite the dif-
ferences between response curves. Across all of our data
the energy levels found by Dewdrop were within 0.1V of
the best level found by Oracle.

To see how Dewdrop selects a good starting energy
level, we looked at how it minimizes wasted time. We
calculated the average wasted time per task due to fail-
ing and due to charging too high. Figure 8 shows this
data, along with response rate, for an illustrative case of
SENSE and SENSETX at 3m. The data are normalized
by their maximum values. We see that as the starting
energy level increases, the average wasted time due to
failing generally decreases. (The waste is low at low
wake-up thresholds despite tasks failing a greater frac-
tion of attempts. This is because waste is computed in
terms of time spent charging, and at low wake-up thresh-
olds, very little time is spent charging.) Beyond 2.6V,
waste from failed tasks decreases, as the task fails less
often. Conversely, the wasted time from overcharging

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0.005 0.01 0.02 0.04 0.08
Step Size (V)

Ta
sk

 R
at

e

Figure 10: Effect of step size (β) on response rate for
SENSETX at 3.5m.

increases with the starting energy level because the en-
ergy is stored less efficiently at higher voltages.

Dewdrop seeks the intersection of the two waste
curves, and uses the corresponding energy level. This
appears to be a good strategy as the maximum response
rate in the figure occurs near the intersection. Moreover,
since the rates plateau around the maximum, Dewdrop
can miss its mark by a fairly wide margin (±0.1V), with-
out affecting performance significantly. Though the fig-
ure shows only a single example, we found the energy
level that equalized the two sources of waste generally
achieved better than 95% of the maximum rate for both
tasks at all distances.
Evaluating Dewdrop’s costs.
This section investigates two possible inefficiencies

in Dewdrop: the cost of our timer-based adaptive sleep
scheme, and the effect of our choice of step size for main-
taining the starting energy level. We show that both are
efficient, which is in keeping with our runtime perform-
ing almost as well as the Oracle.

To be effective, our runtime must not appreciably in-
crease charging time. Figure 9 shows the median charg-
ing time from 1.5V to 2V for Dewdrop’s adaptive sleep
mechanism, the hardware wake-up of HwFixed, and
two strawman versions of our software controlled sleep
mechanism that use fixed sleep periods.
We find that, at all distances, our adaptive scheme

achieves a charge time within 5% of the charge time of
the hardware mechanism. Moreover, as expected, its per-
formance is good over a wider range of distances than
schemes that do not adapt their sleep periods. For ex-
ample, the fixed period of 100ms does well at 4m (1.3%
longer than HwFixed), but performs poorly at close range
(600% longer than HwFixed at 1m). Likewise, fixing the
period at 10ms works well at close range, but incurs sig-
nificant overhead farther away (32% at 4m).
The second potential source of inefficiency in our sys-

tem comes from our choice of step size (β) when seeking
the best starting energy level. In Dewdrop, upward pres-

11

208 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

24252627282930
0

20

40

60

80

100

Transmit Power (dBm)

Pe
rc

en
t o

f T
ag

s
Dewdrop > 1
Dewdrop > 5
HwFixed > 1
HwFixed > 5

Figure 11: Percent of tags that have an average response
rate above 1/s and 5/s using the two runtimes.

sure on the level is only exerted after it drops fairly low
and tasks begin to fail; after failures, the starting energy
level rises until the cost of overcharging outweighs the
cost of failing. A small β increases the time it takes to
adapt to environmental changes, while a larger β can re-
sult in large oscillations around the ideal wake-up thresh-
old.

Figure 10 shows the effect of different step sizes on
task rate for SENSETX at 3.5m. The average task rate per
second is calculated over a 10 second sliding window. As
step size increases, the task rates generally decrease and
vary more widely. A larger step size means that Dewdrop
increases/decreases its starting energy level too quickly,
resulting in significant over/undercharging. The reverse
then happens and the voltage is reduced by too much and
more tasks fail. We found that a step size of 0.01V gave
a good balance between damping oscillations in energy
level and quickly adapting to environmental changes.

6.3 Multiple Tag Evaluation

Next, we evaluate Dewdrop in a realistic deployment
consisting of multiple tags. To support CRFID appli-
cations such as activity recognition, our runtime should
both increase the coverage region of the reader (e.g., so
that distant devices respond) and also increase the re-
sponse rates of the devices (e.g., so that object motion
can more accurately be tracked). We consider both of
these metrics for the 11 WISPs deployed in the model
apartment.

Coverage. The coverage goal is to have as many devices
as possible responding at a useful rate. Based on prior
experience, we define two useful rates: a rate of 1/s, as
is useful for low-rate object use detection; and a rate of
5/s, as is useful for higher-rate gestural recognition. To
characterize the coverage of the deployment, the transmit
power of the reader is reduced gradually to determine
the “headroom” (in dBm) tags have for a given level of

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Task Rate (per second)

C
D

F

Dewdrop, 30 dBm
HwFixed, 30 dBm
Dewdrop, 24 dBm
HwFixed, 24 dBm

Figure 12: CDF of response rates for the two runtimes as
power is reduced.

performance.6
We find that Dewdrop has much better coverage than

HwFixed because it enables tags to operate when much
less incoming power is available. Figure 11 shows the
percentage of tags with average response rates above 1/s
and 5/s when using the two runtimes. At 30dBm, all tags
with Dewdrop respond at least once per second as com-
pared to 64% with HwFixed. Coverage is better even
when tags with Dewdrop receive one third the power of
tags with HwFixed (viz., 67% for Dewdrop at 25dBm vs
64% for HwFixed at 30dBm). Moreover, at a four-fold
reduction in power (24dBm), 42% respond with Dew-
drop while none respond with HwFixed.

For a response rate of more than 5/s, the two runtimes
perform equally well at 30dBm. This is because Hw-
Fixed works well when a tag receives good power from
the reader. However, HwFixed’s coverage decays much
more quickly with power than does Dewdrop’s coverage,
e.g., at 27dBm Dewdrop has three times the coverage of
HwFixed.

Response Rates. Figure 12 shows the distribution of the
response rates of the tags when the reader is transmitting
at 30 and 24dBm. The rates are computed over one sec-
ond windows for both runtimes. We find that Dewdrop
consistently achieves higher rates, especially for the tags
receiving less energy; 30% of the data points are zero
for HwFixed versus 5% for Dewdrop. Dewdrop’s abil-
ity to achieve useful rates is even more apparent when
the reader transmits at 24dBm and tags are receiving one
fourth as much power. Dewdrop obtains response rates
greater than once per second 30% of the time, as com-
pared to 2% with HwFixed. At 30dBm, Dewdrop and
HwFixed achieve nearly the same rates for those tags that
receive the most energy; 25% of the data points are above
9/s, and median rates are 5/s and 3/s respectively.

6This “attenuation thresholding” technique [10], has been shown to
be more appropriate for characterizing RFID deployments than varying
distance due to the high sensitivity of RFID to multipath.

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 209

5 10 15 20 25
0

2

4

6

8

10

12

Number of Tags

Ta
sk

 R
at

e
(p

er
 s

ec
on

d) Dewdrop
HwFixed

Figure 13: Response rate for the two runtimes as tag pop-
ulation size increases.

When more tags are present, the energy cost of com-
municating with the reader increases. This is because the
reader increases the number of slots it uses to limit the
likelihood of tag collisions, so CRFID tags must process
more messages before transmitting to the reader.

Figure 13 gives the performance for a single tag when
the reader transmits at 30dBm as additional tags are
added to the deployment. The performance of HwFixed
rapidly decreases with the number of tags. This is be-
cause the number of slots is increasing, and a tag cannot
remain powered when it chooses a later slot. In contrast,
Dewdrop simply increases its starting energy level to
accommodate the additional communication overhead.
With one tag, it wakes up around 2.5V whereas with 25
tags it wakes up closer to 3V. The result is that Dewdrop
provides nearly three times the response rate as HwFixed
when 25 tags are present.

7 Related Work

There has been significant work on building energy har-
vesting systems for sensor networks [27, 12, 1]. This
work considers solar cells, but some conclusions ap-
ply equally to CRFIDs, e.g., [12] finds that capacitors
should be used as the primary buffer to tolerate rapid
charge/discharge cycles. In [26, 13, 15], the schedul-
ing problem for energy harvesting devices is considered.
The scheduling problem for these systems differs signifi-
cantly from CRIFDs as they manage tasks and harvested
power on the order of days, attempt to extend lifetime to
months, and have no penalty for storing excess energy.
In contrast, Dewdrop must store sufficient energy for a
single task execution, and tolerate input power variations
on the order of milliseconds in a context where every op-
eration consumes precious energy.

Power management for CRFIDs has generally fallen
into two categories; supplying additional energy and
maintaining state information across power losses. Al-
ternative methods of powering devices have been ex-

plored [16], with [5, 23] proposing solar cells and TV
transmitters for CRFIDs. These approaches provide 10’s
of µW of supplemental power, an order of magnitude be-
low the requirements of current CRIFDs, so energy still
must be used efficiently.
In [20], the authors use offline profiling to estimate

when state should be saved on the WISP, or transmitted
to the reader [22], due to impending depletion of the en-
ergy store. We found that simply entering low power
sleep mode is an effective way to maintain state, and
it avoids the cost of writing to flash or transmitting to
the reader in scenarios where the reader does not power
off for long periods of time. In [8] the authors use of-
fline modeling to help determine the appropriate capaci-
tor size for a device designed to execute a particular task.
While hardware modifications are necessary for tasks
with dramatically different energy requirements, Dew-
drop enables a wider range of tasks to be executed ef-
ficiently for any given energy store.

The WISP has been used to demonstrate power inten-
sive applications that would benefit from our approach.
RC5 cryptographic primitives were implemented in [4],
and both cryptography and sensors have been used to in-
crease the security of implantable medical devices [9],
and credit cards [6]. For these applications, the energy
requirements were far beyond what could be provided at
range, and the studies were done using the WISP at close
range. Dewdrop aims to enable such applications to op-
erate more effectively at greater range.

8 Conclusion

We presented a runtime for CRFID tags that makes ef-
ficient use of the scarce available energy. Our runtime,
Dewdrop, adapts a tag’s duty cycle to match the har-
vested power to the sensing and computation cost of
tasks. To do this, it estimates the time wasted by over-
charging and by underestimating task needs, and uses the
result to choose how much energy to buffer before start-
ing a task. Using an implementation built on the WISP
tag and a commodity RFID reader, we showed that Dew-
drop runs tasks where prior techniques could not, and
runs them at better than 90% of the best rate found by
offline testing across a range of input powers, competing
tags, and light and heavy tasks. Dewdrop’s adaptation
effectively doubled the distance at which a tag executes
tasks, which enables practical deployments. In an instru-
mented living space, all tags responded at useful rate to a
single reader in the ceiling as compared to only 64% with
fixed buffering. At over twice the distance (one quarter
the transmission power), 42% of the tags still responded
with Dewdrop while none responded with fixed buffer-
ing. We believe these performance levels bring us close
to realizing a wide range of realistic CRFID applications.

13

210 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9 Acknowledgments

We thank the anonymous reviewers and our shepherd, Ja-
son Flinn, for their helpful feedback. We would also like
to acknowledge the invaluable assistance of Josh Smith
and Alanson Sample in helping us understand the design
and operation of the WISP. This work was supported in
part by NSF award #1016487.

References
[1] D. Brunelli, L. Benini, C. Moser, and L. Thiele. An efficient solar

energy harvester for wireless sensor nodes. In DATE, 2008.

[2] M. Buettner et al. Revisiting smart dust with RFID sensor net-
works. In HotNets, 2008.

[3] M. Buettner et al. Recognizing daily activities with RFID-based
sensors. In Ubicomp, 2009.

[4] H. J. Chae et al. Maximalist cryptography and computation on
the WISP UHF RFID tag. In RFID Security, 2007.

[5] S. S. Clark et al. Towards autonomously-powered CRFIDs. In
HotPower, 2009.

[6] A. Czeskis et al. RFIDs and secret handshakes: Defend-
ing against ghost-and-leech attacks and unauthorized reads with
context-aware communications. In CCS, 2008.

[7] EPCglobal. EPC radio-frequency identity protocols class-1
generation-2 UHF RFID protocol for communications at 860
mhz-960 mhz version 1.0.9. 2005.

[8] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the limits
of effective micro-energy harvesting on mobile CRFID sensors.
In MobiSys, 2010.

[9] D. Halperin et al. Pacemakers and implantable cardiac defibril-
lators: Software radio attacks and zero-power defenses. In IEEE
Symposium on Security and Privacy, 2008.

[10] S. Hodges et al. Assessing and optimizing the range of UHF
RFID to enable real-world pervasive computing applications. In
Pervasive Computing. Springer-Verlag, 2007.

[11] D. E. Holcomb et al. Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In RFID Security,
2007.

[12] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally
powered sensor networks. In IPSN, 2005.

[13] A. Kansal et al. Power management in energy harvesting sensor
networks. In ACM Transactions on Embedded Computing Sys-
tems, 2006.

[14] A. Mainwaring et al. Wireless sensor networks for habitat moni-
toring. In WSNA, 2002.

[15] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Real-time
scheduling for energy harvesting sensor nodes. Real-Time Sys-
tems., 2007.

[16] J. A. Paradiso and T. Starner. Energy scavenging for mobile and
wireless electronics. IEEE Pervasive Computing, 2005.

[17] M. Philipose et al. Inferring activities from interactions with ob-
jects. IEEE Pervasive Computing, 2004.

[18] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling Ultra-
Low Power Wireless Research. In IPSN/SPOTS, 2005.

[19] R. Prasad, M. Buettner, B. Greenstein, and D. Wetherall. Wisp
monitoring and debugging. In Wirelessly Powered Sensor Net-
works and Computational RFID (to appear). Springer, 2011.

[20] B. Ransford et al. Getting things done on computational RFIDs
with energy-aware checkpointing and voltage-aware scheduling.
In HotPower, 2008.

[21] M. Reynolds and S. Thomas. The blue devil wisp: Expanding
the frontiers of the passive RFID physical layer. WISP Summit
Workshop, 2009.

[22] M. Salajegheh et al. CCCP: Secure remote storage for computa-
tional RFIDs. In USENIX Security, 2009.

[23] A. Sample et al. Experimental results with two wireless power
transfer systems. In IEEE Radio and Wireless Symposium, 2009.

[24] A. P. Sample et al. Design of an rfid-based battery-free pro-
grammable sensing platform. In IEEE Transactions on Instru-
mentation and Measurement, 2008.

[25] F. Schoute. Dynamic frame length aloha. IEEE Transaction on
Communications, 1983.

[26] J. Sorber et al. Eon: A Language and Runtime System for Per-
petual Systems. In SENSYS, 2007.

[27] J. Taneja, J. Jeong, and D. Culler. Design, modeling, and capacity
planning for micro-solar power sensor networks. In IPSN, 2008.

[28] B. Warneke, M. Last, B. Liebowitz, and K. S. Pister. Smart dust:
Communicating with a cubic-millimeter computer. Computer,
2001.

[29] D. Yeager, P. Powledge, R. Prasad, D. Wetherall, and J. Smith.
Wirelessly-charged UHF tags for sensor data collection. In IEEE
RFID, 2008.

[30] D. Yeager, F. Zhang, A. Zarrasvand, and B. Otis. A 9.2a gen 2
compatible UHF RFID sensing tag with -12dbm sensitivity and
1.25vrms input-referred noise floor. ISSCC, 2010.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 211

SSDAlloc: Hybrid SSD/RAM Memory Management Made Easy

Anirudh Badam and Vivek S. Pai
Princeton University

Abstract
We introduce SSDAlloc, a hybrid main memory manage-
ment system that allows developers to treat solid-state
disk (SSD) as an extension of the RAM in a system.
SSDAlloc moves the SSD upward in the memory hier-
archy, usable as a larger, slower form of RAM instead
of just a cache for the hard drive. Using SSDAlloc, ap-
plications can nearly transparently extend their memory
footprints to hundreds of gigabytes and beyond without
restructuring, well beyond the RAM capacities of most
servers. Additionally, SSDAlloc can extract 90% of the
SSD’s raw performance while increasing the lifetime of
the SSD by up to 32 times. Other approaches either
require intrusive application changes or deliver only 6–
30% of the SSD’s raw performance.

1 Introduction
An increasing number of networked systems today rely
on in-memory (DRAM) indexes, hashtables, caches and
key-value storage systems for scaling the performance
and reducing the pressure on their secondary storage de-
vices. Unfortunately, the cost of DRAM increases dra-
matically beyond 64GB per server, jumping from a few
thousand dollars to tens of thousands of dollars fairly
quickly; power requirements scale similarly, restricting
applications with large workloads from obtaining high
in-memory hit-rates that are vital for high-performance.

Flash memory can be leveraged (by augmenting
DRAM with flash backed memory) to scale the perfor-
mance of such applications. Flash memory has a larger
capacity, lower cost and lower power requirement when
compared to DRAM and a great random read perfor-
mance, which makes it well suited for building such ap-
plications. Solid State Disks (SSD) in the form of NAND
flash have become increasingly popular due to pricing.
256GB SSDs are currently around $700, and multiple
SSDs can be placed in one server. As a result, high-
end systems could easily augment their 64–128GB RAM
with 1–2TB of SSD.

Flash is currently being used as program memory via
two methods – by using flash as an operating system
(OS) swap layer or by building a custom object store on
top of flash. Swap layer, which works at a page granu-
larity, reduces the performance and also undermines the

lifetime of flash for applications with many random ac-
cesses (typical of the applications mentioned). For every
application object that is read/written (however small) an
entire page of flash is read/dirtied leading to an unnec-
essary increase in the read bandwidth and the number
of flash writes (which reduce the lifetime of flash mem-
ory). Applications are often modified to obtain high per-
formance and good lifetime from flash memory by ad-
dressing these issues. Such modifications not only need
a deep application knowledge but also require an exper-
tise with flash memory, hindering a wide-scale adoption
of flash. It is, therefore, necessary to expose flash via
a swap like interface (via virtual memory) while being
able to provide performance comparable to that of appli-
cations redesigned to be flash-aware.

In this paper, we present SSDAlloc, a hybrid
DRAM/flash memory manager and a runtime library
that allows applications to fully utilize the potential of
flash (large capacity, low cost, fast random reads and
non-volatility) in a transparent manner. SSDAlloc ex-
poses flash memory via the familiar page-based virtual
memory manager interface, but internally, it works at an
object granularity for obtaining high performance and for
maximizing the lifetime of flash memory. SSDAlloc’s
memory manager is compatible with the standard C pro-
gramming paradigms and it works entirely via the virtual
memory system. Unlike object databases, applications
do not have to declare their intention to use data, nor do
they have to perform indirections through custom han-
dles. All data maintains its virtual memory address for
its lifetime and can be accessed using standard pointers.
Pointer swizzling or other fix-ups are not required.

SSDAlloc’s memory allocator looks and feels much
like the malloc memory manager. When malloc
is directly replaced with SSDAlloc’s memory manager,
flash is used as a fully log-structured page store. How-
ever, when SSDAlloc is provided with the additional in-
formation of the size of the application object being allo-
cated, flash is managed as a log-structured object store.
It utilizes the object size information to provide the ap-
plications with benefits that are otherwise unavailable via
existing transparent programming techniques.

Using SSDAlloc, we have modified four systems built
originally using malloc: memcached [4] (a key-value
store), a Boost [1] based B+Tree index, a packet cache

1

212 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application Original
LOC

Edited
LOC

Throughput Gain vs
SSD Swap SSD Swap
Unmodified Write Log

Memcached 11,193 21 5.5 - 17.4x 1.4 - 3.5x
B+Tree Index 477 15 4.3 - 12.7x 1.4 - 3.2x
Packet Cache 1,540 9 4.8 - 10.1x 1.3 - 2.3x
HashCache 20,096 36 5.3 - 17.1x 1.3 - 3.3x

Table 1: SSDAlloc requires changing only the memory alloca-
tion code, typically only tens of lines of code (LOC). Depend-
ing on the SSD used, throughput gains can be as high as 17
times greater than using the SSD as swap. Even if the swap is
optimized for SSD usage, gains can be as high as 3.5x.

backend (for accelerating network links using packet
level caching), and the HashCache [9] cache index. As
shown in Table 1, all four systems show great benefits
when using SSDAlloc with object size information –

• 4.1–17.4 times faster than when using the SSD as a
swap space.

• 1.2–3.5 times faster than when using the SSD as a
log-structured swap space.

• Only 9–36 lines of code are modified (malloc re-
placed by SSDAlloc).

• Up to 31.2 times less data written to the SSD for
the same workload (SSDAlloc works at an object
granularity).

The rest of this paper is organized as follows: We de-
scribe related work and the motivation in Section 2. The
design is described in Section 3, and we discuss our im-
plementation in Section 4. Section 5 provides the evalu-
ation results, and we conclude in Section 6.

2 Motivation and Related Work
While alternative memory technologies have been cham-
pioned for more than a decade [10, 25], their attractive-
ness has increased recently as the gap between the pro-
cessor speed and the disk widened, and as their costs
dropped. Our goal in this paper is to provide a trans-
parent interface to using flash memory (unlike the ap-
plication redesign strategy) while acting in a flash-aware
manner to obtain better performance and lifetime from
the flash device (unlike the operating system swap).

Existing transparent approaches to using flash mem-
ory [18, 20, 23] cannot fully exploit flash’s performance
for two reasons – 1) Accesses to flash happen at a page
granularity (4KB), leading to a full page read/write to
flash for every access within that page. The write/erase
behavior of flash memory often has different expecta-
tions on usage, leading to a poor performance. Full pages
containing dirty objects have to be written to flash. This
behavior leads to write escalation which is bad not only
for performance but also for the durability of the flash
device. 2) If the application objects are small compared
to the page size, only a small fraction of RAM contains

useful objects because of caching at a page granularity.
Integrating flash as a filesystem cache can increase per-
formance, but the cost/benefit tradeoff of this approach
has been questioned before [21].

FlashVM [23] is a system that proposes using flash
as a dedicated swap device, that provides hints to the
SSD for better garbage collection by batching writes,
erases and discards. We propose using 16–32 times more
flash than DRAM and in those settings, FlashVM style
heuristic batching/aggregating of in-place writes might
be of little use purely because of the high write ran-
domness that our targeted applications have. A fully
log-structured system would be needed for minimizing
erases in such cases. We have built a fully log-structured
swap that we use as a comparison point, along with na-
tive linux swap, against the SSDAlloc system that works
at an object granularity.

Others have proposed redesigning applications to use
flash-aware data structures to explicitly handle the asym-
metric read/write behavior of flash. Redesigned applica-
tions range from databases (BTrees) [19, 24] and Web
servers [17] to indexes [6, 8] and key-value stores [7].
Working set objects are cached in RAM more efficiently
and the application aggregates objects when writing to
flash. While the benefits of this approach can be signifi-
cant, the costs involved and the extra development effort
(requires expertise with the application and flash behav-
ior) are high enough that it may deter most application
developers from going this route.

Our goal in this paper is to provide the right set of
interfaces (via memory allocators), so that both existing
applications and new applications can be easily adapted
to use flash. Our approach focuses on exposing flash only
via a page based virtual memory interface while inter-
nally working at an object level. Similar approach was
used in distributed object systems [12], which switched
between pages and objects when convenient using cus-
tom object handlers. We want to avoid using any custom
pointer/handler mechanisms to eliminate intrusive appli-
cation changes.

Additionally, our approach can improve the cost/ben-
efit ratio of flash-based approaches. If only a few lines of
memory allocation code need to be modified to migrate
an existing application to a flash-enabled one with per-
formance comparable to that of flash-aware application
redesign, this one-time development cost is low com-
pared to the cost of high-density memory. For exam-
ple, the cost of 1TB of high-density RAM adds roughly
$100K USD to the $14K base price of the system (e.g.,
the Dell PowerEdge R910). In comparison, a high-end
320GB SSD sells for $3200 USD, so roughly 4 servers
with 5TB of flash memory cost the same as 1 server with
1 TB of RAM.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 213

SSD Usage Write Read/Write Garbage Collects Avoids DRAM Persistent High Programming
Technique Logging < a page Dead pages/data Pollution Data Performance Ease
SSD Swap �
SSD Swap (Write Logged) � �
SSD mmap � �
Application Rewrite � � � � � �
SSDAlloc � � � � � � �

Table 2: While using SSDs via swap/mmap is simple, they achieve only a fraction of the SSD’s performance. Rewriting applica-
tions can achieve greater performance but at a high developer cost. SSDAlloc provides simplicity while providing high performance.

SSD Make reads / sec writes / sec
4KB 0.5KB 4KB 0.5KB

RiDATA (32GB) 3,200 3,700 500 675
Kingston (64GB) 3,300 4,200 1,800 2,000
Intel X25-E (32GB) 26,000 44,000 2,200 2,700
Intel X25-V (40GB) 27,000 46,000 2,400 2,600
Intel X25-M G2 (80GB) 29,000 49,000 2,300 2,500

Table 3: SSDAlloc can take full advantage of object-sized ac-
cesses to the SSD, which can often provide significant perfor-
mance gains over page-sized operations.

3 SSDAlloc’s Design
In this section we describe the design of SSDAlloc. We
first start with describing the networked systems’ re-
quirements from a hybrid DRAM/SSD setting for high-
performance and ease of programming. Our high level
goals for integrating SSDs into these applications are:

• To present a simple interface such that the appli-
cations can be run mostly unmodified – Applica-
tions should use the same programming style and
interfaces as before (via virtual memory managers),
which means that objects, once allocated, always
appear to the application at the same locations in
the virtual memory.

• To utilize the DRAM in the system as efficiently as
possible – Since most of the applications that we
focus on allocate large number of objects and op-
erate over them with little locality of reference, the
system should be no worse at using DRAM than a
custom DRAM based object cache that efficiently
packs as many hot objects in DRAM as possible.

• To maximize the SSD’s utility – Since the SSD’s
read performance and especially the write perfor-
mance suffer with the amount of data transferred,
the system should minimize data transfers and
(most importantly) avoid random writes.

SSDAlloc employs many clever design decisions
and policies to meet our high level goals. In Sec-
tions 3.1 and 3.4, we describe our page-based virtual
memory system using a modified heap manager in com-
bination with a user-space on-demand page materializa-
tion runtime that appears to be a normal virtual memory

system to the application. In reality, the virtual memory
pages are materialized in an on-demand fashion from the
SSD by intercepting page faults. To make this intercep-
tion as precise as possible, our allocator aligns the ap-
plication level objects to always start at page boundaries.
Such a fine grained interception allows our system to act
at an application object granularity and thereby increases
the efficiency of reads, writes and garbage collection on
the SSD. It also helps in the design of a system that can
easily serialize the application’s objects to the persistent
storage for a subsequent usage.

In Section 3.2, we describe how we use the DRAM
efficiently. Since most of the application’s objects are
smaller than a page, it makes no sense to use all of the
DRAM as a page cache. Instead, most of DRAM is filled
with an object cache, which packs multiple useful objects
per page, and one which is not directly accessible to the
application. When the application needs a page, it is dy-
namically materialized, either from the object cache or
from the SSD.

In Sections 3.3 and 3.5 we describe how we manage
the SSD as an efficient log-structured object store. In
order to reduce the amount of data read/written to the
SSD, the system uses the object size information, given
to the memory allocator by the application, to transfer
only the objects, and not whole pages containing them.
Since the objects can be of arbitrary sizes, packing them
together and writing them in a log not only reduces the
write volume, but also increase the SSD’s lifetime.

Table 2 presents an overview of various techniques
by which SSDs are used as program memory today and
provides a comparison to SSDAlloc by enumerating the
high-level goals that each technique satisfies. We now
describe our design in detail starting with our virtual ad-
dress allocation policies.

3.1 SSDAlloc’s Virtual Memory Structure
SSDAlloc ideally wants to non-intrusively observe what
objects the application reads and writes. The virtual
memory (VM) system provides an easy way to detect
what pages have been read or written, but there is no easy
way to detect at a finer granularity. Performing copy-on-
write and comparing the copy with the original can be
used for detecting changes, but no easy mechanism de-

3

214 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Page Buffer

A FIFO cache
of actual pages

in core
occupying only
a small amount

of RAM

Heap Manager

An OPP based pool allocator
for individual allocations

An OPP based coalescing
allocator for OPP arrays

An MP based coalescing
allocator similar to malloc

SSD

A log- structured object store

Address
Translation

Module

A datastructure
that translates
virtual memory
addresses to the
locations on the

SSD

RAM Object Cache

An LRU cache of
objects materialized

from the SSD
occupying all
available RAM

Application

Interacts with the
SSD only via

virtual memory

Virtual
Memory

Allocation

Virtual
Memory
Usage

SSD Manager

SSD Reader

SSD Writer: A copy-and-
compact garbage collector

Pages
Flushed
in LIFO
Order

On-demand
Paging

Fetch
Needed
Objects

Flush
Dirty

Objects

Notify
Objects’

State

Add/Modify Addresses
of New/Moved Objects

Translate Address
for Object Read

Read/
Write

SSD Level

DRAM & Runtime Level

Application Level

Figure 1: SSDAlloc uses most of RAM as an object-level
cache, and materializes/dematerializes pages as needed to sat-
isfy the application’s page usage. This approach improves
RAM utilization, even though many objects will be spread
across a greater range of virtual address space.

termines what parts of a page were read. Instead, SS-
DAlloc uses the observation that virtual address space is
relatively inexpensive compared to actual DRAM, and
reorganizes the behavior of memory allocation to use the
VM system to observe object behavior. Servers typically
expose 48 bit address spaces (256TB) while supporting
less than 1TB of physical RAM, so virtual addresses are
at least 256x more plentiful.

We propose the Object Per Page (OPP) model, using
which, if an application requests memory for an object,
the object is placed on its own page of virtual memory,
yielding a single page for small objects, or more (con-
tiguous) when the object exceeds the page size. The
object is always placed at the start of the page and the
rest of the page is not utilized for memory allocation. In
reality, however, we employ various optimizations (de-

scribed in Section 3.2) to eliminate the physical memory
wastage that can occur because of such a lavish virtual
memory usage. An OPP memory manager can be imple-
mented just by maintaining a pool of pages (details of the
actual memory manager used are given in Section 3.4).
OPP is suitable for individual object allocations, typical
of the applications we focus on. OPP objects are stored
on the SSD in a log-structured manner (details are ex-
plained in Section 3.5). Additionally, using virtual mem-
ory based page-usage information, we can accurately de-
termine which objects are being read and written (since
there is only one object per page). However, it is not
straightforward to use arrays of objects in this manner.
In an OPP array, each object is separated by the page’s
size as opposed to the object’s size. While it is possible
to allocate OPP arrays in such a manner, it would re-
quire some code modifications to be able to use arrays in
which objects separated by page boundaries as opposed
being separated by object boundaries. We describe later
in Section 3.4 how an OPP based coalescing allocator
can be used to allocate OPP based arrays.

3.1.1 Contiguous Array Allocations
In the C programming language, array allocations via
malloc/calloc expect array elements to be contigu-
ous. We present an option called Memory Pages (MP)
which can do this. In MP, when the application asks for a
certain amount of memory, SSDAlloc returns a pointer to
a region of virtual address space with the size requested.
We use a ptmalloc [5] style coalescing memory man-
ager (further explained in Section 3.4) built on top of
bulk allocated virtual memory pages (via brk) to obtain
a system which can allocate C style arrays. Internally,
however, the pages in this space are treated like page
sized OPP objects. For the rest of the paper, we treat
MP pages as page sized OPP objects.

While the design of OPP efficiently leverages the vir-
tual memory system’s page level usage information to
determine application object behavior, it could lead to
DRAM space wastage because the rest of the page be-
yond the object would not be used. To eliminate this
wastage, we organize the physical memory such that only
a small portion of DRAM contains actual materializa-
tions of OPP pages (Page Buffer) while the rest of the
available DRAM is used as a compact hot object cache.

3.2 SSDAlloc’s Physical Memory
Structure

The SSDAlloc runtime system eases application trans-
parency by allowing objects to maintain the same virtual
address over their lifetimes, while their physical loca-
tion may be in a temporarily-materialized physical page
mapped to its virtual memory page in the Page Buffer,
the RAM Object Cache, or the SSD. Not only does the
runtime materialize physical pages as needed, but it also

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 215

reclaims them when their usage drops. We first describe
how objects are cached compactly in DRAM.

RAM Object Cache – Objects are cached in RAM ob-
ject cache in a compact manner. RAM object cache oc-
cupies available portion of DRAM while only a small
part of DRAM is use for pages that are currently in
use (shown in Figure 1). This decision provides several
benefits – 1) Objects cached in RAM can be accessed
much faster than the SSD, 2) By performing usage-based
caching of objects instead of pages, the relatively small
RAM can cache more useful objects when using OPP,
and 3) Given the density trends of SSD and RAM, object
caching is likely to continue being a useful optimization
going forward.

RAM object cache is maintained in LRU fashion. It in-
dexes objects using their virtual memory page address as
the key. An OPP object in RAM object cache is indexed
by its OPP page address, while an MP page (a 4KB OPP
object) is indexed with its MP page address. In our im-
plementation, we used a hashtable with the page address
as the key for this purpose. Clean objects being evicted
from the RAM object cache are deallocated while dirty
objects being evicted are enqueued to the SSD writer
mechanism (shown in Figure 1).

Page Buffer – Temporarily materialized pages (in
physical memory) are are collectively known as the Page
Buffer. These pages are materialized in an on-demand
fashion (described below). Page Buffer size is appli-
cation configurable, but in most of the applications we
tested, we found that a Page Buffer of size less than
25MB was sufficient to bring down the rate of page ma-
terializations per second to the throughput of the applica-
tion. However, regardless of the size of the Page Buffer,
physical memory wastage from using OPP has to be min-
imized. To minimize this wastage we make the rest of the
active OPP physical page (portion beyond the object) a
part of the RAM object cache. RAM object cache is im-
plemented such that the shards of pages that materialize
into physical memory are used for caching objects.

SSDAlloc’s Paging – For a simple user space imple-
mentation we implement the Page Buffer via memory
protection. All virtual memory allocated using SSDAl-
loc is protected (via mprotect). A page usage is de-
tected when the protection mechanism triggers a fault.
The required page is then unprotected (only read or write
access is given depending on the type of fault to be able
to detect writes separately) and its data is then populated
in the seg-fault handler – an OPP page is populated by
fetching the object from RAM object cache or the SSD
and placing it at the front of the page. An MP page is
populated with a copy of the page (a page sized object)
from RAM object cache or the SSD.

Pages dematerialized from Page Buffer are converted
to objects. Those objects are pushed into the RAM object

cache, the page is then madvised to be not needed and
finally, the page is reprotected (via mprotect) – in case
of OPP/MP the object/page is marked as dirty if the page
faults on a write.

Page Buffer can be managed in many ways, with the
simplest way being FIFO. Page Buffer pages are unpro-
tected, so our user space implementation based runtime
would have no information about how a page would be
used while it remains in the Page Buffer, making LRU
difficult to implement. For simplicity, we used FIFO in
our current implementation. The only penalty is that if a
dematerialized page is needed again then the page has to
be rematerialized from RAM.

OPP can have more virtual memory usage than
malloc for the same amount of data allocated. While
MP will round each virtual address allocation to the next
highest page size, the OPP model allocates one object
per page. For 48-bit address spaces, the total number of
pages is 236 (≈ 64 Billion objects via OPP). For 32-bit
systems, the corresponding number is 220 (≈ 1 million
objects). Programs that need to allocate more objects on
32-bit systems can use MP instead of OPP. Furthermore,
SSDAlloc can coexist with standard malloc, so address
space usage can be tuned by moving only necessary al-
locations to OPP.

While the separation between virtual memory and
physical memory presents many avenues for DRAM op-
timization, it does not directly optimize SSD usage. We
next present our SSD organization.

3.3 SSDAlloc’s SSD Maintenance
To overcome the limitations on random write behav-
ior with SSDs, SSDAlloc writes the dirty objects when
flushing the RAM object cache to the SSD in a log-
structured [22] manner. This means that the objects have
no fixed storage location on the SSD – similar to flash-
based filesystems [11]. We first describe how we man-
age the mapping between fixed virtual address spaces to
ever-changing log-structured SSD locations. Our SSD
writer/garbage-collector is described later.

To locate objects on the SSD, SSDAlloc uses a data
structure called the Object Table. While the virtual
memory addresses of the objects are their fixed locations,
Object Tables store their ever-changing SSD locations.
Object Tables are similar to page tables in traditional vir-
tual memory systems. Each Object Table has a unique
identifier called the OTID and it contains an array of in-
tegers representing the SSD locations of the objects it
indexes. An object’s Object Table Offset (OTO) is the
offset in this array where its SSD location is stored. The
2-tuple <OTID, OTO> is the object’s internal persistent
pointer.

To efficiently fetch the objects from the SSD when
they are not cached in RAM, we keep a mapping between

5

216 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

each virtual address range (as allocated by the OPP or the
MP memory manager) in use by the application and its
corresponding Object Table, called an Address Transla-
tion Module (ATM). When the object of a page that is
requested for materialization is not present in the RAM
object cache, <OTID,OTO> of that object is determined
from the page’s address via an ATM lookup (shown in
Figure 1). Once the <OTID,OTO> is known, the ob-
ject is fetched from the SSD, inserted into RAM object
cache and the page is then materialized. The ATM is
only used when the RAM object cache does not have the
required objects. A successful lookup results in a mate-
rialized physical page that can be used without runtime
system intervention for as long as the page resides in the
Page Buffer. If the page that is requested does not be-
long to any allocated range, then the segmentation fault
is a program error. In that case the control is returned to
the originally installed seg-fault handler.

The ATM indexes and stores the 2-tuples <Virtual
Memory Range, OTID> such that when it is queried
with a virtual memory page address, it responds with the
<OTID,OTO> of the object belonging to the page. In
our implementation, we chose a balanced binary search
tree for various reasons – 1) virtual memory range can
be used as a key while the OTID can be used as a value.
The search tree can be queried using an arbitrary page
address and by using a binary search, one can determine
the virtual memory range it belongs to. Using the queried
page’s offset into this range, the relevant object’s OTO is
determined, 2) it allows the virtual memory ranges to be
of any size and 3) it provides a simple mechanism by
which we can improve the lookup performance – by re-
ducing the number of Object Tables, there by reducing
the number of entries in the binary search tree. Our heap
manager which allocates virtual memory (in OPP or MP
style) always tries to keep the number of virtual memory
ranges in use to a minimum to reduce the number of Ob-
ject Tables in use. Before we describe our heap manager
design, we present a few simple optimizations to reduce
the size of Object Tables.

We try to store the Object Tables fully in DRAM to
minimize multiple SSD accesses to read an object. We
perform two important optimizations to reduce the size
overhead from the Object Tables. First – to be able to
index large SSDs for arbitrarily sized objects, one would
need a 64 bit offset that would increase the DRAM over-
head for storing Object Tables. Instead, we store a 32
bit offset to an aligned 512 byte SSD sector that contains
the start of the object. While objects may cross the 512
byte sector boundaries, the first two bytes in each sector
are used to store the offset to the start of the first object
starting in that sector. Each object’s on-SSD metadata
contains its size, using which, we can then find the rest of
the object boundaries in that sector. We can index 2TB of

SSD this way. 40 bit offsets can be used for larger SSDs.
Our second optimization addresses Object Table over-

head from small objects. For example, four byte objects
can create 100% DRAM overhead from their Object Ta-
ble offsets. To reduce this overhead, we introduce object
batching – small objects are batched into larger contigu-
ous objects. We batch enough objects together such that
the size of the larger object is at least 128 bytes (restrict-
ing the Object Table overhead to a small fraction – 1

32).
Pages, however, are materialized in regular OPP style –
one small object per page. However, batched objects are
internally maintained as a single object.

3.4 SSDAlloc’s Heap Manager
Internally, SSDAlloc’s virtual memory allocation mech-
anism works like a memory manager over large Object
Table allocations (shown in Figure 1). This ensures that
a new Object Table is not created for every memory
allocation. The Object Tables and their corresponding
virtual memory ranges are created in bulk and memory
managers allocate from these regions to increase ATM
lookup efficiency. We provide two kinds of memory
managers – An object pool allocator which is used for
individual allocations and a ptmalloc style coalescing
memory manager. We keep the pool allocator separate
from the coalescing allocator for the following reasons:
1) Many of our focus applications prefer pool allocators,
so providing a pool allocator further eases their devel-
opment, 2) Pool allocators reduce the number of page
reads/writes by not requiring coalescing, and 3) Pool al-
locators can export simpler memory usage information,
increasing garbage collector efficiency.

Object Pool Allocator: SSDAlloc provides an object
pool allocator for allocating objects individually via OPP.
Unlike traditional pool allocators, we do not create pools
for each object type, but instead create pools of differ-
ent size ranges. For example, all objects of size less than
0.5KB are allocated from one pool, while objects with
sizes between 0.5KB and 1KB are allocated from another
pool. Such pools exist for every 0.5KB size range, since
OPP performs virtual memory operations at page gran-
ularity. Despite the pools using size ranges, we avoid
wasting space by obtaining the actual object size from
the application at allocation time, and using this size both
when the object is stored in the RAM object cache, and
when the object is written to the SSD. When reading an
object from the SSD, the read is rounded to the pool size
to avoid multiple small reads.

SSDAlloc maintains each pool as a free list – a pool
starts with a single allocation of 128 objects (one Object
Table, with pages contiguous in virtual address space)
initially and doubles in size when it runs out of space
(with a single Object Table and a contiguous virtual
memory range). No space in the RAM object cache or

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 217

the SSD is actually used when the size of pool is in-
creased, since only virtual address space is allocated.
The pool stops doubling in size when it reaches a size
of 10,000 (configurable) and starts linearly increasing in
steps of 10,000 from then on. The free-list state of an ob-
ject can be used to determine if an object on the SSD is
garbage, enabling object-granularity garbage collection.
This type of a separation of the heap-manager state from
where the data is actually stored is similar to the “frame-
heap” implementation of Xerox Parc’s Mesa and Cedar
languages [15].

Like Object Tables, we try to maintain free-lists in
DRAM, so the free list size is tied to the number of free
objects, instead of the total number of objects. To re-
duce the size of the free list we do the following: the
free list actively indexes the state of only one Object Ta-
ble of each pool at any point of time, while the alloca-
tion state for the rest of the Object Tables in each pool
is managed using a compact bitmap notation along with
a count of free objects in each Object Table. When the
heap manager cannot allocate from the current one, it
simply changes the current Object Table’s free list repre-
sentation to a bitmap and moves on to the Object Table
with the largest number of free objects, or it increases the
size of the pool.

Coalescing Allocator: SSDAlloc’s coalescing mem-
ory manager works by using memory managers like pt-
malloc [5] over large address spaces that have been re-
served. In our implementation we use a simple best-
first with coalescing memory manager [5] over large
pre-allocated address spaces, in steps of 10,000 (config-
urable) pages; no DRAM or SSD space is used for these
pre-allocations, since only virtual address space is re-
served. Each object/page allocated as part of the coalesc-
ing memory manager is given extra metadata space in the
header of a page to hold the memory manager informa-
tion (objects are then appropriately offset). OPP arrays of
any size can be allocated by performing coalescing at the
page granularity, since OPP arrays are simply arrays of
pages. MP pages are treated like pages in the traditional
virtual memory system. The memory manager works ex-
actly like traditional malloc, coalescing freely at byte
granularity. Thus, MP with our Coalescing Allocator can
be used as a drop-in replacement for log-structured swap.

A dirty object evicted by RAM object cache needs to
be written to the SSD’s log and the new location has to be
entered at its OTO. This means that the older location of
the object has to be garbage collected. An OPP object on
the SSD which is in a free-list also needs to be garbage-
collected. Since SSDs do not have the mechanical delays
associated with a moving disk head, we can use a sim-
pler garbage collector than the seek-optimized ones de-
veloped for disk-based log-structured file systems [22].
Our cleaner performs a “read-modify-write” operation

over the SSD sequentially – it reads any live objects at
the head of the log, packs them together, and writes them
along with flushed dirty objects from RAM.

3.5 SSDAlloc’s Garbage Collector
The SSDAlloc Garbage Collector (GC) activates when-
ever the RAM object cache has evicted enough number
of dirty objects (as shown in Figure 1) to amortize the
cost of writing to the SSD. We use a simple read-modify-
write garbage collector, which reads enough partially-
filled blocks (of configurable size, preferably large) at
the head of the log to make space for the new writes.
Each object on the SSD has its 2-tuple <OTID,OTO>
and its size as the metadata, used to update the Object
Table. This back pointer is also used to figure out if the
object is garbage, by matching the location in the Object
Table with the actual offset. To minimize the number of
reads per iteration of the GC on the SSD, we maintain in
RAM the amount of free space per 128KB block. These
numbers can be updated whenever an object in an erase
block is moved elsewhere (live object migration for com-
paction), when a new object is written to it (for writing
out dirty objects) or when the object is moved to a free-
list (object is “free”).

While the design so far focused on obtaining high
performance from DRAM and flash in a hybrid setting,
memory allocated via SSDAlloc is not non-volatile. We
now present our durability framework to preserve appli-
cation memory and state on the SSD.

3.6 SSDAlloc’s Durability Framework
SSDAlloc helps applications make their data persistent
across reboots. Since SSDAlloc is designed to use much
more SSD-backed memory than the RAM in the system,
the runtime is expected to maintain the data persistent
across reboots to avoid the loss of work.

SSDAlloc’s checkpointing is a way to cleanly shut-
down an SSDAlloc based application while making ob-
jects and metadata persistent to be used across reboots.
Objects can be made persistent by simply flushing all the
dirty objects from RAM object cache to the SSD. The
state of the heap-manager, however, needs more support
to be made persistent. The bitmap style free list represen-
tation of the OPP pool allocator makes the heap-manager
representation of individually allocated OPP objects easy
to be serialized to the SSD. However, the heap-manager
information as stored by a coalescing memory manager
used by the OPP based array allocator and the MP based
memory allocator would need a full scan of the data on
the SSD to be regenerated after a reboot. Our current
implementation provides durability only for the individ-
ually allocated OPP objects and we wish to provide dura-
bility for other types of SSDAlloc data in the future.

We provide durability for the heap-manager state of
the individually allocated OPP objects by reserving a

7

218 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

known portion of the SSD for storing the correspond-
ing Object Tables and the free list state (a bitmap). Since
the maximum Object Table space to object size overhead
ratio is 1

32 , we reserve slightly more than 1
32 of the to-

tal SSD space (by using a file that occupies that much
space) where the Object Tables and the free list state can
be serialized for later use.

It should be possible to garbage collect dead objects
across reboots. This is handled by making sure that our
copy-and-compact garbage collector is always aware of
all the OTIDs that are currently active within the SS-
DAlloc system. Any object with an unknown OTID
is garbage collected. Additionally, any object with an
OTID that is active is garbage collected only according
to the criteria discussed in Section 3.5.

Virtual memory address ranges of each Object Ta-
ble must be maintained across reboots, because check-
pointed data might contain pointers to other check-
pointed data. We store the virtual memory address range
of each Object Table in the first object that this Object
Table indexes. This object is written once at the time of
creation of the Object Table and is not made available to
the heap manager for allocation.

3.7 SSDAlloc’s Overhead
We observe that the overhead introduced by the SSDAl-
loc’s runtime mechanism is minor compared to the per-
formance limits of today’s high-end SSDs. On a test ma-
chine with a 2.4 GHz quad-core processor, we bench-
mark the SSDAlloc’s runtime mechanism to arrive at
that conclusion. To benchmark the latency overhead of
the signal handling mechanism, we protect 200 Million
pages and then measure the maximum seg-fault gener-
ation rate that can be attained. For measuring the the
ATM lookup latency, we build an ATM with a million
entries and then measure the maximum lookup through-
put that can be obtained. To benchmark the latency of
an on-demand page materialization of an object from the
RAM object cache to a page within the Page Buffer, we
populate a page with random data and measure the la-
tency. To benchmark the page dematerialization of a
page from the Page Buffer to an object in the RAM ob-
ject cache, we copy the contents of the page elsewhere,
madvise the page as not needed and reprotect the page
using mprotect and measure the total latency. To
benchmark the latency of TLB misses (through L3) we
use a CPU benchmarking tool, the Calibrator [2], by al-
locating 15GB of memory per core. Table 4 presents the
results. Latencies of all the overheads clearly indicate
that they would not be a bottleneck even for the high-end
SSDs like the FusionIO IOXtreme drives, which can pro-
vide up to 250,000 IOPS. In fact, one would need 5 such
SSDs for the SSDAlloc runtime to saturate the CPU.

The largest CPU overhead is from the signal han-

Overhead Source Avg. Latency (µsec)
TLB Miss (DRAM read) 0.014
ATM Lookups 0.046
Page Materialization 0.138
Page Dematerialization 0.172
Signal Handling 0.666
Combined Overhead 0.833

Table 4: SSDAlloc’s overheads are quite low, and place an up-
per limit of over 1 million operations per second using low-end
server hardware. This request rate is much higher than even the
higher-performance SSDs available today, and is higher than
even what most server applications need from RAM.

dling mechanism, which is present only because of a
user space implementation. With an in kernel implemen-
tation, the VM pager can be used to manage the Page
Buffer, which would further reduce the CPU usage. We
designed OPP for applications with high read random-
ness without much locality, because of which, using OPP
will not greatly increase the number of TLB (through L3)
misses. Hence, applications that are not bottlenecked by
DRAM (but by CPU, network, storage capacity, power
consumption or magnetic disk) can replace DRAM with
high-end SSDs via SSDAlloc and reduce hardware ex-
penditure and power costs. For example, Facebook’s
memcache servers are bottlenecked by network parame-
ters [3]; their peak performance of 200,000 tps per server
can be easily obtained by using today’s high-end SSDs as
RAM extension via SSDAlloc.

DRAM overhead created from the Object Tables is
compensated by the performance gains. For example, a
300GB SSD would need 10GB and 300MB of space for
Object Tables when using OPP and MP respectively for
creating 128 byte objects. However, SSDAlloc’s random
read/write performance when using OPP is 3.5 times bet-
ter than when using MP (shown in Section 5). Addition-
ally, for the same random write workload OPP generates
32 times less write traffic to the SSD when compared to
MP and thereby increases the lifetime of the SSD. Ad-
ditionally, with an in kernel implementation, either the
page tables or the Object Tables will be used as they both
serve the same purpose, further reducing the overhead of
having the Object Tables in DRAM.

4 Implementation and the API
We have implemented our SSDAlloc prototype as a C++
library in roughly 10,000 lines of code. It currently sup-
ports SSD as the only form of flash memory, though it
could later be expanded, if necessary, to support other
forms of flash memory. In our current implementation,
applications can coexist by creating multiple files on
the SSD. Alternatively, an application can use the entire
SSD, as a raw disk device for high performance. While
the current implementation uses flash memory via an I/O

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 219

5K

10K

15K

20K

25K

30K

35K

 0 1 2 3 4 5 6 7 8 9 10

R
a

n
d

o
m

 R
e

a
d

s
 (

re
q

/s
e

c
)

Number of Threads

RiData

Kingston

Intel X25-V

Intel X25-E

Intel X25-M (G2)

Figure 2: SSDAlloc’s thread-safe memory allocators allow ap-
plications to exploit the full parallelism of many SSDs, which
can yield significant performance advantages. Shown here is
the performance for 4KB reads.

controller such an overhead may be avoided in the fu-
ture [13]. We present an overview of the implementation
via a description of the API.
ssd oalloc: void* ssd oalloc(int numObjects, int object-
Size): is used for OPP allocations – both individual and
array allocations. If numObjects is 1 then the object is al-
located from the in-built OPP pool allocator. If it is more
than 1, it is allocated from the OPP coalescing memory
manager.
ssd malloc: void* ssd malloc(size t size): allocates
size bytes of memory using the heap manager (described
in Section 3.4) on MP pages. Similar calls exist for
ssd calloc and ssd realloc.
ssd free: void ssd free(void* va address): deallo-
cates the objects whose virtual allocation address is
va address. If the allocation was via the pool allocator
then the <OTID,OTO> of the object is added to the ap-
propriate free list. In case of array allocations, the in-
built memory manager frees the data according to our
heap manager. SSDAlloc is designed to work with low
level programming languages like ‘C’. Hence, the onus
of avoiding memory leaks and of freeing the data appro-
priately is on the application.
checkpoint: int checkpoint(char* filename): flushes all
dirty objects to the SSD and writes all the Object Tables
and free-lists of the application to the file filename. This
call is used to make the objects of an application durable.
restore: int restore(char* filename) : It restores the SS-
DAlloc state for the calling application. It reads the file
(filename) containing the Object Tables and the free list
state needed by the application and mmaps the necessary
address for each Object Table (using the first object en-
try) and then inserts the mappings into the ATM as de-
scribed in Section 3.6.

SSDs scale performance with parallelism. Figure 2
shows how some high-end SSDs have internal paral-
lelism (for 0.5KB reads, other read sizes also have paral-
lelism). Additionally, multiple SSDs could be used with

in an application. All SSDAlloc functions, including the
heap manager, are implemented in a thread safe manner
to be able to exploit the parallelism.

4.1 Migration to SSDAlloc
We believe that SSDAlloc is suited to the memory-
intensive portions of server applications with minimal to
no locality of reference, and that migration should not be
difficult in most cases – our experience suggests that only
a small number of data types are responsible for most of
the memory usage in these applications. The following
scenarios of migration are possible for such applications
to embrace SSDAlloc:

• Replace all calls to malloc with ssd malloc:
Application would then use the SSD as a log-
structured page store and use the DRAM as a page
cache. Application’s performance would be bet-
ter than when using the SSD via unmodified Linux
swap because it would avoid random writes and cir-
cumvent other legacy swap system overheads that
are more clearly quantified in FlashVM [23].

• Replace all malloc calls made to allocate mem-
ory intensive datastructures of the application with
ssd malloc: Application can then avoid SS-
DAlloc’s runtime intervention (copying data be-
tween Page Buffer and RAM object cache) for non-
memory intensive datastructures and can thereby
slightly reduce its CPU utilization.

• Replace all malloc calls made to allocate mem-
ory intensive datastructures of the application with
ssd oalloc: Application would then use the
SSD as a log-structured object store only for mem-
ory intensive objects. Application’s performance
would be better than when using the SSD as a log-
structured swap because now the DRAM and the
SSD would be managed at an object granularity.

In our evaluation of SSDAlloc, we tested all the above
migration scenarios to estimate the methodology that
provides the maximum benefit for applications in a hy-
brid DRAM/SSD setting.

5 Evaluation Results
In this section we evaluate SSDAlloc using microbench-
marks and applications built or modified to use SSDAl-
loc. We first present microbenchmarks to test the limits
of benefits from using SSDAlloc versus SSD-swap. We
also examine the performance of memcached (with SS-
DAlloc and SSD-swap), a popular key-value store used
in datacenters, where SSDs have been shown to mini-
mize energy consumption [7]. Later, we benchmark a
B+Tree index for SSDs, where we replace all calls to
malloc with ssd malloc to see the benefits and im-
pact of an automated migration to SSDAlloc.

9

220 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10K

20K

30K

40K

50K

60K

OPP MP SSD-swap

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t
(r

e
q

/s
e

c
)

Allocation Method

All Reads
75% Reads
50% Reads

25% Reads
All Writes

(a) Throughput Vs. Allocation Style (X25-E)

0

10K

20K

30K

40K

OPP MP SSD-swap

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t
(r

e
q

/s
e

c)

Allocation Method

RiData

Kingston

Intel X25-E

Intel X25-V

Intel X25-M

(b) Throughput Vs. Allocation Style (50% Reads)

1

100

1K

OPP MP SSD-swap

O
b

je
c
ts

 W
ri
tt
e

n
 p

e
r

R
a

n
d

o
m

 W
ri
te

Allocation Method

(c) Write Efficiency Vs. Allocation Style

Figure 3: Microbenchmark results on 32GB object (128 byte each) array. In (a), OPP works best (1.8–3.5 times over MP and
2.2–14.5 times over swap), MP and swap take a huge performance hit when write traffic increases. In (b), OPP, on all SSDs, trumps
all other methods by reducing read and write traffic. In (c), OPP has the maximum write efficiency (31.5 times over MP and 1013
times over swap) by writing only dirty objects as opposed to writing full pages containing them.

After that, we compare the performance of systems
designed to use SSDAlloc to the same system specifi-
cally customized to use the SSD directly, to evaluate the
overhead from SSDAlloc’s runtime. We examine a net-
work packet cache backend that was built using transpar-
ent SSDAlloc techniques described in this paper and also
the non-transparent mechanism described in our work-
shop paper [8]. We also evaluate the performance of a
web proxy/WAN accelerator cache index for SSDs intro-
duced in prior work [9, 8] and similar to the problems
addressed more recently [6, 14]. Here, we demonstrate
how using OPP makes efficient use of DRAM while pro-
viding high performance.

In all these experiments we evaluate applications
using three different allocation methods: SSD-swap
(via malloc), MP or log-structured SSD-swap (via
ssd malloc), OPP (via ssd oalloc). Our evalua-
tions use five kinds of SSDs and two types of servers.
The SSDs and some of their performance characteristics
are shown in Table 3. The two servers we use have a sin-
gle core 2GHz CPU with 4GB of RAM and a quad-core
2.4GHz CPU with 16GB of RAM respectively.

5.1 Microbenchmarks
We examine the performance of random reads and writes
in an SSD-augmented memory by accessing a large ar-
ray of 128 byte objects – an array of total size of 32GB
using various SSDs. We further restrict the accessible
RAM in the system to 1.5GB to test out-of-DRAM per-
formance. We access objects randomly (read or write) 2
million times per test. The array is allocated using four
different methods – SSD-swap (via malloc), MP (via
ssd malloc), OPP (via ssd oalloc). Object Tables
for each of OPP, and MP occupy 1.1GB and 34MB re-
spectively. Page Buffers are restricted to a size of 25 MB
(it was sufficient to pin a page down while it was being
accessed in an iteration). Remaining memory was used
by the RAM object cache. To exploit the SSD’s paral-
lelism, we run 8–10 threads that perform the random ac-

OPP MP SSD-swap
Average (µsec) 257 468 624
Std Dev (µsec) 66 98 287

Table 5: Response times show that OPP performs best, since
it can make the best use of the block-level performance of the
SSD whereas MP provides page-level performance. SSD-swap
performs poorly due to worse write behavior.

cesses in parallel.
The results of this microbenchmark are shown in Fig-

ure 3. Figure 3(a) shows how (for the Intel X25-E SSD)
allocating objects via OPP achieves much higher per-
formance. OPP beats MP by a factor of 1.8–3.5 times
depending on the write percentage and it beats SSD-
swap by a factor of 2.2–14.5 times. As the write traffic
increases, MP and SSD-swap fare poorly due to read-
ing/writing at a page granularity. OPP reads only 512
byte sector per object access as opposed to reading a 4KB
page; it dirties only 128 bytes as opposed to dirtying 4KB
per random write.

Figure 3(b) demonstrates how OPP performs better
than all the allocation methods across all the SSDs when
50% of the operations are writes. OPP beats MP by a
factor of 1.4–3.5 times and it beats SSD-swap by a factor
of 5.5–17.4 times. Table 5 presents response time statis-
tics when using the Intel X25-E SSD. OPP has the lowest
averages and standard deviations. SSD-swap has a high
average response time compared to OPP and MP. This is
mainly because of storage sub-system inefficiencies and
random writes (quantified more clearly in [23]).

Figure 3(c) quantifies the write optimization obtained
by using OPP in log scale. OPP writes at an object gran-
ularity, which means that it can fit more number of dirty
objects in a given write buffer when compared to MP.
When a 128KB write buffer is used, OPP can fit nearly
1024 dirty objects in the write buffer while MP can fit
only around 32 pages containing dirty objects. Hence,
OPP writes more number of dirty objects to the SSD
per random write when compared to both MP and SSD-

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 221

0

5K

10K

15K

20K

25K

30K

 1 2 3 4 5 6 7 8 9 10

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t
(r

e
q

/s
e

c
)

Number of memcached Instances

one swap space
two swap spaces

three swap spaces
SSDAlloc OPP

SSDAlloc MP

(a) Throughput Vs. Num Instances (50% get)

0

10K

20K

30K

40K

50K

 128 256 512 1024 2048 4096 8192

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t
(r

e
q

/s
e

c
)

Maximum Object Size (bytes)

SSDAlloc OPP

two swap spaces

SSDAlloc MP

(b) Throughput Vs. Object Size (50% get)

5K

10K

15K

20K

25K

OPP MP SSD-swap

T
h

ro
u

g
h

p
u

t
(r

e
q

s
 /
 s

e
c
)

Allocation Method

RiData

Kingston

Intel X25-E

Intel X25-V

Intel X25-M

(c) Gain over SSD-Swap (50% get)

Figure 4: Memcached results. In (a), OPP outperforms MP and SSD-swap by factors of 1.6 and 5.1 respectively (mix of 4byte to
4KB objects). In (b), SSDAlloc’s use of objects internally can yield dramatic benefits, especially for smaller memcached objects.
In (c), SSDAlloc beats SSD-Swap by a factor of 4.1 to 6.4 for memcached tests (mix of 4byte to 4KB objects).

swap (which makes a random write for every dirty ob-
ject). OPP writes 1013 times more efficiently compared
to SSD-swap and 31.5 times compared to MP (factors
independent of SSD make). Additionally, OPP not only
increases write efficiency but also writes 31.5 times less
data compared to MP and SSD-swap for the same work-
load by working at an object granularity and thereby in-
creases the SSD lifetime by the same factor.

Overall, OPP trumps SSD-swap by huge gain factors.
It also outperforms MP by large factors providing a good
insight into the benefits that OPP would provide over log-
structured swaps. Such benefits scale inversely with the
size of the object. For example with 1KB objects OPP
beats MP by a factor of 1.6–2.8 and with 2KB objects
the factor is 1.4–2.3.

5.2 Memcached Benchmarks
To demonstrate the simplicity of SSDAlloc and its per-
formance benefits for existing applications, we modify
memcached. Memcached uses a custom slab allocator to
allocate values and regular mallocs for keys. We re-
placed memcache’s slabs with OPP (ssd oalloc) and
with MP(ssd malloc) to obtain two different versions.
These changes require modifying 21 lines of code out of
over 11,000 lines in the program. When using MP, we re-
placed malloc with ssd malloc inside memcache’s
slab allocator (used only for allocating values).

We compare these versions with an unmodified mem-
cached using SSD-swap. For SSDs with parallelism we
create multiple swap partitions on the same SSD. We also
run multiple instances of memcached to exploit CPU and
SSD parallelism. Figure 4 shows the results.

Figure 4(a) shows the aggregate throughput obtained
using a 32GB Intel X25-E SSD (2.5GB RAM), while
varying the number of memcached instances used. We
compare five different configurations – memcached with
OPP and MP, memcached with one, two and three swap
partitions on the same SSD. For this experiment we pop-
ulate memcached instances with object sizes distributed
uniformly randomly from 4 bytes to 4KB such that the

total size of objects inserted is 30GB. For benchmarking,
we generate 1 million memcached get and set requests
(100% hitrate) each using four client machines that stati-
cally partition the keys and distribute their requests to all
running memcached instances.

Results indicate that SSDAlloc’s write aggregation is
able to exploit the device’s parallelism, while SSD-swap
based memcached is restricted in performance, mainly
due to the swap’s random write behavior. OPP (at 8 in-
stances of memcached) beats MP (at 6 instances of mem-
cached) and SSD-swap (at 6 instances of memcached on
two swap partitions) by factors of 1.6 and 5.1 respec-
tively by working at an object granularity, for a mix of
object sizes from 4bytes to 4KB. While using SSD-Swap
with two partitions lowers the standard deviation of the
response time, SSD-Swap had much higher variance in
general. For SSD-Swap, the average response time was
667 microseconds and the standard deviation was 398
microseconds, as opposed to OPP’s response times of
287 microseconds with a 112 microsecond standard de-
viation (high variance due to synchronous GC).

Figure 4(b) shows how object size determines mem-
cached performance with and without OPP (Intel X25-E
SSD). Here, we generate requests over the entire work-
load without much locality. We compare the aggregate
throughput obtained while varying the maximum ob-
ject size (actual sizes are distributed uniformly from 128
bytes to limit). We perform this experiment for three set-
tings – 1) Eight memcached instances with OPP, 2) Six
memcached instances with MP and 3) Six memcached
instances with two swap partitions. We picked the num-
ber of instances from the best performing numbers ob-
tained from the previous experiment. We notice that
as the object size decreases, memcached with OPP per-
forms much better than when compared to memcached
with SSD-swap and MP. This is due to the fact that using
OPP moves objects to/from the SSD, instead of pages,
resulting in smaller reads and writes. The slight drop in
performance in case of MP and SSD-swap when moving
from 4KB object size limit to 8KB is because the runtime

11

222 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 200

 250

 300

 350

 400

 450

100 300 600 900 1200 1500 Mixed

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Packet Size (bytes)

Transparent SSDAlloc OPP

Non Transaparent SSDAlloc OPP

(a) Response Time Vs. Packet Size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4 8 16 32 64

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Key Size (bytes)

SSD-swap OPP MP

(b) Response Time Vs. Key Size

Figure 5: Packet Cache Benchmarks: In (a) we see that SSDAlloc’s runtime mechanism adds only up to 20 microseconds of
latency overhead, while there was no significant difference in throughput. B+Tree Benchmarks: In (b), we see that SSDAlloc’s
ability to internally use objects beats page-sized operations of MP or SSD-swap.

sometimes issues two reads for objects larger than 4KB.
When the Object Table indicates that they are contigu-
ous on SSD, we can fetch them together. In comparison,
SSD-swap prefetches when possible.

Figure 4(c) quantifies these gains for various SSDs
(objects between 4byte and 4KB) at a high insert rate
of 50%. The benefits of OPP can be anywhere between
4.1–6.4 times higher than SSD-swap and 1.2–1.5 times
higher than MP (log-structured swap). For smaller ob-
jects (each 0.5KB) the gains are 1.3–3.2 and 4.9–16.4
times respectively over MP and SSD-swap (16.4 factor
improvement is achieved on the Intel X25-V SSD). Also,
depending on object size distribution, OPP writes any-
where between 3.88–31.6 times more efficiently when
compared to MP and 24.71–1007 times compared to
SSD-swap (objects written per SSD write). The total
write traffic of OPP is also between 3.88–31.6 times less
when compared to MP and SSD-swap, increasing the
lifetime and reliability of the SSD.

5.3 Packet Cache Benchmarks
Packet caches (and chunk caches) built using SSDs scale
the performance of network accelerators [6] and inline
data deduplicators [14] by exploiting good random read
performance and large capacity of flash. Similar capacity
DRAM-only systems will cost much more and also con-
sume more power. We built a packet cache backend that
indexes a packet with the SHA1 hash of its contents (us-
ing a hash table). We built it via two methods – 1) pack-
ets are allocated via OPP (ssd oalloc), and 2) packets
are allocated via the non-transparent object get/put based
SSDAlloc that we describe in our workshop paper [8] –
where the SSD is used directly without any runtime inter-
vention. Remaining data structures in both the systems
are allocated via malloc. We compare these two im-
plementations to estimate the overhead from SSDAlloc’s
runtime mechanism for each packet accessed.

For the comparison, we test the response times of
packet get/put operations into the backend. We consider
many settings – we vary the size of the packet from 100

to 1500 bytes and in another setting we consider a mix
of packet sizes (uniformly, from 100 to 1500 bytes). We
use a 20 byte SHA1 hash of the packet as the key that is
stored in the hashtable (in DRAM) against the packet as
the value (on SSD) – the cache is managed in LRU fash-
ion. We generate random packet content from “/dev/ran-
dom”. We use the Intel X25-M SSD and the high-end
CPU machine for these experiments, with eight threads
for exploiting device parallelism. We first fill the SSD
with 32GB worth of packets and then perform 2 million
lookups and inserts (after evicting older packets in LRU
fashion). In this benchmark, we configured the Page
Buffer to hold only a handful of packets such that ev-
ery page get/put request leads to a signal raise, and an
ATM lookup followed by an OPP page materialization.

Figure 5(a) compares the response times of OPP
method using the transparent techniques described in
this paper and the non-transparent calls described in the
workshop paper [8]. The results indicate that the over-
head from SSDAlloc’s runtime mechanism is only on
the order of ten microseconds, there is no significant dif-
ference in throughput. Highest overhead observed was
for 100 byte packets, where transparent SSDAlloc con-
sumed 6.5% more CPU than the custom SSD usage ap-
proach when running at 38K 100 byte packets per sec-
ond (30.4 Mbps). We believe this overhead is acceptable
given the ease of development. We also built the packet
cache by allocating packets via MP (ssd malloc) and
SSD-swap (malloc). We find that OPP based packet
cache performed 1.3–2.3 times better than an MP based
one and 4.8–10.1 times better than SSD-swap for mixed
packets (from 100 to 1500 bytes) across all SSDs. Write
efficiency of OPP scaled according to the packet size as
opposed to MP and SSD-swap which always write a full
page (either for writing a new packet or for editing the
heap manager data by calling ssd free or free). Us-
ing an OPP packet cache, three Intel SSDs can acceler-
ate a 1Gbps link (1500 byte packets at 100% hit rate).
Whereas, MP and SSD-swap would need 5 and 12 SSDs
respectively.

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 223

100K

1M

10M

100M

1.5 2.0 2.5 3.0 3.5 4.0

M
a

x
 A

llo
w

e
d

 W
o

rk
in

g
 S

e
t
S

iz
e

Available DRAM (GB)

SSDAlloc OPP
SSDAlloc MP

SSD-swap

Figure 6: HashCache benchmarks: SSDAlloc OPP option can
beat MP and SSD-Swap on RAM requirements due to caching
objects instead of pages. The maximum size of a completely
random working set of index entries each allocation method
can cache in DRAM is shown (in log scale).

5.4 B+Tree Benchmarks

We built a B+Tree data structure via Boost framework [1]
using the in-built Boost object pool allocator (which uses
malloc internally). We then ported it to SSDAlloc OPP
(in 15 lines of code) by replacing calls to object pool
with ssd oalloc. We also ported it to MP by replac-
ing all calls to malloc (inside object pool) with
ssd malloc (in 6 lines of code). Hence, in the MP
version, every access to memory happens via the SSDAl-
loc’s runtime mechanism.

We use the Intel X25-V SSD (40GB) for the experi-
ments and restrict the amount of memory in the system
to 256MB for both the systems to test out-of-DRAM be-
havior. We allow up to 25 keys stored per inner node and
25 values stored in the leaf node, and we vary the key
size. We first populate the B+Tree such that it has 200
million keys, to make sure that the height of the B+Tree
is at least 5. We vary the size of the key, so that the size
of the inner object and leaf node object vary. We perform
2 million updates (values are updated) and lookups.

Figure 5(b) shows that MP and OPP provide much
higher performance than using SSD-swap. As the key
size increases from 4 to 64 bytes, the size of the nodes
increases from 216 bytes to 1812 bytes. The perfor-
mance of SSD-swap and MP is constant in all cases (with
MP performing 3.8 times better than SSD-swap with log-
structured writes) because they access a full page for al-
most every node access, regardless of node size, increas-
ing the size of the total dirty data, thereby performing
more erasures on the SSD. OPP, in comparison, makes
smaller reads when the node size is small and its perfor-
mance scales with the key size in the B+Tree. We also re-
port that across SSDs, B+Tree operations via OPP were
1.4–3.2 times faster when compared to MP and 4.3–12.7
times faster than when compared to SSD-swap (for a 64
byte key). In the next evaluation setting, we demonstrate
how OPP makes the best use of DRAM transparently.

5.5 HashCache Benchmarks
Our final application benchmark is the efficient Web
cache/WAN accelerator index based on HashCache [9].
HashCache is an efficient hash table representation that
is devoid of pointers; it is a set-associative cache index
with an array of sets, each containing the membership
information of a certain (usually 8–16) number of ele-
ments currently residing in the cache. We wish to use
an SSD backed index for performing HTTP caching and
WAN Acceleration for developing regions. SSD backed
indexes for WAN accelerators and data deduplicators are
interesting because only flash can provide the neces-
sary capacity and performance to store indexes for large
workloads. A netbook with multiple external USB hard
drives (upto a terabyte) can act as a caching server [8].
The inbuilt DRAM of 1–2 GB would not be enough to
index a terabyte hard drive in memory, hence, we pro-
pose using SSDAlloc in those settings – the internal SSD
can be used as a RAM supplement which can provide
the necessary index lookup bandwidth needed for WAN
Accelerators [16] which make many index lookups per
HTTP object.

We create an SSD based HashCache index for 3 bil-
lion entries using 32GB SSD space. For creating the in-
dex, HashCache creates a large contiguous array of 128
byte sets. Each set can hold information for sixteen el-
ements – hashes for testing membership, LRU usage in-
formation for cache maintenance and a four byte loca-
tion of the cached object. We test three configurations
of HashCache: with OPP (via ssd oalloc), MP (via
ssd malloc) and SSD-swap (via malloc) to create
the sets. In total, we had to modify 28 lines of code for
these modifications. While using OPP we made use of
Checkpointing. This is because we want to be able to
quickly reboot the cache in case of power outages (net-
books have batteries and a graceful shutdown is possible
in case of power outages).

Figure 6(a) shows, in log scale, the maximum number
of useful index entries of a web workload (highly ran-
dom) that can reside in RAM for each allocation method.
With available DRAM varying from 2GB to 4.5GB, we
show how OPP uses DRAM more efficiently than MP
and SSD-swap. Even though OPP’s Object Table uses
almost 1GB more DRAM than MP’s Object Table, OPP
still is able to hold much larger working set of index en-
tries. This is because OPP caches at set granularity while
MP caches at a page granularity, and HashCache has al-
most no locality. Being able to hold the entire working
set in memory is very important for the performance of
a cache, since it not only saves write traffic but also im-
proves the index response time.

We now present some reboot and recovery time mea-
surements. Rebooting the version of HashCache built
with OPP Checkpointing for a 32GB index (1.1GB Ob-

13

224 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ject Table) took 17.66 sec for the Kingston SSD (which
has a sequential read speed of 70 MBPS).

We also report performance improvements from us-
ing OPP over MP and SSD-swap across SSDs. For
SSDs with parallelism, we partition the index horizon-
tally across multiple threads. The main observation is
that using MP or SSD-swap would not only reduce per-
formance but also undermine reliability by writing more
number of times and more data to the SSD. OPP’s per-
formance is 5.3–17.1 times higher than when using SSD-
Swap, and 1.3-3.3 times higher than when using MP
across SSDs (50% insert rate).

6 Conclusion
SSDAlloc provides a hybrid memory management sys-
tem that allows new and existing applications to easily
use SSDs to extend the RAM in a system, while perform-
ing up to 17 times better than SSD-swap, up to 3.5 times
better than log-structured SSD-swap and increasing the
SSD’s lifetime by a factor of up to 30 times with mini-
mal code changes, limited to the memory allocation part
of the application code. The performance of SSDAlloc
based applications is close to that of custom-developed
SSD applications. We demonstrate the benefits of SS-
DAlloc in a variety of contexts – a data center application
(memcached), a B+Tree index, a packet cache backend
and an efficient hashtable representation (HashCache),
which required only minimal code changes, little appli-
cation knowledge, and no expertise with the inner work-
ings of SSDs.

7 Acknowledgments
We would like to thank our shepherd, Eddie Kohler,
as well as the anonymous NSDI reviewers. This re-
search was partially supported by the NSF Awards CNS-
0615237, CNS-0916204 and CNS-0519829.

References
[1] Boost, . http://www.boost.org/.
[2] Calibrator, . http://homepages.cwi.nl/˜manegold/

Calibrator/#6.
[3] Scaling Memcaced at Facebook, . http://www.facebook.

com/note.php?note_id=39391378919.
[4] Memcached, . http://www.danga.com/memcached/.
[5] ptmalloc, . http://www.malloc.de/en/.
[6] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath.

Cheap and Large CAMs for High Performance Data-Intensive
Networked Systems. In Proc. 7th USENIX NSDI, San Jose, CA,
Apr. 2010.

[7] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy nodes.
In Proc. 22nd ACM Symposium on Operating Systems Principles
(SOSP), Big Sky, MT, Oct. 2009.

[8] A. Badam and V. S. Pai. Beating Netbooks into Servers: Mak-
ing Some Computers More Equal Than Others. In Proc. 3rd

ACM Workshop on Networked Systems for Developing Regions
(NSDR), BigSky, MO, 2009.

[9] A. Badam, K. Park, V. S. Pai, and L. L. Peterson. Hashcache:
Cache storage for the next billion. In Proc. 6th USENIX NSDI,
Boston, MA, Apr. 2009.

[10] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.
Non-volatile memory for fast, reliable file systems. In Proc. AS-
PLOS’92, 1992.

[11] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for
high-performance flash disks. Operating Systems Review, 42(2):
88–93, 2007.

[12] M. Castro, A. Adya, B. Liskov, and A. C. Myers. Hac: Hy-
brid adaptive caching for distributed storage systems. In Proc.
16th ACM Symposium on Operating Systems Principles (SOSP),
Saint-Malô, France, Oct. 1997.

[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger, B. Lee,
and D. Coetzee. Better I/O Through Byte-Addressable, Persistent
Memory. In Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, Oct. 2009.

[14] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up in-
line storage deduplication using flash memory. In Proc. USENIX
Annual Technical Conference, Boston, MA, June 2010.

[15] P. V. der Linder. Expert C Programming: Deep C Secrets. Pren-
tice Hall, Englewood Cliffs, N.J, 1994.

[16] S. Ihm, K. Park, and V. S. Pai. Wide-area Network Acceleration
for the Developing World. In Proc. USENIX Annual Technical
Conference, Boston, MA, June 2010.

[17] T. Kgil and T. N. Mudge. Flashcache: A NAND flash memory file
cache for low power web servers. In Proc. of CASES’06, 2006.

[18] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A New Linux Swap
System for Flash Memory Storage Devices. In In ICCSA’09,
2008.

[19] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A
case for flash memory SSD in enterprise database applications.
In Proc. ACM SIGMOD, Vancouver, BC, Canada, June 2008.

[20] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operat-
ing system support for NVM+DRAM hybrind main memory. In
Proc. HotOS XII, Monte Verita, Switzerland, May 2009.

[21] D. Narayanan, E. Thereska, A. Donelly, S. Elnikety, and A. Row-
stron. Migrating server storage to ssds, analysis of tradeoffs. In
Proceedings of EuroSys’09, 2009.

[22] M. Rosenblum and J. K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Com-
puter Systems, 10(1):26–52, 1992.

[23] M. Saxena and M. M. Swift. Flashvm: Virtual memory manage-
ment on flash. In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2010.

[24] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient b-tree layer
for flash-memory storage systems. In Proccedings of RTCSA’04,
2004.

[25] M. Wu and W. Zwaenepoel. eNVy: A non-volatile, main mem-
ory storage system. In Proc. 6th International Conf. on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS), San Jose, CA, Oct. 1994.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 225

Model Checking a Networked System Without the Network

Rachid Guerraoui and Maysam Yabandeh
School of Computer and Communication Sciences, EPFL, Switzerland

email: firstname.lastname@epfl.ch

Abstract
Current approaches to model checking distributed sys-

tems reduce the problem to that of model checking cen-
tralized systems: global states involving all nodes and
communication links are systematically explored. The
frequent changes in the network element of the global
states lead however to a rapid state explosion and make
it impossible to model check any non-trivial distributed
system. We explore in this paper an alternative: a local
approach where the network is ignored, a priori: only the
local nodes’ states are explored and in a separate man-
ner. The set of valid system states is a subset of all com-
binations of the node local states and checking validity
of such a combination is only performed a posteriori,
in case of a possible bug. This approach drastically re-
duces the number of transitions executed by the model
checker. It takes for example the classic global approach
several minutes to explore the interleaving of messages
in the celebrated Paxos distributed protocol even consid-
ering only three nodes and a single proposal. Our local
approach explores the entire system state in a few sec-
onds. Our local approach does clearly not eliminate the
state exponential explosion problem. Yet, it postpones
its manifestations till some deeper levels. This is al-
ready good enough for online testing tools that restart the
model checker periodically from the current live state of
a running system. We show for instance how this ap-
proach enables us to find two bugs in variants of Paxos.

1 Introduction

At each step of model checking a centralized system, (i)
one of the traversed states is selected, (ii) an enabled
event is executed on that state, and (iii) the resulting
state is added to the list of traversed states. The user-
specified invariants are checked against the traversed
states after each step and the set of these states grows
exponentially with the depth of the exploration, i.e., the

Figure 1: State transition in model checking distributed
systems. In (a) the classic global approach, the model
checker creates the entire state space of the global states,
whereas in (b) our proposed local approach, the net-
work element is eliminated from the stored states and the
model checker keeps track of only node local states.

length of the sequence of enabled events considered.
Current approaches to model checking distributed sys-
tems [7, 8, 18, 19, 14] reduce the problem to that of
model checking a centralized system (Figure 1). The sets
explored are global states comprising the local states of
the nodes involved in the distributed system, i.e., the sys-
tem state, as well as the network state involving the ex-
change of messages.

The exponential state space explosion problem man-
ifests itself very quickly in this global approach, which
makes the model checking of distributed systems practi-
cally ineffective. This is because the global state changes
following any small change into a node local state or the
network state. Consider for instance the celebrated Paxos
protocol [9], in the simple setting with three nodes where
exactly one proposes at the start, i.e., no contention: it
takes the global model checking approach 1514 s (run-
ning on a 3.00 GHz Intel(R) Pentium(R) 4 CPU with 1
MB of L2 cache) to explore the interleaving of messages.

The starting point of this paper is a couple of simple,
complementary observations: (1) in the global model
checking approach, the invariants are checked on each

1

226 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

traversed global state, although these invariants are typi-
cally specified only on the system states, i.e., the invari-
ants do not involve the network states [8, 18, 19, 14]; 1

(2) for checking invariants that are defined on system
variables, visiting the system part is a priori sufficient.
Focusing on these states only, and ignoring the net-
work states, significantly reduces the exploration space
in comparison to the classic approach where each sys-
tem state is typically repeated in multiple global states
that differ only in the network part.

We present in this paper a local model checking ap-
proach, which essentially consists in keeping track of the
traversed local nodes’ states separately by ignoring the
network, a priori. Combined, these states are sufficient
for invariant checking. The approach is most effective on
protocols that involve frequent changes into the network,
i.e., the nodes have lots of parallel network activities. For
the Paxos example state space with one proposal, our ap-
proach explores the entire system state in a few seconds.
We show that our approach is complete in the sense that
any violation of a system state invariant that could be de-
tected by the global approach could be detected by our
local approach. Two important remarks are however in
order.

First, the combination of node states does not induce
system states that are all valid: the fact that we ignore
the network element, a priori, means that some combi-
nations of node states might not occur in a real run. In
other words, although complete, checking invariants on
the retrieved system states is unsound since it could re-
port a violation on an invalid system state. We address
this problem by, a posteriori, verifying every preliminary
violation report to make sure the sequence of events lead-
ing to the corresponding system state could also happen
in a real run. An invariant violation is then reported to the
user only if passes this test. If the number of preliminary
violations is low enough, which turns out to be the case
in our experiments with Paxos, the performance penalty
of verifying them becomes negligible.

Second, although our local approach is several orders
of magnitude faster than the classic model checking ap-
proach, the state explosion problem is not eliminated.
(The cost of invalid states created by our approach, al-
though low at the start, will anyway eventually domi-
nate in the general case.) Yet, we believe this can, to
a large extent, be addressed by online model checking
tools where the model checker is run for just a short pe-
riod (a few seconds): in this case, our approach is effi-
cient enough to search till depths of 20∼30 for the Paxos
example state space.

1In testing, invariants are used to express the high-level properties
of the system. Including the in-flight messages in invariants, although
possible in theory, makes defining the invariants too complicated in
practice.

In global model checking approach, visiting the sys-
tem states is part of the exploration process: the new
global states (which involve the system states) are ex-
plored by running enabled events on the previously vis-
ited global states. Therefore, skipping a system state
makes the exploration incomplete. In contrast, our lo-
cal approach separates the exploration of transitions from
the creation of system states. This makes it possible to
ignore all system states on which the user-specified in-
variants can inherently not be violated: for instance, the
Paxos invariant stipulates that no two decisions should
be different and all undecided states can systematically
be eliminated.
Summary of Contributions.

• We introduce a new, local approach to model check-
ing distributed systems. Instead of keeping track
of global states, we eliminate the network element
from the model checking states and keep only track
of node local states. Our approach optimistically
eliminates the overhead of ensuring soundness of
every visited state and instead verifies soundness
only on the states that violate the invariants.

• Our approach decouples exploration algorithm from
system state space creation. This feature opens the
door for optimizations that skip some system states
without, however, hurting the completeness of ex-
ploration. We benefit from this aspect in our exper-
iments by skipping the system states that could not
violate the Paxos invariant.

• Having the exploration, system state creation, and
soundness verification decoupled, the model check-
ing process can be embarrassingly parallelized to
benefit from the ever increasing number of cores.

• We present an efficient implementation of our ap-
proach and we show how this approach tracks bugs
in two variants of Paxos, known to be one of the
most complex distributed algorithms.

The rest of the paper is organized as follows. § 2 il-
lustrates our approach through a simple example. The
background is recalled in § 3. § 4 presents our approach.
After presenting the evaluation results in § 5, we contrast
local model checking approach with related work in § 6
and conclude the paper in § 7.

2 Local Model Checking: A Primer

Here we use a simple example to highlight the difference
between global model checking and our local approach.
The example we consider here does not attempt to illus-
trate the performance improvements obtained by our ap-
proach but aims at explaining the main idea. The exam-
ple system is a simple distributed tree structure, depicted
in Figure 2. Node 0 initiates a message for Node 4 and

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 227

Figure 2: A simple distributed tree algorithm. Each node
forwards the message to its children.

Figure 3: The global state space of the example tree in
Figure 2 as explored by a global model checking ap-
proach. The network element of the global state is rep-
resented by the set of in-flight messages. Each arrow
depicts a transition in the model checker from one global
state to another. The label besides each arrow indicates
the event that triggers the transition. Although the global
states inside the rectangles are duplicates, they are not
joined into one state, for simplicity of presentation.

changes its state to sent. Each node, upon receiving a
message, forwards it to its children. Node 4 changes its
state to received upon receiving the message.

At each step of global model checking, the model
checker transitions from a global state to another by run-
ning an enabled event, such as handling a message. The
global state contains the network state besides the system
state, i.e., the local state of all the nodes. The global state
space of the example system is depicted in Figure 3. The
initial state of each node is denoted ”-”. The system state
is shown by concatenating the five states of Nodes 0 to 4.
The state of Node 0 and 4 is changed to ”s” and ”r” after
the sending and receiving of the message, respectively.
Each change into the network element causes creation of
a new global state. As one can observe, the number of
system states covered by this global state space is much
less than its size.

Figure 4 illustrates our local approach on the same ex-
ample system. Here, the network element, i.e., the non-

Figure 4: Local model checking approach on the ex-
ample tree in Figure 2. The first column indicates the
changes into the shared network element. The middle
column shows the set of states of Node 0 to 4. The first
event is the local event of Node 0 that generates the mes-
sage. The generated message is then added to the shared
network element. At each step, an event is selected and
is executed on all states of the destination node. The re-
sultant states are added to the list of visited node states if
they have not been visited before. The last column shows
the new system states created after each step.

essential part for invariant checking, is separated from
the model checking state. Instead, we keep a shared net-
work component that receives the generated messages by
all the transitions in the model checking. Observe that
the messages added to the network are not removed by
the executed transitions. This is necessary for the com-
pleteness of the search, because each message must be
received by all the states of the destination node, includ-
ing the node states that will be explored later.
The last column of the figure depicts the new system

states created after each step. The system states are cre-
ated temporarily for the sake of being checked against
the user-specified invariants. Observe that, in total, only
4 system states are created in contrast with the 12 global
states of Figure 3. Moreover, the last system state, i.e.,
”----r” is invalid since Node 4 could not receive the mes-
sage before it is sent by Node 0. After an invariant is
violated on a system state, we run a soundness verifica-
tion phase to ensure the validity of the system state.

3 Preliminaries

We present here a simple model of a distributed system
and a basic model checking algorithm based on depth-
first search. The model is later altered in § 4 to explain lo-
cal model checking algorithm. We then explain the short

3

228 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

basic notions:
N − node identifiers
S − node states
M − message contents
N × M − (destination process, message)-pair
C = 2N×M

− set of messages with destination
A − internal node actions (timers, application calls)
global state : (L, I) ∈ G, G = 2N×S

× 2N×M

system state (local nodes’ states) : L ⊆ N × S

(function from N to S)
in-flight messages (network) : I ⊆ N × M

behavior functions for each node :
message handler : HM ⊆ (S × M) × (S × C)
internal action handler : HA ⊆ (S × A) × (S × C)

transition function for distributed system :

node message handler execution :
((s1, m), (s2, c)) ∈ HM

before: (L0 ⊎ {(n, s1)}, I0 ⊎ {(n, m)}) �

after: (L0 ⊎ {(n, s2)}, I0 ⊎ c)

internal node action (timer, application calls) :
((s1, a), (s2, c)) ∈ HA

before: (L0 ⊎ {(n, s1)}, I) �

after: (L0 ⊎ {(n, s2)}, I ⊎ c)

Figure 5: A simple distributed system model

run in online model checking, where the model checker
can benefit from our local model checking approach.

3.1 System Model
Figure 5 describes a simple model of a distributed sys-
tem, taken from [18].
System state. The global state of the entire distributed
system encompasses (1) the system state, i.e., local states
of all nodes, and (2) in-flight network messages. We as-
sume a finite set of node identifiers N (e.g., correspond-
ing to IP addresses). Each node n ∈ N has a local state
L

n
∈ S. A node state encompasses node-local infor-

mation, such as explicit state variables of the distributed
node implementation, the status of timers, and the state
that determines application calls. A network state corre-
sponds to the set of in-flight messages, I . We represent
each in-flight message by a pair (N, M) where N is the
destination node of the message and M is the remaining
message content (including sender node information and
message body).
Node behavior. Each node in the system runs the
same state-machine implementation. The state machine

has two kinds of handlers: (i) a message handler exe-
cutes in response to a network message; (ii) an inter-
nal handler executes in response to a node-local event
such as a timer and an application call. We represent
message handlers by a set of tuples HM . The condition
((s1, m), (s2, c)) ∈ HM means that, if a node is in state
s1 and it receives a message m, then it transitions into
state s2 and sends the set c of messages. Each element
(n′

, m
′) ∈ c is a message with target destination node n

′

and content m
′. ((s1, a), (s2, c)) ∈ HA represents the

handling of an internal node action a ∈ A. An internal
node action handler is analogous to a message handler,
but it does not consume a network message.
System behavior. The behavior of the system specifies
one step of a transition from one global state (L, I) to an-
other global state (L′

, I
′). We denote this transition by

(L, I) �(L′

, I
′) and describe it in Figure 5 in terms of

handlers HM and HA. 2 The handler that sends the mes-
sage, inserts the message directly into the network state
I , whereas the handler receiving the message simply re-
moves it from I . To keep the model simple, we assume
that transport errors are particular messages, generated
and processed by message handlers.
Observations. The following observations can be de-
rived from the definitions of HM and HA in Figure 5:
(i) Except the node in which the event is executed, the
state of other nodes, i.e., L0, is untouched. This implies
that to execute an event on node n, we require only the
state of node n; (ii) To execute HM with message m on
node n, the only required part from the network state is
tuple (n, m): the rest of the network state, i.e., I0, is
untouched. These observations indicate that the entire
global state of the system is not required to execute a
handler in the model checker.

3.2 Global Model Checking
Global model checking is based on a standard search al-
gorithm such as bounded depth-first search (B-DFS) for
tracking invariant violations in the transition system cap-
tured by relation � of Figure 5. The search starts from a
given global state, which, in the standard approach, is the
initial state of the system. By executing enabled handlers
(HM and HA) on the traversed global states, the search
systematically explores reachable global states at larger
and larger depths and checks whether the states satisfy
the given invariant condition.
Soundness. B-DFS is sound in the sense that all vio-
lation reports could also occur in a real run of the sys-
tem. In other words, there is no false positive in the re-
ported bugs. Moreover, all traversed states are valid and
could also be created in a real run. The sufficient part
for soundness, however, is only the reported violations

2⊎ in the handler definition means disjoint union.

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 229

Figure 6: The covered state space in model checking by
(a) a model checker started from the initial global state,
and (b) an online model checker that restarts periodically
from the current live system state. The curved line rep-
resents the states explored by the running system.

to the developer. We will show later that our local model
checking is also sound, even though some system states
created a priori might be invalid.
Completeness. An exploration algorithm is complete if,
given enough time and space, it can explore all system
states. In other words, completeness is satisfied if there
is no false negative in bug reporting. Although B-DFS
is complete, due to an inherently limited time budget, in
practice it can explore only a small fraction of the state
space of complex algorithms.

3.3 Online Model Checking
Due to the state space explosion problem, a model
checker of a distributed system cannot explore deeper
than certain steps in a limited time budget. For exam-
ple, even in the very small state space experiment of Fig-
ure 10, where only one node proposes once, the model
checker cannot explore more than 15 events within a
minute. An online model checker is, on the other hand,
restarted periodically from the live state of a running sys-
tem. As a consequence, the model checker has a chance
to explore more relevant states at deeper levels, instead
of getting stuck in the exponential explosion problem at
some very shallow depths.

Figure 6 illustrates the use of a model checker in par-
allel with a running system. As one can see, an online
model checker does not require solving the exponential
explosion problem completely; it is rather sufficient to
explore till a depth that is useful for testing purposes.

4 Local Model Checking

The architecture of our local model checking approach is
depicted in Figure 7. In this approach, the model checker
keeps track of node states separately: set LS

n contains
all the traversed states of node n. This is enough to

Figure 7: In our local approach, the handler execution
works only on node states and produces new node states.
Local and system states are denoted ”LS” and ”SS”,
respectively. The messages are not removed from the
shared network component after execution. The sound-
ness verification checks the validity of a system state,
only after an invariant violation is reported.

node message handler execution :
((s1, m), (s2, c)) ∈ H

′

M

before: (L0 ⊎ {(n, s1)}, I+
⊎ {(n, m)}) �

after: (L0 ⊎ {(n, s2)}, I+
⊎ {(n, m)} ⊎ c)

internal node action (timer, application calls) :
((s1, a), (s2, c)) ∈ H

′

A

before: (L0 ⊎ {(n, s1)}, I+) �

after: (L0 ⊎ {(n, s2)}, I+
⊎ c)

Figure 8: The altered handlers in local model checking.

recreate the system states upon which the invariants are
checked. After a preliminary violation report on a sys-
tem state, the validity of the system state is checked by
a soundness verification module. If the system state is
confirmed to be valid, the error is then (and only then)
reported to the developer.

Instead of keeping a separate network state for each
global state, we keep one single network state I

+ that
contains all generated messages during the model check-
ing (Figure 7). The execution of handlers must change to
work with the shared network state I

+ (Figure 8). In the
new handlers, H

′

M
and H

′

A
, the network state of the in-

put global state is replaced with the new shared network
state, I

+. Furthermore, the received message, (n, m),
is not removed from I

+ after the execution of handler
H

′

M
. In other words, the content of I

+ is always in-
creasing. It is not hard to see that the altered handlers
preserve the completeness of the search: for each Transi-
tion (Lp, Ip) �(Lq, Iq) in HM , there exist a correspond-
ing Transition (Lp, I

+
p) �(Lq, I

+
q) in H

′

M
. We discuss

soundness later in this section.
Recall from § 3 that, to execute a handler on node n,

the only required state is the state of node n, i.e., LS
n.

5

230 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 proc findBugs(liveState, invariant)
2 LS = emptySet(); I+ = emptySet();
3 foreach n ∈ N
4 LSn = LSn

∪ {liveStaten
};

5 while (! StopCriterion)
6 if (∃((s, e), (s′, c)) ∈ H ′

M where LSn
s ∈ LSn, (n, e) ∈ I+

7 || ∃((s, e), (s′, c)) ∈ H ′

A where LSn
s ∈ LSn)

8 addNextState(n, s, s′, e, c, LS);
9 checkSystemInvariant(n, s′, liveState, LS, invariant);

10

11 proc addNextState(n, s, s′, e, c, LS)
12 I+ = I+

∪ c;
13 LSn = LSn

∪ s′;
14 LSn

s′ .predecessors.add(s, e);
15

16 proc checkSystemInvariant(n, s′, liveState, LS, invariant)
17 foreach ss : system state
18 where ∀nk. ssnk

∈ LSnk

19 if (! invariant(ss))
20 if (isStateSound(liveState, ss))
21 reportBug(ss); // a bug found
22

23 proc isStateSound(liveState, state)
24 //obtain all sequences following predecessor pointers
25 foreach h : list of event sequences where
26 hn

∈ (staten.predecessors)∗ // ∗ is closure operator
27 if (isSequenceValid(liveState, h))
28 return true;
29 return false;
30

31 proc isSequenceValid(liveState, h)
32 state = liveState;

33 while (∃n, nextState where state hn.first()
� nextState)

34 state = nextState;
35 hn.popFirst();
36 return h == ∅;

Figure 9: Local model checker algorithm.

Therefore, the stored node states are enough to execute
the handlers and we do not need to recreate the system
state for that. To execute network handlers, however, we
require also message (n, m) from the network (we do not
need the whole network state.). As shown in Figure 7, the
handler execution module receives input only from node
states and the shared network module.

4.1 Algorithm
Figure 9 presents our algorithm. Variable LS in Figure 9
refers to the set of all visited node states, i.e., (n,s), where
n is the node index and s is the node state. Procedure
findBugs takes the live state of the system as input, to
initialize Variable LS at Lines 3-4. As in global model
checking , the search terminates upon exceeding some
bounds, such as running time or search depth (Line 5).
Handler execution. At each step of the model check-

ing, an enabled handler, either network or local, is exe-
cuted. For network handlers, the algorithm at each step
checks all network messages in Variable I

+. To obtain
the enabled network events, for each message e of node
n in I

+, all the currently visited states of node n are con-
sidered (Line 6). The corresponding network handler is
then executed (Line 8) and Procedure addNextState
is called on the resultant state, s

′, and the set of new net-
work messages, c. Note that the messages that are added
to network I

+ in this round of the loop (i.e., c in Fig-
ure 8) will be considered on the node states in the next
round.

As in the global model checking approach, the node
local events, such as timers and application calls, are de-
fined based on the node local states. In other words, the
value of node state LS

n
s determines which of the local

events are enabled. To obtain the enabled local events,
we look at all visited node states and retrieve their local
events (Line 7).

In Procedure addNextState, the set of new net-
work messages is added to the shared network, I

+

(Line 12). If the state of node n has changed, it is added
to set LS (Line 13). Variable predecessors keeps track
of all the last immediate node states as well as the exe-
cuted events on them that led to the current node state
(Line 14). We need more than one pointer in Vari-
able predecessors, since the same node state might be
reached by executing different sequences of events.
Creating system states. The invariants are defined
on system states. Since we do not store the system
states, they must be temporarily created for the sake
of invariant checking, which is performed by Procedure
checkSystemInvariant. The procedure is called
after each change to LS. Each system state ss is created
by combining the node states of different nodes in LS.
(We will explain in § 4.2 an optimization that prevents
revisiting system states.)

The only purpose of system state creation is to verify
the user-specified invariant in on them. Therefore, we
can design invariant-specific system state creation to by-
pass the system states that could not possibly violate the
invariant. In other words, if in

′

⇒ in and in
′(ss) is

false, verifying in(ss) is not necessary. In order for this
to be useful, in

′ should be cheaply verifiable. One way
to achieve that is to decompose in

′ into some locally ver-
ifiable properties. For example, the Paxos invariant spec-
ifies that no two nodes should choose different values. In
system state creation, therefore, we can ignore the node
states in which no value is chosen yet. If the invariant is
defined on node states separately, the invariant-specific
system state creation can also bypass the system states
in which none of node states have violated the invariant.
For example, in RandTree distributed tree structure, one
invariant specifies that in all node states the children and

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 231

siblings must be disjoint sets.
Soundness verification. Since taking all combina-
tions of node states could result into some invalid system
states, the preliminary violation of an invariant could be
unsound. Procedure isStateSound, therefore, veri-
fies validity of the system state upon which an invari-
ant is violated. Variable predecessors in each node
state s

′ contains all the last immediate node states that
led to s

′. Following these pointers, we obtain the set
of event sequences that could lead to s

′. If a system
state is valid, then there exists at least one valid com-
bination of its node states’ event sequences.3 Lines 25-
26 loop on all these combinations and invoke Procedure
isSequenceValid on each. The number of paths
could exponentially increase with sequence size, which
is the major cost in soundness verification.

Procedure isSequenceValid receives n event se-
quences (hi, i ∈ N) corresponding to n nodes in the
system. The procedure then looks for a valid total order
for execution of the events, in which an event is executed
only after it is enabled. For example, to execute a net-
work handler that receives message m from node s, the
message must first be generated by an event in s. At each
step, the procedure verifies whether any of the events on
top of the h

i stacks are enabled (Line 33). The first en-
abled event is greedily selected for execution based on
the definition of handlers in Figure 5 (the events are ex-
ecuted similar to a real run of the distributed system.).
The loop continues until there are no enabled events on
top the h

i stacks. Afterward, the fact that h is empty
(Line 36) indicates that the set of sequenced events in h

was possible to run and hence its corresponding system
state is valid.

Procedure isSequenceValid returns true if and
only if the corresponding input system state is valid. The
proof of the above statement is covered in the technical
report [16]. Intuitively, since an event in not popped out
from h unless it is a valid, enabled event, the feasibil-
ity of executing all events implies that the system state is
valid. It actually does not matter which enabled event is
selected for the next step, since the demanded order by
the sequences will be eventually enforced by receiving
only the messages that are already generated.

4.2 Implementation Details
Local model checking can be used for testing programs
in all languages, including C++. Basically, any of exist-
ing stateful global model checking tools could be instru-
mented to run our proposed algorithm. Our prototype

3Each event sequence must deterministically lead to the same node
state. If the event handler implementation is dependent on some non-
deterministic values, those values must be recorded as part of the event,
to be replayed deterministically on a re-execution of the event.

implementation of the local model checking approach,
denoted LMC, uses MaceMC [8], a model checker for
distributed system implementations in the Mace lan-
guage [7]. Mace programs are basically structured C++
implementations, in which the boundary of handlers and
the protocol messages need to be specified. This helps
Mace automatically generate the code for serialization
and deserialization of the protocol state, and simplifies
the definition of events in the model checker.

We use CrystalBall [18, 17] for online running of the
model checker, in parallel with a live distributed system.
The model checker is then periodically restarted from the
taken snapshot. It is worth noting that LMC improves the
performance of model checking anyway, independent of
CrystalBall. For testing of complex programs, however,
we use the online model checking approach to restart the
model checker before exponential explosion manifests.

We changed MaceMC to work only on one global ob-
ject of the network simulator, i.e., I

+. To change the
network handler implementations from HM to H

′

M
(Fig-

ure 8), we changed the network simulator not to remove a
message after its delivery. MaceMC automatically gener-
ates specific functions for (de)serializing a module state
in the service. We added specific functions to save and
restore the whole service stack. This is required for
multi-layer services such as 1Paxos [15] (one of the pro-
tocols we check), which uses Paxos as its lower layer
module. To efficiently check for duplicate states, we use
the hashes of the serialized states. For each node n, the
hashes of the traversed states are kept in a set structure.
The serialized state itself is stored in a deque structure
to benefit from its efficiency in random access.

Each message keeps track of the number of node
states on which it has been executed. Therefore, in each
round, each message is checked only on the newly added
states, by jumping over the old states. Instead of the ac-
tual event, its hash is added into the predecessor point-
ers. These hash values will be checked against the hash
values of the enabled events, later when we verify the
soundness of the system state.
Test driver. The test in model checking a service is
generally driven by an application sending requests to
the service. In Paxos for example, an application send-
ing propose requests to the service is the test driver of
the model checker. The more complex the test driver, the
larger the generated state space is. A careful design of the
test driver could greatly impact the efficiency of model
checking. In our Paxos experiments, the test driver pro-
poses values for a particular index. The index is selected
from recent chosen proposals, where not all the nodes
have learned the proposal yet. Otherwise, a new index is
used for the proposal.
System states. To avoid revisiting system states, check-
ing invariants on system states is performed only after

7

232 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

visiting a new node state, which implies the possibility
for creating new system states. For each new node state
(n,s), the system states are created by iterating over the
states of all the nodes except node n and loading them.
This is because the combinations of the previously vis-
ited states of node n and the node states of the other
nodes have already been verified in previous rounds. It is
worth noting that this optimization could make the model
checking incomplete because the handler execution that
has not produced a new node state could still change the
pointers in predecessors, which means the possibility of
a valid event sequence for a previously rejected system
state. To address this issue we could cache the system
states in which an invariant is violated and reverify them
after the changes into LS that affect them.

Beside the general approach for system state creation,
we also implemented an invariant-specific variation, de-
noted LMC-OPT, optimized for the Paxos main invari-
ant. In this variation, we map the node states to the values
that are chosen in them. Because most of the node states
have not chosen any value, lots of them will not be in-
cluded in this mapping. When creating system states, we
thus select only the node states that at least two of them
are mapped to different values. This optimization helps
avoid the creation of lots of redundant system states and
consequently omits their corresponding invariant check-
ing and soundness verification steps.
Soundness verification. Procedure isStateSound
uses pointers in Variable predecessor to find event se-
quences that could lead to the input node states. For the
sake of simplicity in implementation, we ignore the self-
references in following the pointers in predecessor. Al-
though in theory this could make the exploration incom-
plete, in practice the search in the limited time budget is
incomplete anyway and benefiting from the simplicity is,
hence, preferable. Moreover, after the soundness verifi-
cation on a system state is finished, some more pointers
could be added into predecessor by the process of lo-
cal model checking. Therefore, a complete exploration
should invoke soundness verification after each change
into a predecessor. However, an efficient implementa-
tion of that would be complex since it should check only
for the newly added pointers. For the sake of simplic-
ity in implementation, we invoke soundness verification
only after a new node state is visited.
Procedure isSequenceValid. The validity of a set
of sequenced events could in general be checked by ex-
ecuting them in a simulator (the same way the global
model checking approach transitions from one global
state to another). If no event from the sequences is en-
abled in the simulator, it indicates that sequence of events
is not valid. Although using the simulator simplifies the
implementation, initializing the simulator at each run of
the soundness verification is expensive since it involves

loading the test driver.
For efficient implementation of soundness verification

module, we take advantage of the following observation.
The role of the simulator in executing event e on node n

is to (i) updates the state of node n, (ii) remove the mes-
sage m from the network if e is a network event for de-
livery of message m, and (iii) add the set c of messages,
resulting from the execution of e, to the network.
The consumedmessage by a network event is specified

by its corresponding hash in the node event sequence,
which was given as a part of the input to the procedure.
The set of the generated messages by an event execution
can also be remembered by keeping the hashes of the
generated messages in predecessor. In this manner, the
input to Procedure isSequenceValid is the set of se-
quenced events as well as the set of generated messages
by each event. The execution of event e in Procedure
isSequenceValid can then be simplified as follows:

1. A local event e is always enabled. A network event
e is enabled if the hash of the required message is
found in the set of generated message hashes, net.

2. If event e is enabled, then pop it out from the se-
quence. If event e is a network event, remove the
hash of the corresponding message from set net.

3. After popping out event e, add its generated mes-
sage hashes to set net.

The above implementation simplifies Procedure
isStateSound to some integer comparison opera-
tions and therefore makes checking the validity of a set
of sequenced events very efficient.
Local assertions. LMC checks for the system invari-
ants defined on the system state. The source code could
still be instrumented by some local assertions by which
the developers have benefited in earlier stages of testing.
The violation of the local assert statements in the pro-
cess of local model checking could imply that either (i)
the node state is invalid, perhaps because of delivering an
unexpected message, or (ii) there is a bug in the system
under test. Checking the latter case necessitates (i) cre-
ating all the system states by combining the node state
with all states from other nodes, and (ii) checking the va-
lidity of those states by invoking soundness verification.
This approach is very expensive since it involves lots of
invocation of soundness verification.

In general we could ignore violation of a local assert
since a protocol bug will eventually manifest itself by vi-
olating a system invariant. Alternatively, we can discard
the node state on which the assertion is violated assum-
ing that the assert violation implies the invalidity of the
node state. In the applications we tested, the assert state-
ments were mostly used to exclude the receipt of unex-
pected messages, i.e., the case that could be caused by
conservative message delivery policy of LMC, which de-

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 233

livers the message to all the node states of the destination.
We, therefore, benefited from the local assert violations
by discarding the corresponding node states.
Local events. The presented algorithm in § 4 is com-
plete in the sense that, given enough time and space, it
explores all possible states. In practice, however, we
have a short time budget to check the reachable states
from a given current state. Therefore, the developers
might be interested to favor some events to be explored
first in the search. Hence, in each round we put a bound
on the number of local events that each node can exe-
cute; after finishing the round, the bounds are increased
and the model checking is started from scratch. This ap-
proach is in spirit similar to B-DFS search, where the
search depth is increased at each step.
Duplicate messages. In general, a node could infinitely
issue duplicates of the same message. For example, in
the verified Paxos implementations, the same Chosen
message will be sent over and over to the proposer that
insists for an already chosen value. To favor the main
protocol messages in the limited time of search, we have
put a limit on the number of duplicate messages sent
from a source to a destination node. This limit is set
to zero for the results reported in this paper. Note that
the duplicate messages can be postponed to be processed
later, after processing some main protocol messages.

As we explained, to ensure completeness, the mes-
sages are never erased from the network object, I

+.
However, if node state s

m
� s

′ where m is a network
event, execution of m on s

′ is redundant since m is al-
ready executed in the sequence. To avoid redundant ex-
ecutions, we keep the history of the messages that has
been executed to obtain the state: a network event is con-
sidered on a state only if it is not in the history of the
state. After executing message m on node state s that re-
sults into node state s

′, we apply the two following rules
to maintain the history: (i) s

′

.history = s.history, (ii)
s
′

.history.addLast(m). Thus, message m will never
be executed on node state s

′ as well as its descendants.
Maintaining history gets complicated if state s

′ already
exists since we need to maintain separate histories for
different sequences that lead to s

′. We have simplified
the implementation by applying rule (i) only if the state
does not exist. Since the run of LMC in the limited time
budget is not complete anyway, we decided to favor sim-
plicity over completeness here.

4.3 Scope of Applicability
In contrast with global model checking that validity of
each traversed state is ensured, local model checking op-
timistically allows visiting invalid states and verifies the
validity of a state only after it violates an invariant. If
we have a few preliminary violations, the optimistic ap-

proach of local model checking performs better since it
does not pay for ensuring validity of every single visited
state. Otherwise, the cost of soundness verification dom-
inates. For example, in online model checking, if a run
of the model checker is revealing a bug in the protocol,
it is likely to see lots of violation reports caused by both
valid and invalid event sequences. Perhaps, one solution
could be running both local and global model checker in
parallel and use the result of the one that finishes sooner.

By eliminating the network element from the model
checking state, local model checking reduces the ex-
plored state space since each system state is repeated in
multiple global states that are different only in the net-
work part. The larger the network state space is, the more
space and time is saved by eliminating it. Local model
checking is, therefore, most effective for the protocols
that are chatty, i.e., exchange lots of messages to service
a request. Otherwise, if the nodes rarely communicate,
the change into the network is rare and therefore there is
not much to be saved by local model checking.

In contrast with global model checking, local model
checking considers interleaving of parallel network
events only when they turn out to be dependent. LMC,
therefore, avoids lots of unnecessary event interleaving.
For example, upon receipt of the Accept message, the
nodes in Paxos broadcast some Learn messages in par-
allel, which enables LMC to perform much better than
global model checking. The more parallel network ac-
tivities in the system, the more effective LMC is. For ex-
ample, we could not expect much from LMC in a chain
system in which each node simply forwards the input
message to the next.

The current implementation of LMC assumes a best-
effort, lossy network, i.e., IP. The protocols that use UDP
can, therefore, be directly model checked with LMC. Al-
though, TCP could be considered as part of the protocol
stack, in practice this is not efficient, and TCP is usu-
ally simulated in the model checker. To do so, LMC im-
plementation should be also augmented to benefit from
the fact that reordered messages in a connection will
eventually be rejected by TCP and could, hence, be ig-
nored, saving some unnecessary handler executions in
the model checker.

5 Evaluation

We evaluate in this section the performance of our local
model checking approach compared to a classic global
one. We also illustrate the ability of our tool, LMC, in
finding bugs in Paxos and its variant, 1Paxos.

We use Paxos as a complex distributed testbed to eval-
uate the performance of the proposed local model check-
ing approach. In usual implementations of Paxos, each
node implements three roles: proposer, acceptor, and

9

234 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

El
ap

se
d

tim
e

in
 s

ec
on

d

Depth

B-DFS
LMC-GEN
LMC-OPT

Figure 10: The elapsed time in model checking Paxos
where only one out of three nodes proposes a value.

learner. Multiple proposers can concurrently propose
values for the same index. The Paxos invariant (also
known as the Paxos safety property) stipulates that no
two nodes will choose different values for the same in-
dex. A proposition (i.e., proposing a value for an index)
starts by broadcasting Prepare messages to the accep-
tors. The acceptors respond by a PrepareResponse mes-
sage. After receiving it from a majority of acceptors, the
proposer broadcasts an Accept message to the acceptors.
The value in the Accept message is the value returned
by the PrepareResponse message with the highest pro-
posal number, which reflects the accepted values from
previous proposals, if there is any. Each acceptor then
broadcasts a Learn message to the learners. A value is
chosen by the learners after receiving the Learn message
from a majority of acceptors.

For benchmarking purposes, we use a state space of
Paxos running between three nodes, in which one node
proposes a value once and the others react to this pro-
posal by communicating using Paxos messages. The
long chain of messages following each proposal could
be received in a variety of orders, which all must be con-
sidered by a model checker. For each experiment, we re-
port on evaluation of 3 algorithms: (i) B-DFS (explained
in § 3), (ii) LMC-GEN, which is the non-optimized,
general version of our local model checker (LMC), and
(iii) LMC-OPT, which is a version of our local model
checker optimized for the Paxos main invariant accord-
ing to § 4.2. The experiments are run on a 3.00 GHz
Intel(R) Pentium(R) 4 CPU with 1 MB of L2 cache.

5.1 LMC Speedup
Here we evaluate the speedup in model checking that
we can get by our tool, LMC. Figure 10 presents the
results for the example state space, in which only one
node proposes a value. This state space is relatively
small and yet effective in finding bugs when it is ex-

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

To
ta

l n
um

be
r o

f s
ta

te
s

Depth

B-DFS
LMC-GEN-system
LMC-OPT-system

LMC-local

Figure 11: The number of explored states. The number
of system states explored by LMC-OPT is zero and is,
hence, not plotted in the figure.

plored through an online model checker. The depth of
the state space is 22 events (three initialization, one pro-
pose local event, three Prepare messages, three Prepar-
eResponse messages, three Accept messages, and nine
Learn messages). LMC explores also longer sequences
of events (up to 25) since it could also explore some in-
valid sequences of events. 4 The elapsed time is depicted
in a logarithmic scale to illustrate exponential state space
explosion problem. In B-DFS, the exponential explosion
starts from the very early steps, which makes the explo-
ration take 1514 s. The growth in LMC-OPT is much
less steep, which allows it to finish the model checking
in just 189 ms (∼8,000 times faster than B-DFS).

The growth in LMC-GEN, although still much more
gentle than B-DFS, is steeper than LMC-OPT. The ex-
ploration finishes in 5.16 s which is still ∼300 times
faster than B-DFS. The extra delay is due to the cre-
ation of the system states out of the explored node states,
which in LMC-OPT is optimized to be performed only
after a different value is chosen. Figure 11 depicts the
number of explored states. The number of created system
states in LMC-GEN, although much less than B-DFS, is
much more than the total number of node states, denoted
LMC-local in the figure. LMC-OPT, on the other hand,
drops the number of created system states to zero since
there is no bug in the Paxos implementation to lead to
any preliminary violations. (LMC-OPT creates a system
state only if it is likely to invalidate the invariants.)
The total number of performed transitions in B-DFS

is 157,332. LMC drops this to 1,186, which is ∼132
times less. This is because a LMC transition from state
s to state s

′ in node n, is redundantly executed several
times in global model checking approach (once for each
global state that encompasses s and its network event is
enabled).

4The invalid sequences will be eventually rejected by soundness
verification phase if they violate some invariants.

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 235

This state space of Paxos is very useful in online
model checking, where we expect the model checker to
seek for a bug in the time budget of less than a minute.
Both LMC-OPT and LMC-GEN can finish this state
space in this duration and LMC-OPT can continue for
more complicated state spaces where there is some time
left (as we explained in § 4.2, the model checker, in favor
of time, starts with small state spaces by gradually in-
creasing the number of allowed local events.). This is in
contrast to B-DFS that will not go further than depth 12
within a minute.

5.2 LMC Scalability Limits
We showed that LMC manages to finish a valuable state
space in less than a few seconds. This is already good
enough for practical applications such as online model
checking that restarts the model checker every few sec-
onds. From the theoretical point of view at least, it is
interesting to find the scalability limits of LMC, i.e., the
point where the postponed exponential explosion prob-
lem eventually manifests and makes LMC ineffective for
the rest of the exploration. To this aim, we choose a much
bigger state space, where two separate nodes propose
two values. The depth of the state space is 41 events,
which is two times the events in one error-free proposal.
(LMC explores also longer sequences of events, up to 68,
since it could also explore invalid sequences of events.)
Due to exponential explosion problem, neither B-DFS

nor LMC could finish the state space, even after hours
of running. Within this duration, B-DFS explores till 20
steps (out of maximum depth of 41) and LMC searches
till 39 steps (out of maximum depth 68). The major con-
tributor to the slowdown of LMC is the expensive task
of soundness verification. The number of different event
sequences that must be considered for checking validity
of a system state exponentially increases with the search
depth. In the above example that the search depth of
LMC is 39, each invocation of soundness verification in-
duces ∼10 s into the algorithm. Invocations of sound-
ness verification are much less in the smaller state space
in which only one node proposes a value.

5.3 LMC Memory Requirements
Figure 11 depicts the very fact that the number of node
states explored by LMC is much less than the total num-
ber of system or global states. Because LMC keeps track
only of node states, and the system states are created
only temporarily, LMC is expected to require very low
memory footprint. Figure 12 verifies this expectation by
depicting the memory footprints of different algorithms.
LMC-local denotes the run of LMC-OPT in which the
creation of system states is disabled. The difference be-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

In
cr

ea
se

d
M

em
or

y
Si

ze
 (M

By
te

s)

Depth

B-DFS
LMC-GEN
LMC-OPT
LMC-local

Figure 12: The consumed memory. The numbers for all
configurations of LMC are close together and are, hence,
overlapped in the figure.

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

El
ap

se
d

tim
e

in
 s

ec
on

d

Depth

LMC-OPT
LMC-OPT-system-state

LMC-explore

Figure 13: The overheads of LMC in model checking
Paxos in which a bug is injected.

tween LMC-local and LMC-OPT (resp. LMC-GEN) in-
dicates the memory overhead of system state creation
as well as soundness verification. Although there is a
marginal overhead for system states, the memory eventu-
ally returns to the system by reusing the deleted objects.
The consumed additional memory by all algorithms is
less than 1 MB which can totally fit into the L2 cache.
However, the exponential trend in memory consumption
of B-DFS, promises the ineffectiveness of B-DFS for
deeper searches. LMC in contrast uses the memory very
efficiently (∼200 KB in total) and this amount grows lin-
early by increase in search depth.

5.4 LMC Overheads

Here we break down the overheads that limit the scala-
bility of LMC. LMC has two major overheads: (1) cre-
ation of system states out of traversed node states, and (2)
verifying soundness of the preliminary violations. The
precise load of each overhead depends on the particular
system under test. Figure 13 illustrates the overheads
of LMC-OPT in the buggy implementation of Paxos,

11

236 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for which the corresponding bug is reported in § 5.5.
In LMC-system-state the soundness verification phase
is disabled and in LMC-explore the creation of system
states is eliminated.

The difference between LMC-system-state and LMC-
explore captures the overhead of creating the system
states and checking the invariant on them. The overhead
is zero until 21 steps since the unnecessary system states
are bypassed by the optimization in LMC-OPT. After-
wards, the overhead increases with the depth search, be-
cause as the exploration moves forward, more node states
are explored and hence more combinations of them must
be considered for system state creation. The difference
between LMC-OPT and LMC-system-state reveals the
overhead of soundness verification. (LMC-OPT did not
go further than 28 steps, the level at which the injected
bug is rediscovered.) This overhead is the major contrib-
utor to the exponential increase in model checking time.
The reason is that not all combinations of node states are
valid, and the more node states are traversed, the more
invalid system states will be checked. On the other hand,
since the injected bug is close to manifest in this run of
the model checker, the number of invalid combinations
of node states that violate the invariant increases. LMC-
OPT triggers the soundness verification for 773 times,
and each call takes 45 ms in average. Overall, 427,731
different event sequences were checked by the soundness
verification module.

5.5 Testing Paxos
In this section, we report on our experiments in inject-
ing a bug into a Paxos implementation and then running
our prototype to verify its ability to detect the bug. The
bug we injected was reported in a previous implementa-
tion of Paxos [10]: once the leader receives the Prepar-
eResponse message from a majority of nodes, it creates
the Accept request by using the submitted value from
the last PrepareResponse message instead of the Prepar-
eResponse message with highest round number. The in-
stalled invariant is the original Paxos invariant: no two
nodes can choose different values.

Every one minute, the online model checking frame-
work takes the live system state of a running Paxos appli-
cation and use that to initialize the next run of LMC. The
application encompasses three nodes, each node pro-
poses its Id for a new index and then sleeps for a random
time between 0 and 60 s. The nodes communicate using
UDP and 30% of non-loopback messages are randomly
dropped to allow rare states to be also created.

The bug was detected after 1150 seconds. The run of
LMC that detected the bug was initialized with the fol-
lowing live state: for index ki, node N1 has proposed
value v1, nodes N1 and N2 have accepted this proposal,

but due to message losses only N1 has learned it. Start-
ing from this system state, LMC detected in 11 s a vi-
olation of the Paxos invariant in the following scenario:
N2 proposes a new value v2 but its Prepare messages is
not received by N1. N2 responds by a PrepareResponse
message containing value v1, because this value was ac-
cepted by N2 in the previous round. However N3, since
had not accepted any value for index ki, responds back
by the same value proposed by N2, v2. Receipt of Pre-
pareResponse of N3 triggers the bug, and N2 broadcasts
an Accept message for v2 instead of v1. Eventually this
leads to choosing value v2 in N2, which is different from
the value chosen by N1, i.e., v1.

5.6 Testing 1Paxos
In this section, we report on running our prototype to
find bugs on a variant of Paxos, denoted 1Paxos [15]:
this is an efficient variation of Multi-Paxos [2] that uses
only one acceptor. Upon failure, the active acceptor is
replaced with a backup acceptor by the global leader.
Therefore, it is necessary that the acceptor and leader
roles to be assigned to two separate nodes. To uniquely
identify the global leader and the active acceptor, 1Paxos
uses a separate consensus protocol referred to as PaxosU-
tility [15]. The global leader and the active acceptor are
identified by the last LeaderChange and AcceptorChange
entries in the PaxosUtility, respectively. In this experi-
ment, we have implemented PaxosUtility using Paxos it-
self. 1Paxos is more complex than Paxos for it comprises
more logic. Here we use the same setup that was used for
testing Paxos, with the difference that the application in-
stead of proposing a value triggers the fault detector with
the probability of 0.1 to stress the fault tolerance mecha-
nisms of 1Paxos. In 225 s, the tool found one new bug in
1Paxos that we report in the following.

The bug was created because of the wrong usage of the
”++” operator; if the operator is used after the operand,
the returned value is the original value and not the in-
creased one. The developer had made this mistake in
the initialization function, where the leader is set to
the first node of the members and the acceptor is set
to the second. The used command was acceptor =
*(members.begin()++)which makes the acceptor
be the same node as the leader. The bug is of course
fixed by putting the ”++” operator before the operand,
i.e., acceptor = *(++members.begin()).
During the live run, node N3 attempts to be the leader

by inserting a LeaderChange entry into the PaxosUtility.
At this moment, it obtains from the PaxosUtility the cor-
rect value of the active acceptor, which is N2. After N3

becomes leader, it proposes value v3 for index ki, which
is accepted by the acceptor, i.e., N2. N2 then broadcasts
a Learn message, which is received by N3 as well as it-

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 237

self. At this point the live system state, in which all nodes
except N1 have chosen value v3 for the index ki, is taken
to be used by LMC.

Starting from the above system state, LMC highlights
the following scenario that violates the Paxos invariant:
N1, which still assumes it is the leader, proposes value
v1 for index ki to the acceptor. Since N1 considers itself
to be the leader, according to the protocol, it does not re-
fer to PaxosUtility to get the acceptor Id. Therefore, N1

uses its current value, which is set to N1, i.e., its own Id,
due to the initialization bug described above. N1 accepts
the proposal and sends a Learn message to N1. Upon re-
ceiving the loopback message, N1 assumes value v1 as
chosen for index ki. This violates the Paxos invariant
since other nodes have chosen a different value, i.e., v3.

6 Related Work

Cartesian abstraction. This is an abstraction-based
verification technique where an overapproximated vari-
ant of the program is model checked, instead of the origi-
nal one [1]. Due to overapproximation, the reported bugs
are not sound, which makes the technique mainly useful
for correctness proving, benefiting from the complete-
ness of the search. Malkis et al. [11] achieved thread-
modular model checking [5, 12] using a Cartesian ab-
stract interpretation of multi-threaded programs. Each
thread state consists of the thread local variables plus the
global variables. For each thread, the model checker sep-
arately explores possible valuations of the thread local
variables as well as the global variables. The approxima-
tion comes from the fact that the valuations of the global
variables by a thread are also used by other threads, ig-
noring the causal order for obtaining them. Again, the
unsoundness, stemmed from the approximation, makes
the technique inappropriate for testing purposes. In con-
trast, our reported bugs are sound and this is ensured
by keeping track of the events executed for obtaining a
node state and checking the validity of the combination
of these histories after a preliminary invariant violation
report.

We also make use of the Cartesian product of indepen-
dently explored node states to obtain the system states.
Cartesian abstraction is essential here in our approach in
order to create the system states and check (system-wide)
invariants against them. In contrast, previous works ben-
efited from the Cartesian abstraction by not creating sys-
tem states; skipping the system states is possible since
the invariants in multi-threaded programs are just thread-
local assert statements and could be verified on a local
state of a thread without having the rest of the system
state. 5 Our local model checking approach employs the

5There is an ongoing research to convert a system-wide invariant to

Cartesian abstraction in a different way: namely, to ex-
plore the system state space without exploring the global
state space.

In [6], Cartesian Abstraction is used on top of boolean
abstraction of threads to find race conditions in multi-
threaded programs. After boolean abstraction, each
thread is represented by a long boolean expression over
global and local variables including an artificially added
variable for line number. A race condition is also rep-
resented by a boolean expression over the line numbers
in which the threads read and write the global variables.
Race conditions are detected by taking conjunction of the
thread boolean expressions with race conditions. There-
fore, there is no need for system state creation. This ap-
proach cannot be applied on general system invariants
that would express a relation between local variables of
multiple threads. The approach applies a heuristic on the
detected races to eliminate some of the false positives.

One could indeed generalize the Cartesian abstract in-
terpretation presented in [11] to distributed systems, by
using the network as the global object. However, the net-
work would still be part of the model checking states,
concatenated to the local states. In our approach, we ex-
clude the network element from the model checking state
and use only a shared network element.
Monotonic abstraction. Monotonic abstraction [13]
of the network has been used in verification of security
protocols since it accounts for the maximal knowledge
learned by attacker. Dolev-Yao’s model [4] is one such
model, in which the attacker remembers all messages
that have been intercepted or overheard. The shared net-
work object in our local model checking approach is es-
sentially an application of a monotonic abstraction since
the delivered messages are not removed from the net-
work. The shared monotonic network is key to ensuring
the completeness of the search by applying the generated
messages also on future generated node states.
Online model checking. CrystalBall [18, 17] is a
framework that implements the online model checking
scheme. To be effective in practice, the online model
checker must be fast enough to explore till a reasonable
depth in the period between two restarts (typically a few
seconds). CrystalBall uses a heuristic, namely Conse-
quence Prediction, which prunes the local events of an
already visited node state. As a heuristic, Consequence
Prediction is incomplete and could, hence, miss some
bugs due to false negatives. In contrast, our local model
checking approach offers a complete search accompa-
nied with proofs. Furthermore, complex distributed sys-
tems such as Paxos, often generate lots of network mes-
sages on which Consequence Prediction does not have
any effect. For instance, in the used Paxos state spaces

a set of thread-local assert statements, which has shown good results
on small multi-threaded programs [3].

13

238 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

throughout this paper, we consider only the interleav-
ing of the resulting network messages after some pro-
posals. Therefore, Consequence Prediction, which does
not prune the network messages, would not offer any im-
provement over B-DFS.

7 Concluding Remarks

We introduce a novel, local approach to model check-
ing distributed systems. Essentially, the underlying idea
is to remove the network state from the global state
when model checking, and focus on the remaining sys-
tem state, which is the usual required part for invariant
checking. The system state is itself built temporarily out
of node states, and these are maintained separately. Al-
though complete, the approach is not sound in the sense
that some system states could be invalid, i.e., could not
have been produced by an actual run of the system. We
check the soundness of the system state, a posteriori,
only if an invariant is violated.

By removing the network from the global states, our
local model checking approach creates much less sys-
tem states than in the global approach. In addition,
and in contrast with the latter approach, in which vis-
iting the system states is an inherent part of the explo-
ration process, local approach separates the exploration
of transitions from the actual creation of system states.
This makes it possible to exploit the specificities of the
user-specified invariants and a priori eliminate all system
states on which these invariants cannot be violated.

Clearly, the state exponential explosion problem is
not eliminated in our approach, and it indeed eventually
manifests, especially because of invalid system states.
Yet the problem is postponed and this makes our local
approach an adequate match for online model checking
that restarts the model checker periodically. Using on-
line model checking augmented with our local approach,
we found a previously reported bug in a traditional Paxos
implementation, as well as a new bug in a recent variant
of Paxos. Both bugs have been identified by focusing on
a simple, arguably common case, namely the case with
no contention for which distributed protocols are typi-
cally optimized and hence error-prone.

For future works, one can think of methods to auto-
matically prune the system states according to a given
invariant. In addition, the low memory consumption of
our approach brings potentials for techniques that trade
memory for CPU, gaining more speedup.

8 Acknowledgments

We thank Viktor Kuncak for invaluable comments. We
are also thankful to our shepherd Alex Snoeren and the

anonymous reviewers for their excellent feedback.

References

[1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
Cartesian Abstraction for Model Checking C Programs.
In TACAS, 2001.

[2] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
Made Live: an Engineering Perspective. In PODC, 2007.

[3] A. Cohen and K. Namjoshi. Local proofs for global safety
properties. Formal Methods in System Design, 2009.

[4] D. Dolev and A. Yao. On the security of public key pro-
tocols. IEEE Trans. on information theory, 29(2), 1983.

[5] C. Flanagan and S. Qadeer. Thread-modular model
checking. In Model Checking Software. Springer, 2003.

[6] T. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. In CAV, 2003.

[7] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and
A. M. Vahdat. Mace: Language Support for Building Dis-
tributed Systems. In PLDI, 2007.

[8] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat.
Life, Death, and the Critical Transition: Finding Liveness
Bugs in Systems Code. In NSDI, 2007.

[9] L. Lamport. The part-time parliament. TOCS, 1998.

[10] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker:
Combating Bugs in Distributed Systems. In NSDI, 2007.

[11] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-
modular verification is cartesian abstract interpretation. In
ICTAC. Springer, 2006.

[12] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-
Modular Counterexample-Guided Abstraction Refine-
ment. In SAS, 2010.

[13] J. Mitchell. Multiset rewriting and security protocol anal-
ysis. In Rewriting Techniques and Applications, 2002.

[14] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler,
and D. L. Dill. CMC: A Pragmatic Approach to Model
Checking Real Code. SIGOPS Oper. Syst. Rev., 2002.

[15] M. Yabandeh, L. Franco, and R. Guerraoui. One Acceptor
is Enough. Technical report, EPFL, 2010.

[16] M. Yabandeh and R. Guerraoui. Local Model Checking.
Technical report, EPFL, 2011.

[17] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak.
CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems. In NSDI, 2009.

[18] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak.
Predicting and preventing inconsistencies in deployed
distributed systems. ACM TOCS, 28(1), 2010.

[19] J. Yang and et al. MODIST: Transparent Model Checking
of Unmodified Distributed Systems. In NSDI, 2009.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 239

FATE and DESTINI: A Framework for Cloud Recovery Testing

Haryadi S. Gunawi, Thanh Do†, Pallavi Joshi, Peter Alvaro, Joseph M. Hellerstein,
Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†, Koushik Sen, and Dhruba Borthakur∗

University of California, Berkeley † University of Wisconsin, Madison ∗ Facebook

Abstract

As the cloud era begins and failures become com-
monplace, failure recovery becomes a critical factor in
the availability, reliability and performance of cloud ser-
vices. Unfortunately, recovery problems still take place,
causing downtimes, data loss, and many other problems.
We propose a new testing framework for cloud recovery:
FATE (Failure Testing Service) and DESTINI (Declara-
tive Testing Specifications). With FATE, recovery is sys-
tematically tested in the face of multiple failures. With
DESTINI, correct recovery is specified clearly, concisely,
and precisely. We have integrated our framework to
several cloud systems (e.g., HDFS [33]), explored over
40,000 failure scenarios, wrote 74 specifications, found
16 new bugs, and reproduced 51 old bugs.

1 Introduction
Large-scale computing and data storage systems, includ-
ing clusters within Google [9], Amazon EC2 [1], and
elsewhere, are becoming a dominant platform for an
increasing variety of applications and services. These
“cloud” systems comprise thousands of commodity ma-
chines (to take advantage of economies of scale [9, 16])
and thus require sophisticated and often complex dis-
tributed software to mask the (perhaps increasingly)
poor reliability of commodity PCs, disks, and memo-
ries [4, 9, 17, 18].

A critical factor in the availability, reliability, and per-
formance of cloud services is thus how they react to fail-
ure. Unfortunately, failure recovery has proven to be
challenging in these systems. For example, in 2009,
a large telecommunications provider reported a serious
data-loss incident [27], and a similar incident occurred
within a popular social-networking site [29]. Bug repos-
itories of open-source cloud software hint at similar re-
covery problems [2].

Practitioners continue to bemoan their inability to ad-
equately address these recovery problems. For exam-
ple, engineers at Google consider the current state of
recovery testing to be behind the times [6], while oth-
ers believe that large-scale recovery remains underspec-
ified [4]. These deficiencies leave us with an important

question: How can we test the correctness of cloud sys-
tems in how they deal with the wide variety of possible
failure modes?

To address this question, we present two advance-
ments in the current state-of-the-art of testing. First, we
introduce FATE (Failure Testing Service). Unlike exist-
ing frameworks where multiple failures are only exer-
cised randomly [6, 35, 38], FATE is designed to systemat-
ically push cloud systems into many possible failure sce-
narios. FATE achieves this by employing failure IDs as a
new abstraction for exploring failures. Using failure IDs,
FATE has exercised over 40,000 unique failure scenarios,
and uncovers a new challenge: the exponential explosion
of multiple failures. To the best of our knowledge, we
are the first to address this in a more systematic way than
random approaches. We do so by introducing novel pri-
oritization strategies that explore non-similar failure sce-
narios first. This approach allows developers to explore
distinct recovery behaviors an order of magnitude faster
compared to a brute-force approach.
Second, we introduce DESTINI (Declarative Testing

Specifications), which addresses the second half of the
challenge in recovery testing: specification of expected
behavior, to support proper testing of the recovery code
that is exercised by FATE. With existing approaches,
specifications are cumbersome and difficult to write, and
thus present a barrier to usage in practice [15, 24, 25, 32,
39]. To address this, DESTINI employs a relational logic
language that enables developers to write clear, concise,
and precise recovery specifications; we have written 74
checks, each of which is typically about 5 lines of code.
In addition, we present several design patterns to help de-
velopers specify recovery. For example, developers can
easily capture facts and build expectations, write spec-
ifications from different views (e.g., global, client, data
servers) and thus catch bugs closer to the source, express
different types of violations (e.g., data-loss, availability),
and incorporate different types of failures (e.g., crashes,
network partitions).

The rest of the paper is organized as follows. First,
we dissect recovery problems in more detail (§2). Next,
we define our concrete goals (§3), and present the design
and implementation of FATE (§4) and DESTINI (§5). We
then close with evaluations (§6) and conclusion (§7).

240 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Extended Motivation:
Recovery Problems

This section presents a study of recovery problems
through three different lenses. First, we recap accounts
of issues that cloud practitioners have shared in the lit-
erature (§2.1). Since these stories do not reflect details,
we study bug/issue reports of modern open-source cloud
systems (§2.2). Finally, to get more insights, we dissect
a failure recovery protocol (§2.3). We close this section
by reviewing the state-of-the-art of testing (§2.4).

2.1 Lens #1: Practitioners’ Experiences
As well-known practitioners and academics have stated:
“the future is a world of failures everywhere” [11]; “re-
liability has to come from the software” [9]; “recovery
must be a first-class operation” [8]. These are but a
glimpse of the urgent need for failure recovery as we en-
ter the cloud era. Yet, practitioners still observe recovery
problems in the field. The engineers of Google’s Chubby
system, for example, reported data loss on four occasions
due to database recovery errors [5]. In another paper,
they reported another imperfect recovery that brought
down the whole system [6]. After they tested Chubby
with random multiple failures, they found more prob-
lems. BigTable engineers also stated that cloud sys-
tems see all kinds of failures (e.g., crashes, bad disks,
network partitions, corruptions, etc.) [7]; other practi-
tioners agree [6, 9]. They also emphasized that, as
cloud services often depend on each other, a recovery
problem in one service could permeate others, affect-
ing overall availability and reliability [7]. To conclude,
cloud systems face frequent, multiple and diverse fail-
ures [4, 6, 7, 9, 17]. Yet, recovery implementations are
rarely tested with complex failures and are not rigorously
specified [4, 6].

2.2 Lens #2: Study of Bug/Issue Reports
These anecdotes hint at the importance and complex-
ity of failure handling, but offer few specifics on how
to address the problem. Fortunately, many open-source
cloud projects (e.g., ZooKeeper [19], Cassandra [23],
HDFS [33]) publicly share in great detail real issues en-
countered in the field. Therefore, we performed an in-
depth study of HDFS bug/issue reports [2]. There are
more than 1300 issues spanning 4 years of operation
(April 2006 to July 2010). We scan all issues and study
the ones that pertain to recovery problems due to hard-
ware failures. In total, there are 91 recovery issues with
severe implications such as data loss, unavailability, cor-
ruption, and reduced performance (a more detailed de-
scription can be found in our technical report [13]).

Based on this study, we made several observations.
First, most of the internal protocols already anticipate
failures. However, they do not cover all possible fail-
ures, and thus exhibit problems in practice. Second,
the number of reported issues due to multiple failures is
still small. In this regard, excluding our 5 submissions,
the developers only had reported 3 issues, which mostly
arose in live deployments rather than systematic testing.
Finally, recovery issues appeared not only in the early
years of the development but also recently, suggesting
the lack of adoptable tools that can exercise failures au-
tomatically. Reports from other cloud systems such as
Cassandra and ZooKeeper also raise similar issues.

2.3 Lens #3: Write Recovery Protocol
Given so many recovery issues, one might wonder what
the inherent complexities are. To answer this, we dis-
sect the anatomy of HDFS write recovery. As a back-
ground, HDFS provides two write interfaces: write and
append. There is no overwrite. The write protocol essen-
tially looks simple, but when different failures come into
the picture, recovery complexity becomes evident. Fig-
ure 1 shows the write recovery protocol with three differ-
ent failure scenarios. Throughout the paper, we will use
HDFS terminology (blocks, datanodes/nodes, and na-
menode) [33] instead of GoogleFS terminology (chunks,
chunk servers, and master) [10].
• Data-Transfer Recovery: Figure 1a shows a client
contacting the namenode to get a list of datanodes to
store three replicas of a block (s0). The client then initi-
ates the setup stage by creating a pipeline (s1) and con-
tinues with the data transfer stage (s2). However, during
the transfer stage, the third node crashes (s2a). What
Figure 1a shows is the correct behavior of data-transfer
recovery. That is, the client recreates the pipeline by
excluding the dead node and continues transferring the
bytes from the last good offset (s2b); a background repli-
cation monitor will regenerate the third replica.
• Data-Transfer Recovery Bug: Figure 1b shows a
bug in the data-transfer recovery protocol; there is one
specific code segment that performs a bad error han-
dling of failed data transfer (s2a). This bug makes the
client wrongly exclude the good node (Node2) and in-
clude the dead node (Node3) in the next pipeline cre-
ation (s2b). Since Node3 is dead, the client recreates
the pipeline only with the first node (s2c). If the first
node also crashes at this point (a multiple-failure sce-
nario), no valid blocks are stored. This implementation
bug reduces availability (i.e., due to unmasked failures).
We also found data-loss bugs in the append protocol due
to multiple failures (§6.2.1).
• Setup-Stage Recovery: Finally, Figure 1c shows
how the setup-stage recovery is different than the data-
transfer recovery. Here, the client first creates a pipeline

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 241

Figure 1: HDFS Write Recovery Protocol. N , C ,
R1/2 , and numeric letters represent the namenode, client, rack
number, and datanodes respectively. The client always starts
the activity to the namenode first before to the datanodes.

from two nodes in Rack1 and one in Rack2 (s0a). How-
ever, due to the rack partitioning (s1), the client asks
the namenode again for a new fresh pipeline (s0b); the
client has not transferred any bytes, and thus could start
streaming from the beginning. After asking the namen-
ode in several retries (not shown), the pipeline contains
only nodes in Rack1 (s0b). At the end, all replicas only
reside in one rack, which is correct because only one rack
is reachable during write [33].
• Replication Monitor Bug: Although the previous case
is correct, it reveals a crucial design bug in the back-
ground replication monitor. This monitor unfortunately
only checks the number of replicas but not the locations.
Thus, even after the partitioning is lifted, the replicas are
not migrated to multiple racks. This design bug greatly
reduces the block availability if Rack1 is completely un-
reachable (more in §5.2.3).

To sum up, we have illustrated the complexity of re-
covery by showing how different failure scenarios lead
to different recovery behaviors. There are more problems
within this protocol and other protocols. Without an ap-
propriate testing framework, it is hard to ensure recovery
correctness; in one discussion of a newly proposed re-
covery design, a developer raised a comment: “I don’t
see any proof of correctness. How do we know this will
not lead to the same or other problems? [2]”

2.4 Current State of the Art: Does It Help?

In the last three sections, we presented our motivation
for powerful testing frameworks for cloud systems. A
natural question to ask is whether existing frameworks
can help. We answer this question in two parts: failure
exploration and system specifications.

2.4.1 Failure Exploration
Developers are accustomed to easy-to-use unit-testing
frameworks. For fault-injection purposes, unit tests are
severely limited; a unit test often simulates a limited
number of failure scenarios, and when it comes to in-
jecting multiple variety of failures, one common practice
is to inject a sequence of random failures as part of the
unit test [6, 35].

To improve common practices, recent work has pro-
posed more exhaustive fault-injection frameworks. For
example, the authors of AFEX and LFI observe that the
number of possible failure scenarios is “infinite” [20, 28].
Thus, AFEX and LFI automatically prioritize “high-
impact targets” (e.g., unchecked system calls, tests likely
to fail). So far, they target non-distributed systems and
do not address multiple failures in detail.

Recent system model-checkers have also proposed the
addition of failures as part of the state exploration strate-
gies [21, 37, 38, 39]. MODIST, for example, is capa-
ble of exercising different combinations of failures (e.g.,
crashes, network failures) [38]. As we discuss later,
exploring multiple failures creates a combinatorial ex-
plosion problem. This problem has not been addressed
by the MODIST authors, and thus they provide a ran-
dom mode for exploring multiple failures. Overall, we
found no work that attempts to systematically explore
multiple-failure scenarios, something that cloud systems
face more often than other distributed systems in the
past [4, 9, 17, 18].

2.4.2 System Specifications
Failure injection addresses only half of the challenge in
recovery testing: exercising recovery code. In addition,
proper tests require specifications of expected behavior
from those code paths. In the absence of such speci-
fications, the only behaviors that can be automatically
detected are those that interrupt testing (e.g. system fail-
ures). One easy way is to write extra checks as part of
a unit test. Developers often take this approach, but the
problem is there are many specifications to write, and if
they are written in imperative languages (e.g., Java) the
code is bloated.

Some model checkers use existing consistency checks
such as fsck [39], a powerful tool that contains hun-
dreds of consistency checks. However, it has some draw-
backs. First, fsck is only powerful if the system is mature
enough; developers add more checks across years of de-
velopment. Second, fsck is also often written in impera-
tive languages, and thus its implementations are complex
and unsurprisingly buggy [15]. Finally, fsck can express
only “invariant-like” specifications (i.e., it only checks
the state of the file system, but not the events that lead
to the state). As we will see later, specifying recovery
requires “behavioral” specifications.

242 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Another advanced checking approach is WiDS [24,
25, 38]. As the target system runs, WiDS interposes and
checks the system’s internal states. However, it employs
a scripting language that still requires a check to be writ-
ten in tens of lines of code [24, 25]. Furthermore, its
interposition mechanism might introduce another issue:
the checks are built by interposing specific implementa-
tion functions, and if these functions evolve, the checks
must be modified. The authors have acknowledged but
not addressed this issue [24].
Frameworks for declarative specifications exist (e.g.,

Pip [32], P2 Monitor [34]). P2 Monitor only works if the
target system is written in the same language [34]. Pip
facilitates declarative checks, but a check is still written
in over 40 lines on average [32]. Also, these systems
are not integrated with a failure service, and thus cannot
thoroughly test recovery.

Overall, most existing work use approaches that could
result in big implementations of the specifications. Man-
aging hundreds of them becomes complicated, and they
must also evolve as the system evolves. In practice, de-
velopers are reluctant to invest in writing detailed speci-
fications [2], and hence the number of written specifica-
tions is typically small.

3 Goals
To address the aforementioned challenges, we present
a new testing framework for cloud systems: FATE and
DESTINI. We first present our concrete goals here.
• Target systems and users: We primarily target cloud
systems as they experience a wide variety of failures at
a higher rate than any other systems in the past [14].
However, our framework is generic and applies to other
distributed systems. Our targets so far are HDFS [33],
ZooKeeper [19] and Cassandra [23]. We mainly use
HDFS as our example in the paper. In terms of users,
we target experienced system developers, with the goal
of improving their ability to efficiently generate tests and
specifications.
• Seamless integration: Our approach requires source
code availability. However, for adoptability, our frame-
work should not modify the code base significantly. This
is accomplished by leveraging mature interposition tech-
nology (e.g., AspectJ). Currently our framework can be
integrated to any distributed systems written in Java.
• Rapid and systematic exploration of failures: Our
framework should help cloud system developers explore
multiple-failure scenarios automatically and more sys-
tematically than random approaches. However, a com-
plete systematic exploration brings a new challenge: a
massive combinatorial explosion of failures, which takes
tens of hours to explore. Thus, our testing framework
must also be equipped with smart exploration strategies

(e.g., prioritizing non-similar failure scenarios first).
• Numerous detailed recovery specifications: Ideally,
developers should be able to write as many detailed spec-
ifications as possible. The more specifications written,
the finer bug reports produced, the less time needed for
debugging. To realize this, our framework must meet two
requirements. First, the specificationsmust be developer-
friendly (i.e., concise, fast to write, yet easy to under-
stand). Otherwise, developers will be reluctant to invest
in writing specifications. Second, our framework must
facilitate “behavioral” specifications. We note that ex-
isting work often focuses on “invariant-like” specifica-
tions. This is not adequate because recovery behaves dif-
ferently under different failure scenarios, and while re-
covery is still ongoing, the system is likely to go through
transient states where some invariants are not satisfied.

4 FATE: Failure Testing Service
Within a distributed execution, there are many points
in place and time where system components could fail.
Thus, our goal is to exercise failures more methodically
than random approaches. To achieve this, we present
three contributions: a failure abstraction for express-
ing failure scenarios (§4.1), a ready-to-use failure ser-
vice which can be integrated seamlessly to cloud sys-
tems (§4.2), and novel failure prioritization strategies that
speed up testing time by an order of magnitude (§4.3).

4.1 Failure IDs: Abstraction For Failures
FATE’s ultimate goal is to exercise as many combinations
of failures as possible. In a sense, this is similar to model
checking which explores different sequences of states.
One key technique employed in system model checkers
is to record the hashes of the explored states. Similarly
in our case, we introduce the concept of failure IDs, an
abstraction for failure scenarios which can be hashed and
recorded in history. A failure ID is composed of an I/O
ID and the injected failure (Table 1). Below we describe
these subcomponents in more detail.
• I/O points: To construct a failure ID, we choose I/O
points (i.e., system/library calls that perform disk or net-
work I/Os) as failure points, mainly for three reasons.
First, hardware failures manifest into failed I/Os. Sec-
ond, from the perspective of a node in distributed sys-
tems, I/O points are critical points that either change its
internal states or make a change to its outside world (e.g.,
disks, other nodes). Finally, I/O points are basic oper-
ations in distributed systems, and hence an abstraction
built on these points can be used for broader purposes.
• Static and dynamic information: For each I/O point,
an I/O ID is generated from the static (e.g., system call,
source file) and dynamic information (e.g., stack trace,
node ID) available at the point. Dynamic information

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 243

I/O ID Fields Values
Static Func. call : OutputStream.flush()

Source File : BlockRecv.java (line 45)
Dynamic Stack trace : (the stack trace)

Node Id : Node2
Domain Source : Node2
specific Dest. : Node1

Net. Mesg. : Setup Ack
Failure ID = hash (I/O ID + Crash) = 2849067135

Table 1: A Failure ID. A failure ID comprises an I/O ID
plus the injected failure (e.g., crash). Hash is used to record a
failure ID. For space, some fields are not shown.

is useful to increase failure coverage. For example, re-
covery might behave differently if a failure happens in
different nodes (e.g., first vs. last node in the pipeline).
• Domain-specific information: To increase failure
coverage further, an I/O ID carries domain-specific in-
formation; a common I/O point could write to different
file types or send messages to different nodes. FATE’s
interposition mechanism provides runtime information
available at an I/O point such as the target I/O (e.g., file
names, IP addresses) and the I/O buffer (e.g., network
packet, file buffer). To convert these raw information
into a more meaningful context (e.g., “Setup Ack” in Ta-
ble 1), FATE provides an interface that developers can
implement. For example, given an I/O buffer of a net-
work message, a developer can implement the code that
reverse-engineers the byte content of the message into a
more meaningful message type (e.g., “Setup Ack”). If
the interface is empty, FATE can still run (the interface
returns an empty domain-specific string), but failure cov-
erage could be sacrificed.
• Possible failure modes: Given an I/O ID, FATE gen-
erates a list of possible failures that could happen on the
I/O. For example, FATE could inject a disk failure on a
disk write, or a network failure before a node sends a
message. Currently, we support six failure types: crash,
permanent disk failure, disk corruption, node-level and
rack-level network partitioning, and transient failure. To
create a failure ID, one failure type appropriate to the
I/O is selected one at a time (and hence, given an I/O ID,
FATE could produce multiple failure IDs).

4.2 Architecture
We built FATE with a goal of quick and seamless inte-
gration into our target systems. Figure 2 depicts the four
components of FATE: workload driver, failure surface,
failure server, and filters.

4.2.1 Workload Driver, Failure Surface, and Server

We first instrument the target system (e.g., HDFS) by in-
serting a “failure surface”. There are many possible lay-

Figure 2: FATE Architecture.

ers to insert a failure surface (e.g., inside a system library
or at the VMM layer). We do this between the target sys-
tem and the OS library (e.g., Java SDK), for two reasons.
First, at this layer, rich domain-specific information is
available. Second, by leveraging mature instrumentation
technology (e.g., AspectJ), adding the surface requires
no modification to the code base.

The failure surface has two important jobs. First, at
each I/O point, it builds the I/O ID. Second, it needs to
check if a persistent failure injected in the past affects this
I/O point (e.g., network partitioning). If so, the surface
returns an error to emulate the failure without the need
to talk to the server. Otherwise, it sends the I/O ID to the
server and receives a failure decision.

The workload driver is where the developer attaches
the workload to be tested (e.g., write, append, or some se-
quence of operations, including the pre- and post-setups)
and specifies the maximum number of failures injected
per run. As the workload runs, the failure server receives
I/O IDs from the failure surface, combines the I/O IDs
with possible failures into failure IDs, and makes fail-
ure decisions based on the failure history. The workload
driver terminates when the server does not inject a new
failure scenario. The failure server, workload driver, and
target system are run as separate processes, and they can
be run on single or multiple machines.

4.2.2 Brute-Force Failure Exploration

By default, FATE runs in brute-force mode. That is, FATE
systematically explores all possible combinations of ob-
served failure IDs. (The algorithm can be found in our
technical report [13]). With this brute-force mode, FATE
has exercised over 40,000 unique combinations of one,
two and three failure IDs. We address this combinatorial
explosion challenge in the next section (§4.3).

4.2.3 Filters

FATE uses information carried in I/O and failure IDs to
implement filters at the server side. A filter can be used to
regenerate a particular failure scenario. For example, to
regenerate the failure described in Table 1, a developer
could specify a filter that will only exercise the corre-
sponding failure ID. A filter could also be used to reduce
the failure space. For example, a developer could insert
a filter that allows crash-only failures, failures only on
some specific I/Os, or any failures only at datanodes.

244 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Prioritization of Pairwise Dependent and Independent Failures.

4.3 Failure Exploration Strategy
Running FATE in brute-force mode is impractical and
time consuming. As an example, we have run the append
protocol with a filter that allows crash-only failures on
disk I/Os in datanodes. With this filter, injecting two fail-
ures per run gives 45 failure IDs to exercise, which leads
us to 1199 combinations that take more than 2 hours to
run. Without the filter (i.e., including network I/Os and
other types of failures) the number will further increase.
This introduces the problem of exponential explosion of
multiple failures, which has to be addressed given the
fact that we are dealing with large code base where an
experiment could take more than 5 seconds per run (e.g.,
due to pre- and post-setup overheads).

Among the 1199 experiments, 116 failed; if recovery
is perfect, all experiments should be successful. Debug-
ging all of them led us to 3 bugs as the root causes. Now,
we can concretely define the challenge: Can FATE ex-
ercise a much smaller number of combinations and find
distinct bugs faster? This section provides some solu-
tions to this challenge. To the best of our knowledge, we
are the first to address this issue in the context of dis-
tributed systems. Thus, we also hope that this challenge
attracts system researches to present other alternatives.

To address this challenge, we have studied the prop-
erties of multiple failures (for simplicity, we begin with
two-failure scenarios). A pair of two failures can be cate-
gorized into two types: pairwise dependent and pairwise
independent failures. Below, we describe each category
along with the prioritization strategies. Due to space con-
straints, we could not show the detailed pseudo-code, and
thus we only present the algorithms at a high-level. We
will evaluate the algorithms in Section 6.3. We also em-
phasize that our proposed strategies are built on top of
the information carried in failure IDs, and hence display
the power of failure IDs abstraction.

4.3.1 Pairwise Dependent Failures
A pair of failure IDs is dependent if the second ID is
observed only if the failure on the first ID is injected;
observing the occurrence of a failure ID does not neces-
sarily mean that the failure must be injected. The key
here is to use observed I/Os to capture path coverage

information (this is an acceptable assumption since we
are dealing with distributed systems where recovery es-
sentially manifests into I/Os). Figure 3a illustrates some
combinations of dependent failure IDs. For example, F
is dependent on C or D (i.e., F will never be observed un-
less C or D is injected). The brute-force algorithm will
inefficiently exercise all six possible combinations: AE,
BE, CE, DE, CF, and DF.
To prioritize dependent failure IDs, we introduce a

strategy that we call recovery-behavior clustering. The
goal is to prioritize “non-similar” failure scenarios first.
The intuition is that non-similar failure scenarios typi-
cally lead to different recovery behaviors, and recovery
behaviors can be represented as a sequence of failure
IDs. Thus, to perform the clustering, we first run a com-
plete set of experiments with only one failure per run,
and in each run we record the subsequent failure IDs.
We formally define subsequent failure IDs as all ob-

served IDs after the injected failure up to the point where
the system enters the stable state. That is, recording re-
covery only up to the end of the protocol (e.g., write)
is not enough. This is because a failed I/O could leave
some “garbage” that is only cleaned up by some back-
ground protocols. For example, a failed I/O could leave
a block with an old generation timestamp that should be
cleaned up by the background replication monitor (out-
side the scope of the write protocol). Moreover, different
failures could leave different types of garbage, and thus
lead to different recovery behaviors of the background
protocols. By capturing subsequent failure IDs until the
stable state, we ensure more fine-grained clustering.
The exact definition of stable state might be different

across different systems. For HDFS, our definition of
stable state is: FATE reboots dead nodes if any, removes
transient failures (e.g., network partitioning), sends com-
mands to the datanodes to report their blocks to the na-
menode, and waits until all datanodes receive a null com-
mand (i.e., no background jobs to run).

Going back to Figure 3a, the created mappings be-
tween the first failures and their subsequent failure IDs
are: {A→ E}, {B→ E}, {C→ E, F}, and {D→ E, F}. The
recovery behaviors then are clustered into two: {E}, and
{E, F}. Finally, for each recovery cluster, we pick only

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 245

one failure ID on which the cluster is dependent. The fi-
nal prioritized combinations are marked with bold edges
in Figure 3a. That is, FATE only exercises: AE, CE, and
CF. Note that E is exercised as a second failure twice be-
cause it appears in different recovery clusters.

4.3.2 Pairwise Independent Failures

A pair of failure IDs is independent if the second ID is
observed even if the first ID is not injected. This case
is often observed when the same piece of code runs in
parallel, which is a common characteristic found in dis-
tributed systems (e.g., two phase commit, leader election,
HDFS write and append). Figure 3b illustrates a scenario
where the same I/O points A and B are executed concur-
rently in three nodes (i.e., A1, A2, A3, B1, B2, B3). Let’s
name these two I/O points A and B as static failure points,
or SFP in short (as they exclude node ID). With brute-
force exploration, FATE produces 24 combinations (the
12 bi-directional edges in Figure 3b). In more general,
there are SFP 2 ∗N(N−1) combinations, where N and
SFP are the number of nodes and static failure points re-
spectively. To reduce this quadratic growth, we introduce
two levels of prioritization: one for reducing N(N − 1)
and the other for SFP 2.

To reduce N(N−1), we leverage the property of sym-
metric code (i.e., the same code that runs concurrently
in different nodes). Because of this property, if a pair
of failures has been exercised at two static failure points
of two specific nodes, it is not necessary to exercise the
same pair for other pairs of nodes. For example, if A1B2
has been exercised, it is not necessary to run A1B3, A2B1,
A2B3, and so on. As a result, we have reduced N(N−1)
(i.e., any combinations of two nodes) to just one (i.e., a
pair of two nodes); the N does not matter anymore.
Although the first level of reduction is significant,

FATE still hits the SFP 2 bottleneck as illustrated in Fig-
ure 3c. Here, instead of having two static failure points,
there are four, which leads to 16 combinations. To re-
duce SFP 2, we utilize the behavior clustering algorithm
used in the dependent case. That is, if injecting failure
ID A1 results in the same recovery behavior as in inject-
ing B1, then we cluster them together (i.e., only one of
them needs to be exercised). Put simply, the goal is to
reduce SFP to SFPclustered, which will reduce the in-
put to the quadratic explosion (e.g., from 4 to 2 resulting
in 4 uni-directional edges as depicted in Figure 3d). In
practice, we have seen a reduction from fifteen SFP to
eight SFPclustered.

4.4 Summary
We have introduced FATE, a failure testing service capa-
ble of exploring multiple, diverse failures in systematic
fashion. FATE employs failure IDs as a new abstraction

for exploring failures. FATE is also equipped with pri-
oritization strategies that prioritize failure scenarios that
result in distinct recovery actions. Our approaches are
not sound; however by experience, all bugs found with
brute-force are also found with prioritization (more in
§6.3). If developers have the time and resources, they
could fall back to brute-force mode for more confidence.
So far, we have only explained our algorithms for two-
failure scenarios. We have generalized them to three-
failure, but cannot present them due to space constraints.
One fundamental limitation of FATE is the absence of
I/O reordering [38], and thus it is possible that some or-
derings of failures are not exercised. Adopting related
techniques from existing work [38] will be be beneficial
in our case.

5 DESTINI: Declarative Testing
Specifications

After failures are injected, developers still need to check
for system correctness. As described in the motivation
(§2.4), DESTINI attempts to improve the state-of-the-
art of writing system specifications. In the following
sections, we first describe the architecture (§5.1), then
present some examples (§5.2), and finally summarize the
advantages (§5.3). Currently, we target recovery bugs
that reduce availability (e.g., unmasked failures, fail-
stop) and reliability (e.g., data-loss, inconsistency). We
leave performance and scalability bugs for future work.

5.1 Architecture
At the heart of DESTINI is Datalog, a declarative rela-
tional logic language. We chose the Datalog style as it
has been successfully used for building distributed sys-
tems [3, 26] and for verifying some aspects of system
correctness (e.g., security [12, 31]). Unlike much of that
work, we are not using Datalog to implement system in-
ternals, but only to write correctness specifications that
are checked relatively rarely. Hence we are less depen-
dent on the efficiency of current Datalog engines, which
are still evolving [3].
In terms of the architecture, DESTINI is designed such

that developers can build specifications from minimal in-
formation. To support this, DESTINI comprises three fea-
tures as depicted in Figure 4. First, it interposes network
and disk protocols and translates the available informa-
tion into Datalog events (e.g., cnpEv). Second, it records
failure scenarios by having FATE inform DESTINI about
failure events (e.g., fateEv). This highlights that FATE
and DESTINI must work hand in hand, a valuable prop-
erty that is apparent throughout our examples. Finally,
based only on events, it records facts, deduces expecta-
tions of how the system should behave in the future, and

246 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: DESTINI Architecture.

compares the two.

5.1.1 Rule Syntax

In DESTINI, specifications are formally written as Data-
log rules. A rule is essentially a logical relation:

errX(P1,P2,P3) :- cnpEv (P1), NOT-IN stateY(P1,P2,_),

P2 == img, P3 := Util.strLib(P2);

This Datalog rule consists of a head table (errX)
and predicate tables in the body (cnpEv and stateY).
The head is evaluated when the body is true. Tu-
ple variables begin with an upper-case letter (P1). A
don’t care variable is represented with an underscore
(). A comma between predicates represents conjunc-
tion. “:=” is for assignments. We also provide some
helper libraries (Util.strLib() to manipulate strings).
Lower case variables (img) represent integer or string
constants. All upper case letters (NOT-IN) are Datalog
keywords. Events are in italic. To help readers track
where events originate from, an event name begins with
one of these labels: cnp , dnp , cdp , ddp , fs , which
stand for client-namenode, datanode-namenode, client-
datanode, datanode-datanode, and file system protocols
respectively (Figure 4). Non-event (non-italic) heads and
predicates are essentially database tables with primary
keys defined in some schemas (not shown). A table that
starts with err represents an error (i.e., if a specification
is broken, the error table is non-empty, implying the ex-
istence of one or more bugs).

5.2 DESTINI Examples

This section presents the powerful features of DESTINI
via four examples of HDFS recovery specifications. In
the first example, we present five important components
of recovery specifications (§5.2.1). To help simplify the
complex debugging process, the second example shows
how developers can incrementally add tighter specifica-
tions (§5.2.2). The third example presents specifications
that incorporate a different type of failure than the first
two examples (§5.2.3). Finally, we illustrate how devel-
opers can refine existing specifications (§5.2.4).

5.2.1 Specifying Data-Transfer Recovery

DESTINI facilitates five important elements of recovery
specifications: checks, expectations, facts, precise fail-
ure events, and check timings. Here, we present these
elements by specifying the data-transfer recovery proto-
col (Figure 1a); this recovery is correct if valid replicas
are stored in the surviving nodes of the pipeline.
• Checks: To catch violations of data-transfer recov-
ery, we start with a simple high-level check (a1), which
says “upon block completion, throw an error if there is
a node that is expected to store a valid replica, but actu-
ally does not.” This rule shows how a check is composed
of three elements: the expectation (expectedNodes), fact
(actualNodes), and check timing (cnpComplete).
• Expectations: The expectation (expectedNodes) is de-
duced from protocol events (a2-a8). First, without any
failure, the expectation is to have the replicas in all the
nodes in the pipeline (a3); information about pipeline
nodes are accessible from the setup reply from the na-
menode to the client (a2). However, if there is a crash,
the expectation changes: the crashed node should be re-
moved from the expected nodes (a4). This implies that
an expectation is also based on failure events.
• Failure events: Failures in different stages result in
different recovery behaviors. Thus, we must know pre-
cisely when failures occur. For data-transfer recovery,
we need to capture the current stage of the write pro-
cess and only change the expectation if a crash occurs
within the data-transfer stage (fateCrashNode happens
at Stg==2 in rule a4). The data transfer stage is deduced
in rules a5-a8: the second stage begins after all acks from
the setup phase have been received.

Before moving on, we emphasize two important ob-
servations here. First, this example shows how FATE
and DESTINI must work hand in hand. That is, recovery
specifications require a failure service to exercise them,
and a failure service requires specifications of expected
failure handling. Second, with logic programming, de-
velopers can easily build expectations only from events.
• Facts: The fact (actualNodes) is also built from events
(a9-a16); specifically, by tracking the locations of valid
replicas. A valid replica can be tracked with two pieces
of information: the block’s latest generation time stamp,
which DESTINI tracks by interposing two interfaces (a9
and a10), and meta/checksumfiles with the latest genera-
tion timestamp, which are obtainable from file operations
(a11-a15). With this information, we can build the run-
time fact: the nodes that store the valid replicas of the
block (a16).
• Check timings: The final step is to compare the ex-
pectation and the fact. We underline that the timing of
the check is important because we are specifying recov-
ery behaviors, unlike invariants which must be true at

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 247

Section 5.2.1 Data-Transfer Recovery Specifications
a1 errDataRec (B, N) :- cnpComplete (B), expectedNodes (B, N), NOT-IN actualNodes (B, N);

a2 pipeNodes (B, Pos, N) :- cnpGetBlkPipe (UFile, B, Gs, Pos, N);

a3 expectedNodes (B, N) :- pipeNodes (B, Pos, N);

a4 DEL expectedNodes (B, N) :- fateCrashNode (N), pipeStage (B, Stg), Stg == 2,

expectedNodes (B, N);

a5 setupAcks (B, Pos, Ack) :- cdpSetupAck (B, Pos, Ack);

a6 goodAcksCnt (B, COUNT<Ack>) :- setupAcks (B, Pos, Ack), Ack == ’OK’;

a7 nodesCnt (B, COUNT<Node>) :- pipeNodes (B, , N,);

a8 pipeStage (B, Stg) :- nodesCnt (NCnt), goodAcksCnt (ACnt), NCnt == Acnt, Stg := 2;

a9 blkGenStamp (B, Gs) :- dnpNextGenStamp (B, Gs);

a10 blkGenStamp (B, Gs) :- cnpGetBlkPipe (UFile, B, Gs, ,);

a11 diskFiles (N, File) :- fsCreate (N, File);

a12 diskFiles (N, Dst) :- fsRename (N, Src, Dst), diskFiles (N, Src);

a13 DEL diskFiles (N, Src) :- fsRename (N, Src, Dst), diskFiles (N, Src);

a14 fileTypes (N, File, Type) :- diskFiles(N, File), Type := Util.getType(File);

a15 blkMetas (N, B, Gs) :- fileTypes (N, File, Type), Type == metafile,

B := Util.getBlk(File), Gs := Util.getGs(File);

a16 actualNodes (B, N) :- blkMetas (N, B, Gs), blkGenStamp (B, Gs);

Section 5.2.2 Tighter Specifications for Data-Transfer Recovery
b1 errBadAck (Pos, N) :- cdpDataAck (Pos, ’Error’), pipeNodes (B, Pos, N), liveNodes (N);

b2 liveNodes (N) :- dnpRegistration (N);

b3 DEL liveNodes (N) :- fateCrashNode (N);

b4 errBadConnect (N, TgtN) :- ddpDataTransfer (N, TgtN, Status), liveNodes (TgtN),

Status == terminated;

Section 5.2.3 Rack-Aware Policy Specifications
c1 warnSingleRack (B) :- rackCnt (B, 1), actualRacks (B, R), connectedRacks (R, OtherR);

c2 actualRacks (B, R) :- actualNodes (B, N), nodeRackMap (N, R);

c3 rackCnt (B, COUNT<R>) :- actualRacks (B, R);

c4 DEL connectedRacks (R1, R2) :- fatePartitionRacks (R1, R2);

c5 err1RackOnCompletion (B) :- cnpComplete (B), warnSingleRack (B);

c6 err1RackOnStableState (B) :- fateStableState (), warnSingleRack (B);

Section 5.2.4 Refining Log-Recovery Specifications
d1 errLostUFile (UFile) :- expectedUFile (UFile), NOT-IN ufileInNameNode (UFile);

d2 ufileInNameNode (UFile) ∗∗ :- ufileInNnFile(F, NnFile), (NnFile == img || NnFile == log ||

NnFile == img2);

d3 ufileInNameNode (UFile) :- ufileInNnFile (F, img2), logRecStage (Stg), Stg == 4;

d4 ufileInNameNode (UFile) :- ufileInNnFile (F, img) , logRecStage (Stg), Stg != 4;

d5 ufileInNameNode (UFile) :- ufileInNnFile (F, log) , logRecStage (Stg), Stg != 4;

Table 2: Sample Specifications. The table lists all the rules we wrote to specify the problems in Section 5.2; Rules aX, bX,
cX, and dX are for Sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4 respectively. All logical relations are built only from events (in italic). The
shaded rows indicate checks that catch violations. A check always starts with err. Tuple variables B, Gs, N, Pos, R, Stg, NnFile,
and UFile are abbreviations for block, generation timestamp, node, position, rack, stage, namenode file, and user file respectively;
others should be self-explanatory. Each table has primary keys defined in a schema (not shown). (∗∗) Rule d2 is refined in d3 to
d5; these rules are described more in our short paper [14].

248 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

all time. Not paying attention to this will result in false
warnings (i.e., there is a period of time when recovery is
ongoing and specifications are not met). Thus, we need
precise events to signal check times. In this example, the
check time is at block completion (cnpComplete in a1).

5.2.2 Debugging with Tighter Specifications

The rules in the previous section capture the high-level
objective of HDFS data-transfer recovery. After we ran
FATE to cover the first crash scenario in Figure 1b (for
simplicity of explanation, we exclude the second crash),
rule a1 throws an error due to a bug that wrongly ex-
cludes the good second node (Figure 1b in §2.3). Al-
though the check unearths the bug, it does not pinpoint
the bug (i.e., answer why the violation is thrown).

To improve this debugging process, we added more
detailed specifications. In particular, from the events that
DESTINI logs, we observed that the client excludes the
second node in the next pipeline, which is possible if the
client receives a bad ack. Thus, we wrote another check
(b1) which says “throw an error if the client receives a
bad ack for a live node” (b1’s predicates are specified
in b2 and b3). Note that this check is written from the
client’s view, while rule a1 from the global view.

The new check catches the bug closer to the source,
but also raises a new question: Why does the client re-
ceive a bad ack for the second node? One logical ex-
planation is because the first node cannot communicate
to the second node. Thus, we easily added many checks
that catch unexpected bad connections such as b4, which
finally pinpoints the bug: the second node, upon seeing
a failed connection to the crashed third node, incorrectly
closes the streams connected to the first node; note that
this check is written from the datanode’s view.
In summary, more detailed specifications prove to be

valuable for assisting developers with the complex de-
bugging process. This is unlikely to happen if a check
implementation is long. But with DESTINI, a check can
be expressed naturally in a small number of logical re-
lations. Moreover, checks can be written from different
views (e.g., global, client and datanode as shown in a1,
b1, b4 respectively). Table 3 shows a timeline of when
these various checks are violated. As shown, tighter
specifications essentially fill the “explanation gaps” be-
tween the injected failure and the wrong final state of the
system.

5.2.3 Specifying Rack-Aware Replication Policy

In this example, we write specifications for the HDFS
rack-aware replication policy, an important policy for
high availability [10, 33]. Unlike previous examples, this
example incorporates network partitioning failure mode.
According to the HDFS architects [33], the write pro-

tocol should ensure that block replicas are spread across

Time, Events, and Errors
t1: Client asks the namenode for a block ID and the nodes.

cnpGetBlkPipe (usrFile, blk x, gs1, 1, N1);

cnpGetBlkPipe (usrFile, blk x, gs1, 2, N2);

cnpGetBlkPipe (usrFile, blk x, gs1, 3, N3);

t2: Setup stage begins (pipeline nodes setup the files). ∗
fsCreate (N1, tmp/blk x gs1.meta);

fsCreate (N2, tmp/blk x gs1.meta);

fsCreate (N3, tmp/blk x gs1.meta);

t3: Client receives setup acks. Data transfer begins.
cdpSetupAck (blk x, 1, OK);

cdpSetupAck (blk x, 2, OK);

cdpSetupAck (blk x, 3, OK);

t4: FATE crashes N3. Got error (b4).
fateCrashNode (N3);

errBadConnect (N1, N2); // should be good

t5: Client receives an errorneous ack. Got error (b1).
cdpDataAck (2, Error);

errBadAck (2, N2); // should be good

t6: Recovery begins. Get new generation time stamp.
dnpNextGenStamp (blk x, gs2);

t7: Only N1 continues and finalizes the files.
fsCreate (N1, tmp/blk x gs2.meta);

fsRename (N1, tmp/blk x gs2.meta,

current/blk x gs2.meta);

t8: Client marks completion. Got error (a1).
cnpComplete (blk x);

errDataRec (blk x, N2); // should exist

Table 3: A Timeline of DESTINI Execution. The
table shows the timeline of runtime events (italic) and errors
(shaded). Tighter specifications capture the bug earlier in
time. The tuples (strings/integers) are real entries (not variable
names). For space, we do not show block-file creations (but
only meta files∗) nor how the rules in Table 2 are populated.

a minimum of two available racks. But, if only one rack
is reachable, it is acceptable to use one rack temporar-
ily. To express this, rule c1 throws a warning if a block’s
rack could reach another rack, but the block’s rack count
is one (rules c2-c4 provide topology information, which
is initialized when the cluster starts and updated when
FATE creates a rack partition). This warning becomes a
hard error only if it is true upon block completion (c5) or
stable state (c6). Note again how these timings are im-
portant to prevent false errors; while recovery is ongoing,
replicas are still being re-shuffled into multiple racks.

With these checks, DESTINI found the bug in Fig-
ure 1c (§2.3), a critical bug that could greatly reduce
availability: all replicas of a block are stored in a sin-
gle rack. Note that the bug does not violate the comple-
tion rule (because the racks are still partitioned). But, it
does violate the stable state rule because even after the
network partitioning is removed, the replication monitor
does not re-shuffle the replicas.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 249

5.2.4 Refining Specifications

In the second example (§5.2.2), we demonstrated how
developers can incrementally add detailed specifications.
In this section, we briefly show how developers can refine
existing specifications (an extensive description can be
found in our short paper [14]).
Here, we specify the HDFS log-recovery process in

order to catch data-loss bugs in this protocol. The high-
level check (d1) is fairly simple: “a user file is lost if it
does not exist at the namenode.” To capture the facts, we
wrote rule d2 which says “at any time, user files should
exist in the union of all the three namenode files used in
log recovery.” With these rules, we found a data-loss bug
that accidentally deletes the metadata of user files. But,
the error is only thrown at the end of the log recovery
process (i.e., the rules are not detailed enough to pinpoint
the bug). We then refined rule d2 to reflect in detail the
four stages of the process (d3 to d5). That is, depending
on the stage, user files are expected to be in a different
subset of the three files. With these refined specifications,
the data-loss bug was captured in between stage 3 and 4.

5.3 Summary of Advantages
Throughout the examples, we have shown the advantages
of DESTINI: it facilitates checks, expectations, facts,
failure events, and precise timings; specifications can be
written from different views (e.g., global, client, datan-
ode); different types of violations can be specified (e.g.,
availability, data-loss); different types of failures can be
incorporated (e.g., crashes, partitioning); and specifica-
tions can be incrementally added or refined. Overall,
the resulting specifications are clear, concise, and pre-
cise, which potentially attracts developers to write many
specifications to ease complex debugging process. All
of these are feasible due to three important properties
of DESTINI: the interposition mechanism that translates
disk and network events; the use of relational logic lan-
guage which enables us to deduce complex states only
from events; and the inclusion of failure events from the
collaboration with FATE. Besides these advantages,
adopting DESTINI requires one major effort: develop-
ers need to reverse-engineer raw I/O information (e.g.,
I/O buffer, stack trace) collected from the Java-based in-
terposition mechanism into semantically-richer Datalog
events (e.g., cnpComplete). However, we hope that this
effort will also be useful for other debugging techniques
that need detailed I/O information.

6 Evaluation
We evaluate FATE and DESTINI in several aspects: the
general usability for cloud systems (§6.1), the ability to
catch multiple-failure bugs (§6.2), the efficiency of our

prioritization strategies (§6.3), the number of specifica-
tions we have written and their reusability (§6.4), the
number of new bugs we have found and old bugs repro-
duced (§6.5), and the implementation complexity (§6.6).

Since we currently only test reliability (but not per-
formance), it is sufficient to run FATE, DESTINI, and the
target systems as separate processes on a single machine;
network and disk failures are emulated (manifested as
Java I/O exceptions), and crashes are emulated with pro-
cess crashes. Nevertheless, FATE and DESTINI can run
on separate machines.

6.1 Target Systems and Protocols
We have integrated FATE and DESTINI to three cloud
systems: HDFS [33] v0.20.0 and v0.20.2+320 (the latter
is released in Feb. 2010 and used by Cloudera and Face-
book), ZooKeeper [19] v3.2.2 (Dec. 2009), and Cassan-
dra [23] v0.6.1 (Apr. 2010). We have run our frame-
work on four HDFS workloads (log recovery, write, ap-
pend, and replication monitor), one ZooKeeper work-
load (leader election), and one Cassandra workload (key-
value insert). In this paper, we only present exten-
sive evaluation numbers for HDFS. For Cassandra and
ZooKeeper, we only present partial results.

6.2 Multiple-Failure Bugs
The uniqueness of our framework is the ability to explore
multiple failures systematically, and thus catch corner-
case multiple-failure bugs. Here, we describe two out of
five multiple-failure bugs that we found.

6.2.1 Append Bugs

We begin with a multiple-failure bug in the HDFS ap-
pend protocol. Unlike write, append is more complex
because it must atomically mutate block replicas [36].
HDFS developers implement append with a custom pro-
tocol; their latest append design was written in a 19-page
document of prose specifications [22]. Append was fi-
nally supported after being a top user demand for three
years [36]. As a note, Google FS also supports append,
but its authors did not share their internal design [10].

In the experiment setup, a block has three replicas in
three nodes, and thus should survive two failures. On
append, the three nodes form a pipeline. N1 starts a
thread that streams the new bytes to N2 and then N1 ap-
pends the bytes to its block. N2 crashes at this point, and
N1 sends a bad ack to the client, but does not stop the
thread. Before the client continues streaming via a new
pipeline, all surviving nodes (N1 and N3) must agree on
the same block offset (the syncOffset process). In this
process, each node stops the writing thread, verifies that
the block’s in-memory and on-disk lengths are the same,

250 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

broadcasts the offset, and picks the smallest offset. How-
ever, N1 might have not updated the block’s in-memory
length, and thus throws an exception resulting in the new
pipeline containing only N3. Then, N3 crashes, and the
pipeline is empty. The append fails, but worse, the block
in N1 (still alive) becomes “trapped” (i.e., inaccessible).
After FATE ran all the background protocols (e.g., lease
recovery), the block is still trapped and permanently in-
accessible. We have submitted a fix for this bug [2].

6.2.2 Combinations of Different Failures
We have also found a new data-loss bug due to a se-
quence of different failure modes, more specifically, tran-
sient disk failure (#1), crash (#2), and disk corruption
(#3) at the namenode. The experiment setup was that the
namenode has three replicas of metadata files on three
disks, and one disk is flaky (exhibits transient failures
and corruptions). When users store new files, the na-
menode logs them to all the disks. If a disk (e.g., Disk1)
returns a transient write error (#1), the namenode will ex-
clude this disk; future writes will be logged to the other
two disks (i.e., Disk1 will contain stale data). Then, the
namenode crashes after several updates (#2). When the
namenode reboots, it will load metadata from the disk
that has the latest update time. Unfortunately, the file that
carries this information is not protected by a checksum.
Thus, if this file is corrupted (#3) such that the update
time of Disk1 becomes more recent than the other two,
then the namenode will load stale data, and flush the stale
data to the other two disks, wiping out all recent updates.
One could argue that this case is rare, but cloud-scale de-
ployments cause rare bugs to surface; a similar case of
corruption did occur in practice [2]. Moreover, data-loss
bugs are serious ones [27, 29, 30].

6.3 Prioritization Efficiency
When FATE was first deployed without prioritization, we
exercised over 40,000 unique combinations of failures,
which combine into 80-hour of testing time. Thousands
of experiments failed (probably only due to tens of bugs).
Although 80 hours seems a reasonable testing time to un-
earth crucial reliability bugs, this long testing time only
covers several workloads; in reality, there are more work-
loads to test. In addition, as developers modify their
code, they likely to prefer faster turn-around time to find
new bugs from their new changes. Overall, this long test-
ing is an overwhelming situation, but which fortunately
unfolds into a good outcome: new strategies for multiple-
failure prioritization.
To evaluate our strategies, we first focused only on two

protocols (write and append) because we need to com-
pare the brute-force with the prioritization results. More
specifically, for each method, we count the number of
combinations and the number of distinct bugs. Our hope

Workload #F STR #EXP FAIL BUGS
Append 2 BF 1199 116 3

PR 112 17 3
Append 3 BF 7720 ∗∗3693 ∗3

PR 618 72 ∗3
Write 2 BF 524 120 2

PR 49 27 2
Write 3 BF 3221 911 ∗2

PR 333 82 ∗2

Table 4: PrioritizationEfficiency. The columns from left
to right are the number of injected failures per run (F), explo-
ration strategy (STR), combinations/experiments (EXP), failed
experiments (FAIL), and bugs found (BUGS). BF and PR stands
for brute-force and prioritization respectively. Note that the
bug counts are only due to two and three failures and depend
on the filter (i.e., there are more bugs than shown). (∗) Bugs in
three-failure experiments are the same as in two-failure ones.
(∗∗) This high number is due to a design bug; we used triaging
to help us classify the bugs (not shown).

is that the latter is the same for brute-force and prior-
itization. Table 4 shows the result of running the two
workloads with two and three failures per run, and with
a lightweight filter (crash-only failures on disk I/Os in
datanodes); without this filter, the number of brute-force
experiments is too large to debug. In short, the table
shows that our prioritization strategies reduce the total
number of experiments by an order of magnitude (the
testing time for the workloads in Table 4 is reduced from
26 hours to 2.5 hours). In addition, from our experience
no bugs are missing. Again, we cannot prove that our
approach is sound; developers could fall back to brute-
force for more confidence. Table 4 also highlights the
exponential explosion of combinations of multiple fail-
ures; the numbers for three failures are much higher than
those for two failures (e.g., 7720 vs. 1119). So far, we
only cover up to 3 failures, and our techniques still scale
reasonably well (i.e., they still give an order of magni-
tude improvement).

6.4 Specifications
In the last six months, we have written 74 checks on top
of 174 rules for a total of 351 lines (65 checks for HDFS,
2 for ZooKeeper, and 7 for Cassandra). We want to em-
phasize that rules

checks
ratio displays how DESTINI empow-

ers specification reuse (i.e., building more checks on top
of existing rules). As a comparison, the ratio for our first
check (§5.2.1 in Table 2) is 16:1, but the ratio now is 3:1.

Table 5 compares DESTINI with other related work.
The table highlights that DESTINI allows a large number
of checks to be written in fewer lines of code. We want to
note that the number of specifications we have written so
far only represents six recovery protocols; there are more
that can be specified. As time progresses, we believe the

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 251

Type Framework #Chks Lines/Chk
S/I D3S [24] 10 53
D/I Pip [32] 44 43
S/I WiDS [25] 15 22
D/D P2 Monitor [34] 11 12
D/I DESTINI 74 5

Table 5: DESTINI vs. Related Work. The table com-
pares DESTINI with related work. D, S, and I represent declar-
ative, scripting, and imperative languages respectively. X/Y im-
plies specifications in X language for systems in Y language.
We divide existing work into three classes (S/I, D/D, D/I).

simplicity offered by DESTINI will open the possibility
of having hundreds of specifications along with more re-
covery specification patterns.
To show how our style of writing specifications is ap-

plicable to other systems, we present in more detail some
specifications we wrote for ZooKeeper and Cassandra.

6.4.1 ZooKeeper

We have integrated our framework to ZooKeeper [19].
We picked two reported bugs in the version we analyzed.
Let’s say three nodes N1, N2, and N3, participate in a
leader election, and id(N1) < id(N2) < id(N3). If N3
crashes at any point in this process, the expected behavior
is to have N1 and N2 form a 2-quorum. However, there is
a bug that does not anticipate N3 crashing at a particular
point, which causes N1 and N2 to continue nominating
N3 in ever-increasing rounds. As a result, the election
process never terminates and the cluster never becomes
available. To catch this bug, we wrote an invariant vio-
lation “a node chooses a winner of a round without en-
suring that the chosen leader has in itself voted in the
round.” The other bug involves multiple failures and can
be caught with an addition of just one check; we reuse
rules from the first bug. So far, we have written 12 rules
for ZooKeeper.

6.4.2 Cassandra

We have also done the same for Cassandra [23], and
picked three reported bugs in the version we analyzed. In
Cassandra, the key-value insert protocol allows users to
specify a consistency level such as one, quorum, or all,
which ensures that the client waits until the key-value
has been flushed on at least one, N/2 + 1, or all N nodes
respectively. These are simple specifications, but again,
due to complex implementation, bugs exist and break the
rules. For example, at level all, Cassandra could incor-
rectly return a success even when only one replica has
been completed. FATE is able to reproduce the failure
scenarios and DESTINI is equipped with 7 checks (in 12
rules) to catch consistency-level related bugs.

6.5 New Bugs and Old Bugs Reproduced
We have tested HDFS for over eight months and sub-
mitted 16 new bugs, out of which 7 uncovered design
bugs (i.e., require protocol modifications) and 9 uncov-
ered implementation bugs. All have been confirmed by
the developers. For Cassandra and ZooKeeper, we ob-
served some failed experiments, but since we do not have
the chance to debug all of them, we have no new bugs to
report.

To further show the power of our framework, we ad-
dress two challenges: Can FATE reproduce all the failure
scenarios of old bugs? Can DESTINI facilitate specifica-
tions that catch the bugs? Before proposing our frame-
work for catching unknown bugs, we wanted to feel con-
fident that it is expressive enough to capture known bugs.
We went through the 91 HDFS recovery issues (§2.2)
and selected 74 that relate to our target workloads (§6.1).
FATE is able to reproduce all of them; as a proof, we
have created 22 filters (155 lines in Java) to reproduce all
the scenarios. Furthermore, we have written checks that
could catch 46 old bugs; since some of the old bugs have
been fixed in the version we analyzed, we introduced ar-
tificial bugs to test our specifications. For ZooKeeper and
Cassandra, we have reproduced a total of five bugs.

6.6 FATE and DESTINI Complexity
FATE comprises generic (workload driver, failure server,
failure surface) and domain-specific parts (workload
driver, I/O IDs). The generic part is written in 3166 lines
in Java. The domain-specific parts are 422, 253, and
357 lines for HDFS, ZooKeeper and Cassandra respec-
tively; the part for HDFS is bigger because HDFS was
our first target. DESTINI’s implementation cost comes
from the translation mechanism (§5.1). The generic part
is 506 lines. The domain-specific parts are 732 (more
complete), 23, and 35 lines for HDFS, ZooKeeper, and
Cassandra respectively. FATE and DESTINI interpose the
target systems with AspectJ (no modification to the code
base). However, it was necessary to slightly modify the
systems (less than 100 lines) for two purposes: defer-
ring background tasks while the workload is running and
sending stable-state commands.

7 Conclusion and Future Work
The scale of cloud systems – in terms of both infrastruc-
ture and workload – makes failure handling an urgent
challenge for system developers. To assist developers in
addressing this challenge, we have presented FATE and
DESTINI as a new framework for cloud recovery testing.
We believe that developers need both FATE and DESTINI
as a unified framework: recovery specifications require

252 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a failure service to exercise them, and a failure service
requires specifications of expected failure handling.
Beyond finding problems in existing systems, we be-

lieve such testing is also useful in helping to generate
new ideas on how to build robust, recoverable systems.
For example, one new approach we are currently inves-
tigating is the increased use of pessimism to avoid prob-
lems during recovery. For example, HDFS lease recov-
ery would have been more robust had it not trusted as-
pects of the append protocol to function correctly (§6.2).
Many other examples exist; only through further care-
ful testing and analysis will the next generation of cloud
systems meet their demands.

8 Acknowledgments
We thank the anonymous reviewers and Rodrigo Fon-
seca (our shepherd) for their tremendous feedback and
comments, which have substantially improved the con-
tent and presentation of this paper. This material is based
upon work supported by Computing Innovation Fellow-
ship, the NSF under grant Nos. CCF-1016924, CCF-
1017073, CCF-1018729, CCF-0747390, CNS-0722077,
IIS-0713661, IIS-0803690, and IIS-0722077, the MURI
program under AFOSR grant No. FA9550-08-1-0352,
and gifts from Google, IBM, Microsoft, NetApp, and
Yahoo!. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF
or other institutions.

References
[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] HDFS JIRA. http://issues.apache.org/jira/browse/

HDFS.
[3] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,

Joseph M. Hellerstein, and Russell C Sears. BOOM Analytics:
Exploring Data-Centric, Declarative Programming for the Cloud.
In EuroSys ’10.

[4] Ken Birman, Gregory Chockler, and Robbert van Renesse. To-
wards a Cloud Computing Research Agenda. ACM SIGACT
News, 40(2):68–80, June 2009.

[5] Mike Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems Export. In OSDI ’06.

[6] Tushar Chandra, Robert Griesemer, and Joshua Redstone. Paxos
Made Live - An Engineering Perspective. In PODC ’07.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew
Fikes, and Robert Gruber. Bigtable: A Distributed Storage Sys-
tem for Structured Data. In OSDI ’06, pages 205–218.

[8] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking Cloud Serving Systems
with YCSB. In SoCC ’10.

[9] Jeffrey Dean. Underneath the Covers at Google: Current Systems
and Future Directions. In Google I/O ’08.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google File System. In SOSP ’03, pages 29–43.

[11] Garth Gibson. Reliability/Resilience Panel. In HEC-FSIO ’10.
[12] Salvatore Guarnieri and Benjamin Livshits. Gatekeeper: Mostly

Static Enforcement of Security and Reliability Policies for
JavaScript Code. In Usenix Security ’09.

[13] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,
Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Koushik Sen. FATE and DESTINI: A
Framework for Cloud Recovery Testing. UC Berkeley Techni-
cal Report UCB/EECS-2010-127, September 2010.

[14] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Joseph M. Heller-
stein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Koushik Sen. Towards Automatically Checking Thousands of
Failures with Micro-specifications. In HotDep ’10.

[15] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. SQCK: A Declarative
File System Checker. In OSDI ’08.

[16] James Hamilton. Cloud Computing Economies of Scale. In MIX
’10.

[17] James Hamilton. On Designing and Deploying Internet-Scale
Services. In LISA ’07.

[18] Alyssa Henry. Cloud Storage FUD: Failure and Uncertainty and
Durability. In FAST ’09.

[19] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. ZooKeeper: Wait-free coordination for Internet-scale sys-
tems. In USENIX ATC ’10.

[20] Lorenzo Keller, Paul Marinescu, and George Candea. AFEX: An
Automated Fault Explorer for Faster System Testing. 2008.

[21] Charles Killian, James Anderson, Ranjit Jhala, and Amin Vahdat.
Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. In NSDI ’07.

[22] Hairong Kuang, Konstantin Shvachko, Nicholas Sze, San-
jay Radia, and Robert Chansler. Append/Hflush/Read
Design. https://issues.apache.org/jira/secure/
attachment/12445209/appendDesign3.pdf.

[23] Avinash Lakshman and Prashant Malik. Cassandra - a decentral-
ized structured storage system. In LADIS ’09.

[24] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen
Lian, Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng
Zhang. D3S: Debugging Deployed Distributed Systems. In NSDI
’08.

[25] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS
Checker: Combating Bugs in Distributed Systems. In NSDI ’07.

[26] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros
Maniatis, Timothy Roscoe, and Ion Stoica. Implementing Declar-
ative Overlays. In SOSP ’05.

[27] Om Malik. When the Cloud Fails: T-Mobile, Microsoft Lose
Sidekick Customer Data. http://gigaom.com.

[28] Paul D. Marinescu, Radu Banabic, and George Candea. An Ex-
tensible Technique for High-Precision Testing of Recovery Code.
In USENIX ATC ’10.

[29] Lucas Mearian. Facebook temporarily loses more than 10% of
photos in hard drive failure. www.computerworld.com.

[30] John Oates. Bank fined 3 millions pound sterling for data loss,
still not taking it seriously. www.theregister.co.uk.

[31] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel.
MulVAL: A logic-based network security analyzer. In Usenix
Security ’05.

[32] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, Charles Killian, and Amin Vahdat. Pip: Detecting the un-
expected in distrubted systems. In NSDI ’06.

[33] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In MSST ’10.

[34] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Dr-
uschel. Using Queries for Distributed Monitoring and Forensics.
In EuroSys ’06.

[35] Hadoop Team. Fault Injection framework: How to use it, test
using artificial faults, and develop new faults. http://issues.
apache.org.

[36] Tom White. File Appends in HDFS. http://www.cloudera.
com/blog/2009/07/file-appends-in-hdfs .

[37] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor
Kuncak. CrystalBall: Predicting and Preventing Inconsistencies
in Deployed. Distributed Systems. In NSDI ’09.

[38] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Li-
dong Zhou. MODIST: Transparent Model Checking of Unmodi-
fied Distributed Systems. In NSDI ’09.

[39] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A
Lightweight, General System for Finding Serious Storage Sys-
tem Errors. In OSDI ’06.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 253

SliceTime: A platform for scalable and accurate network emulation

Elias Weingärtner, Florian Schmidt, Hendrik vom Lehn, Tobias Heer and Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University, Germany

Abstract
Network emulation brings together the strengths of net-
work simulation (scalability, modeling flexibility) and
real-world software prototypes (realistic analysis). Un-
fortunately network emulation fails if the simulation is
not real-time capable, e.g., due to large scenarios or com-
plex models. So far, this problem has generally been ad-
dressed by providing massive computing power to the
simulation, which is often too costly or even infeasible.

In this paper we present SliceTime, our platform for
scalable and accurate network emulation. It enables the
precise evaluation of arbitrary networking software with
event-based simulations of any complexity by relieving
the network simulation from its real-time constraint. We
achieve this goal by transparently matching the execu-
tion speed of virtual machines hosting the software pro-
totypes with the network simulation. We demonstrate the
applicability of SliceTime in a large-scale WAN scenario
with 15 000 simulated nodes and show how our frame-
work eases the analysis of software for 802.11 networks.

1 Introduction

We are still in need of adequate tools for performance in-
vestigations as well as for testing of real-world network
protocol implementations and large-scale distributed sys-
tems. In this regard, the first major requirement is scal-
ability. For example, in order to facilitate the analysis
of contemporary P2P applications, such a tool needs to
scale up to potentially thousands of nodes. Second, we
need experimentation platforms that isolate the protocol
implementation and its communication from real-world
communication networks. Such strong isolation is impor-
tant for the investigation of malware to prevent a poten-
tial outbreak. Isolated evaluation environments are also
well suited for the analysis of software for wireless net-
works as unwanted disturbances on the wireless channel
can be avoided.

Discrete event-based network simulation is a well-
established methodology for the evaluation of network
protocols. Network simulators, such as ns-3 [27] or OM-
NeT++ [37], facilitate the flexible analysis of arbitrary
network protocols. Due to their abstract modeling ap-
proach, network simulations scale well to network sizes
of up to many thousand nodes.

However, abstract simulation models focus only on the
most relevant aspects of the communicating nodes. They
disregard the system context of a network protocol and
its run-time environment, like the influence of an operat-
ing system regarding timing, concurrent processes, and
resource constraints. This fundamental concept of ab-
straction limits the applicability of network simulations
to network performance metrics. For instance, investiga-
tions of run-time performance, resource usage, and the
interoperability with other protocol implementations are
difficult to obtain by solely using simulations. The strict
event-based notion of network simulators also makes it
generally impossible to execute arbitrary networking ap-
plications inside the simulation environment. These is-
sues complicate performance studies that are very im-
portant for the applicability of communication systems.

Performance evaluations under real conditions are
mostly carried out within network testbeds of proto-
type implementations. However, setting up large-scale
testbeds is expensive and their maintenance is often
cumbersome. Shared testbeds such PlanetLab [7], Emu-
lab [42] and MoteLab [41] partially fill this gap. Yet their
flexibility is limited due to a lack of topology controlla-
bility, shared testbed usage or insufficient scalability.

Network emulation as introduced by Fall [10] brings
together the flexibility of discrete event-based of network
simulation with the precision of evaluation using real-
world testbeds. An event-based simulation modeling a
computer network of choice is connected to real-world
software prototype. Traffic from the prototype is fed to
the simulation and vice versa. This way, the software pro-
totype can be evaluated in any network that can be mod-

1

254 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

eled by the simulator. One fundamental issue of network
emulation are the different time representations of event-
based simulations and software prototypes. Event-based
simulations consist of a series of discrete events with an
associated event execution time. Once an event has been
processed, the simulation time is advanced to the execu-
tion time of the next event. By contrast, software pro-
totypes observe a continuously progressing wall-clock
time.

Existing implementations of network emulation pin
the execution of simulation events to the correspond-
ing wall-clock time. Unfortunately, this approach is only
useful if the simulation can be executed in real time. Oth-
erwise, a simulation without sufficient computational re-
sources will lag behind and thus be unable to deliver
packets timely. Such simulator overload may result from
complex network simulations, for example due to a high
number of simulated nodes or models of high compu-
tational complexity. Simulator overload has to be pre-
vented because deficient protocol behavior such as con-
nection time-outs, unwanted retransmissions, or the as-
sumption of network congestion would be the direct con-
sequence. Moreover, even slight simulator overload may
invalidate performance evaluations because the network
cannot be simulated within the required timing bounds.

Speeding up the simulation to make it real-time ca-
pable is the first obvious option to deal with simula-
tion overload. This speed-up can be achieved by sup-
plying the simulation machine with sufficient computa-
tional resources in forms of hardware or by parallelizing
the network simulation. However, we argue that this ap-
proach lacks generality because parallel processing can
only scale to the degree of possible parallelism within the
simulation. In addition, the amount of hardware needed
for real-time execution rapidly grows with the simulation
complexity, making this option inaccessible for many re-
search institutes and individuals.

So far, network emulation has merely been an arms
race between the complexity of the simulation model
and the computational power of the simulation hardware.
Hence, traditional approaches result in variable hard-
ware requirements and fixed execution time (real time).
By contrast, we aim at reducing the cost of precise net-
work emulation by designing a system with fixed hard-
ware demands but with variable execution time (real time
or slower). More specifically, the main contributions of
this paper are the following:

1. We thoroughly elaborate the design of Slice-
Time and its underlying concept of synchronized
network emulation [39, 40] (Section 2). It elimi-
nates the need of the network simulation to exe-
cute in real-time. This enables network emulation
scenarios using simulations of any complexity. We
achieve this goal by synchronizing the software pro-

totypes with the network simulation. Using virtual-
ization, we decouple the software prototypes’ per-
ceived progression of time from wall-clock time.

2. Our implementation of SliceTime (cf. Section 3) for
x86 systems enables the synchronized execution of
Xen-based [3] virtualized prototypes and ns-3 sim-
ulations with an accuracy down to 0.01 ms.

3. We show that SliceTime delivers a high degree of ac-
curacy and transparency, both regarding timing and
perceived network bandwidth (Section4). We fur-
ther demonstrate in our evaluation of SliceTime that
is run-time efficient and that the synchronization
overhead stays below 10% at an accuracy of 0.5 ms.

4. We illustrate how SliceTime simplifies testing and
performance evaluations of WiFi software for Linux
by remodeling a large-scale AODV field test en-
tirely in software. We further demonstrate the scal-
ability of SliceTime by applying it to a large-scale
wide-area network (WAN) scenario with 15 000
nodes (Section 5).

In Section 6 we discuss the related work before conclud-
ing this paper in Section 7.

2 SliceTime

We now present the design of SliceTime. A Slice-
Time setup incorporates three main components
(cf. Figure 1): The central synchronization component
(synchronizer), at least one virtual machine (VM) carry-
ing a software prototype of choice, and an event-based
network simulation. The synchronizer controls the
execution of the network simulation and the software
prototypes. In order to carry out such a synchronization,
the synchronizer must interrupt the execution of the
prototype or the simulation at times to achieve precise
clock alignment. To enable this suspension, the software
prototypes are hosted inside virtual machines for means
of control.

2.1 Synchronization Component
The synchronization component centrally coordinates a
SliceTime setup. Its task is to manage the synchronous
execution of the network simulation and the attached
virtual machines. It implements a synchronization algo-
rithm to prevent potential time drifts and clock misalign-
ments between the virtual machines and the network sim-
ulation. As choice for the synchronization algorithm, we
consider solutions known from the research domain of
parallel discrete event-based simulation (PDES) [11]. In
this regard, two classes of synchronization are distin-
guished, optimistic synchronization schemes and conser-
vative synchronization schemes.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 255

Figure 1: Conceptual Overview of SliceTime: By relying
on entirely virtualized prototypes, we are able to syn-
chronize the execution speed of the simulation and the
prototypes. The simulation is relieved from its real-time
constraint, enabling large-scale network emulation sce-
narios on off-the-shelf hardware.

Optimistic schemes, most notably Time Warp [18], ex-
ecute the parallel simulation in a speculative fashion. In
case of synchronization errors, roll-backs are used to re-
store a consistent and error-free global state. For the abil-
ity to roll back to a consistent state, optimistic schemes
often incorporate regular snapshots of the synchronized
peers. As the state of a virtual machine includes the
memory allocated for the running operating system in-
stance, check-pointing is costly at the desired level of
synchronization granularity. Conservative synchroniza-
tion schemes, by contrast, guarantee a parallel execu-
tion without synchronization errors, and hence, do not
require a roll-back mechanism. However, most conser-
vative schemes, such as the null-message algorithm by
Chandy and Misra [6], require knowledge about the fu-
ture behavior (look-ahead) of a system. While the look-
ahead in event-based simulations can be determined by
inspecting their event queue, predicting the future run-
time behavior of a virtual machine is generally not possi-
ble. In effect, this limits the choice of a synchronization
algorithm for SliceTime to a scheme which neither makes
assumptions about the future behavior nor requires regu-
lar snapshots to be taken.

SliceTime uses a scheme similar to conservative time
windows (CTW) [23] for synchronizing network simu-
lations and VMs. In the following, we refer to this al-
gorithm as barrier synchronization. Figure 2 shows the
synchronization of two components, one VM and one
network simulation, via the barrier synchronization al-
gorithm. It allows every synchronized peer to run for
a certain amount of time, the so-called time slice, af-
ter which it blocks until all other peers reach the bar-
rier. At this point, the barrier is lifted, and a new future
barrier is set up to which the execution of the synchro-
nized components continues again. As the execution of
both the network simulation and the virtual machine is
always bounded by a barrier, the time drift between them
is limited to the size of one time slice at all times. Con-

Figure 2: Different steps of the barrier algorithm used
for the synchronization of one VM and one event-based
simulation. The execution of the simulation and the VM
is blocked until both have finished the time slice.

sequently, the synchronization accuracy is directly given
by the size of the time slice.

2.2 Virtual Machines
The virtual machines encapsulate the software prototype
to be integrated with the network simulation. We con-
sider a prototype to be an instance of any operating sys-
tem (OS) that carries arbitrary network protocol imple-
mentations or applications. The virtualization of OS in-
stances hosting software prototypes disassociates their
execution from the system hardware and hence allows
for obtaining full control over their run-time behavior.

Therefore, the execution of the prototype can be sus-
pended until all synchronized components have reached
the end of the time slice. This suspension avoids sim-
ulator overload by allowing the network simulator to
run while the virtual machines are waiting. However,
this suspension is typically detectable by the VMs, be-
cause they are relayed information from hardware time
sources. Under normal circumstances, this behavior is
desired to keep the clock synchronized to wall-clock time
and to make sure that timers expire at the right point of
time. However, since we suspend the VMs in order to
synchronize their time against each other and the sim-
ulation, we must avoid this behavior. Having full con-
trol over the VM’s perception of time we instead provide
them with a consistent and continuous logical time. This
leaves us with the possibility of transparently suspending
the execution of a prototype without the implementation
noticing the actual gap in real-world time.

2.3 Event-based Network Simulation
The key task of the network simulation is to model the
network that connects the virtual machines. Following
the terminology of Fall [10], we distinguish between an
opaque and a protocol-aware network emulation mode.
In the case of opaque network emulation, the simula-
tor merely influences the propagation of network traffic,

3

256 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for example by delaying or duplicating packets. This ap-
proach is prevalent in many available tools [1, 2, 5, 30].
By contrast, we focus on protocol-aware network emula-
tion. In this case, the network simulation implements the
communication protocols that are used by the VM proto-
types. This enables the provision of simulated hosts that
interact with the VMs.

For integrating an event-driven network simulation
with a SliceTime setup, it needs to be interfaced to both
the synchronization component (timing control inter-
face) and the virtual machines (data communication in-
terface). The timing control interface is tightly coupled
with the event scheduler of the simulator. Recall that
an event-based network simulator maintains a list of all
scheduled events ordered by the time of execution. Typ-
ically, the simulation simply processes these events se-
quentially until the event queue is empty. In SliceTime, a
custom scheduler checks if the next event’s time of exe-
cution resides in the current time slice. If this is the case,
the event is executed. If not, the event scheduler notifies
the synchronization component through the timing con-
trol interface. The next event is processed after the barrier
has been shifted past the execution time of the event.

The data communication interface connects the simu-
lation and the virtual machines on the protocol level. The
functional integration between the VMs and the network
simulation takes place at gateway nodes inside the sim-
ulation, a concept adapted from [10]. These nodes can
be viewed as a simulation’s internal representation of the
virtual machine they are connected to. Their real func-
tionality is inside the virtual machine and their purpose is
to have a communication endpoint inside the simulation
at which the packet exchange with the virtual machines
takes place.

For performance reasons, many network simulation
frameworks use custom data structures to model a net-
work packet, and encapsulation is mostly expressed us-
ing pointers to secondary message structures. In contrast,
real systems exchange binary information, for example,
Ethernet frames. When a binary packet generated by a
VM arrives at the simulator, the gateway node takes care
of converting it into a network simulation message. Sim-
ilarly, an outgoing packet must be serialized in an ade-
quate fashion before it leaves the simulation.

3 Implementation

We now discuss our implementation of SliceTime com-
prising three types of main components (see Figure 3):
a synchronization component (synchronizer), the vir-
tual machine infrastructure and a network simulation.
Two different flows of communication are present in
our system. The synchronizer delivers the synchroniza-
tion information over the timing control interface using a

lightweight signaling protocol. A tunnel that carries Eth-
ernet frames from the VMs to the simulation and vice
versa serves as our data communication interface. The
VM implementation is based on the Xen hypervisor and
executes multiple instances of guest domains which host
an operating system and a prototype implementation.
Our implementation uses the ns-3 network simulator to
model the network to which the VMs are connected. For
this purpose we extend the existing emulation framework
of ns-3 for synchronized network emulation.

3.1 Synchronization component

The synchronizer is implemented as a user-space appli-
cation. Its main purpose is to implement the timing con-
trol interface. The synchronization component assigns
discrete slices of run-time to the simulation and to the
virtual machines. In order to distribute the synchronized
components across different physical systems, the syn-
chronization signaling is implemented on top of UDP.
In addition to the synchronization coordination, the syn-
chronizer also manages the set of synchronized compo-
nents. In particular, it allows peers to join and to leave
the synchronization during run-time. This allows to run
certain tasks (e.g., booting and configuring a virtual ma-
chine and the hosted software prototype) outside the the
synchronized setup.

3.1.1 Timing Control Interface

One challenge is the large amount of messages that needs
to be exchanged between the synchronized VMs and the
simulation. For example, if the time slices are config-
ured to a static logical duration of 0.1 ms, the synchro-
nization component needs to issue 10 000 time slices to
all attached VMs and the simulation for one second of
logical time. An additional massive amount of messages
is caused by the synchronized peers to signal the com-
pletion of every time slice individually to the synchro-
nizer. Therefore, in order to maintain a good run-time
efficiency, it is vital to limit the delays and the overhead
caused by synchronization signaling and message pars-
ing. For these reasons, we created a lightweight synchro-
nization protocol based on UDP for SliceTime. It pro-
vides all communication primitives of the timing con-
trol interface. The assignment of time slices to all syn-
chronized peers is carried out using UDP broadcasts,
while the remaining communication, such as signaling
time slice completion, takes place using unicast data-
grams. Moreover, the UDP packets have a fixed structure
and only carry the synchronization information in binary
form. This is necessary to keep both the packet size and
the parsing complexity at a very low level.

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 257

Figure 3: SliceTime consists of a central synchronization unit, at least one network simulation based on ns-3 and one
or more Xen hypervisor systems serving as the VM infrastructure.

3.2 Virtual Machines

We use the Xen hypervisor and its scheduling mecha-
nisms as the basis of our work. Xen is a virtual machine
monitor for x86 CPUs. The hypervisor itself takes care
of memory management and scheduling, while hardware
access is delegated to a special privileged virtual machine
(or domain, in Xen’s parlance) running a modified Linux
kernel. As the first domain that is started during booting,
it is often referred to as dom0.

Xen supports two modes of operation: para-
virtualization mode (PVM) and hardware virtualization
mode (HVM). SliceTime uses Xen HVM domains for
virtualizing operating systems and software prototypes.
In contrast to para-virtualization, HVM Xen domains do
not require the kernel of the guest system to be modified
for virtualization. This allows any x86 OS, also closed
source OS such as Windows, to be incorporated into a
SliceTime set-up.

We now describe the main parts of our work: a) the
data communication interface to couple virtual machines
and the simulator, b) the synchronization client that in-
terfaces with the synchronization component, and c) the
changes necessary to transparently interrupt and restart
the VM to align its execution speed to the run-time per-
formance of the simulator.

3.2.1 Data Communication Interface

For the network data communication between virtual ma-
chines and simulation, it is first important to note that ev-
ery virtual machine can have one or several virtual net-
work interfaces that look like real interfaces to the virtual
machine, and can be accessed inside dom0. We bridge
the virtual interface in the dom0 with a tap device and
redirect all Ethernet traffic from the VM to the computer
running the simulation. Conversely, all Ethernet frames
received from the simulation over the tunnel are fed back
to the virtual machine in the same way.

3.2.2 The Xen Synchronization Client

To keep the VM in sync with the communication, the
synchronization component communicates with a syn-
chronization client on the machine running Xen. Be-
cause of the potentially high number of synchronization
messages (depending on the the size of the chosen time
slices), the performance of the synchronization clients is
crucial to the overall performance of the system. For this
reason, the client was implemented as a Linux kernel
module. This is especially beneficial because Xen del-
egates hardware access to the privileged domain dom0.
Therefore, the implementation in kernel space of the
privileged domain saves half of the otherwise necessary
context switches for communication and our VM imple-
mentation. Since context switches (between user space,
kernel space, and, in addition here, hypervisor context)
are expensive operations, halving the number of them has
a very noticeable impact on the overall performance.

The client communicates with the synchronization
component via UDP datagrams as described in Section
3.1.1. It then instructs Xen’s scheduler via a hypercall
(the domain-hypervisor equivalent of a user-kernel sys-
tem call) to start the synchronized domain for the amount
of time specified by the synchronizer. The client also reg-
isters an interrupt handler to a virtual interrupt, that is,
an interrupt that can be raised by the hypervisor. When
the synchronized domain has finished its assigned time
slice, the interrupt is raised, the client’s handler is exe-
cuted, and it can inform the synchronizer via UDP. This
interrupt-based signaling ensures a prompt processing by
the involved entities.

3.2.3 Xen Extensions

The other tasks necessary for our synchronization
scheme are carried out within the Xen hypervisor. To
reach the goals we set forth, it is necessary to be able
to precisely start and stop the VM’s operation accord-
ing to the assigned time slices by the synchronization

5

258 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

component. However, since operating systems have ways
to detect the passing of time via hardware support (real
time clocks, hardware timers etc.), simply stopping and
restarting the VM will not lead to the desired effect. It
will still be aware of the passing of time while it was
stopped, and therefore, operations that depend on time
information (e.g., time-outs of TCP connections) will
still occur at the wrong times. Therefore, to reach trans-
parency, it is not only necessary to be able to start and
stop VMs accurately, but also to provide a consistent and
steady perception of time for the VM. Hence, all time
sources of the VM must be controlled and adjusted in
the hypervisor.

To reach the first goal, that is, starting and stopping
VMs and running them for precise number of times, we
extended the sEDF (simple earliest deadline first) sched-
uler that is part of the Xen hypervisor. Schedulers in Xen
schedule VMs in a similar fashion to an operating sys-
tem’s scheduler. In particular, the sEDF maintains peri-
odical deadlines for each domain, and an amount of time
the domain has to be executed up to that deadline. To
manage the domains, it utilizes several queues. A run
queue contains all domains that still need to run some
time until their next deadline; once this constraint is ful-
filled, a domain migrates to the wait queue until it reaches
its deadline, at which point it rejoins the run queue with
a new deadline and required execution time.

However, the synchronized domains have to be kept
outside this periodical scheme, because these are only
scheduled when the synchronization component issues
the instruction to do so. Therefore, we introduced another
queue, the sync queue, which works as a replacement of
the wait queue for synchronized domains. These domains
stay on that queue until they are to be scheduled again,
then migrate to the run queue, and back to the sync queue
afterwards. This way, synchronized domains can be kept
outside the normal scheduling on non-synchronized do-
mains. Hence non-synchronized domains may coexist
with synchronized domains on the same physical ma-
chine.

One issue that originally impaired precise timing in
the low microsecond range was rooted in the original
implementation of the Xen scheduling subsystem. The
Xen scheduler assumes itself to run instantly, not con-
suming any time. Therefore, a time stamp at the begin-
ning of the execution of the scheduling loop was taken.
This was considered the point of time the next scheduled
domain was started. Therefore, time spent in the sched-
uler was attributed to the domain chosen for execution.
We changed this to take a time-stamp before the con-
text switch to the domain. This causes the time spent in
the scheduler not to be attributed to any domain, there-
fore increasing accuracy. In addition, our modified sEDF
scheduler records overall assigned run-time and adjusts

itself to the small (generally sub-microsecond) inaccu-
racies that are inherent to Xen’s timer management and
lead to slightly early or late returns from the scheduled
VM to the hypervisor.

To reach the second goal, that is, masking the passing
of time from VMs while being stopped, different changes
had to be applied to the Xen hypervisor. In fact, one of
the reasons we decided to use a virtualization approach
for SliceTime was the specific characteristic of decou-
pling a virtualized operating system from the hardware
it, under normal circumstances, directly interfaces with.
This way, we can modify the information that the OS
receives from the hardware time sources, and therefore
reach our goal of masking the passing of time.

To facilitate this masking, we have to amend the two
main sources of time keeping: time counters and in-
terrupt timers. Within the modified scheduler, we take
timestamps whenever a domain is scheduled and un-
scheduled. This allows us to keep track of the total
amount of time the domain was not running since the
start of the synchronization. This delta value is subtracted
from the counter that domains use to measure the pass-
ing of time; in the case of Xen and HVM domains, this
measurement is chiefly based on the time stamp counter
(TSC), a CPU register whose value increases at regu-
lar intervals. Modern CPUs with hardware virtualization
support allow the virtualization of the TSC, which allows
us to change its value as realized by the VM by subtract-
ing the delta value. This way, the TSC progresses in a
linear fashion, even if the domain is unscheduled for ex-
tended amounts of time.

Timers, the second source of time keeping, must also
appear to act as if the domain was running continuously.
To facilitate this, the same scheduler timestamps are used
to keep track of the time the domain was last unsched-
uled. Whenever a domain is unscheduled, all timers that
belong to it are stopped; in particular, all timers that be-
long to the virtualized hardware timers such as the RTC
and APIC timers. When the domain is rescheduled again,
the time delta since the last unscheduling is added to the
expiry time of all timers, after which they are reactivated.
This way, timers expire at the correct point of virtual
time, upholding the notion of linearly progressing time.

3.3 Network Simulation

SliceTime relies on ns-3 as network simulator, as opposed
to our preliminary work [39,40] in which OMNeT++ was
used. In contrast to OMNeT++ and the vast majority of
all event-based network simulators, ns-3 internally repre-
sents packets as bit vectors in network byte order, resem-
bling real-world packet formats. This removes the need
of explicit message translation mechanisms and simpli-
fies the implementation of network emulation features.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 259

The modular design of ns-3 facilitates the integration of
the additional components as needed by SliceTime. The
timing control as well as the communication interface are
implemented as completely separate components whose
implementation is not intermingled with existing code.

There are some similarities between the Slice-
Time simulation components and the emulation features
already provided by ns-3. Both have to synchronize the
event execution to an external time source. For the exist-
ing emulation implementation of ns-3 this is the wall-
clock time. In the case of SliceTime the synchronizer
acts as external time source. The so called simulator
implementations in ns-3 are responsible for scheduling,
unqueuing and executing events. There is one which
does this in a standard manner and another one for real-
time simulations (i.e., synchronized to wall clock time).
Which of these is used is determined by setting a global
variable in the simulation setup.

We added a third simulator implementation that con-
nects arbitrary ns-3 simulations to the timing control in-
terface. The simulation registers at the synchronizer be-
fore its actual run begins. Similarly, the simulation dereg-
isters itself at the synchronizer after all events have been
executed. Upon the execution of an event, our implemen-
tation checks whether its associated simulation time is in
the current time slice. If this is not the case, it sends a fin-
ish message to the synchronizer and waits for the barrier
being shifted. The actual communication with the syn-
chronizer is encapsulated in a helper class which holds
a socket, provides methods to establish and tear down
a connection and to exchange the synchronization mes-
sages. Another modification is the provision of a method
which schedules an event in the current time slice. This
is needed because the regular scheduling methods only
provide the time of the last executed event, which can be
wrong in case of network packets arriving from outside
the simulation.

The ns-3 simulator already provides two mechanisms
for data communication with external systems. Both can
be used with real-time simulations and synchronized em-
ulation. The emulation net device works like any ns-3
network device, but instead of being attached to a simu-
lated channel, it is attached to a real network device of
the system running the simulation. In contrast to this the
tap bridge attaches to an existing ns-3 network device
and creates a virtual tap device in the host system. With
both mechanisms, packets received on the host system
are scheduled in the simulation and packets received in
the simulation are injected into the host system.

Besides supporting these existing two ways, we added
a synchronized tunnel bridge. It implements the data
communication interface and connects the simulation to
a remote endpoint. The endpoint is usually formed by a
VM, however the tunnel protocol could also be used to

interconnect different instances of ns-3. Again the actual
communication is encapsulated in a helper class. This is
not only to keep the bridge itself small, but also to re-
duce the number of sockets needed. In a scenario where
multiple tunnel bridges are installed inside a simulation
it is sufficient to have one instance of this helper class.
Outgoing packets are sent through its socket to a destina-
tion specified by the bridge sending the packet. Incoming
packets are dispatched by an identifier included in our
tunnel protocol and then scheduled as event in the cor-
responding bridge to which the sender of the packet is
connected. Since incoming packets are not triggered by
an event inside the simulation but can occur at any time,
there is a separate thread running which uses a blocking
receive call on the socket. This technique has the advan-
tage to avoid polling and is also used by the emulation
net device and the tap bridge.

4 System Evaluation

We now examine the achievable accuracy of SliceTime.
First, we look into the timing precision and the accuracy
of the perceived throughput. Later on, we also measure
the performance impact introduced by the synchroniza-
tion process on the general run-time performance. We
further investigate how it affects the perceived CPU per-
formance on a VM. All experiments were carried out in
a testbed of four Dell Optiplex 960 PCs, each equipped
with a 3GHz Intel Core2 Quad CPU and 8 GB of RAM,
either executing our VM implementation based on Xen
or ns-3 with our synchronization extensions. The PCs
were interconnected using Gigabit Ethernet. Regarding
the VMs, we used Linux 2.6.18-xen for the control do-
main as well as the guest domains.

Most importantly, SliceTime needs to produce valid re-
sults for any run-time behavior of both the simulation and
the VMs attached. For this purpose, we investigate two
performance metrics at different levels of synchroniza-
tion accuracy. The round-trip time between a simulation
and a VM as well as the TCP throughput of two VMs
which are communicating using TCP over a simulated
network.

4.1 Timing Accuracy

In our first experiment, we captured 1 500 ICMP Echo
replies (Pings) between a VM and a simulated host for
different simulated link delays and time slice sizes. Fig-
ure 4 shows the measured RTT distributions for a fixed
time slice size of 0.1 ms. We visualize the RTT distribu-
tions using standard box plots. The boxes are bounded
by the upper and lower quartile of the corresponding
RTT distribution. The box represents the middle 50% of

7

260 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: RTTs for different simulated link delays: the
simulated delays are correctly perceived by the VM

Figure 5: RTT distributions for different time slice sizes:
smaller time slices lead to a higher synchronization ac-
curacy and less variance in the measured RTTs.

the RTT measurements and its width is given by the in-
terquartile range (IQR). The whiskers visualize the low-
est and the highest RTT measured within an interval of
1.5 IQR.

If no simulation delay is present, most RTTs fall into
a small range around 0.2 ms. We term this the base delay
and it comprises time for processing and packet prop-
agation. At all other simulation delays, the median and
the RTT distributions are correctly shifted by the sum of
twice the simulated link delay. For every series, few out-
liers are well above the expected range. We explain these
deviations with the non-deterministic processing delay of
ICMP frames inside the VM’s protocol stack. Figure 5
displays the relation of the chosen time slice size and the
resulting RTT distributions for a fixed simulated link de-
lay of 0.5 ms and a variable time slice size.

As expected, the variation decreases for smaller time
slices and converges towards the expected value of twice
the simulated link delay plus the base delay. First, this
result clearly demonstrates that a higher synchronization
accuracy directly impacts the accuracy of the measure-
ments themselves. Second, we see that it is important
to choose the time slice size considerably smaller than
the simulated link delay. Hence, the correct choice of the
adequate slice size is a crucial parameter of SliceTime.
For the simulation of many WAN scenarios (e.g., Inter-

Figure 6: Network Throughput at different time slice
sizes: the synchronization does not affect the throughput
perceived by the VMs. The measured throughput on the
VMs corresponds to the simulated link capacity.

net services) time slices in the range between 0.1 ms and
2 ms are sufficient, as RTTs are mostly in the range of
several milliseconds.

4.2 Throughput Accuracy
We now evaluate the accuracy of our implementation re-
garding the network throughput perceived by the VMs.
For this purpose we use a small ns-3 simulation, con-
sisting of one IP node to which two gateway nodes are
attached using full-duplex CSMA/CD channels. To each
of those two gateway nodes, one VM is connected. Using
the netperf [19] TCP STREAM benchmark, we measured
the throughput between both VMs. Figure 6 shows the
results for different simulated channel bandwidths and
varied time slice sizes. The data points are averages over
10 netperf runs, with every run lasting 20 seconds.

Most notably, the synchronization is transparent to the
VMs in terms of perceived TCP bandwidth, as the time
slice size has practically no influence on the measured
TCP throughput. In addition, the throughput measured
on the VMs very well reflects the simulated channel
bandwidth. On average, the measured net throughput on
the VMs is 5.4% lower than the simulated link capacity.

4.3 Synchronization Overhead
Because synchronized VMs are not operating in real-
time, we now analyze the overhead in terms of actual
run-time penalties introduced by the synchronization. We
measured the real-time duration for 120 seconds of logi-
cal time issued to the VMs by the synchronizer. All VMs
were executed on the same physical machine. We calcu-
lated the overhead ratio (OR) by dividing the consumed
real-time by the logical run-time. Figure 7(a) displays the
OR of one and two VMs (HVM mode) for varying time
slice sizes. Up to a size of 0.5 ms, the synchronization
overhead remains below 10%, which is still close to real-
time behavior. For smaller slice sizes, VMs need to be

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 261

(a) 1 to 2 synchronized virtual machines

(b) 1 to 20 synchronized virtual machines

Figure 7: Overhead introduced at the VM at different
synchronization levels: we observe less than 10% of run-
time overhead for time slices greater than 0.5 ms. The
overhead is linear in the number of VMs on one physical
machine.

suspended and unpaused more frequently, and the mes-
saging overhead increases. This leads to a higher OR.

The parallel execution of several VMs per physical
machine is not the main objective of our work. Never-
theless, our implementation nevertheless facilitates such
configurations. Figure 7(b) shows the OR also for a
higher number of VMs. The increase of the OR is lin-
ear in the number of VMs for all time slice sizes. This is
a straight consequence of our scheduling policy. Even if
a system is equipped with multiple processors or cores,
VMs are always executed in a pure sequential order. This
is a limitation of our current implementation and we
regard the parallel execution of multiple synchronized
VMs as future work.

4.4 CPU Performance Transparency
One of the major reasons for the run-time efficiency of
SliceTime is given by the fact that the VMs, once sched-
uled, are executed natively on the host machine instead
of a full simulation of system hardware. While we have
previously shown that the integration with the network
simulation is accurate in terms of timing and network

Figure 8: CoreMark CPU Benchmark score at different
time slice sizes: For smaller time slices, the CPU perfor-
mance of a VM decreases due to an increased amount of
L2 cache misses. Please note the inverted y-axis on the
right.

bandwidth, we now investigate the transparency of our
VM implementation regarding the perceived CPU per-
formance within a VM. In an ideal case, the perceived
CPU performance of a VM would be invariant at differ-
ent levels of synchronization accuracy.

In order to quantify the CPU performance of a VM, we
executed CoreMark [34] inside the synchronized VM.
CoreMark is a synthetic benchmark for CPUs and micro-
processors recently made available by the Embedded Mi-
croprocessor Benchmark Consortium (EEMBC). It per-
forms different standard operations, such as CRC cal-
culations and matrix manipulations, and outputs a sin-
gle CPU performance score. Figure 8 shows the Core-
Mark score for different time slice sizes. Most notably,
the CPU performance is rather stable above time slices
of 0.2 ms. For a time slice size of 0.1 ms, the impact of
the synchronization still is less then 5%. However, for
small values, the CPU performance decreases rapidly. At
the highest measured accuracy level (0.01 ms), the Core-
Mark score drops to about 73% of the score of an unsyn-
chronized VM on the same hardware.

We further investigated this effect using OProfile [28]
and its XenoProf [25] extension. By concurrently execut-
ing OProfile in the control domain while CoreMark was
running inside the VM, we were able to trace internal
CPU events caused by the VM. This way, we identified
an increased amount of L2 cache misses to cause the ob-
served performance degradation. As shown in Figure 8,
the number of L2 cache misses is negatively correlated to
the measured CoreMark scores. For smaller time slices,
the CPU needs to be switched more frequently between
the execution of the VM and the control domain, thus
decreasing the efficiency of L2 caching. Although this is
a conceptual issue, we argue that the effect is negligible
for time slices down to 0.1 ms. This means that for the
vast amount of application scenarios that will use larger

9

262 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: Simple P2P Network: the simulation consisted
of one VM and 15 000 simulated nodes (60 backbone
nodes with 250 host nodes each)

Figure 10: Throughput between VM and simulated hosts
at different hopcounts

slices, this minimal performance reduction will have no
negative influence on the produced results.

5 Applications

We now describe two typical use cases for SliceTime.

5.1 Simple P2P Network

A core motivation of our work is to enable large-scale
network emulation setups on customary hardware. In or-
der to stress our framework in this direction we first ap-
plied our framework to a large-scale WAN scenario in
which 15 000 simulated nodes exchange data in a P2P-
like fashion. Due to the simulation size and event load,
the whole setup executes about 15 times slower than real-
time. For this experiment we used just two of the four
testbed machines (cf. Section 4). One machine executed
the VM infrastructure and the synchronizer while the
simulation was running on the other one. Figure 9 illus-
trates the two-tier topology we used, consisting of 60 in-
terlinked backbone nodes, to which 250 host nodes each
are attached via an access router. All host nodes act both
as HTTP servers and HTTP clients, requesting a random
number of 64kb data blocks from each other. To one of
the access routers we connect one VM that runs a stan-
dard Linux distribution. The synchronization accuracy
was set to 0.1ms. Using the standard curl command-
line tool we measured the HTTP throughput between the

virtual machine and simulated hosts at different hop dis-
tances (see Figure 10). The observation of the throughput
decreasing for higher hop counts is expected and rather
straightforward. However, our point here is a different
one. First, we achieve valid and consistent measurements
on the VM despite both the simulation and the VM op-
erating only at a fraction of wall-clock time. Second,
this simple example shows that SliceTime enables one
to evaluate real-world networking software in a large-
scale simulated context at low hardware and minor setup
costs, especially if compared with equally sized physical
testbeds or simulation hardware capable of executing the
same simulation in real-time.

5.2 WiFi Software

SliceTime enables investigations of WiFi software for
Linux in a fully isolated, deterministic and reproducible
context. The 802.11 software is deployed on a set of
VMs, while the network simulation models the wireless
channel, the medium access control as well as potential
node movement. In addition, the network simulation can
optionally be used to also model other parts of the net-
work, such as 802.11 access points, other mobile hosts
or an arbitrary wide-area network connecting the 802.11
infrastructure. In the following, we briefly describe the
802.11 extensions of SliceTime before we use our frame-
work to remodel a real-world field test of an AODV rout-
ing daemon for Linux.

5.2.1 SliceTime 802.11 extensions

To enable WiFi support in SliceTime we designed a sec-
ond data communication interface (cf. Section 3.2.1).
Figure 11 illustrates its core components and layers.
On the VM a loadable kernel module forms the Slice-
Time device driver that provides a virtual WiFi interface.
The device driver implements the 802.11 wireless ex-
tensions for Linux network devices. This makes the vir-
tual WiFi interface look like a real wireless networking
card. For example, commands such as iwconfig may
be used to put the virtual WiFi device into monitor mode.
The actual WiFi software may directly access this inter-
face or rely on the Linux TCP/IP stack for its commu-
nication purposes. So-called WiFi gateway nodes repre-
sent the VMs inside the simulation. The WiFi gateway
nodes perform all 802.11 MAC layer operations, for in-
stance sending ACKs, that are normally carried out by
WiFi hardware. A major benefit of this approach is that
all communication events being sensitive to strict timing
constraints remain in the simulation domain. Typically
a relatively loose VM-simulation synchronization accu-
racy of 0.5ms and hence low overhead is sufficient for
most SliceTime WiFi set-ups. By contrast, implement-

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 263

Figure 11: SliceTime provides a virtual network device to
the VMs that integrates with ns-3 at the MAC layer. This
facilitates testing arbitrary WiFi and networking software
with, for example, reproducible channel conditions and
node movement.

Figure 12: Real-World AODV experiment vs. remodeled
SliceTime scenario: the hopcount distribution of received
packets obtained from the scenario remodeled with Slice-
Time well matches the hopcounts measured in the real-
world scenario.

ing the MAC behavior in the driver would require a syn-
chronization accuracy lower than the 802.11 inter-frame
spaces (IFS). Despite the IFS being smaller than the max-
imum synchronization accuracy of SliceTime, the high
messaging overhead for such tight intervals would also
render such a design impractical.

Besides implementing the data exchange between the
VM device driver and the ns-3 simulation model, the
WifiEmuBridge also maps configuration actions such as
triggered by iwconfig to corresponding operations in
ns-3. In addition it is able to export packet-level statistics
such as RSSI values to the software running on the VM
using Radiotap packet headers. A more elaborate discus-
sion of our ns-3 WiFi emulation extensions can be found
in [38].

5.2.2 AODV routing daemon study

We used SliceTime to remodel the AODV part of a real-
world field test [13] in which different mobile ad-hoc net-
work (MANET) routing protocol implementations were
evaluated. In the original experiment volunteers on an
athletic field carried around 33 laptops running an AODV
daemon. The AODV routing daemon used the 802.11b
ad-hoc demo mode for link layer communication. During
the experiment the mobile nodes recorded both routing
and traffic statistics as well as GPS traces to log the node
mobility. Corresponding trace files are publicly available
at the CRAWDAD repository [14]. To remodel the orig-
inal experiment entirely in software using SliceTime we
set up 33 VMs executing the AODV software bundled
with the trace files from CRAWDAD. The AODV dae-
mon was configured to use the virtual WiFi NetDevice
of SliceTime. We implemented a corresponding simula-
tion scenario in ns-3, which used the ns-3 log distance
propagation loss model and random fading for model-
ing the wireless channel. In addition we extended ns-3
with a mobility model that reproduces the nodes’ mo-
bility according to the GPS traces. We only used one of
our testbed machines for this experiment. It hosted all
33 VMs, the synchronizer and the ns-3 simulation. The
synchronization accuracy was configured to 0.5 ms. Fig-
ure 12 compares the AODV hopcount distributions of
received packets for the real-world data and the corre-
sponding remodeled scenario. The hopcounts measured
using SliceTime well match the observations from the
real-world field test. We also determined the average
packet delivery ratio (PDR) for the real-world experi-
ment and the emulated scenario. From the CRAWDAD
traces we calculated the avg. PDR to be 42.10% for the
real-world AODV experiment. In our remodeled scenario
the avg. PDR amounts to 46.39%.

There will always be differences between real-world
measurements and observations taken with systems such
as SliceTime. This is a direct consequence of the dispar-
ity between the real world and the environment modeled
in software. The 802.11 model of ns-3, for example, is
relatively sophisticated and quite accurately reproduces
the behavior of the 802.11 MAC and PHY layers. How-
ever, there are many factors that are not considered by
our remodeled scenario, like antenna characteristics or
even a hypothetical nearby microwave that could have
influenced the real-world measurements.

Nevertheless, this use case shows that SliceTime is
well able to provide a testing environment for 802.11
software that delivers results being close to reality. Re-
peating real-world experiments like the one conducted
by Gray [13] is costly and often challenging due to con-
tinually changing conditions, for example, regarding the
wireless channel. By contrast, SliceTime allows one to ar-

11

264 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bitrarily modify and rerun WiFi software experiments at
the push of a button. SliceTime is also cost effective com-
pared to the hardware costs and manpower requirements
of the original experiment. While the original experiment
involved around 40 volunteers and the same number of
laptops, with SliceTime the same experiment can be con-
ducted on one desktop PC.

6 Related Work

Early contributions [1, 17, 30, 36] in the field of network
emulation focus on opaque network emulation in which
physical network systems are connected to an emulation
engine that models the network propagation. The model
affects the packet flow, either by introducing delay, jitter,
bandwidth limitations, or packet errors. Later contribu-
tions extend this methodology for the emulation of In-
ternet paths [31] or use real-world measurements [5] for
accurately reproducing the behavior of large-scale net-
works. Opaque network emulation is an effective method
to investigate the impact of network propagation charac-
teristics on protocol performance. However, because all
communicating peers are physical systems, the analysis
of large-scale scenarios (e.g., P2P and overlay networks)
with many hosts is difficult.

Protocol-aware network emulation was introduced by
Fall [10], proposing the combination of real network sys-
tems and discrete event-based simulations. This imple-
mentation has been improved later in terms of timing ac-
curacy [24]. Protocol-aware emulation features also ex-
ist for other event-based network simulators [35]. All of
these implementations are subject to potential simulation
overload. Kiddle [21] used massive computing power in
form of hardware to increase the execution speed of the
simulation to circumvent this problem. While this works
up to a certain point, our aim is in the opposite direction
of slowing down the real system, saving on hardware ex-
penses and setup complexity.

Erazo et al. recently proposed SVEET! [9], a hybrid
TCP evaluation environment that integrates Xen-based
VMs with an SSFNET [8]-based emulation engine. Al-
though SVEET! involves a mechanism to cope with sim-
ulation overload, it differs significantly from our work.
In order to match the execution speed of both the VMs
and the emulation engine, SVEET! utilizes a static time
dilation factor (TDF). The TDF is used to throttle down
the speed of both the simulator and the VMs to the worst-
case run-time performance of the emulation engine. The
main drawback here is the need to correctly choose the
TDF beforehand. If the chosen TDF is too large, the
run-time is increased without any benefit due to under-
utilization of system resources. If the chosen TDF is
too small, simulation overload and time drifts can occur,
leading to flawed results. In contrast, our approach does

not statically throttle the execution speed of any com-
ponent by a constant factor. Moreover, the conservative
barrier algorithm used in our work limits the drift of all
components to the duration of one time slice.

Different virtualization-based opaque network emu-
lation approaches have been discussed over the past
years. ENTRAPID [16] executes multiple instances of
the FreeBSD network stack in the user space. These vir-
tual network kernels (VNKs) are wired together and form
a network emulation environment. As the VNKs are ex-
ecuted simultaneously and operate in wall-clock time,
this limits the scalability of this approach. dONE [4]
proposes the virtualization of time to address this prob-
lem. Despite this similarity SliceTime differs signifi-
cantly from both dONE and ENTRAPID: first, neither
dONE nor ENTRAPID integrate software prototypes
with an event-based network simulation at all. By con-
trast, SliceTime relies on ns-3 as emulation backend. This
enables the set-up of emulation scenarios that access all
models and features of the network simulator. Second, in
opposition to SliceTime, neither dONE nor ENTRAPID
allow the investigation of entire network protocol stacks,
as both draw the line between the emulation environ-
ment and software prototypes right at the socket layer.
Diecast [15] and Time Jails [12] facilitate the setup of a
network emulation testbeds solely based on virtual ma-
chines. The main advantage compared to the aforemen-
tioned systems is that they allow one to execute unmod-
ified software and protocol stacks. Both are an attrac-
tive option for real-world experiments in which the num-
ber of nodes exceeds the quantity of physical hosts of
a testbed. In addition, Diecast not only scales time, but
also the performance of system components to accurately
model a realistic hardware behavior profile. SliceTime,
by contrast, follows a different goal. Instead of virtual-
izing time to increase the capacity of a physical testbed,
we employ it for synchronizing a VM with a network
simulation that forms the emulation engine. This has two
advantages. First, using a network simulator as backend
allows us to put concepts such as virtual node mobility
into action, which is not possible with neither DieCast
nor Time Jails. Second, the scalability of the simulator
opens up the possibility of implementing large-scale em-
ulation scenarios that could not be realized using VMs
alone without taking up much higher hardware resources.

Emulab [42] is a well-established large network
testbed allowing for the evaluation of networked soft-
ware in different communication environments. Its main
strength is the ability to specify network scenarios using
a configuration file which Emulab maps to the testbed
hardware. In order to reproduce the characteristics of
networks of many kinds, Emulab also employs opaque
network emulation between the testbed nodes. In direct
comparison with SliceTime, Emulab achieves its flexibil-

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 265

ity by incorporating a huge amount of networked com-
puters, network infrastructure as well as auxiliary com-
ponents. We admire the efforts and achievements of its
creators in this regard. SliceTime instead aims at provid-
ing a flexible and scalable network experimentation and
evaluation platform with very modest hardware require-
ments. This is reflected in our evaluation which at most
required two Desktop PCs to carry out the large-scale
WAN experiment. We achieve this goal by scaling execu-
tion time and by modeling large parts of the scenario us-
ing the ns-3 simulator. On one hand the use of a simulator
limits the possible degree of realism due to discrepancies
between the real world and the corresponding simulation
models. On the other hand relying on a simulation allows
the construction of “virtual network testbeds” that are not
dependant on the availability of physical hardware or real
network infrastructure.

Wireless network emulation tools, such as the CMU
Emulator [20], interconnect antenna connectors of stan-
dard wireless network hardware via cables. Complex
hardware, mostly based on FPGAs and DSPs, is used to
model the wireless channel. While this enables a quite re-
alistic emulation, it requires complete physical hardware
for each station. There is also number of pure software-
based wireless network emulation tools. Most of them,
such as [26,29,43], only mimic the propagation of pack-
ets on the wireless link and do not support simulated
wireless stations. A few wireless network emulation sys-
tems [22,32,33] are based on event-based network simu-
lators. They share some similarities with the WiFi exten-
sions of SliceTime, but differ significantly in the way they
interface the software prototypes with the 802.11 simula-
tion. In [22,32] the 802.11 simulation model is integrated
with the software at the IP layer, which prevents investi-
gations of 802.11 software using a different routing pro-
tocol than IP. VirtualMesh [33] bridges the gap between
the simulation and the WiFi software at the MAC layer,
but requires the modification of all applications making
use of the wireless extensions. By contrast, the 802.11
add-ons of SliceTime introduce a clean cut between the
simulation and the prototypes at the MAC layer. This en-
ables arbitrary WiFi software for Linux to be evaluated
without any changes to the software.

7 Conclusion

In this paper we presented SliceTime, a platform for scal-
able and accurate network emulation. SliceTime enables
the detailed analysis of protocol implementations and en-
tire instances of operating systems inside simulated net-
works of arbitrary size. We achieve this goal by matching
the execution speed of software prototypes encapsulated
in virtual machines to the run-time performance of the
event-based simulation. Our evaluation has shown that

SliceTime is accurate as it integrates network simulations
of any size with VM based prototypes regarding timing
and network bandwidth in a transparent way.

SliceTime is resource efficient. We model large parts
of the experiment with a simulation and match its overall
execution speed to the available hardware resources. This
makes it possible to conduct large-scale network emu-
lation studies with very moderate hardware costs, espe-
cially if compared to equally sized physical testbeds.

SliceTime opens up new application areas for network
emulation. In the past, only event-based simulations ex-
ecuting in real-time could form a basis for network em-
ulation. This is not true for the vast majority of network
simulations. For example, the computation complexity of
802.11 channel models so far hindered the use of net-
work emulation for larger WiFi scenarios. By eliminat-
ing this burden of real-time execution, SliceTime allows
any simulation to be used for network emulation. We
have demonstrated that this extends the applicability of
network emulation to large-scale WAN and 802.11 sce-
narios. As we believe that SliceTime will be useful for
a number of researchers and developers, we have made
the source code available to the public. It can be down-
loaded at http://www.comsys.rwth-aachen.
de/research/projects/slicetime.

Acknowledgements

We express our gratitude to our shepherd Remzi Arpaci-
Dusseau and our anonymous NSDI reviewers for their
valuable and helpful comments. We also greatly thank
Martin Lindner and Suraj Prabhakaran for conducting
additional measurements and Simon Rieche and Stefan
Götz for many fruitful discussions. This research was
partially funded by different DFG grants and the UMIC
excellence cluster, DFG EXC 89.

References
[1] ALLMAN, M., AND OSTERMANN, S. ONE: The Ohio Network

Emulator. Technical Report TR-19972, Ohio University, 1997.

[2] AVVENUTI, M., AND VECCHIO, A. Application-level network
emulation: the emusocket toolkit. Journal of Network and Com-
puter Applications 29, 4 (2006), 343–360.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proc.
SOSP’03 (Bolton Landing, NY, USA, Oct. 2003), ACM.

[4] BERGSTROM, C., VARADARAJAN, S., AND BACK, G. The dis-
tributed open network emulator: Using relativistic time for dis-
tributed scalable simulation. In Proc. PADS’06 (May 2006),
pp. 19–28.

[5] CARSON, M., AND SANTAY, D. NIST Net: A Linux-based net-
work emulation tool. ACM Comp. Commun. Rev. 33, 3 (2003),
111–126.

13

266 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[6] CHANDY, K. M., AND MISRA, J. Distributed simulation: A case
study in design and verification of distributed programs. IEEE
Trans. on Software Engineering SE-5, 5 (Sept. 1979), 440–452.

[7] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETER-
SON, L., WAWRZONIAK, M., AND BOWMAN, M. PlanetLab:
An Overlay Testbed for Broad-Coverage Services. ACM Comp.
Commun. Rev. 33, 3 (2003), 3–12.

[8] COWIE, J., NICOL, D., AND OGIELSKI, A. Modeling the global
internet. Computing in Science & Engineering 1, 1 (Jan/Feb
1999), 42–50.

[9] ERAZO, M. A., LI, Y., AND LIU, J. SVEET! a scalable vir-
tualized evaluation environment for TCP. In Proc. TRIDENT-
COM’09 (2009), IEEE Computer Society, pp. 1–10.

[10] FALL, K. R. Network emulation in the Vint/NS simulator. In 4th
IEEE Symposium on Computers and Communication (1999).

[11] FUJIMOTO, R. M. Parallel discrete event simulation. Commun.
ACM 33, 10 (1990), 30–53.

[12] GRAU, A., MAIER, S., HERRMANN, K., AND ROTHERMEL, K.
Time Jails: A hybrid approach to scalable network emulation. In
Proc. PADS’08 (June 2008), pp. 7–14.

[13] GRAY, R. S., KOTZ, D., NEWPORT, C., DUBROVSKY, N.,
FISKE, A., LIU, J., MASONE, C., MCGRATH, S., AND YUAN,
Y. Outdoor experimental comparison of four ad hoc routing al-
gorithms. In Proc. MSWiM’04 (2004).

[14] GRAY, R. S., KOTZ, D., NEWPORT, C., DUBROVSKY, N.,
FISKE, A., LIU, J., MASONE, C., MCGRATH, S., AND
YUAN, Y. CRAWDAD data set dartmouth/outdoor (v.
2006-11-06). Downloaded from http://crawdad.cs.
dartmouth.edu/dartmouth/outdoor, Nov. 2006.

[15] GUPTA, D., VISHWANATH, K. V., AND VAHDAT, A. DieCast:
Testing distributed systems with an accurate scale model. In
NSDI’08 (San Francisco, CA, USA, 2008), USENIX.

[16] HUANG, X., SHARMA, R., AND KESHAV, S. The ENTRAPID
protocol development environment. INFOCOM ’99 (Mar. 1999).

[17] INGHAM, D. B., AND PARRINGTON, G. D. Delayline: A wide-
area network emulation tool. Comput. Syst. 7, 3 (1994), 313–332.

[18] JEFFERSON, D. R., AND SOWIZRAL, H. Fast concurrent sim-
ulation using the time warp mechanism. Simulation Series, Soc.
for Computer Simulation 24-26 Jan 1985 15 (1985), 63–69.

[19] JONES, R., CHOY, K., AND SHIELD, D. Netperf. [Online] Avail-
able http://www.netperf.org December 21, 2009.

[20] JUDD, G., AND STEENKISTE, P. Repeatable and realistic wire-
less experimentation through physical emulation. ACM SIG-
COMM Computer Communication Review 34, 1 (2004), 63–68.

[21] KIDDLE, C. Scalable Network Emulation. PhD thesis, Depart-
ment of Computer Science, University of Calgary, 2004.

[22] KROP, T., BREDEL, M., HOLLICK, M., AND STEINMETZ, R.
JiST/MobNet: combined simulation, emulation, and real-world
testbed for ad hoc networks. In Proc. WinTECH’07 (New York,
NY, USA, 2007), ACM, pp. 27–34.

[23] LUBACHEVSKY, B. D. Efficient distributed event-driven simu-
lations of multiple-loop networks. Comm. ACM 32 (1989), 111–
123.

[24] MAHRENHOLZ, D., AND IVANOV, S. Real-time network emula-
tion with ns-2. 8th IEEE International Symposium on Distributed
Simulation and Real-Time Applications (DS-RT) (2004).

[25] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN,
G. J., AND ZWAENEPOEL, W. Diagnosing performance over-
heads in the Xen virtual machine environment. In Proc. VEE
2005, Chicago,USA (2005).

[26] NOBLE, B., SATYANARAYANAN, M., NGUYEN, G., AND
KATZ, R. Trace-based mobile network emulation. In Proc. SIG-
COMM’97 (1997), ACM New York, NY, USA, pp. 51–61.

[27] ns-3 Website. http://www.nsnam.org/ (accessed Oct.
2010.

[28] OProfile: a system profiler for linux. http://oprofile.
sourceforge.net (accessed Oct. 2010).

[29] PUŽAR, M., AND PLAGEMANN, T. NEMAN: A network emu-
lator for mobile ad-hoc networks. Tech. Rep. 321, Department of
Informatics, University of Oslo, 3 2005.

[30] RIZZO, L. Dummynet: A simple approach to the evaluation of
network protocols. ACM Comp. Commun. Rev. 27, 1 (1997), 31–
41.

[31] SANAGA, P., DUERIG, J., RICCI, R., AND LEPREAU, J. Mod-
eling and emulation of internet paths. In Proceedings NSDI’09
(2009), USENIX Association, pp. 199–212.

[32] SEIPOLD, T. Emulation of radio access networks to facilitate the
development of distributed applications. JOURNAL OF COM-
MUNICATIONS 3, 1 (2008), 1.

[33] STAUB, T., GANTENBEIN, R., AND BRAUN, T. VirtualMesh: an
emulation framework for wireless mesh networks in OMNeT++.
In Proc. SIMUTools’09 (Brussels, Belgium, 2009), pp. 1–8.

[34] THE EMBEDDED MICROPROCESSOR BENCHMARK CONSOR-
TIUM. CoreMark. [Online] Available http://www.
coremark.org December 27, 2009.

[35] TUEXEN, M., RUENGELER, I., AND RATHGEB, E. P. Interface
connecting the INET simulation framework with the real world.
In Proc. 1st International Workshop on OMNet++ (2008).

[36] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P.,
KOSTIC, D., CHASE, J. S., AND BECKER, D. Scalability and
accuracy in a large-scale network emulator. In Proc. OSDI’02
(2002).

[37] VARGA, A., AND HORNIG, R. An overview of the OMNeT++
simulation environment. In SIMUTools 2008 (Marseille, France,
March 2008).

[38] WEINGAERTNER, E., VOM LEHN, H., AND WEHRLE, K.
Device-driver enabled wireless network emulation. In Proc.
SIMUTools 2011 (Barcelona, Spain, March 2011).

[39] WEINGÄRTNER, E., SCHMIDT, F., HEER, T., AND WEHRLE,
K. Synchronized network emulation: matching prototypes with
complex simulations. SIGMETRICS Perform. Eval. Rev. 36, 2
(2008), 58–63.

[40] WEINGÄRTNER, E., SCHMIDT, F., HEER, T., AND WEHRLE,
K. Time accurate integration of software prototypes with event-
based network simulations. In Proc. of the Poster session at SIG-
METRICS 2009 (Seattle, USA, 2009).

[41] WERNER-ALLEN, G., SWIESKOWSKI, P., AND WELSH, M.
Motelab: a wireless sensor network testbed. In Proc. IPSN’05
(Piscataway, NJ, USA, 2005), IEEE Press, p. 68.

[42] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. SIGOPS Oper. Syst. Rev. 36, SI
(2002), 255–270.

[43] ZHANG, Y., AND LI, W. An integrated environment for testing
mobile ad-hoc networks. In Proc. MobiHoc’02 (New York, NY,
USA, 2002), ACM, pp. 104–111.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 267

Accurate, Low-Energy Trajectory Mapping for Mobile Devices

Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Samuel Madden, Lewis Girod
MIT Computer Science and Artificial Intelligence Laboratory

{arvindt, lenin, hari, madden, girod}@csail.mit.edu

Abstract
CTrack is an energy-efficient system for trajectory map-
ping using raw position tracks obtained largely from
cellular base station fingerprints. Trajectory mapping,
which involves taking a sequence of raw position sam-
ples and producing the most likely path followed by
the user, is an important component in many location-
based services including crowd-sourced traffic monitor-
ing, navigation and routing, and personalized trip man-
agement. Using only cellular (GSM) fingerprints instead
of power-hungry GPS and WiFi radios, the marginal en-
ergy consumed for trajectory mapping is zero. This ap-
proach is non-trivial because we need to process streams
of highly inaccurate GSM localization samples (aver-
age error of over 175 meters) and produce an accurate
trajectory. CTrack meets this challenge using a novel
two-pass Hidden Markov Model that sequences cellu-
lar GSM fingerprints directly without converting them to
geographic coordinates, and fuses data from low-energy
sensors available on most commodity smart-phones, in-
cluding accelerometers (to detect movement) and mag-
netic compasses (to detect turns). We have implemented
CTrack on the Android platform, and evaluated it on 126
hours (1,074 miles) of real driving traces in an urban en-
vironment. We find that CTrack can retrieve over 75%
of a user’s drive accurately in the median. An impor-
tant by-product of CTrack is that even devices with no
GPS or WiFi (constituting a significant fraction of to-
day’s phones) can contribute and benefit from accurate
position data.

1 INTRODUCTION

With the proliferation of sensor-equipped smartphones,
the decades-long promise of location-based mobile ser-
vices and mobile sensing applications is finally becom-
ing real. Many location-based applications periodically
probe the device’s position sensor to obtain a stream of
position samples, and then process this stream to ob-
tain a trajectory. Examples include crowd-sourced traf-
fic and navigation applications [15, 33], personalized
trip management applications [28, 15], fleet manage-
ment applications [21], and mobile object/asset track-
ing [11, 34, 7, 19, 25]. The fundamental problem in these
applications is trajectory mapping, where the goal is to

produce the most likely trajectory—a sequence of map
segments—traversed by the mobile device.

If each device could always use a GPS sensor, this
problem is straightforward because the majority of the
position samples would usually be accurate to within a
small number of meters. For applications that require po-
sitions to be monitored continuously, however, GPS has
some significant practical limitations. First, GPS chipsets
on today’s mobile devices consume a non-trivial amount
of energy, causing a significant reduction in battery life
(§2). Second, in many embedded tracking applications,
objects are packaged deep inside vehicles and do not
have a clear line-of-sight to GPS satellites e.g., anti-theft
systems on vehicles (often hidden under layers of metal),
systems that track couriered packages [11] and systems
like TrashTrack [34] for tracking waste and recycled ma-
terials. Most of these tracking applications also face en-
ergy and cost constraints. Third, antenna limitations on
commodity mobile devices cause poor GPS performance
in “urban canyons” and near high-rise buildings. Finally,
a large number of phones today simply do not have GPS
on them—85% of phones shipped in 2009, and projected
to be over 50% for the next five years [6]. The users of
these devices, a disproportionate number of whom are in
developing regions, are largely being left out of the many
new location-based applications.

This paper describes the design, implementation, and
experimental evaluation of CTrack, a system for map-
ping the trajectory of mobile devices without using GPS.
The noteworthy aspect of CTrack is that it uses much
less energy than current approaches, which use GPS,
WiFi localization [32, 8], or a combination of the two.
CTrack processes a stream of raw, highly inaccurate po-
sition samples from mobile devices obtained by finger-
printing cellular GSM base stations, and matches them
to segments on a known map in a way that achieves high
accuracy. The marginal energy cost of gathering a fin-
gerprint (a list of nearby GSM towers and their signal
strengths) is zero on mobile phones because the cellu-
lar radio is usually always on. CTrack optionally aug-
ments GSM fingerprints with data from one or more of a
phone’s accelerometer, compass, and gyro, all of which
consume tiny amounts of energy, using these sensor hints

1

268 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: GSM Localization Errors. Raw location sam-
ples are in red and the true driving path is in black.

to identify the kind of movement and improve the accu-
racy of trajectory mapping.

GSM localization using, for example, the Placelab [8]
approach, leads to errors of 100–200 meters in dense ur-
ban areas, and as much as 1 km in some areas. Such er-
rors are too large for many applications, which require
results with sufficient accuracy to pinpoint a specific road
segment or route driven by a user. Figure 1 illustrates the
problem with existing GSM localization. The red points
are raw locations obtained from our implementation of
cellular positioning as used in Placelab [8]. The actual
roads traversed (ground truth) are shown in black. Di-
rectly reporting raw positions or matching locations to
the nearest segments in the road map would result in un-
acceptably low accuracy for the applications mentioned
at the beginning of this section.

CTrack makes it possible to use GSM fingerprints for
accurate trajectory mapping using two novel ideas. Like
previous approaches e.g. VTrack [32], CTrack matches a
sequence of GSM tower observations, rather than a sin-
gle point at a time, using constraints on the transitions a
moving vehicle can make between locations. However,
unlike VTrack, which first converts radio fingerprints to
(lat, lon) coordinates, CTrack matches cellular finger-
prints directly to a map without first converting them
into (lat, lon) coordinates, an insight critical to achiev-
ing high accuracy. Instead, CTrack uses a two-pass algo-
rithm. The first pass is a Hidden Markov Model (HMM)
that divides space into grid cells, and determines the most
likely sequence of traversed grid cells. The second pass
uses a different HMM to match the traversed grid cell
sequence to road segments.

The second idea in CTrack is to (optionally) fuse in-
formation from two low-energy phone sensors: the ac-
celerometer and a compass or gyroscope. CTrack uses
the compass/gyro to detect if the driving path took a turn,
and the accelerometer to determine if the user is stopped
or moving. These sensor hints can correct some common
systematic errors that arise in GSM localization.

We implemented CTrack on the Android smartphone
platform, and evaluated it on nearly 125 hours of real

drives (1,074 total miles) from 20 Android phones in the
Boston area. We find that:

1. CTrack is good at identifying the sequence of road
segments driven by a user, achieving 75% precision and
80% recall accuracy. This is significantly better than
state-of-the-art cellular fingerprinting approaches [8] ap-
plied to the same data, reducing the error of trajectory
matches by a factor of 2.5×.

2. Although CTrack identifies the exact segment of
travel incorrectly 25% of the time, trajectories produced
by CTrack are on average only 45 meters away from
the true trajectory. This implies that our system is useful
for applications like route visualization. In this respect,
CTrack is 3.5× better than map-matching raw cellular
fingerprints, which results in 156 meters median error.

3. CTrack has a significantly better energy-accuracy
trade-off than sub-sampling GPS data to save energy, re-
ducing energy cost by a factor of 2.5× for the same level
of accuracy.

2 WHY CELLULAR?
One of the key motivations for CTrack is that it uses sub-
stantially less energy than GPS. This is to be expected
from a theoretical standpoint because of the difference
in effective radiated power (ERP) for the two systems.
GPS satellites fly in an orbit 11,000 miles above the
earth, with a transmission power of 50 W, resulting in
2×10−11 mW/m2 at the receiver; in contrast, typical cel-
lular systems register an ERP of up to 10 mW/m2 [14].
This difference of 117 dB translates directly into energy
consumption at the receiver, as the difference must be
compensated by additional processing gain and amplifi-
cation. The ERP difference also explains why GPS sig-
nals cannot be acquired without relatively unobstructed
line-of-sight to orbiting satellites, and why they are more
sensitive to weather conditions than GSM signals.

2.1 Energy Measurements
We performed a simple experiment to quantify the en-
ergy consumption of each of the sensors of interest —
GPS, WiFi, GSM, the compass and the accelerometer on
an Android G1 phone. For each sensor, we wrote an An-
droid application to continuously sample the sensor at
some given frequency, as well as continuously query the
battery level indicator. We charged the phone to 100%,
configured the screen to turn off automatically when idle
(the default), and started the application. We used the An-
droid telephony API to retrieve nearby cell towers and
their associated signal strength values.

Figure 2 shows the reported battery life as a function
of time for four configurations: GPS sampled every sec-
ond, GPS sub-sampled every two minutes, WiFi scanned
every second, and the configuration used by CTrack —
scanning GSM cell towers every second, and the com-

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 269

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

R
em

ai
ni

ng
 B

at
te

ry
 L

ife
 (p

er
ce

nt
ag

e)

Time Elapsed (minutes)

CTrack: GSM @1Hz + Compass,Accl@20Hz
GPS every 1s

GPS every 120s
WiFi every 1s

Figure 2: Energy Consumption: GPS vs WiFi vs CTrack
on an Android Phone.

pass and accelerometer at 20 Hz. CTrack results in a
saving of approximately 10× in battery life compared to
GPS every second over 6× compared to WiFi every sec-
ond. Also, although sub-sampling GPS ever 2 minutes
saves energy over continuously sampling it, we show
later that sub-sampling also hurts accuracy. The battery
drain curves look irregular because the G1 phone esti-
mates remaining battery life poorly – the same experi-
ment on a Nexus One (a later model) showed a similar
trend, but looked like a straight line for all sensors.

2.2 Other Energy Studies and Discussion
The numbers above are consistent many previous stud-
ies conducted on a range of phones. For example, we
found [32, 31] that continuously sampling GPS on
iPhone 3G and 4 resulted in 3–10 hours total battery life
(iPhone 3G has lower battery life, and screen brightness
varied in the different papers, resulting in different run
times even without GPS). Leaving the phone on (with
screen on) resulted in 10–18 hours of lifetime (this would
be higher if we could turn the phone’s screen off, but at
the time, non-jailbroken iPhones did not support back-
ground applications.)

In [23], the authors showed that Nokia N95 phones
use about 370 mW of power when GPS is left on, versus
60 mW when idling, and that continuous (once a second)
GPS sampling results in 9 hours of total battery life. Sev-
eral other papers [36, 16, 5, 9, 13] suggest similar num-
bers for N95 phones (battery life in the 7–11 hour range)
with regular GPS sampling. On a more recent AT&T Tilt
phone [18], the authors found that continuous GPS sam-
pling used 400 mW, a single GPS fix costs 1.4-5.7 J of
energy (depending on whether previous seen satellite in-
formation is cached or not) and a WiFi scan consumed
about 0.55 J of energy.

The energy cost of GPS is rooted in the need for pro-
cessing gain to acquire the positioning signals. As signal
quality degrades due to obstructions or weather condi-
tions, the energy cost of recovering the signal increases.
In contrast, because phones continuously track cell tow-

ers as a part of normal operation, the marginal energy
cost of CTrack is driven by CPU load. Processing a cell
tower signature might require at most 100,000 instruc-
tions, which costs 5 nJ on a current generation 1 GHz
Qualcomm Snapdragon processor.

In embedded (non-phone) applications that don’t need
the radio on, it is possible to track only the signal qual-
ity and cell ID portions of the GSM protocol. This re-
quires observing only the BCH slots of the GSM beacon
channel, which are 4.6 ms long and are transmitted once
per each 1.8 second cycle. A 10% GSM receiver duty
cycle should be adequate to track the strongest towers.
Assuming a GSM receiver uses 17 mA at 100% duty cy-
cle, this represents an additional power consumption of 5
mW (1.7 mA @ 2.7 V)amortized cost assuming 17 mA
cost for receiver circuitry [1, 30].

Accelerometers and compasses (magnetometers) also
have low overhead—for example ADXL 330 accelerom-
eters use about 0.6 mW when continuously sampling,
and at 10 Hz can be idle about 90% of the time, suggest-
ing a power overhead of around .06 mW for sampling the
accelerometer [2]. The MicroMag3 compass uses about
1.5 mW in continuous sampling, suggesting a power con-
sumption of .15 mW or less at 10 Hz [24].

In summary, the power consumption of cellular scan-
ning plus sensors on phones is less than 5 mW, and the
power consumption of sensors alone if cellular is free—
as is typical—is less than 1 mW, low enough that it does
not reduce the phone’s overall lifetime even when in
standby mode, when it consumes 20–30 mW of power.
In contrast, the best case for GPS is 75 mW in tracking
mode when a fix is already acquired, but in practice is
closer to 400 mW when including the energy to periodi-
cally re-acquire fixes, and is similar for WiFi scans every
second or two. The power differential is thus significant.

2.3 Embedded Low-Power Applications
CTrack can also be applied outside the smartphone con-
text to embedded low-power tagging applications. For
these applications, minimizing cost and battery require-
ments is essential. These applications benefit from using
GSM in place of GPS because of increased flexibility of
antenna placement for cellular systems, and resilience to
obstructed environments.

One such application is cold-chain management where
the focus is on monitoring the temperature of a pack-
age during its shipping. A low-power passive cellular re-
ceiver can be used to record cellular fingerprints during
transport. Upon arrival, CTrack can be run on the fin-
gerprints to compute the shipment’s trajectory and map
temperature readings on to it.

Another embedded application of CTrack is Trash-
Track [34, 7], where items of trash were tagged with
active tags that traced the items through the path along

3

270 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GSM Scanning Accel. Compass

Differential
Compression

Sensor Hint
Extraction

Cell Towers Phone
Application

Cellular
Fingerprints

CTrack Phone Library

Turn, Movement
Hints

Server
Database

Trajectory Mapping
Algorithm

Matching
Results

Filters (e.g, Driving)

On Server

CTrack Web Service

Central
Server

On Phone

Batch Transmission

Over Network

Queries

Figure 3: CTrack System Architecture.

the “disposal chain”. Because the tag will eventually be
destroyed, this system needs cellular communication ca-
pabilities; using the same technology for trajectory map-
ping consumes lower power, has lower cost, and is more
robust than adding a GPS receiver to the tag.

3 SYSTEM OVERVIEW

We now describe the design of CTrack. Figure 3 shows
the system architecture. It consists of two software com-
ponents, the CTrack Phone Library, and the CTrack Web
Service. The library collects, filters, and scans for GSM
and sensor data on the phones, and transmits it via any
available wireless network (3G, WiFi, etc.) to the web
service, which runs the trajectory mapping algorithm
on batches of sensor data to produce map-matched tra-
jectories. The mapping algorithm runs on the server to
avoid storing complete copies of map data on the mobile
device, and to provide a centralized database to which
phone or web applications can connect to view and an-
alyze matched tracks (e.g., for visualizing road traffic or
the path taken by a package or vehicle).

Phone Library: The phone library collects a list of GSM
towers and optionally, if accelerometer, compass, or gyro
are available on the phone, current sensor hints. These
sensor hints are binary values indicating if the phone
is moving and/or turning; Section 5 describes how we
extract sensor hints. The phone library also filters ac-
celerometer data to detect if the user is stationary or
walking (as in [27, 31]), for applications that want data
only from moving vehicles. The library may also be con-
figured to periodically collect GPS data for use in the
training phase of our algorithm from users who wish to
contribute.

Our implementation collects about 120 bytes/second

of raw ASCII data on average. This quantity varies be-
cause the number of cell towers visible varies with lo-
cation. We use simple gzip compression, which on our
test drives resulted in just 11 bytes/second of data to be
delivered. We batch this data and upload a batch every t
seconds. At 11 bytes/sec, with even small batches, using
a 3G uplink with an upload speed of 30 kBytes/s (typical
of most current 3G networks in the US) results in very
low 3G radio duty cycles—for example, setting t to 60
seconds results in the radio being awake only 0.03% of
the time, which consumes a negligible amount of addi-
tional power. Once-per-minute (t = 60) reporting is suf-
ficient for most applications we are concerned with, in-
cluding traffic reporting, package tracking, and vehicular
theft detection.

We chose not to run trajectory matching on the phone
because it results in a negligible space savings, while
consuming extra CPU overhead and energy. For low data
rates, the primary determinant of 3G or WiFi transmis-
sion energy is the transmitter duty cycle [4], making
batch reports a good idea. However, we do extract sen-
sor hints on the phone because the algorithms for hint
extraction are simple and add negligible CPU overhead,
while significantly reducing data rate. The raw data rate
from sampling the accelerometer/compass without com-
pression or hint extraction is about 1.3 MBytes/hour,
which means that an application collecting this data from
a user’s phone for two hours a day could easily rack up a
substantial bandwidth bill without on-phone filtering.

CTrack Web Service: The web service receives GSM
fingerprints and converts them into map-matched tra-
jectories using the trajectory mapping algorithm. These
matched trajectories are written into a database. Option-
ally, the user’s current segment can be sent directly back
to the phone. A detailed description of the trajectory
mapping algorithm is given in the next section.

4 TRAJECTORY MAPPING ALGORITHM

CTrack’s algorithm for map-matching a sequence of
GSM cell tower observations (“cellular fingerprints”)
differs from previous approaches in two key ways. First,
we do not convert cellular fingerprints into (lat, lon) co-
ordinates before matching them to segments. We find
that reducing a fingerprint to a single geographic loca-
tion loses a lot of information because a given cellular
fingerprint is often seen from multiple locations quite far
apart. This situation is unlike the WiFi map-matching in
VTrack [32], where this spread is small, and the approach
of converting to centroids worked well. Second, CTrack
optionally fuses sensor hints from the accelerometer and
the compass to improve matching accuracy. We show
that turn hints can help remove spurious turns and kinks
from GSM-mapped trajectories, and movement hints can

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 271

Grid Sequencing

Road Map

War-driving
Database

Smoothing and
Interpolation

Segment Matching

Input Drive
Cell Tower

Fingerprints
Sensor
Hints

Sequence of
Grids

Sequence of
Road Segments

Sequence of
Coordinates

Figure 4: Trajectory Mapping Algorithm.

help remove loops, a common problem with GSM local-
ization when a vehicle is stationary.

4.1 Algorithm Outline
The goal of the algorithm is to associate a sequence of
cellular fingerprints to a sequence of road segments on a
known map. Our algorithm takes as input:

1. A series of GSM fingerprints from the phone, one
per second in our implementation. In our paper, the
term GSM fingerprint refers to a set of observed IDs of
cell towers and their associated received signal strength
(RSSI) values. In our implementation, the Android OS
gives us the cell ID and the RSSI of up to 6 neighbor-
ing towers in addition to the associated cell tower. Each
RSSI value is an integer on a scale from 0 to 31 (higher
means higher signal-to-noise ratio).

2. If available, time series signals from accelerome-
ter, compass, and gyroscope sampled at 20 Hz or higher.
These are converted to “sensor hints” using on-phone
processing as explained below.

3. A known map database that contains the geogra-
phy of all road segments in the area of interest, such as
OpenStreetMaps [22], NAVTEQ, or TeleAtlas.

The output is the likely sequence of road segments tra-
versed, one for each time instant in the input.

Figure 4 shows the components of the algorithm.
Training builds a training database, which maps ground
truth locations from GPS to observed cell towers and
their RSSI values. Grid Sequencing uses a Hidden
Markov Model (HMM) to determine a sequence of spa-
tial grid cells corresponding to an input sequence of
GSM fingerprints. The output of grid sequencing is
smoothed, interpolated, and fed to Segment Matching,
which matches grid cells to a road map using a differ-
ent HMM.

Figure 5 illustrates our algorithm by example. The in-
put “raw points” in Figure 5(a) are shown only to illus-
trate the extent of noise in the input data. They are not ac-
tually used by CTrack. They are computed by using the
Placelab fingerprinting algorithm [8], where a cell tower

fingerprint is assigned a location equal to the centroid
of the closest k fingerprints in the training database (we
used k = 4).

Next, we describe each stage of the algorithm.

4.2 Training
We divide the geographic area of interest into uniform
square grid cells of fixed size gs. We associate with each
cell an ordered pair of positive integers (x,y), where
(0,0) represents the south-west corner of the area of in-
terest. We use gs = 125 meters, chosen to balance run-
ning time, which increases with smaller grid size, against
accuracy.

We train CTrack for the area of interest using software
on mobile phones that logs a timestamped sequence of
ground truth GPS locations and associated cell tower fin-
gerprints. For each grid G in the road map, our training
database stores FG, the set of distinct fingerprints seen
from G. Training can be done out-of-band using an ap-
proach similar to the Skyhook [29] fleet. Once the train-
ing database is built, it can be used to map-match or
track any drive, and needs to be updated relatively in-
frequently. We can also collect new training data in-band
from consenting participating phones that use the CTrack
web service whenever the user has enabled GPS.

4.3 Grid Sequencing
Grid sequencing uses a Hidden Markov Model (HMM)
to determine the sequence of grid cells corresponding
to a timestamped sequence of cellular fingerprints. An
HMM is a discrete-time Markov process with a set of
hidden states and observables. Each state emits an ob-
servable, whose likelihood is given by an emission score.
An HMM also permits transitions among its hidden
states at each time step. These transitions are governed
by a different set of likelihoods called transition scores.

In our (first) HMM, the hidden states are grid cells
and the observables are GSM fingerprints. The emission
score, E(G,F) captures the likelihood of observing fin-
gerprint F in cell G. The transition score, T (G1,G2), cap-
tures the likelihood of transitioning from cell G1 to G2 in
a single time step.

We first process the input GSM fingerprints using
the windowing technique described below. We then use
Viterbi decoding [35] to find the maximum likelihood
sequence of grid cells corresponding to the windowed
version of the input sequence. The maximum likelihood
sequence is defined to be the sequence that maximizes
the product of emission and transition scores.

We now describe the four parts of this HMM: window-
ing, hidden states, emission score, and transition score.
Windowing. Because it is common for a single cell
tower scan to miss some of the towers near the current
location, we group the fingerprints into windows rather
than use the raw fingerprints captured once per second.

5

272 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Raw points before sequencing

(b) After Grid Sequencing

(c) After smoothing

(d) Final map-matched output

Figure 5: CTrack map-matching pipeline. Black lines are
ground truth and red points/lines are obtained from cel-
lular fingerprints.

We aggregate the fingerprints seen over Wscan seconds
of scanning. We chose Wscan = 5 seconds empirically:
the phone typically sees all nearby cell towers within 3
scans, which takes about 5 seconds. In our evaluation, we
show that windowing improves accuracy (Table 1).
Hidden States. The hidden states of our HMM are grid
cells. Given an observed fingerprint F , a grid cell G is a
candidate hidden state for F if there is at least one train-
ing fingerprint in G that has at least one cell tower in
common with F . Note that we might sometimes omit a
valid possible hidden state G if the training data for G is
sparse. To overcome this problem, we use a simple wire-
less propagation model to predict the set of cell towers
seen from cells that contain no training data. The model
computes the centroid and diameter of the set of all ge-
ographic locations from which each cell tower is seen in
the training data. The model draws a “virtual circle” with
this center and diameter and assumes that all cells in the
circle see the tower in question.
Emission Score. Our emission score E(F,G) is intended
to be proportional to the likelihood that a fingerprint F is
observed from grid cell G. A larger emission score means
that a cell is a more likely match for the observed finger-
print. Our emission score uses the following heuristic.
We find Fc, the closest fingerprint to F seen in training
data for G. “Closest” is defined to be the value of Fc that
maximizes a pairwise emission score EP(F,Fc). Our pair-
wise score is inspired by RADAR [3]. It captures both
the number of matching cell IDs, M, between two fin-
gerprints, and the Euclidean distance dR in between the
signal strength vectors of the matching towers:

EP(F1,F2) = Mλmatch +(dmax
R −dR(F1,F2)) (1)

where λmatch is a weighting parameter and dmax
R = 32 is

the maximum possible RSSI distance. A higher number
of matching towers, and a lower value of dR, both cor-
respond to a higher emission score. The maximum value
of the pairwise emission score is normalized (described
below) and assigned as the emission score for F .

As an example, consider the fingerprints {(ID=1,
RSSI=3), (ID=2, RSSI=5)} and {(ID=1, RSSI=6),
(ID=2, RSSI=4), (ID=3, RSSI=10)}. The distance be-

tween them would be 2λmatch + (32−
√

(3−6)2+(5−4)2

2).
The weighting parameter affects how much weight is
given to tower matches versus signal-strength matches:
we chose λmatch = 3.

We normalize all our emission scores to the range
(0,1) to ensure that they are in the same range as tran-
sition scores, which we discuss next.
Transition Score. Our transition score is given by:

T (G1,G2) =
{ 1

d(G1,G2) , G1 �= G2

1 , G1 = G2

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 273

where d(G1,G2) is the Manhattan distance between grid
cells G1 and G2 represented as ordered pairs (x1,y1) and
(x2,y2). The transition score is based on the intuition
that, between successive time instants, the user either
stayed in the same cell or moved to an adjacent cell. It
is unlikely that jumps between non-adjacent cells occur,
but we permit them with a small probability to handle
gaps in input data.

Figure 5(b) shows the output of the grid sequencing
step for our running example. As we can see, sequenc-
ing removes a significant amount of noise from the input
data. In our evaluation, we demonstrate that the sequenc-
ing step is critical (Figure 11).

4.4 Smoothing and Interpolation
This component takes a grid sequence as input and con-
verts it into a sequence of (lat, lon) coordinates that are
then processed by the Segment Matching stage.
Smoothing filter. For each grid in the sequence, we cal-
culate the centroid of the training points seen from the
grid. The centroid has the following advantage: if there
is only one road segment in a grid (a frequent occurrence)
and the training points lie on it, so will the centroid.
Typically, centroids from grid sequencing have high fre-
quency noise in the form of back-and-forth transitions
between grids (Figure 5(b)). Hence, we apply a smooth-
ing low-pass filter with a sliding window of size Wsmooth
to the centroids calculated as described above. The fil-
ter computes and returns the centroid of centroids in
each window. This filter helps us to accurately deter-
mine the overall direction of movement and filter out the
high frequency noise. We chose the filter window size,
Wsmooth = 10, empirically.
Interpolation. Earlier, we windowed the input trace and
grouped cellular scans over a longer window of Wscan
seconds. As a result, the smoothing filter produces only
one point every Wscan seconds. We linearly interpolate
these points to obtain points sampled at a 1-second inter-
val, and pass them as input to the Segment Matching step
described in §4.5.

The reason for interpolation is that segment match-
ing produces a continuous trajectory where each seg-
ment is mapped to at least one input point. The mini-
mum frequency of input to the segment matcher is one
that ensures that even the smallest segment has at least
one point. The smallest segment in the OpenStreetMaps
and NAVTEQ maps is roughly 30 meters; so assuming a
maximum speed of 65 MPH = 105 km/h = 29 m/s, we
need about once-a-second sampling or higher to ensure
this condition. Higher speeds than that generally occur
on freeways where segments are usually longer than 30
meters.

Figure 5(c) shows the example drive after smoothing
and interpolation. This output is free of back-and-forth

transitions and correctly fixes the direction of travel at
each time instant. Our evaluation quantifies the benefit
of smoothing (Table 1).

4.5 Segment Matching
Segment Matching maps sequenced, smoothed grids
from the previous stages to road segments on a map. It
takes as input the sequence of points from the Smoothing
and Interpolation phase, and turn and movement hints
from the phone, to determine the most likely sequence
of segments traversed. We describe how movement and
turn hints are extracted in Section 5.

For segment matching, we use a version of the VTrack
algorithm [32] augmented to process sensor hints. This
step also uses an HMM. In this case, the states are the
set of possible triplets {S,HM,HT}, where S is a road
segment, HM ∈ {0,1} is the current movement hint, and
HT ∈ {0,1} is the current turn hint.

The emission score of a point (lat, lon,HM,HT) from
a state (S,H ′

M,H ′
T) is zero if HM �= H ′

M or HT �= H ′
T . Oth-

erwise, we make it Gaussian, with the form e−D2
, where

D is the distance of (lat, lon) from road segment S.
The transition score between two triplets {S1,H1

M,H1
T}

and {S2,H2
M,H2

T} is defined as follows. It is 0 if segments
S1 and S2 are not adjacent, disallowing a transition be-
tween them. This restriction ensures that the output of
matching is a continuous trajectory. For all other cases,
the base transition score is 1. We multiply this score
with a movement penalty, λmovement(0 < λmovement < 1),
if H1

M = H2
M = 0 and S1 �= S2, to penalize transitions

to a different road when the device is not moving. We
also multiply with a turn penalty, λturn(0 < λturn < 1) if
the transition represents a turn, but the sensor hints re-
port no turn. We used λmovement = 0.1 and λturn = 0.1.
Our algorithm is not very sensitive to these values, since
the penalties are multiplied together and a small enough
value suffices to correct incorrect turn/movement pat-
terns.

Similar to VTrack, the HMM also includes a speed
constraint that disallows transitions out of a segment if
sufficient time has not been spent on that segment. The
maximum permitted speed can be calibrated depending
on whether we are tracking a user on foot or in a vehicle.

The output of the segment matching stage is a set of
segments, one per fingerprint in the interpolated trace
(which, on average, is the same periodicity as the orig-
inal input). The output for the running example is shown
in Figure 5(d).

When running online as part of the CTrack web ser-
vice, the segment matcher takes turn hints and sequenced
grids as input in each iteration and returns the current
segment to an application querying the web service.
Running time. The run-time complexity of the entire
algorithm, including all stages, is O(mn), where m is

7

274 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0 50 100 150 200

M
ov

em
en

t H
in

t E
xt

ra
ct

io
n

Pi
pe

lin
e

Time (seconds)

Raw Accelerometer Signal
Standard Deviation (Unfiltered)

Standard Deviation (Filtered)
Hint (Is Moving)

Figure 6: Movement hint extraction from accelerometer.

the number of input fingerprints and n is the number of
search states (the larger of the number of grid cells and
road segments on the map). Our Java implementation on
a MacBook Pro with 2.33 GHz CPU and 3 GB RAM
map-matched an hour-long trace in approximately two
minutes, approximately 30 times faster than real time. It
is straightforward to reduce the run time by more aggres-
sively pruning the search space, but we have not found
the need to do so yet.

5 SENSOR HINT EXTRACTION

CTrack includes a sensor hint extraction layer that pro-
cesses raw phone accelerometer readings to infer infor-
mation about whether the phone being tracked is moving
or not, and processes orientation sensor readings from a
compass or a gyroscope to heuristically infer vehicular
turns. These hints are transmitted along with the GSM
fingerprint to the server for map matching.

Anomaly detection. Anomaly detection filters out pe-
riods when the user is lifting the phone, speaking on
the phone, texting, waving the phone about, or other-
wise using the phone. We want to use accelerometer and
compass/gyro data only in periods where we have high
confidence that the phone is more or less at rest rela-
tive to the moving object in which it is located (e.g., on
a flat surface or in a user’s pocket). We found empiri-
cally that when driving with the phone at rest in a ve-
hicle or in a pocket, the raw accelerometer magnitude
tends to be smaller than 14 ms−2. Hence, we look for
spikes in the raw accelerometer magnitude that exceed
a threshold of 14 ms−2. Whenever we encounter such a
spike, we ignore all accelerometer and compass data in
the map-matching algorithm until the phone comes back
to a state of rest (this can be detected using standard de-
viation of acceleration, as explained below). On more re-
cent phones such as the iPhone 4, the in-built gyroscope
gives the exact orientation of the phone which can be di-
rectly read to determine if the phone is on a flat surface/in
a user’s pocket.

Having filtered out anomalous periods, the hint extrac-

 0 50 100 150 200

Tu
rn

 H
in

t E
xt

ra
ct

io
n

Pi
pe

lin
e

Time (seconds)

Raw Compass Signal
Compass Signal (Filtered)

Hint (Maybe Turning)

Figure 7: Turn hint extraction from compass.

tion processes stable periods to extract movement and
turn hints, as explained below.

Movement Hints. Our algorithm uses accelerometer
data sampled at 20 Hz. We extract a simple “static”
or ”moving” (1-bit hint) rather than integrating the ac-
celerometer data to compute velocities or processing it
in a more complex way, because accelerometer data is
noisy and hard to integrate accurately without accumu-
lating drift. In contrast, it is easy to detect movement
with an accelerometer: within a stable (spike-free) pe-
riod, the accelerometer shows a significantly higher vari-
ance while moving than when stationary.

Accordingly, we compute a boolean (true/false) move-
ment hint for each time slot. We divide the data into one-
second slots and compute the standard deviation of the
3-axis magnitude of the acceleration in each slot. Di-
rectly thresholding standard deviation sometimes results
in spurious detections when the vehicle is static and the
signal exhibits a short-lived outlier. To fix this, we ap-
ply an EWMA filter to the standard deviation stream to
remove short-lived outliers. We then apply a threshold
σmovement , on the standard deviation to label each time
slot as “static” or ”moving”. We used a subset of our driv-
ing data across multiple phones as training (where we do
know ground truth from GPS), to learn the optimal value
of σmovement , which turned out to be approximately 0.15
ms−2 for one-second windows. Figure 6 illustrates our
movement hint extraction algorithm on example data.

Turn Hints. The orientation sensor of a smartphone
(compass/gyroscope) provides orientation about three
axes. We are interested in the axis that provides the rela-
tive rotation of the phone about an axis parallel to gravity
(called “yaw” on the iPhone 4).

Because the phone can be in any orientation to start
with in a handbag or pocket, we do not use the abso-
lute orientation in any of our algorithms. We have ob-
served that irrespective of how the phone is situated, a
true change in orientation manifests as a persistent, sig-
nificant, and steep change in the value of the orientation
sensor.

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 275

Figure 8: Coverage map of our driving data set.

With compass data, the main challenge is that the
orientation reported is noisy because metallic objects
nearby, or because the compass becomes uncalibrated.
We solved this problem by applying a median filter with
a three-second window on the raw orientation values,
which filtered out non-persistent noise with consider-
able success (a mean filter would also remove noise, but
would blur sharp transitions that we do want to observe).
We then find transitions with a magnitude exceeding at
least 20 degrees and slope exceeding a threshold, which
we fixed at 1.5 by experimentation.

Figure 7 illustrates a plot of the compass data with the
turn marked, and the processing steps required to gener-
ate a turn hint. We note that even after filtering, a true
change in orientation can sometimes be produced by the
phone sliding around within a pocket or a bag, or turning
for reasons other than the car actually turning.

6 EVALUATION

In this section, we show that the trajectory matches pro-
duced by CTrack are: (1) accurate enough to be use-
ful for various tracking and positioning applications, (2)
superior to sub-sampled GPS in terms of the accuracy-
energy tradeoff, and (3) significantly better than strate-
gies that reduce cellular fingerprints to point locations
before matching. We investigate how much each of the
four techniques used in CTrack —sequencing, window-
ing, smoothing, and sensor hints—contribute to the gains
in accuracy.

6.1 Method and Metrics
We evaluate CTrack on 126 hours of real driving data in
the Cambridge-Boston area, collected from 15 Android
G1 phones and one Nexus One phone over a period of
4 months. We configured our phone library for the An-
droid OS to continuously log the ground truth GPS loca-
tion and the cell tower fingerprint every second, and the
accelerometer and compass at 20 Hz. Our data set covers
3,747 road segments, amounts to 1,718 km of driving,
and 560 km of distinct road segments driven. The data
set includes sightings of 857 distinct cell towers. Fig-
ure 8 shows a coverage map of the distinct road segments
driven in our data set.

From 312 drives in all, we selected a subset of 53
drives verified manually to have high GPS accuracy as
test drives, amounting to 109 distinct km. We picked
a limited subset as test drives to ensure each test drive
was contained entirely within a small bounding box with
dense training coverage. This is because evaluating the
algorithm in areas of sparse coverage (which many of
the other 259 drives venture into) could bias results in
our favor by reducing the number of candidate paths to
map-match to. For each test drive, we perform leave-one-
out evaluation of the map-matching algorithm: we train
our algorithm on all 311 drives excluding the test drive,
and then map-match the test drive using CTrack. We do
this to ensure enough training data for each drive, and at
the same time to keep the evaluation fair.

We compare CTrack to two other strategies in terms of
energy and accuracy:

1. GPS k gets one GPS sample every k min-
utes (k = 2,4), interpolates, and map-matches it using
VTrack [32].

2. Placelab-VTrack computes the best static local-
ization estimate for each time instant using Placelab’s
technique [8], and matches the static estimates using
VTrack [32]. The VTrack paper shows that its HMM
does much better than just matching each point to the
nearest segment.

We use three metrics in our evaluation of accuracy:
precision, recall, and geographic error. Our precision
and recall are similar to conventional precision and re-
call, but take the order of matched segments in the trajec-
tory into account. We say that a subset of segments in a
trajectory T1 that also appears in trajectory T2 are aligned
if those segments appear in T1 in the same order in which
they appear in T2. Given a ground truth sequence of seg-
ments G and an output sequence X to evaluate (produced
by one of the algorithms), we run a dynamic program to
find the maximum length of aligned segments between G
and X . We define:

Precision =
Total length o f aligned segments

Total length o f X
(2)

Recall =
Total length o f aligned segments

Total length o f G
(3)

We estimated the ground truth sequencing of segments
by map-matching GPS data sampled every second with
VTrack [32], and manually fixing a few minor flaws in
the results.
Geographic Error. Precision and recall are relevant to
applications that care about obtaining information at a
segment-level, such as traffic monitoring. However, ap-
plications such as visualization do not need to know the
exact road segments traversed, but may want to identify
the broad contours of the route followed (e.g., mistaking
a road for a nearby parallel road may be acceptable).

9

276 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ilit

y

Precision (Matched Length/Output Length)

CTrack
GPS 2 min
GPS 4 min
Placelab+VTrack

Figure 9: CDF of Precision: Comparison.

To quantify this notion, we compute a third metric, ge-
ographic error, which captures the spatial distance be-
tween the ground truth and the matched output. We com-
pute the maximum alignment between the ground truth
trajectory G and output trajectory X using dynamic pro-
gramming. This alignment matches each segment S of X
to either the same segment S on G (if CTrack matched
that segment correctly) or to a segment Swrong ∈ G (if
matched incorrectly). Define the segment geographic er-
ror to be the distance between S and Swrong for incor-
rect segments, and 0 for correctly matched segments. The
mean segment geographic error over all segments in X is
the overall geographic error.

6.2 Key Findings
The key findings of our evaluation are:

1. CTrack has 75% precision and 80% recall in both
the mean and median, and a median geographic error of
44.7 meters. We discuss what these numbers mean in the
context of real applications below.

2. CTrack has 2.5× better precision and 3.5× smaller
geographic error than Placelab+VTrack.

3. CTrack is equivalent in precision to map-matching
GPS sub-sampled every 2 minutes while consuming over
2.5× less energy. It also reduces error (1− precision) by
a factor of over 2× compared to sub-sampling GPS ev-
ery 4 minutes, consuming a similar amount of energy.
CTrack is 6× better than continuous WiFi sampling in
terms of battery lifetime on the Android platform.

4. The first step of CTrack, grid sequencing, is criti-
cal. Without sequencing, CTrack effectively reduces to
computing a (lat, lon) estimate from the best finger-
print match, ignoring all other data. The median preci-
sion without sequencing is only 50%. See Section 6.4
for more detail.

5. We can extract movement and turn hints from raw
sensor data with approximately 75% precision and re-
call. These hints improve accuracy by removing spurious
loops and turns in the output. Using hints improves pre-
cision by 6% and recall by 3%. See Section 6.5 for more
detail.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ilit

y

Recall (Matched Length/True Length)

CTrack
GPS 2 min
GPS 4 min
Placelab+VTrack

Figure 10: CDF of Recall: Comparison.

6.3 Accuracy Results
Figure 9 shows a CDF of the map-matching precision
for CTrack, GPS k (for k = 2,4 minutes) and Place-
lab+VTrack. CTrack has a median precision of 75%,
much higher than the both the energy-equivalent strat-
egy of sub-sampling GPS every 4 minutes (48%), and
Placelab+VTrack (42%). In effect, CTrack has over 2×
lower error (1− precision) than sub-sampling GPS ev-
ery 4 minutes, and over 2.5× lower error than map-
matching cellular localization estimates output by the
Placelab method. Also, CTrack has equivalent precision
to map-matching GPS sub-sampled every two minutes,
while reducing energy consumption by approximately
2.5× compared to this approach (Figure 2).

Figure 10 shows a CDF of the recall. All the strate-
gies except GPS 4 min are equivalent in terms of re-
call. Sub-sampling GPS every four minutes has poor re-
call (median only 41%) because a four-minute sampling
interval misses significant turns in our input drives and
finds the wrong path. The fact that Placelab+VTrack has
identical recall shows that simple static cellular localiza-
tion does manage to recover a significant part of the in-
put drive. However, converting cellular fingerprints di-
rectly to points results in significant noise and long-lived
outliers, and hence produces a large number of incorrect
segments when map-matched directly (i.e., has low pre-
cision).

To understand what 75% precision might mean in
terms of a an actual application, we refer readers to
our work on VTrack [32], which studies the relation-
ship between map-matching accuracy and the accuracy
of two end-to-end applications: traffic delay monitor-
ing and traffic hot-spot detection. We found that a me-
dian precision of 85% was still useful for accurate traf-
fic delay estimation. Our results for cellular (75%) are
only somewhat worse, and while not directly compara-
ble, they suggest a significant portion of delay data from
CTrack would be useful.

For applications such as route visualization, or those
that aggregate statistics over paths (e.g., to compute his-
tograms over which of n possible routes is taken), or

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 277

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ilit

y

Precision (Matched Length/Output Length)

With Sequencing
Without Sequencing

Figure 11: Precision with and without grid sequencing.

those that simply show a user’s location on a map, getting
most segments right with a low overall error is likely suf-
ficient. Our median geographic error is quite low—just
45 meters—suggesting CTrack would have sufficient ac-
curacy for such applications. In contrast, the median ge-
ographic error of the Placelab+VTrack approach is 156
meters, over 3.5× worse than CTrack.
Filtering using a confidence predictor. We investigated
whether a confidence metric could be used to filter out
drives on which CTrack does poorly, thereby trading-
off some recall for substantially better precision, which
would be useful for accuracy-sensitive applications. We
found two predictors, both weakly correlated with map-
matching accuracy: (a) the 90th percentile distance of
smoothed grids from the segments they are matched to,
and (b) the mean difference (over all points P) in emis-
sion score between the segment that P is matched to
in the output, and the segment closest to P. The intu-
ition is that a point far away from the road segment it is
matched to, or closer to a different road segment, implies
lower confidence in the match. When applying these con-
fidence filters to our output drives, we currently improve
the median precision from 75% to 86%, but lose sub-
stantially in terms of recall, whose median reduces from
80% to 35%). In future work, we plan to explore whether
boosting [12] can combine these weak confidence pre-
dictors into a stronger one.

6.4 Benefit of Sequencing
We elaborate on one of our key technical contributions:
the idea that the first pass of grid sequencing before con-
verting fingerprints to geographic locations is crucial to
achieving good matching accuracy. We provide experi-
mental evidence supporting this idea. We also show that
windowing and smoothing help improve matching accu-
racy, though to a lower degree.
Impact of Sequencing. Figure 11 is a CDF that com-
pares the precision of CTrack with and without the first
pass of grid sequencing. This figure shows that sequenc-
ing is critical to achieving reasonable accuracy: with-
out sequencing, the median precision drops from 75%

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

Pr
ob

ab
ilit

y
O

ve
r 1

00
0

Fi
ng

er
pr

in
ts

Geographic Spread Of Top 4 Exact Matches (meters)

Figure 12: Geographic spread of exact matches. The
dashed line shows the 80th percentile.

to 50%. The reason is that running CTrack without se-
quencing amounts to reducing each fingerprint to its best
match in the training database, ignoring the sequence of
points.

As mentioned earlier, reducing a fingerprint to a single
geographic location loses information because a given
cellular fingerprint is seen from multiple locations quite
far apart. Figure 12 illustrates the CDF of this geographic
spread. We selected 1000 fingerprints at random from our
training data. For each fingerprint F , we found all the
exact matches for F , i.e. fingerprints F ′ with the exact
same set of towers in the training data as F . We ordered
the matches by similarity in signal strength, most similar
first, and computed the geographic diameter of the top k
matches for each fingerprint (using k = 4).

The figure shows that over 20% of matching sets have
a diameter exceeding 150 meters, and at least 10% have
a diameter exceeding 400 meters. Recall that the meth-
ods in Placelab (and RADAR, if applied to cellular data)
would simply compute the centroid of the top k matches.
This approach does not work well for sets with a large
geographic spread, and motivates the need for the funda-
mentally different approach used in CTrack in which we
keep track of all possible likely locations, and then use a
continuity constraint to sequence these locations in two
steps.

Windowing and Smoothing. Table 1 shows the preci-
sion and recall of CTrack with and without windowing
and smoothing, two other heuristics used in CTrack. We
see that each of these features improves the precision by
approximately 10%, which is a noticeable quantity. The
recall does not improve because the algorithm without
windowing/smoothing is good enough to identify most
of the segments driven: the heuristics mainly help elimi-
nate loops in the output.

6.5 Do Sensor Hints Help?
Figure 13 illustrates by example how turn hints extracted
from the phone compass help in trajectory matching.
Without using turn hints (Figure 13(a)), our algorithm

11

278 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

With Without
Prec. Recall Prec. Recall

Windowing 75.4% 80.3% 65.6% 82.3%
Smoothing 75.4% 80.3% 66.5% 82.5%

Table 1: Windowing and smoothing improve median tra-
jectory matching precision.

finds the overall path quite accurately but includes sev-
eral spurious turns and kinks, owing to errors in cellular
localization. After including turn hints in the HMM, the
false turns and kinks disappear (Figure 13(b)).

(a) Without turn hints (b) With turn hints

(c) Without movement hints (d) With movement hints

Figure 13: Sensor hints from the compass and accelerom-
eter aid map-matching. Red points show ground truth and
the black line is the matched trajectory.

In Figure 13(c), the driver stopped at a gas station to
refuel, which can be seen from the cluster of ground-truth
GPS points. Before using movement hints, errors from
cellular localization were spread out, causing the map-
matching to introduce a loop not present in the ground
truth (Figure 13(c)). After incorporating movement hints,
the speed constraint in our HMM eliminates this loop be-
cause it detects that the car would not have had sufficient
time to complete the loop (Figure 13(d)). We note a lim-
itation of the movement hint: this kind of stop detection
works because the phone was placed on the dashboard:
if it had been in the driver’s pocket during refueling, the
movement hints would not have helped had the driver
gotten out of the car and been moving about.

Figure 14 is a CDF that compares the precision of
CTrack with and without sensor hints (both movement
and turn). This figure shows that sensor hints improve
the median precision of matching by approximately 6%.
While this may not seem huge, there exist several trajec-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ilit

y

Precision (Matched Length/Output Length)

With Sensor Hints
Without Sensor Hints

Figure 14: Precision with and without sensor hints.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1
Pr

ob
ab

ilit
y

Precision/Recall (0-1)

Move Hint Precision
Move Hint Recall

Turn Hint Precision
Turn Hint Recall

Figure 15: Precision/Recall CDF For Hint Extraction.

tories for which the hints do help significantly, suggest-
ing that using them is a good idea when available. In our
experience, the main benefit of the hints is in eliminat-
ing the several “kinks” and spurious turns in the matched
trajectory, which our metrics don’t adequately capture.

We used the ground truth GPS to measure how accu-
rately our CTrack is able to extract individual movement
and turn hints. We found that the median precision and
recall of both motion and turn hint extraction exceeds
75%.

6.6 How Much Training?
To quantify the amount of training data essential
to achieving good trajectory mapping accuracy with
CTrack, we picked a pool of test drives at random,
amounting to 5% of our data set (8 hours of data), and
designated the remaining 95% as the training pool. We
picked subsets of the training pool of increasing size, i.e.
first using fewer drives for training, then using more. In
each run, the training subset was used to train CTrack
and then evaluated on the test pool. Figure 16 shows the
mean precision and recall of CTrack on the test pool as
a function of the number of drive hours of training data
used to train the system. The accuracy is poor for very
small training pools, as expected, but encouragingly, it
quickly increases as more training data is available. The
algorithm performs almost as accurately with 40 hours
of training data as with 120, suggesting that 40 hours of
training is sufficient for our data set.

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 279

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120

Pr
ec

is
io

n/
R

ec
al

l (
0-

1)

Drive Hours Of Training Data (Randomly Selected)

Precision
Recall

Figure 16: Prec./Recall vs Training Data Size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Fr
ac

tio
n

O
f T

es
t R

oa
d

Se
gm

en
ts

Count of Times Traversed In Training Pool

Figure 17: CDF of Drive Counts, 40 Hrs Training Data.

The 40-hour number, of course, is specific to the ge-
ographic area we covered in and around Boston, and to
the test pool. To gain more general insight, we measure
the drive count for each road segment in the test pool, de-
fined as the number of times the segment is traversed by
any drive in the training pool. Figure 17 shows the dis-
tribution of test segment drive counts corresponding to
40 hours of training data. While the mean drive count is
approximately 3, this does not mean each road segment
on the map needs to be driven thrice to achieve good ac-
curacy. As the graph shows, about 60% of the test seg-
ments were not traversed even once in the training pool,
but we can still map-match many of these segments cor-
rectly. The reason is that they lie in the same grid cell
as some nearby segment that was driven in the training
pool. This result promising because it suggests that train-
ing does not have to cover every road segment on the map
to achieve acceptable accuracy.

7 RELATED WORK

Placelab performed a comprehensive study of GSM lo-
calization and used a fingerprinting scheme for cellular
localization [8]. RADAR used a similar fingerprinting
heuristic for indoor WiFi localizations [3], and our map-
matching emission score is inspired by these methods.
However, neither Placelab nor RADAR address the prob-
lem of trajectory matching, and are concerned with the
accuracy of individual localization estimates, rather than

finding the optimal sequencing of estimates. As shown
by our results, this sequencing step is critical: applying a
map-matching algorithm directly to Placelab-style loca-
tion estimates results in significantly worse accuracy (by
a factor of over 2×) compared to CTrack.

Letchner et al. [17] and our previous work on
VTrack [32] use HMMs for map-matching. However,
these previous algorithms use and process (lat, lon) co-
ordinates as input and use a Gaussian noise model for
emissions, and are hence unsuitable and inaccurate for
map-matching cellular fingerprints, as shown by our re-
sults. Nor do they use sensor hints.

CompAcc [10] proposes to use smartphone compasses
and accelerometers to find the best match for a walking
trail by computing directional “path signatures” for these
trails. They do not use cell towers. However, from our
understanding, the paper uses absolute values of compass
readings. This approach did not work in our experiments,
because the absolute orientation of a phone can be quite
different depending on whether it is in a driver’s pocket,
on a flat surface, or held in a person’s hand. For this rea-
son, we chose to use boolean turn hints instead, which
are more robust and can be accurately computed regard-
less of changes in the phone’s initial orientation or posi-
tion. For extracting motion hints and detecting walking
and driving using the accelerometer, we use algorithms
similar to those in [27, 31, 26].

Some previous papers [9, 23, 16] have proposed
energy-efficient localization schemes that reduce re-
liance on continuously sampling GPS by using a more
energy-efficient sensor, such as the accelerometer, to
trigger sampling GPS. RAPS [23] also uses cell towers to
“blacklist” areas where GPS accuracy is low and hence
GPS should be switched off, to save energy. However,
none of these papers address trajectory matching or pro-
pose a GPS-free, accurate solution for map-matching.

Skyhook [29] and Navizon [20] are two commercial
providers for WiFi and Cellular localization, providing
databases and APIs that allow programmers to submit
WiFi access point(s) or cell tower(s) and look up the
nearest location. However, to the best of our knowl-
edge, they do not use any form of sequencing or map-
matching, and focus on providing the best static local-
ization estimate.

8 CONCLUSION

We described CTrack, an energy-efficient, GPS-free sys-
tem for trajectory mapping using cellular tower finger-
prints. The key lesson we learned was that sequencing
cellular fingerprints before matching them is critical to
achieving good accuracy. On smartphones, our CTrack
implementation uses close to zero extra energy while
achieving good mapping accuracy, making it a good way
to distribute collaborative trajectory-based applications

13

280 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

like traffic monitoring to a huge number of users without
any associated energy consumption or battery drain con-
cerns. A GPS-free approach to trajectory matching also
opens up the possibility of providing more fine-grained
location services on the world’s most popular, cheapest
phones that do not have GPS, but that do have GSM con-
nectivity.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under grant CNS-0931550.

REFERENCES
[1] Analog Devices AD9864 Datasheet: GSM RF Front End and

Digitizing Subsystem. http://www.analog.com/static/
imported-files/data sheets/AD9864.pdf.

[2] Analog Devices, Inc. ADXL330: Small, Low Power, 3-Axis +/-3
g iMEMS Accelerometer (Data Sheet), 2007. http://www.analog.
com/static/imported-files/data sheets/ADXL330.pdf.

[3] P. Bahl and V. Padmanabhan. RADAR: An In-building RF-based
User Location and Tracking System. In INFOCOM, 2000.

[4] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy Consumption in Mobile Phones: A
Measurement Study and Implications for Network Applications.
In IMC, 2009.

[5] F. Ben Abdesslem, A. Phillips, and T. Henderson. Less is more:
Energy-efficient Mobile Sensing with SenseLess. In MobiHeld,
2009.

[6] GPS and Mobile Handsets. http://www.berginsight.com/
ReportPDF/ProductSheet/bi-gps4-ps.pdf.

[7] A. Boustani, L. Girod, D. Offenhuber, R. Britter, M. I. Wolf,
D. Lee, S. Miles, A. Biderman, and C. Ratti. Investigation of the
Waste Removal Chain Through Pervasive Computing. IBM
Journal of Research and Development, 2010.

[8] M. Y. Chen, T. Sohn, D. Chmelev, D. Haehnel, J. Hightower,
J. Hughes, A. Lamarca, F. Potter, I. Smith, and A. Varshavsky.
Practical Metropolitan-scale Positioning for GSM Phones. In
UbiComp, 2006.

[9] I. Constandache, S. Gaonkar, M. Sayler, R. Choudhury, and
L. Cox. EnLoc: Energy-Efficient Localization for Mobile
Phones. In INFOCOM, 2009.

[10] I. Constandache, R. Roy Choudhury, and I. Rhee. CompAcc:
Using Mobile Phone Compasses and Accelerometers for
Localization. In INFOCOM, 2010.

[11] Fedex intros Senseaware Sensor for Tracking Packages.
http://www.electronista.com/articles/09/11/27/senseaware.
sensor.sends.temps.drops.more.

[12] Y. Freund and R. E. Schapire. A Decision Theoretic
Generalization of Online Learning and an Application to
Boosting. In EuroCOLT, 1995.

[13] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt.
Micro-Blog: Sharing and Querying Content through Mobile
Phones and Social Participation. In MobiSys, 2008.

[14] Information On Human Exposure To Radiofrequency Fields
From Cellular and PCS Radio Transmitters.
http://www.fcc.gov/oet/rfsafety/cellpcs.html.

[15] iCartel. http://icartel.net/icartel-docs/.
[16] M. B. Kjærgaard, J. Langdal, T. Godsk, and T. Toftkjær.

EnTracked: Energy-efficient Robust Position Tracking for
Mobile Devices. In MobiSys, 2009.

[17] J. Krumm, J. Letchner, and E. Horvitz. Map Matching with
Travel Time Constraints. In SAE World Congress, 2007.

[18] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao.
Energy-accuracy Trade-off for Continuous Mobile Device
Location. In MobiSys, 2010.

[19] LoJack Car Security System For Stolen Vehicle Recovery.
http://www.lojack.com.

[20] Navizon. http://www.navizon.com.
[21] Qualcomm Transportation: OmniTRACKS Mobile

Communications System.
http://www.qualcomm.com/products services/
mobile content services/enterprise/omnitracs.html.

[22] OpenStreetMap. http://www.openstreetmap.org.
[23] J. Paek, J. Kim, and R. Govindan. Energy-efficient Rate-adaptive

GPS-based Positioning for Smartphones. In MobiSys, 2010.
[24] PNI Corporation. MicroMag3 3-Axis Magnetic Sensor Module.

http://www.sparkfun.com/datasheets/Sensors/MicroMag3%
20Data%20Sheet.pdf.

[25] Qualcomm inGeo Service.
http://www.qualcomm.com/innovation/stories/ingeo.html.

[26] L. Ravindranath, C. Newport, H. Balakrishnan, and S. Madden.
Improving Wireless Network Performance Using Sensor Hints.
In NSDI, 2011.

[27] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and
M. Srivastava. Using Mobile Phones to Determine
Transportation Modes. Transactions on Sensor Networks, 6(2),
2010.

[28] RunKeeper. http://runkeeper.com.
[29] Skyhook. http://www.skyhookwireless.com.
[30] Telit GE865 Datasheet.

http://www.telit.com/module/infopool/download.php?id=1666.
[31] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson.

Cooperative Transit Tracking Using GPS-enabled Smart-phones.
In SenSys, 2010.

[32] A. Thiagarajan, L. Sivalingam, K. LaCurts, S. Toledo,
J. Eriksson, S. Madden, and H. Balakrishnan. VTrack: Accurate,
Energy-Aware Road Traffic Delay Estimation Using Mobile
Phones. In SenSys, 2009.

[33] TomTom. http://www.tomtom.com.
[34] Trash Track. http://senseable.mit.edu/trashtrack.
[35] A. J. Viterbi. Error Bounds for Convolutional Codes and an

Asymptotically Optimum Decoding Algorithm. In IEEE
Transactions on Information Theory, 1967.

[36] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong,
B. Krishnamachari, and N. Sadeh. A Framework of Energy
Efficient Mobile Sensing for Automatic User State Recognition.
In MobiSys, 2009.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 281

Improving Wireless Network Performance Using Sensor Hints

Lenin Ravindranath, Calvin Newport, Hari Balakrishnan and Samuel Madden
MIT Computer Science and Artificial Intelligence Laboratory

{lenin, cnewport, hari, madden}@csail.mit.edu

Abstract

With the proliferation of mobile wireless devices such as
smartphones and tablets that are used in a wide range of
locations and movement conditions, it has become im-
portant for wireless protocols to adapt to different set-
tings over short periods of time. Network protocols that
perform well in static settings where channel conditions
are relatively stable tend to perform poorly in mobile
settings where channel conditions change rapidly, and
vice versa. To adapt to the conditions under which com-
munication is occurring, we propose the use of exter-
nal sensor hints to augment network protocols. Com-
modity smartphones and tablet devices come equipped
with a variety of sensors, including GPS, accelerometers,
magnetic compasses, and gyroscopes, which can provide
hints about the device’s mobility state and its operating
environment. We present a wireless protocol architecture
that integrates sensor hints in adaptation algorithms. We
validate the idea and architecture by implementing and
evaluating sensor-augmented wireless protocols for bit
rate adaptation, access point association, neighbor main-
tenance in mobile mesh networks, and path selection in
vehicular networks.

1 INTRODUCTION

With over 172 million devices sold in 2009, smartphones
are a rapidly growing market [27]. Some analysts predict
that smartphones and pads/tablets will surpass world-
wide PC sales by the end of 2011 [20]. These devices
may well become the dominant mode of Internet access
in the near future [19].

With the proliferation of these “truly mobile” devices,
it is increasingly common for wireless network proto-
cols to have to deal with both static and mobile us-
age within a short time period. Consider, for example,
a smartphone user at the supermarket who alternates
between standing still in front of product displays and
moving between aisles, all the while streaming audio
through the in-store wireless network. Mobility intro-
duces difficult problems that wireless network protocols
must overcome to achieve good performance. During
motion, the vagaries of wireless communication become
more pronounced: channel quality varies rapidly, losses

become more bursty, and assessments of channel behav-
ior are quickly outdated. Because of this, nodes should
not maintain long histories, as the rapidly changing chan-
nel conditions and network topology would quickly ren-
der them invalid. Routing tables may also need to adapt
quickly to neighbor changes, and the optimal next-hop
may depend on the direction and speed of movement.

However, strategies that compensate for these
mobility-related difficulties are unlikely to be optimal
in stationary scenarios [4, 25]. When nodes are static,
they can average estimates of channel quality, observe
their neighbors, and compute routes over long time
scales (many seconds), carefully obtaining and updating
observations from many packets. In so doing, they can
correctly avoid reacting to the inevitable short-term vari-
ations that even static wireless networks encounter (e.g.,
due to short-term fading). Previous work has generally
not distinguished between these modes, attempting
instead to adapt seamlessly across extremely different
network conditions.

The key insight in our work is that nodes can use exter-
nal (to the network stack) sensor hints to improve the per-
formance of wireless network protocols. Our approach is
practical and readily implementable because almost ev-
ery smartphone and tablet today comes equipped with
a wide array of sensors like GPS, accelerometers, com-
passes, and so on. These sensors are used by applications,
but are largely ignored by the network stack and proto-
cols. We show how data from these sensors can provide
hints to protocols about the mobility mode of the device.
By “mobility mode,” we mean attributes such as whether
the device has started moving or is static, its speed of mo-
tion, its position, and the heading (direction) of motion—
all factors that affect wireless network protocol perfor-
mance. Protocols can explicitly adapt their behavior and
parameters to the current mobility mode.

Sensor hints may be used in different ways in dif-
ferent protocols. When a node generates a hint locally
or receives a hint from a neighbor, it may adapt in re-
sponse to it. The adaptation might be continuous in
nature (e.g., updating protocol parameters) or discrete
(e.g., switching from a static-optimized to a mobility-
optimized protocol). In Section 2, we introduce a novel
sensor-augmented wireless architecture that allows de-

1

282 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

vices to extract hints and provide them to protocols. To
the best of our knowledge, ours is the first general ap-
proach to using sensor hints to augment a variety of net-
work protocols.

In addition to the sensor-augmented network architec-
ture, we make four contributions:

1. Hint-aware bit rate adaptation: In Section 3, we
describe and evaluate our implementation of a novel
frame-based bit rate adaptation protocol, RapidSample,
and show through trace-based simulation and testbed
experiments that it obtains up to 70% better through-
put than existing frame-based and SNR-based rate adap-
tation protocols, and comparable throughput to Soft-
Rate [25], when a node is in motion. We use Rapid-
Sample to develop a hint-aware bit rate adaptation pro-
tocol that switches strategies based on mobility hints
and show through exhaustive trace-based evaluation and
testbed experiments that it obtains between 17% and
52% better throughput than SampleRate, 17% and 39%
better throughput than RRAA, and 11% and 47% better
throughput than SNR-based schemes, in mixed mobility
scenarios in various environments.

2. WiFi access point (AP) association: In Section 4,
we describe a hint-aware AP association protocol with
two modes: maximizing bulk transfer throughput and
minimizing handoffs. We show through trace-based eval-
uation that the hint-aware protocol improves throughput
by 30% and reduces the number of handoffs by 40%
compared to today’s standard scheme.

3. Mobile topology maintenance: In Section 5, we
show experimentally that maintaining acceptable error
rates for topology maintenance while mobile requires
over 20 times more traffic than in the stationary case. We
implement a hint-aware protocol that switches to this ex-
pensive probing only when in motion.

4. Path selection in vehicular mesh networks: In
Section 6, we present a collection of hint-aware path se-
lection metrics for vehicular networks and show, using
trace-based simulation, that they increase the stability of
short routes by nearly a factor of 5 compared to the hint-
free approach.

2 DESIGN

Current wireless protocols adapt their behavior based on
in-network information such as loss rate, bit errors, or
SNR. In contrast, we present a hint-aware protocol archi-
tecture that augments this in-network information with
hints from external sensors, which can be used at all lay-
ers of the network stack to improve performance. In addi-
tion to using local sensor hints, a protocol can also adapt
based on sensor hints communicated from other nodes.

In this section, we first present a general-purpose hint-
aware protocol architecture. We then describe simple and

Sensor Hint
Manager

Accelerometer GPS

Gyro

Compass

Sensor Library

Hint Aware Protocols

STOP

Hint messages

UDP Wi-Fi MAC

Send/receive hint messages

UDP Packets 802.11 frames

Query

Hints

Sensor Hint Service
REGISTER

SEND

Hint Transport Layer

Application Transport Network MAC PHY

Wireless Protocol Stack

Figure 1: Hint-aware protocol architecture.

Hint Type Hint Value
Movement True/False
Walking True/False
Heading Degrees Relative to True North
Speed Miles per Hour
Environment Indoor/Outdoor

Figure 2: Hint types exposed by the Sensor Library.

accurate techniques for extracting mobility hints from
sensors such as GPS, accelerometers and compasses.

2.1 Hint-Aware Protocol Architecture
Figure 1 depicts the architecture; the goal is to make it
easy to augment wireless network protocols with sensor
hints. The architecture provides a Sensor Hint Service
that abstracts and hides the details of (1) querying var-
ious sensors, (2) extracting hints from raw sensor data,
and (3) communicating relevant hints over the network.
The service exposes well-defined interfaces to achieve
these goals. Our current implementation of the Sensor
Hint Service runs as a background service on the An-
droid platform and as a Click module for Linux mobile
devices. It should be straightforward to incorporate this
service into other mobile platforms.
The Sensor Hint Service has three components:

1. Sensor Library. The Sensor Library processes raw
sensor data to extract useful hints. We focus on mobility
hints and our implementation currently supports the hint
types shown in Figure 2. Section 2.2 discusses how these
hints are extracted.

2. Hint Transport Layer. Some protocols can bene-
fit from hints from other nodes. For instance, a bit rate
adaptation protocol can adapt its bit rate using not only
its own movement hints, but also movement hints from
nodes the protocol is communicating with. The Hint

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 283

Transport Layer provides a protocol-independent way to
communicate hints.

When sending a hint to another node, the Sensor Hint
Manager (described below) constructs a hint message
(shown in Figure 3) and delivers it to the Hint Transport
Layer, which in turn sends the hint. The hint message
consists of the source MAC address and 〈hint type, hint
value〉 pairs. When receiving a hint from another node,
the Hint Transport Layer delivers the received hint mes-
sage to the Sensor Hint Manager, which in turn delivers
it to the appropriate protocol.

The Hint Transport Layer provides two communica-
tion mechanisms to send and receive hints. The first
uses UDP. Each node opens a pre-defined UDP port, the
HINTS port, to receive hint messages. Hint messages
may either be unicast or broadcast to this UDP port.

The UDP scheme works only as long as the nodes
are connected through IP. In certain hint-aware wireless
protocols (Section 5 and Section 6) nodes do not have
IP connectivity, instead communicating via a link-layer
protocol such as 802.11’s link layer. Thus, for our sec-
ond scheme, we use a reserved protocol type in the link-
layer MAC header to denote a hint message frame (Fig-
ure 3). The Hint Transport Layer then listens for unicast
or broadcast hints sent in link-layer frames. An alterna-
tive scheme might be to overload or piggy-back hints on
existing 802.11 frames; we leave the exploration of this
possibility to future work.

Because Android phones do not (yet) support sending
raw 802.11 frames from user-level, we implemented only
the UDP mechanism for phones. For Linux devices, we
implemented both schemes. Legacy nodes not running
the Sensor Hint Service will simply ignore the hint mes-
sages, as long as the HINTS port is not in use by some
other application.

3. Sensor Hint Manager. The Sensor Hint Manager
arbitrates communication between the protocol, the Sen-
sor Library and the Hint Transport Layer. It exposes a lo-
cal socket interface (different from the HINTS port) for
protocols to interact with the Sensor Hint Service. Pro-
tocols register for one or more hints using REGISTER
(HintTypes[], ReportRate, CallbackPort, Source).
Once registered, the Sensor Hint Manager uses the Call-
backPort to stream hints to the protocol. The Source
field can be LOCAL, REMOTE, or ALL, corresponding
to local hints, remote hints, or both. The protocol can
specify a ReportRate, in milliseconds, which indicates
how often to report the hint. ReportRate also takes two
special values: “0” means “as fast as possible” and -1
means “only when there is a change in the hint state”.

Protocols use SEND(HintTypes[], SendRate, Com-
Type, Address) to instruct the service to send hints to
other nodes. SendRate takes values similar to Repor-
tRate in the REGISTER command, with the same con-

ventions. ComType specifies the communication types
(currently either UDP or MAC frames). Hints may be
unicast to a specific node or broadcast in either Com-
Type setting.

REGISTER and SEND both return a unique ID to the
protocol. The protocol can use the returned ID to stop
sending hints using the STOP (ID) command.

2.2 Extracting Hints
In this section, we describe how to extract the hints
shown in Figure 2—movement, walking, heading, speed,
and environment—using standard sensors found on most
smartphones and tablets.

Movement hint. Movement is a boolean hint that is
true if, and only if, a device is moving, i.e., if either the
device’s acceleration or its speed is non-zero. We obtain
this information from the acceleration sensor indoors,
and from the combination of GPS and the acceleration
sensors outdoors. Note that it is important to quickly cap-
ture the situation when a device has started moving after
being at rest, and vice versa, so measuring the accelera-
tion is important.

The accelerometer on most smartphones reports force
values for its x, y, and z axes, at a certain sample rate
(usually 20–500 Hz). The values are reported either in
m/s2 or in terms of g (= 9.8 m/s2). Figure 4 plots a raw
accelerometer trace of a smartphone user who walks in
the 6–14 second and 22–32 second periods, and is static
the rest of the time. The accelerometer shows a signifi-
cantly higher variance while moving than when station-
ary. We use this variance to extract a movement hint.

For every new accelerometer sample, we compute the
standard deviation of the magnitude of the acceleration
over a sliding window (w) of samples. The window slides
by one sample for each computation. If the standard de-
viation in a window exceeds a threshold (a), we detect
movement. When the standard deviation is within the
threshold for n successive sliding windows, we report
that the node is stationary.

We experimented with many values for w, a, and n and
determined that w = 5,a = 0.15 m/s2, and n = 10 gave
us few false hints. Figure 5 illustrates our movement hint
extraction for the trace in Figure 4. We have implemented
the above technique on four different platforms (Android
Nexus one, Android Google G1, iPhone 4 and SparkFun
accelerometer that connects to a Linux laptop) and found
that the parameters offer good performance in all cases.

On the Android platform with a maximum accelerom-
eter sample rate of 50 Hz, we were able to detect move-
ment within 100 ms and detect that the node became sta-
tionary within 200 ms. On the Sparkfun platform, with a
sample rate of 500 Hz, we were able to detect movement
within 10 ms and stationarity within 20 ms.

The movement hint is used by the protocols described

3

284 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Source MAC # Hints Hint Type Hint Value

Hint Message format

UDP packet
HINTS port

Type – HINT packet

Hint Type Hint Value

MAC Header

802.11 packet MAC Header Hint Message

IP Header UDP Header Hint Message

Figure 3: Hint message and packet for-
mats.

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

Ac
ce

le
ra

tio
n

(m
/s

^2
)

Time (s)

x axis
y axis
z axis

Figure 4: Raw accelerometer
trace.

 0 5 10 15 20 25 30 35 40
Time (s)

Acclerometer Magnitude
Standard Deviation

Movement Hint

Figure 5: Movement hint extrac-
tion from accelerometer data.

in Section 3 and Section 5 to improve bit rate adaptation
and topology maintenance, respectively.

Walking hint. Whereas a simple movement hint is
useful in some cases, in other situations it is valuable to
detect whether a user is walking versus other types of
movement, such as when the user is stationary but mov-
ing the device. We accomplish this using the walking de-
tector developed in TransitGenie [22] and apply it to AP
selection (Section 4).

Heading hint. Heading can be determined from dig-
ital compasses (magnetometers) that are available on
many devices. GPS also allows us to infer a heading
when a device is moving outdoors. These sensors pro-
duce a heading in degrees relative to the earth’s magnetic
north pole. To use a compass to determine the heading of
the user holding a device, and not the heading of the de-
vice itself, it is necessary to first determine the device’s
orientation. The standard technique used by inertial navi-
gation systems is to use gyroscope sensors in conjunction
with the accelerometer to infer this orientation [21]. In
our indoor experiments, we assume we know the orien-
tation of the device, and use only the compass readings.
These heading hints are used by the protocols described
in Section 4 and Section 6 to improve access point selec-
tion and vehicular path selection, respectively.

Speed hint. To determine a speed hint outdoors we
can use the speed values reported by GPS. We use this
hint in Section 6 for path selection.

Environment (indoor/outdoor) hint. To determine
whether a user is indoors or outdoors we use the fact
that it is typically impossible to get a GPS fix indoors.
In Section 4 we use this hint to improve AP association.

3 HINT-AWARE BIT RATE ADAPTATION

Sensor hints aid in bit rate adaptation because node mo-
bility affects wireless channel conditions, causing large
and bursty changes over short intervals of time. When a
node moves, bit errors and packet losses exhibit a higher
degree of statistical correlation with past behavior as
compared to the static case. We demonstrate this effect
in Figures 6 (left) and 6 (middle).

Figure 6 (left) plots the conditional probability of los-
ing packet number i + k at a given bit rate, given that

packet number i was lost, for different values of k (the
“lag”). In this indoor experiment, we sent back-to-back
1000-byte packets at 54 Mbits/s from a stationary lap-
top to a stationary smartphone in the static case, and to
a smartphone carried by a walking user in the mobile
case. A link-layer ACK received from the smartphone
indicated a packet success, otherwise the packet was
considered lost. The graph shows a significantly higher
loss probability for small values of k in the mobile case,
demonstrating a larger degree of short-range dependence
compared to the static case. In this scenario, for the mo-
bile case, the next packet following a lost packet is signif-
icantly more likely to be lost than in the static case, and
also compared to larger values of k. For both the static
case and the mobile case, the unconditional loss proba-
bility was around 23%.

For the same traces, Figure 6 (middle) shows the mu-
tual information between packet success/failure events
separated by x ms. Specifically, we compute the mutual
information between every pair of two success/failure
events separated by a time interval of x ms for a range
of different values of x. This measure shows the extent
to which the fate of a later packet depends on the earlier
one. In the static case, there is no mutual information be-
tween packets. But when a node moves, packets exhibit
a higher degree of dependence with the past few pack-
ets. This dependence drops off at around 10 ms in these
experiments. In Figure 6 (right), we plot the mutual in-
formation curve for different walking speeds and found
the dependence to drop off at around 10–20ms.

These results show that the best strategy for bit rate
adaptation is likely to be different when nodes move than
when they are static. In more detail, in the static case,
where the channel remains relatively stable, it makes
sense to maintain a longer history of performance at dif-
ferent bit rates to smooth over periods of short-term fad-
ing or contention. Such a long-history approach falters
when the device is mobile, because in the mobile case
it makes more sense to keep only a short history, re-
act quickly to errors, and perhaps sample other rates ag-
gressively to track the faster changes typical of a mobile
channel.

This observation motivates a hint-aware bit rate adap-

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 285

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
on

di
tio

na
l L

os
s

Pr
ob

ab
ilit

y
P(

i|i-
k)

Lag k (packets)

Moving
Static

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100

M
ut

ua
l I

nf
or

m
at

io
n

Time between packets (ms)

Moving
Static

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

M
ut

ua
l I

nf
or

m
at

io
n

Time between packets (ms)

Slow
Normal

Fast

Figure 6: Left: Given a packet loss, the conditional probability of losing the kth packet following the loss, as a function
of the lag, k. The unconditional loss probability for both the static and mobile cases was around 23%. Middle: Mutual
information between packets separated by x ms specified by the x-axis value. In the static case, there is essentially
no mutual information between packets, while in the mobile case, packets separated by less than 10 ms show a high
degree of dependence. Right: Mutual information between packets separated by x ms for various walking speeds.

RapidSample(lastbr,gotack) :
if (!gotack) then

f ailedTime[lastbr] ← CurrTime()
if (sample) then

br ← oldbr
else

br ← max{0, lastbr−1}
sample ← 0

else
sample ← 0
if (CurrTime() - pickedTime[lastbr] > δsuccess) then

br ← max{i | ∀ j ≤ i :
CurrTime()− f ailedTime[j] > δ f ail}

sample ← 1
oldbr ← br

else br ← lastbr
if br �= lastbr

pickedTime[br] ← CurrTime()
return br

Figure 7: The RapidSample bit rate adaptation algorithm.
It is called for each packet with lastbr describing the bit
rate index and gotack describing whether an ack was
received for the previous packet. Time is reported in
elapsed milliseconds.

tation scheme, which adapts differently depending on
whether or not the nodes are moving. By using external
sensor hints rather than making decisions based solely
on network information, our goal is to combine schemes
tuned separately for the static and mobile cases. The ap-
proach requires no training to achieve good performance.

With these remarks in mind, we introduce RapidSam-
ple, a frame-based rate adaptation protocol designed for
a channel undergoing rapid changes due to movement.

3.1 The RapidSample Protocol

The RapidSample protocol is shown in Figure 7. It starts
with the fastest bit rate. If a packet fails to get a link layer
ACK, the protocol switches to the next lowest rate and
records the time of the failure. After success at a partic-
ular bit rate for more than δsuccess milliseconds (5 in our
implementation), the sender attempts to sample a higher
bit rate. It chooses the fastest bit rate: (a) that has not
failed in the last δ f ail milliseconds (10 in our implemen-
tation), and (b) for which there is no slower bit rate that
has failed within this interval. If the faster rate fails, it re-
verts to the original rate; if it succeeds, it adopts this new
faster rate.

There are four ideas motivating RapidSample. First,
we observed that when a packet fails while a node is
moving, the probability of the next few packets failing at
this bit rate is high (Figure 6, left). Therefore, the pro-
tocol immediately reduces the bit rate. Second, as we
showed in our discussion of Figure 6 (middle), the mu-
tual information between the the fate of packets x mil-
liseconds apart becomes small when x is around 10–15
ms for all the indoor movement speeds we tested. We
use a value of 10 ms for δ f ail as the minimum time to
wait before sampling a previously failed rate, and before
sampling any rate higher than the failed rate.

Third, RapidSample attempts higher rates after only
a small number of successes at the current rate. We set
δsuccess to be less than δ f ail . In general, it is difficult to
tell if the channel conditions are improving or degrad-
ing, but under movement, we posit that if conditions are
not degrading, they are probably improving because it is
unlikely that they are invariant. Thus, even a few suc-
cesses at one rate provide enough confidence to sample
higher rates that have not recently failed. Fourth, if we
are wrong about the channel improving, and a higher rate
fails, we immediately revert to the original rate.

5

286 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.2 Hint-Aware Bit Rate Adaptation Protocol
The Hint-Aware Rate Adaptation Protocol implemented
at the sender uses RapidSample when a node is mov-
ing and uses SampleRate [3] when a node is static. It
relies on movement hints from the receiver to switch be-
tween the two. We use SampleRate for the static case as it
performed better than other frame-based and SNR-based
protocols in various environments (see Section 3.3).

3.3 Evaluation
We use both trace-driven simulation and testbed experi-
ments to evaluate our hint-aware rate adaptation scheme.

3.3.1 Trace-driven Simulation
To replicate the same mobility pattern between different
experiments, we used trace-driven simulation—feeding
real-world experimental data to a wireless simulator, al-
lowing for both reproducibility and realism. We used the
same experimental architecture as [25], which modified
the ns-3 network simulator (v3.2) to read in experimental
traces describing, for each 5 ms time slot, the fate of each
packet sent at each bit rate during that time slot. This
setup bypasses the physical layer’s propagation model,
instead referencing the trace file to determine if a packet
should be received successfully.

To collect the traces, we configured a Linux laptop as a
sender. It ran the Click router using the MadWiFi 802.11
driver, which in turn used an Atheros 802.11 chipset. The
laptop sent a constant stream of 1000 byte packets, cy-
cling through the 802.11a OFDM bit rates of 6, 9, 12,
18, 24, 36, 48, and 54, in round-robin order. Each cy-
cle through all 8 bit rates took approximately 5 ms. In-
doors, we used 802.11a to minimize interference with
local infrastructure networks. We configured a second
laptop with the same hardware to act as a receiver, log-
ging every received packet. This laptop was additionally
equipped with a SparkFun serial accelerometer for move-
ment hints.

We collected several traces from four different envi-
ronments for static and mobile scenarios: 1) an office
setting with no line-of-sight between the sender and re-
ceiver, 2) a long hallway with line-of-sight between the
nodes, 3) an outdoor setting with a lightly crowded out-
door pavement area, and 4) a vehicular setting where the
sender is stationary on the roadside and the receiver is in
a moving car near MIT (an urban area).

We evaluated the following frame-based bit rate
adaptation protocols: RapidSample, SampleRate [3],
RRAA [26], and our hint-aware method that switches be-
tween RapidSample and SampleRate, depending on the
sensor hint. We also evaluated two SNR-based rate adap-
tation protocols: RBAR [7] and CHARM [8]. For both
these schemes, we trained the protocol for the operating
environment. We also assumed that the sender has up-
to-date knowledge about the receiver SNR. Finally, we

compared our protocol to SoftRate [25], a bit rate adap-
tation scheme that uses SoftPHY hints from a modified
physical layer and which can adapt the bit rate on a per-
packet basis without requiring training. For this compar-
ison we used the traces from [25].

Figure 8 shows the performance of the hint-aware pro-
tocol compared to the other rate adaptation protocols for
three of the four environments (we discuss the vehicu-
lar setting later in this section). For each environment,
we collected 10–20 traces. Each trace is 20 seconds long
with 50% static and mobile periods. The receiver was
static for 10 seconds and mobile for 10 seconds in each
trace. The workload we used was TCP. The graph shows
the average TCP throughput of all the schemes as a frac-
tion of the throughput obtained by the hint-aware proto-
col. The error bars show the 95% confidence interval. In
every environment, the hint-aware protocol obtained sig-
nificant performance gains. It improved over SampleRate
by 23% to 52% on average, over RRAA by 17% to 39%,
and over RBAR by 11% to 47%. We do not show the
numbers for CHARM as the performance of RBAR and
CHARM was similar in all cases with RBAR performing
slightly better.

We also evaluated the different protocols separately
for mobile and static scenarios. For each scenario, we
collected ten 20-second traces in each of the test envi-
ronments. Figure 9 shows the average TCP bulk trans-
fer throughput of all the schemes as a fraction of the
throughput obtained by RapidSample, in the mobile case.
RapidSample performed significantly better than other
schemes in every environment. It obtained up to 75%
better throughput on average than SampleRate and up to
25% better than other protocols. It achieved about 28%
more throughput than SampleRate, 36% more through-
put than RRAA and nearly 2× more throughput than the
SNR-based protocols. These performance gains come
from RapidSample’s ability to cope up with the rapid
fluctuations in the channel conditions when a node is mo-
bile.

On the other hand, RapidSample is the worst-
performing protocol in the static case, as shown in Fig-
ure 10. It achieved 12% to 28% lower average throughput
compared to SampleRate and up to 18% lower through-
put compared to RRAA. The poor performance is be-
cause RapidSample aggressively reduces the rate even
on a single loss and frequently tries to sample higher
rates even when the channel conditions are not changing.
Figure 10 also shows that SampleRate usually achieved
higher throughput than other protocols when the nodes
are static. Hence, we decided to use SampleRate for the
static case in our hint-aware rate adaptation protocol.

We also measured the performance of RapidSample in
a vehicular setting, where the sender was stationary on
the roadside and the receiver was placed in a moving car.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 287

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

OutdoorHallwayOffice

M
ea

n
Fr

ac
tio

n
of

H

in
t-A

w
ar

e
Pr

ot
oc

ol
 T

hr
ou

gh
pu

t

Hint-Aware
RapidSample
SampleRate

RRAA
RBAR

Figure 8: Hint-aware protocol per-
forms better in mixed-mobility set-
ting.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Office Hallway Outdoor

M
ea

n
Fr

ac
tio

n
of

R

ap
id

Sa
m

pl
e

Th
ro

ug
hp

ut

RapidSample
SampleRate

RRAA
RBAR

CHARM

Figure 9: In mobile scenarios,
RapidSample performs significantly
better than other protocols.

 0

 0.5

 1

 1.5

 2

OutdoorHallwayOffice

M
ea

n
Fr

ac
tio

n
of

R

ap
id

Sa
m

pl
e

Th
ro

ug
hp

ut

RapidSample
SampleRate

RRAA
RBAR

CHARM

Figure 10: In the static case, Rapid-
Sample performs poorly compared
to the other schemes.

We collected 10 traces, each 10 seconds long. Figure 11
shows the results, where the traffic workload is UDP (at
a rate of 36 Mbps), as TCP repeatedly times out when
faced with high packet loss rate [6]. Similar to other mo-
bile environments, RapidSample outperformed the other
schemes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Vehicular

M
ea

n
Fr

ac
tio

n
of

R

ap
id

Sa
m

pl
e

Th
ro

ug
hp

ut

RapidSample
SampleRate

RRAA
RBAR

CHARM

Figure 11: In vehicular environments, RapidSample
achieves significantly higher throughput compared to
other schemes.

Finally, in Figure 12, we compare RapidSample to
SoftRate, SampleRate, and RRAA, using the walking
traces and ns-3 protocol implementations from [25].
RapidSample performs nearly as well as SoftRate on
these traces, without the aid of SoftPHY hints, further
confirming the effectiveness of RapidSample in mobile
settings. As a result, our hint-aware protocol performs
nearly as well as SoftRate, but is readily deployable on
many of today’s commodity devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

M
ea

n
Fr

ac
tio

n
of

R

ap
id

Sa
m

pl
e

Th
ro

ug
hp

ut

RapidSample
SoftRate

SampleRate
RRAA

Figure 12: RapidSample performs almost as well as Sof-
tRate on traces collected while walking.

3.3.2 Testbed Experiments
Trace-driven evaluation allows us to compare the perfor-
mance of various protocols, but there might be a con-
cern that the method used does not correctly account for
the channel variations observed in practice. To show that
the scheme can work in real-time, we deployed a testbed
of Android Nexus One smartphone receivers commu-
nicating with a MadWiFi-based Linux laptop sender.
We implemented the frame-based rate adaptation proto-
cols (SampleRate, RRAA, RapidSample, and our hint-
aware protocol) on the laptop as user-level Click mod-
ules; we did not implement the SNR-based protocols
as they required SNR feedback from the receiver. The
hint-aware protocol used the Sensor Hint Service on the
laptop to monitor for movement hints from the smart-
phone. It switched between SampleRate and RapidSam-
ple schemes based on movement hints. The implemen-
tation on the smartphone instructed the Sensor Hint Ser-
vice to send movement hints to the laptop using UDP.
The movement hints were sent every second and on hint
changes (“static to moving” or “moving to static”).

We configured the laptop to send 802.11 data pack-
ets to a smartphone’s wireless MAC address. Upon re-
ceiving the packet, the phone responds with a link-layer
ACK. We put the phone in tethering mode, to disable the
802.11 power-saving mode that was on by default. We
measure the performance of bit rate adaptation based on
the received ACKs.

We evaluated the protocols in two environments: an
office setting and a long hallway setting, the same as in
the trace-based evaluation. In each environment, we used
10 distinct mixed-mobility patterns and measured the
throughput of each scheme. In each mobility pattern, a
user walked in a predefined trajectory at a constant speed
and stayed static at predefined locations for predefined
amounts of time. Each such trial took 45–90 seconds to
complete and had an equal amount of static and walking
periods. The phone was held by the user in the same way
across experiments. Since it was hard to exactly replicate
the same mobility pattern, we repeated each trial 3 times

7

288 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and report the average and the standard deviation. A trial
consists of running SampleRate, RRAA, RapidSample
and the hint-aware protocol back-to-back for the same
mobility pattern. Three back-to-back trials correspond to
one experimental run.

Because the smartphone only had a 802.11b/g card, we
did all these experiments in the relatively busy 802.11b/g
channels. To minimize interference from the existing ac-
cess points, we ran the experiments late at night. In every
experiment, we sent a stream of 1000-byte packets back-
to-back. The bit rate of each outgoing packet was con-
trolled by the rate adaptation scheme. We measured the
throughput based on the received link-layer ACKs. The
maximum throughput we were able to obtain from the
user-level Click implementation was around 27 Mbps.

Figure 13 (left) shows the measured throughput of dif-
ferent protocols in the two environments. For each en-
vironment, we plot the average throughput and standard
deviation (as error-bars) for 10 different runs. The charts
show the results sorted by the throughput of the hint-
aware scheme.

In both environments, the hint-aware protocol consis-
tently outperforms the other schemes. In the office set-
ting, it improved over SampleRate by between 10% and
76%, over RRAA by between 8% and 100%, and over
RapidSample by between 11% to 41%. On average, it
obtained 20% more throughput than SampleRate, 22%
more throughput than RRAA, and 19% more through-
put than RapidSample. In the hallway setting, the hint-
aware protocol obtained 9%–49% more throughput than
SampleRate, 8%–80% more throughput than RRAA, and
5%–85% more throughput than RapidSample. On aver-
age, it improved over SampleRate, RRAA, and Rapid-
Sample by 17%, 37%, and 22% respectively.

Compared to trace-driven results, SampleRate per-
formed better than RRAA in these testbed experiments,
especially in situations where the throughput of all the
schemes was low. RRAA performed better when the
throughput was higher. Otherwise, the testbed results
were fairly consistent with the trace-driven simulations.

During each trial, for every packet sent, in addition to
logging if an ACK was successfully received, we logged
the movement hint as well. We processed these traces
and used the movement hint to split them into static and
mobile phases and measured the throughput separately
for each scenario. Figure 13 (middle) shows the average
throughput obtained during the mobile phases of the cor-
responding experimental runs shown in Figure 13 (left).
In mobile scenarios, RapidSample performs significantly
better than SampleRate and RRAA in both the environ-
ments. On average, it improved over SampleRate by 61%
and 40% in the two environments and over RRAA by
16% and 39%. The relative performance of SampleRate
was worse in the office setting compared to the hallway

setting. This result is consistent with what we found in
the trace-driven evaluation. Similarly, Figure 13 (right)
plots the mean throughput for the static phases. As found
in the trace-based simulation, SampleRate is the best pro-
tocol in the static case and RapidSample performed much
worse than SampleRate and RRAA.

3.4 Discussion
In our scheme we use only a binary movement hint that
indicates whether the device is stationary or mobile. An
important conclusion from our results is that even such
a simple hint can produce significant performance im-
provements. An obvious future direction is to general-
ize our scheme to use additional hints such as speed and
heading. Using Figure 6 (right), it is possible to fine-tune
parameters in RapidSample for different speeds. While
it is easy to get a movement hint, measuring speed ac-
curately indoors using the sensors available on a smart-
phone is a challenging unresolved problem.

The use of hints for bit rate adaptation may improve
PHY-assisted techniques such as SoftRate [25], which
perform significantly better than existing protocols in the
mobile case using an instantaneous estimate of the bit
error rate. Augmented with a movement hint, however,
they may be able to adapt their behavior in the static case
to average these estimates and avoid reacting to short-
term fading.

One benefit of using the accelerometer for a move-
ment hint is that it detects even small movements of the
device—e.g., a user moving a smartphone from his head
to pocket—which can change the channel conditions. Of
course, it is also possible that the channel conditions can
change due to changes in the surrounding environment,
even if the device is stationary. If such changes are short-
lived, then SampleRate, the protocol we use during sta-
tionary periods, performs well.

Our trace-driven evaluation shows that the hint-aware
protocol performs better than trained SNR-based adap-
tation in all the tested environments. One question that
might arise is whether a protocol could simply use in-
formation about changes in the observed RSSI values to
infer movement and use a protocol like RapidSample in
that case, without relying on external sensor hints. We
explored this approach and found several problems with
it. First, RSSI values showed large variations even when
a node was static. Second, the magnitude of these varia-
tions depended strongly on the environment and the de-
vice. It also varied significantly across time and across
different RSSI ranges (low RSSI ranges showed more
fluctuations than high RSSI ranges). Third, the reported
RSSI was extremely sensitive to movement in the en-
vironment and triggered many false hints. Hence, us-
ing RSSI was more error-prone than using explicit hints.
Furthermore explicit hints avoid the need for training. It

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 289

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

Office Hallway

SampleRate
RRAA

RapidSample
Hint-Aware

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

Office Hallway

SampleRate
RRAA

RapidSample

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

Office Hallway

SampleRate
RRAA

RapidSample

Figure 13: Throughput of the different bit rate adaptation protocols. The left-most chart shows all the protocols with
one data point per run; the error-bars are the standard deviations. There are ten runs inside offices and ten in the
hallways, with each run lasting 45–90 seconds. The middle chart shows the results considering only times when the
device was moving, while the right-most chart shows the results from the same runs considering only times when the
device was static. In these experiments, the hint-aware protocol was better than the next-best protocol SampleRate
by between 20% (office) and 17% (hallway), with a mean overall improvement of 19%. When mobile, RapidSample
outperformed SampleRate by 61% (office) and 40% (hallway), with a mean overall improvement of 50%.

is, of course, conceivable that one could combine RSSI
and sensor hints to further improve bit rate adaptation;
achieving this goal without environment-specific train-
ing remains an open question.

4 HINT AWARE AP ASSOCIATION

Most wireless clients associate with the AP with the
strongest RSSI (SNR) value. When the RSSI falls below
some fixed threshold, the client triggers a handoff, where
it scans all the channels and associates with the AP with
the strongest RSSI. We refer to this approach as the stan-
dard scheme.1 As others have observed [14, 18], the stan-
dard scheme is sub-optimal in many settings, particularly
when the client is mobile. In this section, we develop a
hint-aware association protocol that performs better than
the standard scheme.

In our scheme, a node detects whether it is indoors or
outdoors using a GPS lock hint. If it is indoors, its associ-
ation strategy uses the “walking” hint (Section 2.2) to de-
tect motion. The protocol may be configured at run-time
to either maximize throughput (Section 4.1), or minimize
the number of handoffs (Section 4.2); the former is use-
ful for bulk transfers, while the latter is useful for inter-
active real-time applications such as telephony for which
the hundreds of milliseconds spent during a handoff will
disrupt communication, increasing both jitter and packet
loss [9] (handoffs took approximately 600 ms on the
Android smartphones used in our experiments). When a
node is outdoors, it implements a similar strategy, using
the position and speed as hints. We do not evaluate the
outdoor case in this paper.

We implemented our association protocol as an eas-
ily deployable background Android application. Below,
we describe the two modes of the protocol and evaluate
their performance. Our experimental results with indoor
mobility show a median throughput increase of 30% and

1Some association schemes do include periodic scans, but they are
done only every few minutes, and never while transferring data.

a median reduction of 40% in the number of handoffs
compared to the standard scheme.

4.1 Using Hints to Maximize Throughput
We present a hint-aware AP association strategy for max-
imizing throughput. The strategy builds on three obser-
vations. First, when a client is moving, the probability
that a new AP with a stronger signal enters its range is
higher than when the client is static. Hence, when mo-
bile, a client should scan periodically to discover better
APs: the throughput gain of associating with a better AP
is likely to be higher than the throughput lost to the scan.
The periodicity depends on the speed of the client and
the expected range of the typical AP in the deployment.

Second, when a client is stationary, it is less likely
that new, better, APs will be discovered. In this case, the
penalty of a scan is not worth incurring.

Third, when a client stops moving, it may remain
static for some period of time. If so, it is worth perform-
ing a scan on this transition because the AP with the
strongest RSSI is likely (though not guaranteed) to re-
main optimal until the client moves again. When static, a
client should re-scan and re-associate only when it starts
moving again, or when the current AP’s RSSI becomes
weaker than some threshold. In our experiments with the
standard scheme, when a client moves from one location
to another nearby location, in many cases it remains as-
sociated with the original AP (because the signal strength
remains above the handoff threshold), reducing through-
put. By rescanning immediately following a transition
from mobile to static, we avoid this problem.

Our protocol is simple. When the association daemon
running on the client detects that the client is walking, it
scans periodically, every Tsc seconds, for the AP with the
highest RSSI. If the client goes from the moving to static
state, it performs a scan immediately and associates with
the strongest AP. When it is static, it performs no scans,
unless the RSSI drops below a threshold or if the client
starts moving.

9

290 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

C
D

F

Ratio of the hint-based scheme
 throughput to the standard scheme

Figure 14: CDF of the ratio of throughput obtained by
the hint-aware scheme to the throughput obtained by the
standard scheme, calculated for 30 traces.

The ideal value of Tsc is the time it is likely to take
for the current AP to no longer be the best one while
the user is moving—a factor which depends on how APs
are deployed and how fast the user is moving. To get a
sense for what it might be in practice, we wrote a data
collection application on the Android platform that scans
every second, recording the signal strength of every AP it
hears. It also records the walking and heading hints with
each scan. We convert each RSSI value to a throughput
value using a rate map as in [11].

We collected several such traces with different move-
ment patterns and pedestrian speeds indoor in two dif-
ferent buildings on the MIT campus. We found that at
pedestrian speeds, a value of Tsc = 8 seconds maximized
throughput. In other words, 8 seconds is approximately
the time required to walk between two adjacent APs.

Performance evaluation. To quantify the throughput
gains of our hint-aware protocol, we collected 30 walk-
ing traces in MIT hallways. These traces are different
from the ones we analyzed to determine the value of Tsc,
but the setting was the same. We had the client transition
from moving to stationary states randomly, with roughly
equal time spent in each state.

We performed a trace-based evaluation of our hint-
aware association protocol compared to the standard
scheme, on these traces. Figure 14 shows the CDF of
the ratio of throughput obtained by our scheme to the
throughput obtained by the standard scheme. The median
throughput improvement is about 30%.

4.2 Using Hints to Minimize Handoffs
We now present a hint-aware AP association strategy
for minimizing the number of handoffs, which is use-
ful for applications such as VoIP. Our protocol requires
lightweight training that can be deployed as a back-
ground application on standard phones. The protocol
uses the observation that to minimize handoffs, the AP
with the strongest RSSI is not necessarily the AP that will
yield the longest-lasting connection. If a client is moving
towards an AP, for example, it is likely to stay connected
longer than if it is moving away, even if the RSSI at the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
D

F

Ratio of number of handoffs in the
 hint-based scheme to the standard scheme

Figure 15: CDF of the ratio of number of handoffs us-
ing the heading-aware handoff scheme to the standard
scheme calculated over the 30 testing tracks.

time of the scan is not the highest among the set of ob-
served APs. Our protocol uses heading hints to aid such
decisions.

To train our protocol for a specific environment, we
use the Android data collection application described
earlier. Every second, this application logs the device’s
heading along with a list of APs and their signal
strengths. We use this data to compute a model that maps
from a <heading, current AP> pair to a preferred AP,
where the preferred AP is the AP to associate with when
handing off from the current AP at the given heading to
maximize connection time.

Once trained, the protocol works as follows. If it de-
tects the client is stationary it uses the standard scheme.
If the protocol detects the client is walking, it extracts a
heading hint. It then queries the model using this heading
hint and its currently associated AP. The model looks up
similar <heading, AP> pairs, and returns the AP that the
client should associate with once the current AP’s signal
strength drops below the handoff threshold. The model
attempts to select the AP that will maximize connection
time. If the AP returned by the model is not seen during
the scan for handoff, the protocol defaults to the standard
method of choosing the AP with the highest RSSI.

To evaluate our protocol, we collected 60 tracks using
several Android phones, walking through various MIT
hallways. For each track, the user chose an arbitrary path
in the building complex, and walked between 3–5 min-
utes. We split the data into training and testing sets—
training using the former and testing using the latter. Fig-
ure 15 shows that the number of handoffs in our scheme
is 40% lower than in the standard scheme. It also shows
that for over 90% of the traces, our protocol yielded an
improvement of at least 10%.

5 TOPOLOGY MAINTENANCE

In this section, we study the use of hints to improve the
accuracy and efficiency of topology maintenance in wire-
less mesh (and sensor) networks. Here, each node often
maintains a list of neighbor nodes along with the quality
of connectivity to each neighbor. The standard method

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 291

for maintaining neighbors and link quality information in
this setting is for a node to send periodic probe packets.
Each recipient maintains the packet loss rate of packets
from its neighbor, and may exchange this information in
the routing protocol’s messages. A key parameter is the
probing rate: how often should these periodic messages
be sent? In practice, a node may send these messages at
more than one bit rate to produce link quality information
at different bit rates.

In determining the frequency of these probes, two op-
posite considerations must be reconciled. On the one
hand, sending frequent probes allows the nodes to main-
tain an accurate estimate of link qualities and identify
changing topologies. Maintaining accurate values for this
metric is important to avoid packet losses, which can in-
crease the number of retries and also incorrectly slow
down the bit rate. On the other hand, frequent probe
packets themselves use large chunks of the bandwidth
and increase network contention. This tradeoff becomes
even more acute in mobile settings, where link quality
changes rapidly. For instance, Figure 16 (left) captures
the channel behavior that we observed in a mixed station-
ary/mobile setting. This plot shows the packet delivery
ratio when the user is moving (derived from our move-
ment hint) over time for one specific trace. To calculate
the delivery ratio, we bucketed time into intervals of 1
second, during which time the sender transmits approxi-
mately 200 packets at each bit rate. The key observation
is that motion causes the packet delivery ratio to fluctu-
ate, with many of the jumps in the delivery ratio exceed-
ing 20%.

Our idea is simple: because channel conditions vary
much more in the presence of movement, probe fre-
quently when a node receives movement hints from its
neighbor or itself moves, and probe less often when the
nodes are static.

5.1 Measurement
To evaluate the potential gains, we gathered data in an
indoor environment where the sender was static and the
receiver was either at a fixed location (stationary) or
was moved at walking speeds (mobile). The sender sends
probes at a rate of 200 probes per second. We calcu-
late the actual delivery probability over a sliding win-
dow of 10 packets from these rapidly sent probes, sub-
sampling the outcome of these probes to determine the
delivery probability at various lower probing rates. We
collected 20 stationary and 20 mobile traces, each 180
seconds long. We aggregate the results of the static cases
into one set, and the mobile cases into another set. For
each set, we calculate the error in the delivery proba-
bility estimate, which depends on the probing rate, as
|Observed probability−Actual probability|.

Figure 16 (middle) shows the average error in deliv-

ery probability calculated from all the error samples for
the static case as a function of the probing rate; the error
bars show the standard deviations. Even a low probing
rate of 1 packet every 10 seconds has an error of only
11%, suggesting that the default probing rate of many
wireless networks of 1 probe/s may be too high. In con-
trast, Figure 16 (right) shows that the error in delivery
probability is much higher in the mobile case, exceed-
ing 35% even at a probing rate of 1 packet every 2 sec-
onds. To achieve an error of about 10%, the mobile case
requires a probing rate of 5 probes per second, which
is more than 25× higher than for the static case at the
same error rate. For a desired error of 5%, the mobile
case needs 10 probes/s, while the corresponding rate for
the static case is 0.5 probes per second, a 20× difference.

To understand the reason for this difference, consider a
representative 25-second mobile trace in Figure 17 (left).
The estimated probability does not track the actual prob-
ability except at a high probe rate. This differs from what
is observed in the static case.

5.2 Hint-Aware Topology Maintenance Protocol

We implemented a hint-driven topology maintenance
protocol using rates of 1 and 10 probes per second for
the stationary and mobile cases, respectively. The proto-
col continues to send at the fast probe rate for one second
after the node stops moving in order to estimate the cor-
rect metric, before slowing the probe rate down.

Figure 17 (right) compares the performance of our
protocol to the standard 1 probe/s protocol. We also
plot the movement hint, with a raised value indicating
movement. Notice that our adaptive protocol maintains
an accurate assessment of the actual delivery probabil-
ity throughout the experiment, while the non-adaptive 1
probe/s strategy lags by multiple seconds. Note that in
some cases, the 1 probe/s approach mis-estimates the de-
livery probability by more than 30%, whereas, the adap-
tive estimator is always within 5%.

A simple analysis shows how link mis-estimation de-
grades throughput. Suppose a node uses ETX [5] to pick
the next-hop. Suppose further that there are two choices,
one with link delivery probability p1 and the other with
probability p2; without loss of generality, let p1 > p2.
ETX would choose link 1, with metric 1/p1.

Let the error in the average link delivery probability
estimate be δ (Figure 16 (right) shows that δ > 0.25
in some cases). The node would pick the wrong link if
p2 + δ > p1 − δ. In this case, the extra number of trans-
missions relative to the optimal value is 1

p2
− 1

p1
. The

overhead relative to the optimal is p1
p2

− 1, which can
be large for practical parameters; e.g., if p1 = 0.8 and
p2 = 0.6, the throughput reduction is 33%.

11

292 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

D
el

iv
er

y
Pr

ob
ab

ilit
y

H
in

t

Time

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2 2.5

Av
er

ag
e

Er
ro

r I
n

D
el

iv
er

y
Pr

ob
ab

ilit
y

Number of probes/s

Static

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

Av
er

ag
e

Er
ro

r I
n

D
el

iv
er

y
Pr

ob
ab

ilit
y

Number of probes/s

Moving

Figure 16: Left: Packet delivery rate for 6 Mbps packets over time; the raised dashed hint line indicates the device is
moving. Middle & Right: Average error in delivery probability versus probing rate for static and mobile cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

D
el

iv
er

y
Pr

ob
ab

ilit
y

Time

Actual
1 Probe/s

5 Probes/s
10 Probes/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60
D

el
iv

er
y

Pr
ob

ab
ilit

y

H
in

t

Time

Actual
Adaptive

1 Probe/s
Hint

Figure 17: Delivery probability over time for the mobile trace (left) and for a combined static and mobile trace with
the dots showing the movement hint (right).

6 VEHICULAR NETWORK PATH SELECTION

We now investigate whether hints can improve path se-
lection in vehicular mesh networks. Networking strate-
gies in this setting are complicated by dynamic neighbor
tables, which can generate a high rate of broken paths.
In general, broken paths increase overhead and latency.
For this reason, selecting paths with the longest expected
connection time may be a good idea.

6.1 Connection Time Estimate Metrics
We present three connection time estimate (CTE) metrics
that use heading and speed hints to estimate whether a
path in a vehicular network is likely to be long-lived. Let
the ordered sequence (u1, ...,u j) denote a j−1 hop path,
dh(ui,ui+1) denote the difference in heading of nodes ui
and ui+1 (from 0 to 180 degrees), and s(ui) denote the
speed of ui (in m/s). Our three CTE metrics, called cte1,
cte2, and cte3, are defined for a path R = (u1, ...,u j):

cte1(R) = ∏
ui,ui+1∈R

1
dh(ui,ui+1)

cte2(R) = min
ui,ui+1∈R

(

1
dh(ui,ui+1)

)

cte3(R) = cte1(R) · 1
1+∑ui∈R s(ui)

The metrics use the assumption that a small differ-
ence in heading indicates nodes are moving in the same
direction on the same road, and are therefore likely to

stay connected longer. The cte3 metric includes the addi-
tional assumption that speed is inversely correlated with
connection duration. Because cte1 multiplies the inverse
of heading differences at each hop, it is biased toward
single-hop paths. The cte2 metric, by contrast, evaluates
a path only by its worst hop, scoring multi-hop paths
higher than cte1. The cte3 metric multiples the inverse
of the sum of node speeds with the cte1 value. It follows,
for example, that doubling the speed of each node on a
path approximately halves its cte3 score.

To calculate these metrics, each node appends its head-
ing and speed to its mesh neighbor probes. For all three,
larger values predict longer-lived paths. These metrics
are simple, and require no knowledge of road geometry.

6.2 Evaluation
We evaluated these metrics over a collection of vehicu-
lar mobility traces generated from raw position samples
gathered from vehicles in the CarTel project over the du-
ration of a year in the Boston metro area, map-matched to
an underlying road network [23]. We combine a collec-
tion of traces into a network, and then simulate, for each
second, the position of every vehicle in the network, ad-
justing the traces so they all appear to begin at the same
time. We consider two vehicles to have a link at a given
time if and only if they are within 100 meters at that time
in their traces (we use geographic proximity as a crude
surrogate for connectivity).

We measured the relationship between CTE values
and path duration over both one and two hop paths.

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 293

Specifically, we studied 15 networks consisting of 100
vehicles each. Each simulation lasted for 120 seconds.
For each of the over 190,000 routes observed in these
simulations, we calculated all three CTE metrics when
the path is first formed, and the total duration of the path
(in seconds) before it breaks. For each metric, we bucket
the CTE scores (into buckets of size 1/20 for cte1, 1/10
for cte2, and 1/200 for cte3), and calculate the median
link duration of the paths in each bucket. In Figure 18
we plot these durations for the first three buckets (in de-
scending order of associated CTE score) for each CTE
metric. The dashed line indicates the median duration
over all paths.

The figure shows that all three CTE metrics provide an
effective filter for long-lived paths. If a path’s cte1 value
falls into the first bucket, or if its cte2 or cte3 values fall
into the first two buckets, then the path is likely to be
long-lived. The median duration of paths in these buckets
is 2–5× longer than the median over all paths.

Identifying long-lived paths might not be a good strat-
egy if the selection mechanism is somehow biased to-
ward routes with low throughput. To evaluate this pos-
sibility, we use distance as a rough approximation of
achievable throughput (we only have position data from
the networks used in this evaluation). We plot in Fig-
ure 19 the CDF of time versus distance for the single-hop
paths in the first bucket of cte1, and the first two buckets
of cte2, and cte3. For comparison we also plot the func-
tion for all single-hop paths. This figure confirms that
our CTE metrics show no bias favoring links of larger
distances (lower throughput).

7 LIMITATIONS

Energy. Sampling sensors consumes energy and reduces
the battery lifetime of a mobile device. Figure 20 shows
the battery lifetime of an Android G1 device when vari-
ous hints are sampled at the highest supported rates. No-
tice that the accelerometer and compass consume much
less energy than GPS. To alleviate energy concerns, pro-
tocols should extract hints only when transferring data.
Moreover, sensors like the accelerometer on a mobile
device are usually always on by default (for instance,
to continuously detect changes in screen orientation), so
extracting hints from them should consume no extra en-
ergy. Triggered sensing [10] can further reduce the en-
ergy consumed by some sensors. Here, a low-power sen-
sor turns on or off a high-power sensor based on certain
events; for example, GPS can be turned on only when
the accelerometer detects movement. We can also dy-
namically reduce the sampling rate of sensors to reduce
the energy cost [22, 23, 24], and replace expensive GPS
with lower-energy position sensors like GSM radios, as
in CTrack [24]. In addition, sensor hints can be turned

off when the battery is low and protocols can revert to a
hint-unaware scheme.

Calibration across devices. The disparity between
sensors across different devices and platforms might
pose a challenge for hint-aware protocols to work with-
out sensor calibration and tuning. We have implemented
the Sensor Library for Android Nexus One, Android
G1, and iPhones. The movement hint worked seamlessly
across these platforms, but the walking hint detector [22]
required a little tuning for each type of device.

Privacy. Sharing mobility hints with other nodes
might expose private information. For instance, by con-
tinuously monitoring movement and heading hints, it
might be possible to track a user’s behavior more accu-
rately than by just monitoring wireless packets from a
device (e.g., I might be able to determine more reliably
that you left your office because of the movement hints
broadcast by your device); one might alleviate this prob-
lem by having all communication go via a (trusted) AP,
and encrypting the hints sent to the AP.

8 RELATED WORK

To the best of our knowledge, ours is the first practi-
cal work to explore the benefits of systematically inte-
grating sensor hints into a wireless network architecture.
Related work that uses information outside the wireless
networking stack has mostly focused on wireless power
saving. For instance, Wake on Wireless [17] uses an ad-
ditional low power radio that can be used for signaling to
wake up the wireless radio. Cell2Notify [1] uses the cel-
lular radio on a smartphone to wakeup the WiFi interface
for VoIP calls thus reducing the energy consumption of
WiFi. BlueFi [2] uses GSM towers and nearby Bluetooth
devices to predict if WiFi connectivity is available, hence
achieving power savings.

In addition to power savings, hints from external sen-
sors for wireless protocols have been used, usually in
vehicular network designs. Mobisteer [12] uses direc-
tional antennas in vehicles and location hints from GPS
to find the best antenna orientation and the AP to asso-
ciate with. Breadcrumbs [13] predicts the best AP to as-
sociate with using a mobility model built using GPS co-
ordinates. CARS [16] is an inter-vehicle bit rate adap-
tation protocol that uses knowledge of the speed and
distance between communicating cars to pick a bit rate.
Their method collects a large amount of training data for
an environment to determine the best bit rate to use at dif-
ferent speeds and distances; in contrast our hint-aware bit
rate adaptation method does not require any such training
and performs well across a variety of conditions.

9 CONCLUSION

This paper introduced a network architecture that uses
sensor hints to augment and improve wireless protocols.

13

294 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

cte1 cte2 cte3M
ed

ia
n

R
ou

te
 D

ur
at

io
n

(S
ec

on
ds

)

Three Largest Buckets (by CTE value)

Figure 18: The median route dura-
tion for the highest three CTE value
buckets. The dashed line is the me-
dian over all routes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Distance (Meters)

All Links
cte1
cte2
cte3

Figure 19: CDF of time spent at each
distance for all one-hop links, and the
one-hop links from the first cte1 bucket,
and the first two cte2 and cte3 buckets.

Hint Type Sensor Approximate
Lifetime (hr)

Movement Accel 19

Walking Accel 19

Heading Compass 18

Heading GPS 6

Speed GPS 6

Environment GPS 6

No hint extraction 22

Figure 20: Battery lifetime of
Android G1 for continuous
hint monitoring (with screen at
minimum brightness).

The key idea is to use these hints to infer the context in
which communication is occurring, and to use that con-
text to adapt the behavior of protocols. We applied this
idea to develop hint-aware protocols for bit rate adapta-
tion, access point association, topology maintenance, and
path selection in vehicular networks. Sensor hints can
also augment other protocols, as described in our earlier
position paper [15]. These include: adapting the length of
the cyclic prefix to outdoor speeds, scheduling client traf-
fic at an AP taking movement into account, preemptively
disassociating clients that have likely moved beyond the
range of an AP, and network monitoring.

ACKNOWLEDGMENTS

We thank Aditya Akella for several useful comments.
This work was supported by the National Science Foun-
dation under grants CNS-0931550 and CNS-0721702.

REFERENCES
[1] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and

R. Gupta. Wireless Wakeups Revisited: Energy Management for
VoIP Over Wi-Fi Smartphones. In MobiSys, 2007.

[2] G. Ananthanarayanan and I. Stoica. Blue-Fi: Enhancing Wi-Fi
Performance Using Bluetooth Signals. In MobiSys, 2009.

[3] J. Bicket. Bit-rate Selection in Wireless Networks. Master’s
thesis, Massachusetts Institute of Technology, February 2005.

[4] J. Camp and E. Knightly. Modulation Rate Adaptation in Urban
and Vehicular Environments: Cross-layer Implementation and
Experimental Evaluation. In MobiCom, 2008.

[5] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-throughput Path Metric for Multi-hop Wireless Routing. In
MobiCom, 2003.

[6] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet:
Vehicular Content Delivery Using WiFi. In MobiCom, 2008.

[7] G. Holland, N. Vaidya, and P. Bahl. A Rate-adaptive MAC
Protocol for Multi-Hop Wireless Networks. In MobiCom, 2001.

[8] G. Judd, X. Wang, and P. Steenkiste. Efficient Channel-aware
Rate Adaptation in Dynamic Environments. In MobiSys, 2008.

[9] A. Mishra, M. Shin, and W. Arbaugh. An Empirical Analysis of
the IEEE 802.11 MAC Layer Handoff Process. SIGCOMM
CCR, April 2003.

[10] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: Rich
Monitoring of Road and Traffic Conditions using Mobile
Smartphones. In SenSys, 2008.

[11] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill.
Designing High Performance Enterprise Wi-Fi Networks. In
NSDI, 2008.

[12] V. Navda, A. Subramanian, K. Dhanasekaran, A. Timm-Giel,
and S. Das. MobiSteer: Using Directional Antenna Beam
Steering to Improve Performance of Vehicular Internet Access.
In MobiSys, 2007.

[13] A. J. Nicholson and B. D. Noble. BreadCrumbs: Forecasting
Mobile Connectivity. In MobiCom, 2008.

[14] I. Ramani and S. Savage. SyncScan: Practical Fast Handoff for
802.11 Infrastructure Networks. In Infocom, 2005.

[15] L. Ravindranath, C. Newport, H. Balakrishnan, and S. Madden.
”Extra-Sensory Perception” for Wireless Networks. In HotNets,
2010.

[16] P. Shankar, T. Nadeem, J. Rosca, and L. Iftode. CARS: Context
Aware Rate Selection for Vehicular Networks. In ICNP, 2008.

[17] E. Shih, P. Bahl, and M. Sinclair. Wake on Wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices. In
MobiCom, 2002.

[18] M. Shin, A. Mishra, and W. Arbaugh. Improving the Latency of
802.11 Hand-offs using Neighbor Graphs. In MobiSys, 2004.

[19] Smartphone Owners Lead Rise in Mobile Internet Usage.
https://www.strategyanalytics.com/default.aspx?mod=
ReportAbstractViewer&a0=5100.

[20] More Smartphones Than Desktop PCs by 2011.
http://www.pcworld.com/article/171380/
more smartphones than desktop%25%20 pcs by 2011.html.

[21] S. H. Stovall. Basic Inertial Navigation. Naval Air Warfare
Center Weapons Division, 1997.

[22] A. Thiagarajan, J. P. Biagioni, T. Gerlich, and J. Eriksson.
Cooperative Transit Tracking Using GPS-enabled Smart-phones.
In SenSys, 2010.

[23] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Toledo,
J. Eriksson, S. Madden, and H. Balakrishnan. VTrack: Accurate,
Energy-Aware Traffic Delay Estimation Using Mobile Phones.
In SenSys, 2009.

[24] A. Thiagaran, L. Ravindranath, S. Madden, H. Balakrishnan,
and L. Girod. Accurate Low Energy Map Matching For Mobile
Devices. In NSDI, 2011.

[25] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer
Wireless Bit Rate Adaptation. In Sigcomm, 2009.

[26] S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate
Adaptation for 802.11 Wireless Networks. In MobiCom, 2006.

[27] Smartphone Sales Up 24 Percent.
http://techcrunch.com/2010/02/23/smartphone-iphone-sales-
2009-gartner/.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 295

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica

University of California, Berkeley

Abstract
We present Mesos, a platform for sharing commod-
ity clusters between multiple diverse cluster computing
frameworks, such as Hadoop and MPI. Sharing improves
cluster utilization and avoids per-framework data repli-
cation. Mesos shares resources in a fine-grained man-
ner, allowing frameworks to achieve data locality by
taking turns reading data stored on each machine. To
support the sophisticated schedulers of today’s frame-
works, Mesos introduces a distributed two-level schedul-
ing mechanism called resource offers. Mesos decides
how many resources to offer each framework, while
frameworks decide which resources to accept and which
computations to run on them. Our results show that
Mesos can achieve near-optimal data locality when shar-
ing the cluster among diverse frameworks, can scale to
50,000 (emulated) nodes, and is resilient to failures.

1 Introduction
Clusters of commodity servers have become a major
computing platform, powering both large Internet ser-
vices and a growing number of data-intensive scientific
applications. Driven by these applications, researchers
and practitioners have been developing a diverse array of
cluster computing frameworks to simplify programming
the cluster. Prominent examples include MapReduce
[18], Dryad [24], MapReduce Online [17] (which sup-
ports streaming jobs), Pregel [28] (a specialized frame-
work for graph computations), and others [27, 19, 30].

It seems clear that new cluster computing frameworks1

will continue to emerge, and that no framework will be
optimal for all applications. Therefore, organizations
will want to run multiple frameworks in the same cluster,
picking the best one for each application. Multiplexing
a cluster between frameworks improves utilization and
allows applications to share access to large datasets that
may be too costly to replicate across clusters.

1By “framework,” we mean a software system that manages and
executes one or more jobs on a cluster.

Two common solutions for sharing a cluster today are
either to statically partition the cluster and run one frame-
work per partition, or to allocate a set of VMs to each
framework. Unfortunately, these solutions achieve nei-
ther high utilization nor efficient data sharing. The main
problem is the mismatch between the allocation granular-
ities of these solutions and of existing frameworks. Many
frameworks, such as Hadoop and Dryad, employ a fine-
grained resource sharing model, where nodes are subdi-
vided into “slots” and jobs are composed of short tasks
that are matched to slots [25, 38]. The short duration of
tasks and the ability to run multiple tasks per node allow
jobs to achieve high data locality, as each job will quickly
get a chance to run on nodes storing its input data. Short
tasks also allow frameworks to achieve high utilization,
as jobs can rapidly scale when new nodes become avail-
able. Unfortunately, because these frameworks are de-
veloped independently, there is no way to perform fine-
grained sharing across frameworks, making it difficult to
share clusters and data efficiently between them.

In this paper, we propose Mesos, a thin resource shar-
ing layer that enables fine-grained sharing across diverse
cluster computing frameworks, by giving frameworks a
common interface for accessing cluster resources.

The main design question for Mesos is how to build
a scalable and efficient system that supports a wide ar-
ray of both current and future frameworks. This is chal-
lenging for several reasons. First, each framework will
have different scheduling needs, based on its program-
ming model, communication pattern, task dependencies,
and data placement. Second, the scheduling system must
scale to clusters of tens of thousands of nodes running
hundreds of jobs with millions of tasks. Finally, because
all the applications in the cluster depend on Mesos, the
system must be fault-tolerant and highly available.

One approach would be for Mesos to implement a cen-
tralized scheduler that takes as input framework require-
ments, resource availability, and organizational policies,
and computes a global schedule for all tasks. While this

1

296 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

approach can optimize scheduling across frameworks, it
faces several challenges. The first is complexity. The
scheduler would need to provide a sufficiently expres-
sive API to capture all frameworks’ requirements, and
to solve an online optimization problem for millions
of tasks. Even if such a scheduler were feasible, this
complexity would have a negative impact on its scala-
bility and resilience. Second, as new frameworks and
new scheduling policies for current frameworks are con-
stantly being developed [37, 38, 40, 26], it is not clear
whether we are even at the point to have a full specifi-
cation of framework requirements. Third, many existing
frameworks implement their own sophisticated schedul-
ing [25, 38], and moving this functionality to a global
scheduler would require expensive refactoring.

Instead, Mesos takes a different approach: delegating
control over scheduling to the frameworks. This is ac-
complished through a new abstraction, called a resource
offer, which encapsulates a bundle of resources that a
framework can allocate on a cluster node to run tasks.
Mesos decides how many resources to offer each frame-
work, based on an organizational policy such as fair shar-
ing, while frameworks decide which resources to accept
and which tasks to run on them. While this decentral-
ized scheduling model may not always lead to globally
optimal scheduling, we have found that it performs sur-
prisingly well in practice, allowing frameworks to meet
goals such as data locality nearly perfectly. In addition,
resource offers are simple and efficient to implement, al-
lowing Mesos to be highly scalable and robust to failures.

Mesos also provides other benefits to practitioners.
First, even organizations that only use one framework
can use Mesos to run multiple instances of that frame-
work in the same cluster, or multiple versions of the
framework. Our contacts at Yahoo! and Facebook in-
dicate that this would be a compelling way to isolate
production and experimental Hadoop workloads and to
roll out new versions of Hadoop [11, 10]. Second,
Mesos makes it easier to develop and immediately ex-
periment with new frameworks. The ability to share re-
sources across multiple frameworks frees the developers
to build and run specialized frameworks targeted at par-
ticular problem domains rather than one-size-fits-all ab-
stractions. Frameworks can therefore evolve faster and
provide better support for each problem domain.

We have implemented Mesos in 10,000 lines of C++.
The system scales to 50,000 (emulated) nodes and uses
ZooKeeper [4] for fault tolerance. To evaluate Mesos, we
have ported three cluster computing systems to run over
it: Hadoop, MPI, and the Torque batch scheduler. To val-
idate our hypothesis that specialized frameworks provide
value over general ones, we have also built a new frame-
work on top of Mesos called Spark, optimized for itera-
tive jobs where a dataset is reused in many parallel oper-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000

C
D

F

Duration (s)

MapReduce Jobs
Map & Reduce Tasks

Figure 1: CDF of job and task durations in Facebook’s Hadoop
data warehouse (data from [38]).

ations, and shown that Spark can outperform Hadoop by
10x in iterative machine learning workloads.

This paper is organized as follows. Section 2 details
the data center environment that Mesos is designed for.
Section 3 presents the architecture of Mesos. Section 4
analyzes our distributed scheduling model (resource of-
fers) and characterizes the environments that it works
well in. We present our implementation of Mesos in Sec-
tion 5 and evaluate it in Section 6. We survey related
work in Section 7. Finally, we conclude in Section 8.

2 Target Environment

As an example of a workload we aim to support, con-
sider the Hadoop data warehouse at Facebook [5]. Face-
book loads logs from its web services into a 2000-node
Hadoop cluster, where they are used for applications
such as business intelligence, spam detection, and ad
optimization. In addition to “production” jobs that run
periodically, the cluster is used for many experimental
jobs, ranging from multi-hour machine learning compu-
tations to 1-2 minute ad-hoc queries submitted interac-
tively through an SQL interface called Hive [3]. Most
jobs are short (the median job being 84s long), and the
jobs are composed of fine-grained map and reduce tasks
(the median task being 23s), as shown in Figure 1.

To meet the performance requirements of these jobs,
Facebook uses a fair scheduler for Hadoop that takes ad-
vantage of the fine-grained nature of the workload to al-
locate resources at the level of tasks and to optimize data
locality [38]. Unfortunately, this means that the cluster
can only run Hadoop jobs. If a user wishes to write an ad
targeting algorithm in MPI instead of MapReduce, per-
haps because MPI is more efficient for this job’s commu-
nication pattern, then the user must set up a separate MPI
cluster and import terabytes of data into it. This problem
is not hypothetical; our contacts at Yahoo! and Facebook
report that users want to run MPI and MapReduce Online
(a streaming MapReduce) [11, 10]. Mesos aims to pro-
vide fine-grained sharing between multiple cluster com-
puting frameworks to enable these usage scenarios.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 297

Mesos slave Mesos slave Mesos slave
MPI

executor

task

Hadoop
executor

task

MPI
executor

task task

Hadoop
executor

task task

Mesos
master

Hadoop
scheduler

MPI
scheduler

Standby
master

Standby
master

ZooKeeper
quorum

Z

Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy

Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [20]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview

Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource offer
is a list of free resources on multiple slaves. The master
decides how many resources to offer to each framework
according to an organizational policy, such as fair sharing

FW Scheduler
Job 1 Job 2
Framework 1

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, �… > 1 <fw1, task1, 2cpu, 1gb, �… >
<fw1, task2, 1cpu, 2gb, �… > 4

Slave 1

Task
Executor

Task

FW Scheduler
Job 1 Job 2
Framework 2

Task
Executor

Task

Slave 2

<s1, 4cpu, 4gb, �… >
<task1, s1, 2cpu, 1gb, �… >
<task2, s1, 1cpu, 2gb, �… > 3 2

Task
Executor

Task

Slave 2

FW Scheduler
Job 1 Job 2
Framework 2

Figure 3: Resource offer example.

or priority. To support a diverse set of inter-framework
allocation policies, Mesos lets organizations define their
own policies via a pluggable allocation module.

Each framework running on Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources to of-
fer to each framework, the frameworks’ schedulers select
which of the offered resources to use. When a framework
accepts offered resources, it passes Mesos a description
of the tasks it wants to launch on them.

Figure 3 shows an example of how a framework gets
scheduled to run tasks. In step (1), slave 1 reports
to the master that it has 4 CPUs and 4 GB of mem-
ory free. The master then invokes the allocation mod-
ule, which tells it that framework 1 should be offered
all available resources. In step (2), the master sends a
resource offer describing these resources to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using 〈2 CPUs, 1 GB RAM〉 for the first task, and
〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted borders). Because 1 CPU and 1 GB of RAM are
still free, the allocation module may now offer them to
framework 2. In addition, this resource offer process re-
peats when tasks finish and new resources become free.

To maintain a thin interface and enable frameworks
to evolve independently, Mesos does not require frame-
works to specify their resource requirements or con-
straints. Instead, Mesos gives frameworks the ability to
reject offers. A framework can reject resources that do
not satisfy its constraints in order to wait for ones that
do. Thus, the rejection mechanism enables frameworks
to support arbitrarily complex resource constraints while
keeping Mesos simple and scalable.

One potential challenge with solely using the rejec-

3

298 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion mechanism to satisfy all framework constraints is
efficiency: a framework may have to wait a long time
before it receives an offer satisfying its constraints, and
Mesos may have to send an offer to many frameworks
before one of them accepts it. To avoid this, Mesos also
allows frameworks to set filters, which are Boolean pred-
icates specifying that a framework will always reject cer-
tain resources. For example, a framework might specify
a whitelist of nodes it can run on.

There are two points worth noting. First, filters repre-
sent just a performance optimization for the resource of-
fer model, as the frameworks still have the ultimate con-
trol to reject any resources that they cannot express filters
for and to choose which tasks to run on each node. Sec-
ond, as we will show in this paper, when the workload
consists of fine-grained tasks (e.g., in MapReduce and
Dryad workloads), the resource offer model performs
surprisingly well even in the absence of filters. In par-
ticular, we have found that a simple policy called delay
scheduling [38], in which frameworks wait for a limited
time to acquire nodes storing their data, yields nearly op-
timal data locality with a wait time of 1-5s.

In the rest of this section, we describe how Mesos per-
forms two key functions: resource allocation (§3.3) and
resource isolation (§3.4). We then describe filters and
several other mechanisms that make resource offers scal-
able and robust (§3.5). Finally, we discuss fault tolerance
in Mesos (§3.6) and summarize the Mesos API (§3.7).

3.3 Resource Allocation

Mesos delegates allocation decisions to a pluggable al-
location module, so that organizations can tailor alloca-
tion to their needs. So far, we have implemented two
allocation modules: one that performs fair sharing based
on a generalization of max-min fairness for multiple re-
sources [21] and one that implements strict priorities.
Similar policies are used in Hadoop and Dryad [25, 38].

In normal operation, Mesos takes advantage of the
fact that most tasks are short, and only reallocates re-
sources when tasks finish. This usually happens fre-
quently enough so that new frameworks acquire their
share quickly. For example, if a framework’s share is
10% of the cluster, it needs to wait approximately 10%
of the mean task length to receive its share. However,
if a cluster becomes filled by long tasks, e.g., due to a
buggy job or a greedy framework, the allocation module
can also revoke (kill) tasks. Before killing a task, Mesos
gives its framework a grace period to clean it up.

We leave it up to the allocation module to select the
policy for revoking tasks, but describe two related mech-
anisms here. First, while killing a task has a low impact
on many frameworks (e.g., MapReduce), it is harmful for
frameworks with interdependent tasks (e.g., MPI). We al-
low these frameworks to avoid being killed by letting al-

location modules expose a guaranteed allocation to each
framework—a quantity of resources that the framework
may hold without losing tasks. Frameworks read their
guaranteed allocations through an API call. Allocation
modules are responsible for ensuring that the guaranteed
allocations they provide can all be met concurrently. For
now, we have kept the semantics of guaranteed alloca-
tions simple: if a framework is below its guaranteed al-
location, none of its tasks should be killed, and if it is
above, any of its tasks may be killed.

Second, to decide when to trigger revocation, Mesos
must know which of the connected frameworks would
use more resources if they were offered them. Frame-
works indicate their interest in offers through an API call.

3.4 Isolation

Mesos provides performance isolation between frame-
work executors running on the same slave by leveraging
existing OS isolation mechanisms. Since these mecha-
nisms are platform-dependent, we support multiple iso-
lation mechanisms through pluggable isolation modules.

We currently isolate resources using OS container
technologies, specifically Linux Containers [9] and So-
laris Projects [13]. These technologies can limit the
CPU, memory, network bandwidth, and (in new Linux
kernels) I/O usage of a process tree. These isolation tech-
nologies are not perfect, but using containers is already
an advantage over frameworks like Hadoop, where tasks
from different jobs simply run in separate processes.

3.5 Making Resource Offers Scalable and Robust

Because task scheduling in Mesos is a distributed pro-
cess, it needs to be efficient and robust to failures. Mesos
includes three mechanisms to help with this goal.

First, because some frameworks will always reject cer-
tain resources, Mesos lets them short-circuit the rejection
process and avoid communication by providing filters to
the master. We currently support two types of filters:
“only offer nodes from list L” and “only offer nodes with
at least R resources free”. However, other types of pred-
icates could also be supported. Note that unlike generic
constraint languages, filters are Boolean predicates that
specify whether a framework will reject one bundle of
resources on one node, so they can be evaluated quickly
on the master. Any resource that does not pass a frame-
work’s filter is treated exactly like a rejected resource.

Second, because a framework may take time to re-
spond to an offer, Mesos counts resources offered to a
framework towards its allocation of the cluster. This is
a strong incentive for frameworks to respond to offers
quickly and to filter resources that they cannot use.

Third, if a framework has not responded to an offer
for a sufficiently long time, Mesos rescinds the offer and
re-offers the resources to other frameworks.

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 299

Scheduler Callbacks

resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor)
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Table 1: Mesos API functions for schedulers and executors.

3.6 Fault Tolerance

Since all the frameworks depend on the Mesos master, it
is critical to make the master fault-tolerant. To achieve
this, we have designed the master to be soft state, so that
a new master can completely reconstruct its internal state
from information held by the slaves and the framework
schedulers. In particular, the master’s only state is the list
of active slaves, active frameworks, and running tasks.
This information is sufficient to compute how many re-
sources each framework is using and run the allocation
policy. We run multiple masters in a hot-standby config-
uration using ZooKeeper [4] for leader election. When
the active master fails, the slaves and schedulers connect
to the next elected master and repopulate its state.

Aside from handling master failures, Mesos reports
node failures and executor crashes to frameworks’ sched-
ulers. Frameworks can then react to these failures using
the policies of their choice.

Finally, to deal with scheduler failures, Mesos allows a
framework to register multiple schedulers such that when
one fails, another one is notified by the Mesos master to
take over. Frameworks must use their own mechanisms
to share state between their schedulers.

3.7 API Summary

Table 1 summarizes the Mesos API. The “callback”
columns list functions that frameworks must implement,
while “actions” are operations that they can invoke.

4 Mesos Behavior
In this section, we study Mesos’s behavior for different
workloads. Our goal is not to develop an exact model of
the system, but to provide a coarse understanding of its
behavior, in order to characterize the environments that
Mesos’s distributed scheduling model works well in.

In short, we find that Mesos performs very well when
frameworks can scale up and down elastically, tasks
durations are homogeneous, and frameworks prefer all
nodes equally (§4.2). When different frameworks pre-
fer different nodes, we show that Mesos can emulate a
centralized scheduler that performs fair sharing across
frameworks (§4.3). In addition, we show that Mesos can

handle heterogeneous task durations without impacting
the performance of frameworks with short tasks (§4.4).
We also discuss how frameworks are incentivized to im-
prove their performance under Mesos, and argue that
these incentives also improve overall cluster utilization
(§4.5). We conclude this section with some limitations
of Mesos’s distributed scheduling model (§4.6).

4.1 Definitions, Metrics and Assumptions

In our discussion, we consider three metrics:
• Framework ramp-up time: time it takes a new

framework to achieve its allocation (e.g., fair share);

• Job completion time: time it takes a job to complete,
assuming one job per framework;

• System utilization: total cluster utilization.
We characterize workloads along two dimensions: elas-
ticity and task duration distribution. An elastic frame-
work, such as Hadoop and Dryad, can scale its resources
up and down, i.e., it can start using nodes as soon as it
acquires them and release them as soon its task finish. In
contrast, a rigid framework, such as MPI, can start run-
ning its jobs only after it has acquired a fixed quantity of
resources, and cannot scale up dynamically to take ad-
vantage of new resources or scale down without a large
impact on performance. For task durations, we consider
both homogeneous and heterogeneous distributions.

We also differentiate between two types of resources:
mandatory and preferred. A resource is mandatory if a
framework must acquire it in order to run. For example, a
graphical processing unit (GPU) is mandatory if a frame-
work cannot run without access to GPU. In contrast, a re-
source is preferred if a framework performs “better” us-
ing it, but can also run using another equivalent resource.
For example, a framework may prefer running on a node
that locally stores its data, but may also be able to read
the data remotely if it must.

We assume the amount of mandatory resources re-
quested by a framework never exceeds its guaranteed
share. This ensures that frameworks will not deadlock
waiting for the mandatory resources to become free.2 For
simplicity, we also assume that all tasks have the same re-
source demands and run on identical slices of machines
called slots, and that each framework runs a single job.

4.2 Homogeneous Tasks

We consider a cluster with n slots and a framework, f ,
that is entitled to k slots. For the purpose of this analy-
sis, we consider two distributions of the task durations:
constant (i.e., all tasks have the same length) and expo-
nential. Let the mean task duration be T , and assume that

2In workloads where the mandatory resource demands of the ac-
tive frameworks can exceed the capacity of the cluster, the allocation
module needs to implement admission control.

5

300 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Elastic Framework Rigid Framework
Constant dist. Exponential dist. Constant dist. Exponential dist.

Ramp-up time T T ln k T T ln k

Completion time (1/2 + β)T (1 + β)T (1 + β)T (ln k + β)T

Utilization 1 1 β/(1/2 + β) β/(ln k − 1 + β)

Table 2: Ramp-up time, job completion time and utilization for both elastic and rigid frameworks, and for both constant and
exponential task duration distributions. The framework starts with no slots. k is the number of slots the framework is entitled under
the scheduling policy, and βT represents the time it takes a job to complete assuming the framework gets all k slots at once.

framework f runs a job which requires βkT total com-
putation time. That is, when the framework has k slots,
it takes its job βT time to finish.

Table 2 summarizes the job completion times and sys-
tem utilization for the two types of frameworks and the
two types of task length distributions. As expected, elas-
tic frameworks with constant task durations perform the
best, while rigid frameworks with exponential task dura-
tion perform the worst. Due to lack of space, we present
only the results here and include derivations in [23].

Framework ramp-up time: If task durations are con-
stant, it will take framework f at most T time to acquire
k slots. This is simply because during a T interval, every
slot will become available, which will enable Mesos to
offer the framework all k of its preferred slots. If the du-
ration distribution is exponential, the expected ramp-up
time can be as high as T ln k [23].

Job completion time: The expected completion time3

of an elastic job is at most (1 + β)T , which is within T
(i.e., the mean task duration) of the completion time of
the job when it gets all its slots instantaneously. Rigid
jobs achieve similar completion times for constant task
durations, but exhibit much higher completion times for
exponential job durations, i.e., (ln k + β)T . This is sim-
ply because it takes a framework T ln k time on average
to acquire all its slots and be able to start its job.

System utilization: Elastic jobs fully utilize their al-
located slots, because they can use every slot as soon
as they get it. As a result, assuming infinite demand, a
system running only elastic jobs is fully utilized. Rigid
frameworks achieve slightly worse utilizations, as their
jobs cannot start before they get their full allocations, and
thus they waste the resources held while ramping up.

4.3 Placement Preferences

So far, we have assumed that frameworks have no slot
preferences. In practice, different frameworks prefer dif-
ferent nodes and their preferences may change over time.
In this section, we consider the case where frameworks
have different preferred slots.

The natural question is how well Mesos will work
compared to a central scheduler that has full information

3When computing job completion time we assume that the last tasks
of the job running on the framework’s k slots finish at the same time.

about framework preferences. We consider two cases:
(a) there exists a system configuration in which each
framework gets all its preferred slots and achieves its full
allocation, and (b) there is no such configuration, i.e., the
demand for some preferred slots exceeds the supply.

In the first case, it is easy to see that, irrespective of the
initial configuration, the system will converge to the state
where each framework allocates its preferred slots after
at most one T interval. This is simple because during a
T interval all slots become available, and as a result each
framework will be offered its preferred slots.

In the second case, there is no configuration in which
all frameworks can satisfy their preferences. The key
question in this case is how should one allocate the pre-
ferred slots across the frameworks demanding them. In
particular, assume there are p slots preferred by m frame-
works, where framework i requests ri such slots, and∑m

i=1 ri > x. While many allocation policies are pos-
sible, here we consider a weighted fair allocation policy
where the weight associated with framework i is its in-
tended total allocation, si. In other words, assuming that
each framework has enough demand, we aim to allocate
p·si/(

∑m
i=1 si) preferred slots to framework i.

The challenge in Mesos is that the scheduler does
not know the preferences of each framework. Fortu-
nately, it turns out that there is an easy way to achieve
the weighted allocation of the preferred slots described
above: simply perform lottery scheduling [36], offer-
ing slots to frameworks with probabilities proportional to
their intended allocations. In particular, when a slot be-
comes available, Mesos can offer that slot to framework i
with probability si/(

∑n
i=1 si), where n is the total num-

ber of frameworks in the system. Furthermore, because
each framework i receives on average si slots every T
time units, the results for ramp-up times and completion
times in Section 4.2 still hold.

4.4 Heterogeneous Tasks

So far we have assumed that frameworks have homo-
geneous task duration distributions, i.e., that all frame-
works have the same task duration distribution. In this
section, we discuss frameworks with heterogeneous task
duration distributions. In particular, we consider a work-
load where tasks that are either short and long, where the
mean duration of the long tasks is significantly longer

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 301

than the mean of the short tasks. Such heterogeneous
workloads can hurt frameworks with short tasks. In the
worst case, all nodes required by a short job might be
filled with long tasks, so the job may need to wait a long
time (relative to its execution time) to acquire resources.

We note first that random task assignment can work
well if the fraction φ of long tasks is not very close to 1
and if each node supports multiple slots. For example,
in a cluster with S slots per node, the probability that a
node is filled with long tasks will be φS . When S is large
(e.g., in the case of multicore machines), this probability
is small even with φ > 0.5. If S = 8 and φ = 0.5, for ex-
ample, the probability that a node is filled with long tasks
is 0.4%. Thus, a framework with short tasks can still ac-
quire many preferred slots in a short period of time. In
addition, the more slots a framework is able to use, the
likelier it is that at least k of them are running short tasks.

To further alleviate the impact of long tasks, Mesos
can be extended slightly to allow allocation policies to
reserve some resources on each node for short tasks. In
particular, we can associate a maximum task duration
with some of the resources on each node, after which
tasks running on those resources are killed. These time
limits can be exposed to the frameworks in resource of-
fers, allowing them to choose whether to use these re-
sources. This scheme is similar to the common policy of
having a separate queue for short jobs in HPC clusters.

4.5 Framework Incentives

Mesos implements a decentralized scheduling model,
where each framework decides which offers to accept.
As with any decentralized system, it is important to un-
derstand the incentives of entities in the system. In this
section, we discuss the incentives of frameworks (and
their users) to improve the response times of their jobs.

Short tasks: A framework is incentivized to use short
tasks for two reasons. First, it will be able to allocate any
resources reserved for short slots. Second, using small
tasks minimizes the wasted work if the framework loses
a task, either due to revocation or simply due to failures.

Scale elastically: The ability of a framework to use re-
sources as soon as it acquires them–instead of waiting
to reach a given minimum allocation–would allow the
framework to start (and complete) its jobs earlier. In ad-
dition, the ability to scale up and down allows a frame-
work to grab unused resources opportunistically, as it can
later release them with little negative impact.

Do not accept unknown resources: Frameworks are
incentivized not to accept resources that they cannot use
because most allocation policies will count all the re-
sources that a framework owns when making offers.

We note that these incentives align well with our goal
of improving utilization. If frameworks use short tasks,

Mesos can reallocate resources quickly between them,
reducing latency for new jobs and wasted work for revo-
cation. If frameworks are elastic, they will opportunis-
tically utilize all the resources they can obtain. Finally,
if frameworks do not accept resources that they do not
understand, they will leave them for frameworks that do.

We also note that these properties are met by many
current cluster computing frameworks, such as MapRe-
duce and Dryad, simply because using short independent
tasks simplifies load balancing and fault recovery.

4.6 Limitations of Distributed Scheduling

Although we have shown that distributed scheduling
works well in a range of workloads relevant to current
cluster environments, like any decentralized approach, it
can perform worse than a centralized scheduler. We have
identified three limitations of the distributed model:

Fragmentation: When tasks have heterogeneous re-
source demands, a distributed collection of frameworks
may not be able to optimize bin packing as well as a cen-
tralized scheduler. However, note that the wasted space
due to suboptimal bin packing is bounded by the ratio be-
tween the largest task size and the node size. Therefore,
clusters running “larger” nodes (e.g., multicore nodes)
and “smaller” tasks within those nodes will achieve high
utilization even with distributed scheduling.

There is another possible bad outcome if allocation
modules reallocate resources in a naı̈ve manner: when
a cluster is filled by tasks with small resource require-
ments, a framework f with large resource requirements
may starve, because whenever a small task finishes, f
cannot accept the resources freed by it, but other frame-
works can. To accommodate frameworks with large per-
task resource requirements, allocation modules can sup-
port a minimum offer size on each slave, and abstain from
offering resources on the slave until this amount is free.

Interdependent framework constraints: It is possi-
ble to construct scenarios where, because of esoteric in-
terdependencies between frameworks (e.g., certain tasks
from two frameworks cannot be colocated), only a sin-
gle global allocation of the cluster performs well. We
argue such scenarios are rare in practice. In the model
discussed in this section, where frameworks only have
preferences over which nodes they use, we showed that
allocations approximate those of optimal schedulers.

Framework complexity: Using resource offers may
make framework scheduling more complex. We argue,
however, that this difficulty is not onerous. First, whether
using Mesos or a centralized scheduler, frameworks need
to know their preferences; in a centralized scheduler,
the framework needs to express them to the scheduler,
whereas in Mesos, it must use them to decide which of-
fers to accept. Second, many scheduling policies for ex-

7

302 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

isting frameworks are online algorithms, because frame-
works cannot predict task times and must be able to han-
dle failures and stragglers [18, 40, 38]. These policies
are easy to implement over resource offers.

5 Implementation
We have implemented Mesos in about 10,000 lines of
C++. The system runs on Linux, Solaris and OS X, and
supports frameworks written in C++, Java, and Python.

To reduce the complexity of our implementation, we
use a C++ library called libprocess [7] that provides
an actor-based programming model using efficient asyn-
chronous I/O mechanisms (epoll, kqueue, etc). We
also use ZooKeeper [4] to perform leader election.

Mesos can use Linux containers [9] or Solaris projects
[13] to isolate tasks. We currently isolate CPU cores and
memory. We plan to leverage recently added support for
network and I/O isolation in Linux [8] in the future.

We have implemented four frameworks on top of
Mesos. First, we have ported three existing cluster com-
puting systems: Hadoop [2], the Torque resource sched-
uler [33], and the MPICH2 implementation of MPI [16].
None of these ports required changing these frameworks’
APIs, so all of them can run unmodified user programs.
In addition, we built a specialized framework for iterative
jobs called Spark, which we discuss in Section 5.3.

5.1 Hadoop Port

Porting Hadoop to run on Mesos required relatively few
modifications, because Hadoop’s fine-grained map and
reduce tasks map cleanly to Mesos tasks. In addition, the
Hadoop master, known as the JobTracker, and Hadoop
slaves, known as TaskTrackers, fit naturally into the
Mesos model as a framework scheduler and executor.

To add support for running Hadoop on Mesos, we took
advantage of the fact that Hadoop already has a plug-
gable API for writing job schedulers. We wrote a Hadoop
scheduler that connects to Mesos, launches TaskTrackers
as its executors, and maps each Hadoop task to a Mesos
task. When there are unlaunched tasks in Hadoop, our
scheduler first starts Mesos tasks on the nodes of the
cluster that it wants to use, and then sends the Hadoop
tasks to them using Hadoop’s existing internal interfaces.
When tasks finish, our executor notifies Mesos by listen-
ing for task finish events using an API in the TaskTracker.

We used delay scheduling [38] to achieve data locality
by waiting for slots on the nodes that contain task in-
put data. In addition, our approach allowed us to reuse
Hadoop’s existing logic for re-scheduling of failed tasks
and for speculative execution (straggler mitigation).

We also needed to change how map output data is
served to reduce tasks. Hadoop normally writes map
output files to the local filesystem, then serves these to
reduce tasks using an HTTP server included in the Task-

Tracker. However, the TaskTracker within Mesos runs
as an executor, which may be terminated if it is not run-
ning tasks. This would make map output files unavailable
to reduce tasks. We solved this problem by providing a
shared file server on each node in the cluster to serve
local files. Such a service is useful beyond Hadoop, to
other frameworks that write data locally on each node.

In total, our Hadoop port is 1500 lines of code.

5.2 Torque and MPI Ports

We have ported the Torque cluster resource manager to
run as a framework on Mesos. The framework consists
of a Mesos scheduler and executor, written in 360 lines
of Python code, that launch and manage different com-
ponents of Torque. In addition, we modified 3 lines of
Torque source code to allow it to elastically scale up and
down on Mesos depending on the jobs in its queue.

After registering with the Mesos master, the frame-
work scheduler configures and launches a Torque server
and then periodically monitors the server’s job queue.
While the queue is empty, the scheduler releases all tasks
(down to an optional minimum, which we set to 0) and
refuses all resource offers it receives from Mesos. Once
a job gets added to Torque’s queue (using the standard
qsub command), the scheduler begins accepting new
resource offers. As long as there are jobs in Torque’s
queue, the scheduler accepts offers as necessary to sat-
isfy the constraints of as many jobs in the queue as pos-
sible. On each node where offers are accepted, Mesos
launches our executor, which in turn starts a Torque
backend daemon and registers it with the Torque server.
When enough Torque backend daemons have registered,
the torque server will launch the next job in its queue.

Because jobs that run on Torque (e.g. MPI) may not be
fault tolerant, Torque avoids having its tasks revoked by
not accepting resources beyond its guaranteed allocation.

In addition to the Torque framework, we also created
a Mesos MPI “wrapper” framework, written in 200 lines
of Python code, for running MPI jobs directly on Mesos.

5.3 Spark Framework

Mesos enables the creation of specialized frameworks
optimized for workloads for which more general exe-
cution layers may not be optimal. To test the hypoth-
esis that simple specialized frameworks provide value,
we identified one class of jobs that were found to per-
form poorly on Hadoop by machine learning researchers
at our lab: iterative jobs, where a dataset is reused across
a number of iterations. We built a specialized framework
called Spark [39] optimized for these workloads.

One example of an iterative algorithm used in ma-
chine learning is logistic regression [22]. This algorithm
seeks to find a line that separates two sets of labeled data
points. The algorithm starts with a random line w. Then,

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 303

. . .

w

f(x,w) w

f(x,w)

x

x

a) Dryad b) Spark

w

f(x,w)
x

Figure 4: Data flow of a logistic regression job in Dryad
vs. Spark. Solid lines show data flow within the framework.
Dashed lines show reads from a distributed file system. Spark
reuses in-memory data across iterations to improve efficiency.

on each iteration, it computes the gradient of an objective
function that measures how well the line separates the
points, and shifts w along this gradient. This gradient
computation amounts to evaluating a function f(x,w)
over each data point x and summing the results. An
implementation of logistic regression in Hadoop must
run each iteration as a separate MapReduce job, because
each iteration depends on the w computed at the previous
one. This imposes overhead because every iteration must
re-read the input file into memory. In Dryad, the whole
job can be expressed as a data flow DAG as shown in Fig-
ure 4a, but the data must still must be reloaded from disk
at each iteration. Reusing the data in memory between
iterations in Dryad would require cyclic data flow.

Spark’s execution is shown in Figure 4b. Spark uses
the long-lived nature of Mesos executors to cache a slice
of the dataset in memory at each executor, and then run
multiple iterations on this cached data. This caching is
achieved in a fault-tolerant manner: if a node is lost,
Spark remembers how to recompute its slice of the data.

By building Spark on top of Mesos, we were able to
keep its implementation small (about 1300 lines of code),
yet still capable of outperforming Hadoop by 10× for
iterative jobs. In particular, using Mesos’s API saved us
the time to write a master daemon, slave daemon, and
communication protocols between them for Spark. The
main pieces we had to write were a framework scheduler
(which uses delay scheduling for locality) and user APIs.

6 Evaluation

We evaluated Mesos through a series of experiments on
the Amazon Elastic Compute Cloud (EC2). We begin
with a macrobenchmark that evaluates how the system
shares resources between four workloads, and go on to
present a series of smaller experiments designed to eval-
uate overhead, decentralized scheduling, our specialized
framework (Spark), scalability, and failure recovery.

Bin Job Type Map Tasks Reduce Tasks # Jobs Run
1 selection 1 NA 38
2 text search 2 NA 18
3 aggregation 10 2 14
4 selection 50 NA 12
5 aggregation 100 10 6
6 selection 200 NA 6
7 text search 400 NA 4
8 join 400 30 2

Table 3: Job types for each bin in our Facebook Hadoop mix.

6.1 Macrobenchmark

To evaluate the primary goal of Mesos, which is enabling
diverse frameworks to efficiently share a cluster, we ran a
macrobenchmark consisting of a mix of four workloads:
• A Hadoop instance running a mix of small and large

jobs based on the workload at Facebook.

• A Hadoop instance running a set of large batch jobs.

• Spark running a series of machine learning jobs.

• Torque running a series of MPI jobs.
We compared a scenario where the workloads ran as

four frameworks on a 96-node Mesos cluster using fair
sharing to a scenario where they were each given a static
partition of the cluster (24 nodes), and measured job re-
sponse times and resource utilization in both cases. We
used EC2 nodes with 4 CPU cores and 15 GB of RAM.

We begin by describing the four workloads in more
detail, and then present our results.

6.1.1 Macrobenchmark Workloads

Facebook Hadoop Mix Our Hadoop job mix was
based on the distribution of job sizes and inter-arrival
times at Facebook, reported in [38]. The workload con-
sists of 100 jobs submitted at fixed times over a 25-
minute period, with a mean inter-arrival time of 14s.
Most of the jobs are small (1-12 tasks), but there are also
large jobs of up to 400 tasks.4 The jobs themselves were
from the Hive benchmark [6], which contains four types
of queries: text search, a simple selection, an aggrega-
tion, and a join that gets translated into multiple MapRe-
duce steps. We grouped the jobs into eight bins of job
type and size (listed in Table 3) so that we could com-
pare performance in each bin. We also set the framework
scheduler to perform fair sharing between its jobs, as this
policy is used at Facebook.

Large Hadoop Mix To emulate batch workloads that
need to run continuously, such as web crawling, we had
a second instance of Hadoop run a series of IO-intensive
2400-task text search jobs. A script launched ten of these
jobs, submitting each one after the previous one finished.

4We scaled down the largest jobs in [38] to have the workload fit a
quarter of our cluster size.

9

304 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Sh
ar

e
of

 C
lu

st
er

Time (s)

(a) Facebook Hadoop Mix

Static Partitioning
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000

Sh
ar

e
of

 C
lu

st
er

Time (s)

(b) Large Hadoop Mix

Static Partitioning
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

Sh
ar

e
of

 C
lu

st
er

Time (s)

(c) Spark

Static Partitioning
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Sh
ar

e
of

 C
lu

st
er

Time (s)

(d) Torque / MPI

Static Partitioning
Mesos

Figure 5: Comparison of cluster shares (fraction of CPUs) over time for each of the frameworks in the Mesos and static partitioning
macrobenchmark scenarios. On Mesos, frameworks can scale up when their demand is high and that of other frameworks is low, and
thus finish jobs faster. Note that the plots’ time axes are different (e.g., the large Hadoop mix takes 3200s with static partitioning).

Spark We ran five instances of an iterative machine
learning job on Spark. These were launched by a script
that waited 2 minutes after each job ended to submit
the next. The job we used was alternating least squares
(ALS), a collaborative filtering algorithm [42]. This job
is CPU-intensive but also benefits from caching its input
data on each node, and needs to broadcast updated pa-
rameters to all nodes running its tasks on each iteration.

Torque / MPI Our Torque framework ran eight in-
stances of the tachyon raytracing job [35] that is part of
the SPEC MPI2007 benchmark. Six of the jobs ran small
problem sizes and two ran large ones. Both types used 24
parallel tasks. We submitted these jobs at fixed times to
both clusters. The tachyon job is CPU-intensive.

6.1.2 Macrobenchmark Results

A successful result for Mesos would show two things:
that Mesos achieves higher utilization than static parti-
tioning, and that jobs finish at least as fast in the shared
cluster as they do in their static partition, and possibly
faster due to gaps in the demand of other frameworks.
Our results show both effects, as detailed below.

We show the fraction of CPU cores allocated to each
framework by Mesos over time in Figure 6. We see that
Mesos enables each framework to scale up during peri-
ods when other frameworks have low demands, and thus
keeps cluster nodes busier. For example, at time 350,
when both Spark and the Facebook Hadoop framework
have no running jobs and Torque is using 1/8 of the clus-
ter, the large-job Hadoop framework scales up to 7/8 of
the cluster. In addition, we see that resources are reallo-
cated rapidly (e.g., when a Facebook Hadoop job starts
around time 360) due to the fine-grained nature of tasks.
Finally, higher allocation of nodes also translates into in-
creased CPU and memory utilization (by 10% for CPU

Figure 6: Framework shares on Mesos during the macrobench-
mark. By pooling resources, Mesos lets each workload scale
up to fill gaps in the demand of others. In addition, fine-grained
sharing allows resources to be reallocated in tens of seconds.

and 17% for memory), as shown in Figure 7.
A second question is how much better jobs perform

under Mesos than when using a statically partitioned
cluster. We present this data in two ways. First, Fig-
ure 5 compares the resource allocation over time of
each framework in the shared and statically partitioned
clusters. Shaded areas show the allocation in the stat-
ically partitioned cluster, while solid lines show the
share on Mesos. We see that the fine-grained frame-
works (Hadoop and Spark) take advantage of Mesos to
scale up beyond 1/4 of the cluster when global demand
allows this, and consequently finish bursts of submit-
ted jobs faster in Mesos. At the same time, Torque
achieves roughly similar allocations and job durations
under Mesos (with some differences explained later).

Second, Tables 4 and 5 show a breakdown of job per-
formance for each framework. In Table 4, we compare
the aggregate performance of each framework, defined
as the sum of job running times, in the static partitioning

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 305

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

Mesos Static

 0
 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200 1400 1600M
em

or
y

U
til

iz
at

io
n

(%
)

Time (s)

Mesos Static

Figure 7: Average CPU and memory utilization over time
across all nodes in the Mesos cluster vs. static partitioning.

Framework
Sum of Exec Times w/
Static Partitioning (s)

Sum of Exec Times
with Mesos (s)

Speedup

Facebook
Hadoop Mix

7235 6319 1.14

Large Hadoop
Mix

3143 1494 2.10

Spark 1684 1338 1.26

Torque / MPI 3210 3352 0.96

Table 4: Aggregate performance of each framework in the mac-
robenchmark (sum of running times of all the jobs in the frame-
work). The speedup column shows the relative gain on Mesos.

and Mesos scenarios. We see the Hadoop and Spark jobs
as a whole are finishing faster on Mesos, while Torque is
slightly slower. The framework that gains the most is the
large-job Hadoop mix, which almost always has tasks to
run and fills in the gaps in demand of the other frame-
works; this framework performs 2x better on Mesos.

Table 5 breaks down the results further by job type.
We observe two notable trends. First, in the Facebook
Hadoop mix, the smaller jobs perform worse on Mesos.
This is due to an interaction between the fair sharing per-
formed by Hadoop (among its jobs) and the fair sharing
in Mesos (among frameworks): During periods of time
when Hadoop has more than 1/4 of the cluster, if any jobs
are submitted to the other frameworks, there is a delay
before Hadoop gets a new resource offer (because any
freed up resources go to the framework farthest below its
share), so any small job submitted during this time is de-
layed for a long time relative to its length. In contrast,
when running alone, Hadoop can assign resources to the
new job as soon as any of its tasks finishes. This prob-
lem with hierarchical fair sharing is also seen in networks
[34], and could be mitigated by running the small jobs on
a separate framework or using a different allocation pol-
icy (e.g., using lottery scheduling instead of offering all
freed resources to the framework with the lowest share).

Lastly, Torque is the only framework that performed
worse, on average, on Mesos. The large tachyon jobs
took on average 2 minutes longer, while the small ones

Framework Job Type
Exec Time w/ Static

Partitioning (s)
Avg. Speedup

on Mesos
Facebook Hadoop

Mix
selection (1) 24 0.84

text search (2) 31 0.90
aggregation (3) 82 0.94

selection (4) 65 1.40
aggregation (5) 192 1.26

selection (6) 136 1.71
text search (7) 137 2.14

join (8) 662 1.35
Large Hadoop Mix text search 314 2.21

Spark ALS 337 1.36
Torque / MPI small tachyon 261 0.91

large tachyon 822 0.88

Table 5: Performance of each job type in the macrobenchmark.
Bins for the Facebook Hadoop mix are in parentheses.

0

120

240

360

480

600

0%

20%

40%

60%

80%

100%

Static
partitioning

Mesos, no
delay sched.

Mesos, 1s
delay sched.

Mesos, 5s
delay sched.

Jo
b

 R
u

n
n

in
g

 T
Im

e
(s

)

L
o

ca
l M

ap
 T

as
ks

 (
%

)
Data Locality Job Running Times

Figure 8: Data locality and average job durations for 16
Hadoop instances running on a 93-node cluster using static par-
titioning, Mesos, or Mesos with delay scheduling.

took 20s longer. Some of this delay is due to Torque hav-
ing to wait to launch 24 tasks on Mesos before starting
each job, but the average time this takes is 12s. We be-
lieve that the rest of the delay is due to stragglers (slow
nodes). In our standalone Torque run, we saw two jobs
take about 60s longer to run than the others (Fig. 5d). We
discovered that both of these jobs were using a node that
performed slower on single-node benchmarks than the
others (in fact, Linux reported 40% lower bogomips on
it). Because tachyon hands out equal amounts of work
to each node, it runs as slowly as the slowest node.

6.2 Overhead

To measure the overhead Mesos imposes when a single
framework uses the cluster, we ran two benchmarks us-
ing MPI and Hadoop on an EC2 cluster with 50 nodes,
each with 2 CPU cores and 6.5 GB RAM. We used the
High-Performance LINPACK [15] benchmark for MPI
and a WordCount job for Hadoop, and ran each job three
times. The MPI job took on average 50.9s without Mesos
and 51.8s with Mesos, while the Hadoop job took 160s
without Mesos and 166s with Mesos. In both cases, the
overhead of using Mesos was less than 4%.

6.3 Data Locality through Delay Scheduling

In this experiment, we evaluated how Mesos’ resource
offer mechanism enables frameworks to control their

11

306 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tasks’ placement, and in particular, data locality. We
ran 16 instances of Hadoop using 93 EC2 nodes, each
with 4 CPU cores and 15 GB RAM. Each node ran a
map-only scan job that searched a 100 GB file spread
throughout the cluster on a shared HDFS file system and
outputted 1% of the records. We tested four scenarios:
giving each Hadoop instance its own 5-6 node static par-
tition of the cluster (to emulate organizations that use
coarse-grained cluster sharing systems), and running all
instances on Mesos using either no delay scheduling, 1s
delay scheduling or 5s delay scheduling.

Figure 8 shows averaged measurements from the 16
Hadoop instances across three runs of each scenario. Us-
ing static partitioning yields very low data locality (18%)
because the Hadoop instances are forced to fetch data
from nodes outside their partition. In contrast, running
the Hadoop instances on Mesos improves data locality,
even without delay scheduling, because each Hadoop in-
stance has tasks on more nodes of the cluster (there are
4 tasks per node), and can therefore access more blocks
locally. Adding a 1-second delay brings locality above
90%, and a 5-second delay achieves 95% locality, which
is competitive with running one Hadoop instance alone
on the whole cluster. As expected, job performance im-
proves with data locality: jobs run 1.7x faster in the 5s
delay scenario than with static partitioning.

6.4 Spark Framework

We evaluated the benefit of running iterative jobs using
the specialized Spark framework we developed on top
of Mesos (Section 5.3) over the general-purpose Hadoop
framework. We used a logistic regression job imple-
mented in Hadoop by machine learning researchers in
our lab, and wrote a second version of the job using
Spark. We ran each version separately on 20 EC2 nodes,
each with 4 CPU cores and 15 GB RAM. Each exper-
iment used a 29 GB data file and varied the number of
logistic regression iterations from 1 to 30 (see Figure 9).

With Hadoop, each iteration takes 127s on average,
because it runs as a separate MapReduce job. In contrast,
with Spark, the first iteration takes 174s, but subsequent
iterations only take about 6 seconds, leading to a speedup
of up to 10x for 30 iterations. This happens because the
cost of reading the data from disk and parsing it is much
higher than the cost of evaluating the gradient function
computed by the job on each iteration. Hadoop incurs the
read/parsing cost on each iteration, while Spark reuses
cached blocks of parsed data and only incurs this cost
once. The longer time for the first iteration in Spark is
due to the use of slower text parsing routines.

6.5 Mesos Scalability

To evaluate Mesos’ scalability, we emulated large clus-
ters by running up to 50,000 slave daemons on 99 Ama-

0

1000

2000

3000

4000

0 10 20 30

R
u

n
n

in
g

 T
im

e
(s

)

Number of Iterations

Hadoop
Spark

Figure 9: Hadoop and Spark logistic regression running times.

0

0.25

0.5

0.75

1

0 10000 20000 30000 40000 50000

Ta
sk

 L
au

n
ch

O

ve
rh

ea
d

 (
se

co
n

d
s)

Number of Nodes

Figure 10: Mesos master’s scalability versus number of slaves.

zon EC2 nodes, each with 8 CPU cores and 6 GB RAM.
We used one EC2 node for the master and the rest of the
nodes to run slaves. During the experiment, each of 200
frameworks running throughout the cluster continuously
launches tasks, starting one task on each slave that it re-
ceives a resource offer for. Each task sleeps for a period
of time based on a normal distribution with a mean of
30 seconds and standard deviation of 10s, and then ends.
Each slave runs up to two tasks at a time.

Once the cluster reached steady-state (i.e., the 200
frameworks achieve their fair shares and all resources
were allocated), we launched a test framework that runs a
single 10 second task and measured how long this frame-
work took to finish. This allowed us to calculate the extra
delay incurred over 10s due to having to register with the
master, wait for a resource offer, accept it, wait for the
master to process the response and launch the task on a
slave, and wait for Mesos to report the task as finished.

We plot this extra delay in Figure 10, showing aver-
ages of 5 runs. We observe that the overhead remains
small (less than one second) even at 50,000 nodes. In
particular, this overhead is much smaller than the aver-
age task and job lengths in data center workloads (see
Section 2). Because Mesos was also keeping the clus-
ter fully allocated, this indicates that the master kept up
with the load placed on it. Unfortunately, the EC2 vir-
tualized environment limited scalability beyond 50,000
slaves, because at 50,000 slaves the master was process-
ing 100,000 packets per second (in+out), which has been
shown to be the current achievable limit on EC2 [12].

6.6 Failure Recovery

To evaluate recovery from master failures, we conducted
an experiment with 200 to 4000 slave daemons on 62

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 307

EC2 nodes with 4 cores and 15 GB RAM. We ran 200
frameworks that each launched 20-second tasks, and two
Mesos masters connected to a 5-node ZooKeeper quo-
rum.We synchronized the two masters’ clocks using NTP
and measured the mean time to recovery (MTTR) after
killing the active master. The MTTR is the time for all of
the slaves and frameworks to connect to the second mas-
ter. In all cases, the MTTR was between 4 and 8 seconds,
with 95% confidence intervals of up to 3s on either side.

6.7 Performance Isolation

As discussed in Section 3.4, Mesos leverages existing
OS isolation mechanism to provide performance isola-
tion between different frameworks’ tasks running on the
same slave. While these mechanisms are not perfect,
a preliminary evaluation of Linux Containers [9] shows
promising results. In particular, using Containers to iso-
late CPU usage between a MediaWiki web server (con-
sisting of multiple Apache processes running PHP) and a
“hog” application (consisting of 256 processes spinning
in infinite loops) shows on average only a 30% increase
in request latency for Apache versus a 550% increase
when running without Containers. We refer the reader to
[29] for a fuller evaluation of OS isolation mechanisms.

7 Related Work
HPC and Grid Schedulers. The high performance
computing (HPC) community has long been managing
clusters [33, 41]. However, their target environment typ-
ically consists of specialized hardware, such as Infini-
band and SANs, where jobs do not need to be scheduled
local to their data. Furthermore, each job is tightly cou-
pled, often using barriers or message passing. Thus, each
job is monolithic, rather than composed of fine-grained
tasks, and does not change its resource demands during
its lifetime. For these reasons, HPC schedulers use cen-
tralized scheduling, and require users to declare the re-
quired resources at job submission time. Jobs are then
given coarse-grained allocations of the cluster. Unlike
the Mesos approach, this does not allow jobs to locally
access data distributed across the cluster. Furthermore,
jobs cannot grow and shrink dynamically. In contrast,
Mesos supports fine-grained sharing at the level of tasks
and allows frameworks to control their placement.

Grid computing has mostly focused on the problem
of making diverse virtual organizations share geograph-
ically distributed and separately administered resources
in a secure and interoperable way. Mesos could well be
used within a virtual organization inside a larger grid.

Public and Private Clouds. Virtual machine clouds
such as Amazon EC2 [1] and Eucalyptus [31] share
common goals with Mesos, such as isolating applica-
tions while providing a low-level abstraction (VMs).
However, they differ from Mesos in several important

ways. First, their relatively coarse grained VM allocation
model leads to less efficient resource utilization and data
sharing than in Mesos. Second, these systems generally
do not let applications specify placement needs beyond
the size of VM they require. In contrast, Mesos allows
frameworks to be highly selective about task placement.

Quincy. Quincy [25] is a fair scheduler for Dryad
that uses a centralized scheduling algorithm for Dryad’s
DAG-based programming model. In contrast, Mesos
provides the lower-level abstraction of resource offers to
support multiple cluster computing frameworks.

Condor. The Condor cluster manager uses the Class-
Ads language [32] to match nodes to jobs. Using a re-
source specification language is not as flexible for frame-
works as resource offers, since not all requirements may
be expressible. Also, porting existing frameworks, which
have their own schedulers, to Condor would be more dif-
ficult than porting them to Mesos, where existing sched-
ulers fit naturally into the two-level scheduling model.

Next-Generation Hadoop. In February 2011, Ya-
hoo! announced a redesign for Hadoop that uses a two-
level scheduling model, where per-application masters
request resources from a central manager [14]. The de-
sign aims to support non-MapReduce applications too.
While details about the scheduling model in this system
are currently unavailable, we believe that the new appli-
cation masters could naturally run as Mesos frameworks.

8 Conclusion and Future Work
We have presented Mesos, a thin management layer that
allows diverse cluster computing frameworks to effi-
ciently share resources. Mesos is built around two de-
sign elements: a fine-grained sharing model at the level
of tasks, and a distributed scheduling mechanism called
resource offers that delegates scheduling decisions to the
frameworks. Together, these elements let Mesos achieve
high utilization, respond quickly to workload changes,
and cater to diverse frameworks while remaining scalable
and robust. We have shown that existing frameworks
can effectively share resources using Mesos, that Mesos
enables the development of specialized frameworks pro-
viding major performance gains, such as Spark, and that
Mesos’s simple design allows the system to be fault tol-
erant and to scale to 50,000 nodes.

In future work, we plan to further analyze the re-
source offer model and determine whether any exten-
sions can improve its efficiency while retaining its flex-
ibility. In particular, it may be possible to have frame-
works give richer hints about offers they would like to
receive. Nonetheless, we believe that below any hint
system, frameworks should still have the ability to re-
ject offers and to choose which tasks to launch on each
resource, so that their evolution is not constrained by the

13

308 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

hint language provided by the system.
We are also currently using Mesos to manage re-

sources on a 40-node cluster in our lab and in a test de-
ployment at Twitter, and plan to report on lessons from
these deployments in future work.

9 Acknowledgements
We thank our industry colleagues at Google, Twitter,
Facebook, Yahoo! and Cloudera for their valuable feed-
back on Mesos. This research was supported by Califor-
nia MICRO, California Discovery, the Natural Sciences
and Engineering Research Council of Canada, a National
Science Foundation Graduate Research Fellowship,5 the
Swedish Research Council, and the following Berkeley
RAD Lab sponsors: Google, Microsoft, Oracle, Ama-
zon, Cisco, Cloudera, eBay, Facebook, Fujitsu, HP, Intel,
NetApp, SAP, VMware, and Yahoo!.

References
[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] Apache Hadoop. http://hadoop.apache.org.
[3] Apache Hive. http://hadoop.apache.org/hive.
[4] Apache ZooKeeper. hadoop.apache.org/zookeeper.
[5] Hive – A Petabyte Scale Data Warehouse using Hadoop.

http://www.facebook.com/note.php?note id=
89508453919.

[6] Hive performance benchmarks. http:
//issues.apache.org/jira/browse/HIVE-396.

[7] LibProcess Homepage. http:
//www.eecs.berkeley.edu/∼benh/libprocess.

[8] Linux 2.6.33 release notes.
http://kernelnewbies.org/Linux 2 6 33.

[9] Linux containers (LXC) overview document.
http://lxc.sourceforge.net/lxc.html.

[10] Personal communication with Dhruba Borthakur from Facebook.
[11] Personal communication with Owen O’Malley and Arun C.

Murphy from the Yahoo! Hadoop team.
[12] RightScale blog. blog.rightscale.com/2010/04/01/

benchmarking-load-balancers-in-the-cloud.
[13] Solaris Resource Management.

http://docs.sun.com/app/docs/doc/817-1592.
[14] The Next Generation of Apache Hadoop MapReduce.

http://developer.yahoo.com/blogs/hadoop/
posts/2011/02/mapreduce-nextgen.

[15] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and
D. Sorensen. LAPACK: a portable linear algebra library for
high-performance computers. In Supercomputing ’90, 1990.

[16] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik,
P. Lemarinier, and F. Magniette. Mpich-v2: a fault tolerant MPI
for volatile nodes based on pessimistic sender based message
logging. In Supercomputing ’03, 2003.

[17] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein.
MapReduce online. In NSDI ’10, May 2010.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[19] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox. Twister: a runtime for iterative mapreduce. In Proc.
HPDC ’10, 2010.

5Any opinions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the authors and do not nec-
essarily reflect the views of the NSF.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. In SOSP, pages 251–266, 1995.

[21] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: fair allocation of
multiple resource types. In NSDI, 2011.

[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer Publishing Company, New York, NY, 2009.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A platform
for fine-grained resource sharing in the data center. Technical
Report UCB/EECS-2010-87, UC Berkeley, May 2010.

[24] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys 07, 2007.

[25] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg. Quincy: Fair scheduling for distributed computing
clusters. In SOSP, November 2009.

[26] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. On availability of
intermediate data in cloud computations. In HOTOS, May 2009.

[27] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum.
Stateful bulk processing for incremental analytics. In Proc. ACM
symposium on Cloud computing, SoCC ’10, 2010.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In SIGMOD, pages 135–146, 2010.

[29] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane,
D. Dimatos, G. Hamilton, M. McCabe, and J. Owens.
Quantifying the performance isolation properties of
virtualization systems. In ExpCS ’07, 2007.

[30] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. Ciel: a universal execution
engine for distributed data-flow computing. In NSDI, 2011.

[31] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus open-source
cloud-computing system. In CCA ’08, 2008.

[32] R. Raman, M. Livny, and M. Solomon. Matchmaking: An
extensible framework for distributed resource management.
Cluster Computing, 2:129–138, April 1999.

[33] G. Staples. TORQUE resource manager. In Proc.
Supercomputing ’06, 2006.

[34] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service
curve algorithm for link-sharing, real-time and priority services.
In SIGCOMM ’97, pages 249–262, 1997.

[35] J. Stone. Tachyon ray tracing system.
http://jedi.ks.uiuc.edu/∼johns/raytracer.

[36] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: flexible
proportional-share resource management. In OSDI, 1994.

[37] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In
SOSP ’09, pages 247–260, 2009.

[38] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A simple technique
for achieving locality and fairness in cluster scheduling. In
EuroSys 10, 2010.

[39] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In Proc.
HotCloud ’10, 2010.

[40] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce performance in heterogeneous
environments. In Proc. OSDI ’08, 2008.

[41] S. Zhou. LSF: Load sharing in large-scale heterogeneous
distributed systems. In Workshop on Cluster Computing, 1992.

[42] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the Netflix prize. In AAIM,
pages 337–348. Springer-Verlag, 2008.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 309

Sharing the Data Center Network
Alan Shieh‡†, Srikanth Kandula‡, Albert Greenberg∨, Changhoon Kim∨, Bikas Saha�

Microsoft Research‡, Cornell University†, Windows Azure∨, Microsoft Bing�

ashieh@cs.cornell.edu {srikanth,albert,chakim,bikas}@microsoft.com

Abstract– While today’s data centers are multiplexed
across many non-cooperating applications, they lack effec-
tive means to share their network. Relying on TCP’s con-
gestion control, as we show from experiments in produc-
tion data centers, opens up the network to denial of service
attacks and performance interference. We present Seawall,
a network bandwidth allocation scheme that divides net-
work capacity based on an administrator-specified policy.
Seawall computes and enforces allocations by tunneling
traffic through congestion controlled, point to multipoint,
edge to edge tunnels. The resulting allocations remain
stable regardless of the number of flows, protocols, or
destinations in the application’s traffic mix. Unlike alter-
nate proposals, Seawall easily supports dynamic policy
changes and scales to the number of applications and
churn of today’s data centers. Through evaluation of a
prototype, we show that Seawall adds little overhead and
achieves strong performance isolation.

1. INTRODUCTION
Data centers are crucial to provide the large volumes of

compute and storage resources needed by today’s Internet
businesses including web search, content distribution and
social networking. To achieve cost efficiencies and on-
demand scaling, cloud data centers [5, 28] are highly-
multiplexed shared environments, with VMs and tasks
from multiple tenants coexisting in the same cluster. Since
these applications come from unrelated customers, they
are largely uncoordinated and mutually untrusting. Thus,
the potential for network performance interference and
denial of service attacks is high, and so performance
predictability remains a key concern [8] for customers
evaluating a move to cloud datacenters.

While data centers provide many mechanisms to sched-
ule local compute, memory, and disk resources [10, 15],
existing mechanisms for apportioning network resources
fall short. End host mechanisms such as TCP congestion
control (or variants such as TFRC and DCCP) are widely
deployed, scale to existing traffic loads, and, to a large
extent, determine network sharing today via a notion of
flow-based fairness. However, TCP does little to isolate
tenants from one another: poorly-designed or malicious
applications can consume network capacity, to the detri-
ment of other applications, by opening more flows or us-
ing non-compliant protocol implementations that ignore
congestion control. Thus, while resource allocation using
TCP is scalable and achieves high network utilization, it

does not provide robust performance isolation.
Switch and router mechanisms (e.g., CoS tags,

Weighted Fair Queuing, reservations, QCN [29]) are bet-
ter decoupled from tenant misbehavior. However, these
features, inherited from enterprise networks and the In-
ternet, are of limited use when applied to the demanding
cloud data center environment, since they cannot keep up
with the scale and the churn observed in datacenters (e.g.,
numbers of tenants, arrival rate of new VMs), can only
obtain isolation at the cost of network utilization, or might
require new hardware.

For a better solution, we propose Seawall, an edge based
mechanism that lets administrators prescribe how their
network is shared. Seawall works irrespective of traffic
characteristics such as the number of flows, protocols or
participants. Seawall provides a simple abstraction: given
a network weight for each local entity that serves as a traf-
fic source (VM, process, etc.), Seawall ensures that along
all network links, the share of bandwidth obtained by the
entity is proportional to its weight. To achieve efficiency,
Seawall is work-conserving, proportionally redistributing
unused shares to currently active sources.

Beyond simply improving security by mitigating DoS
attacks from malicious tenants and generalizing exist-
ing use-what-you-pay-for provisioning models, per-entity
weights also enable better control over infrastructure ser-
vices. Data centers often mix latency- and throughput-
sensitive tasks with background infrastructure services.
For instance, customer-generated web traffic contends
with the demands of VM deployment and migration tasks.
Per-entity weights obviate the need to hand-craft every
individual service.

Further, per-entity weights also enable better control
over application-level goals. Network allocation deci-
sions can have significant impact on end-to-end metrics
such as completion time or throughput. For example, in
a map-reduce cluster, a reduce task with a high fan-in
can open up many more flows than map tasks sharing the
same bottleneck. Flow-based fairness prioritizes high fan-
in reduce tasks over other tasks, resulting in imbalanced
progress that leaves CPU resources idle and degrades clus-
ter throughput. By contrast, Seawall decouples network
allocation from communications patterns.

Seawall achieves scalable resource allocation by reduc-
ing the network sharing problem to an instance of dis-
tributed congestion control. The ubiquity of TCP shows

310 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

that such algorithms can scale to large numbers of partici-
pants, adapt quickly to change, and can be implemented
strictly at the edge. Though Seawall borrows from TCP,
Seawall’s architecture and control loop ensure robustness
against tenant misbehavior. Seawall uses a shim layer at
the sender that makes policy compliance mandatory by
forcing all traffic into congestion-controlled tunnels. To
prevent tenants from bypassing Seawall, the shim runs in
the virtualization or platform network stack, where it is
well-isolated from tenant code.

Simply enforcing a separate TCP-like tunnel to every
destination would permit each source to achieve higher
rate by communicating with more destinations. Since this
does not achieve the desired policy based on per-entity
weights, Seawall instead uses a novel control loop that
combines feedback from multiple destinations.

Overall, we make three contributions. First, we iden-
tify problems and missed opportunities caused by poor
network resource allocation. Second, we explore at length
the tradeoffs in building network allocation mechanisms
for cloud data centers. Finally, we design and implement
an architecture and control loop that are robust against ma-
licious, selfish, or buggy tenant behavior. We have built
a prototype of Seawall as a Windows NDIS filter. From
experiments in a large server cluster, we show that Sea-
wall achieves proportional sharing of the network while
remaining agnostic to tenant protocols and traffic patterns
and protects against UDP- and TCP-based DoS attacks.
Seawall provides these benefits while achieving line rate
with low CPU overhead.

2. PROBLEMS WITH NETWORK SHAR-
ING IN DATACENTERS

To understand the problems with existing network al-
location schemes, we examine two types of clusters that
consist of several thousands of servers and are used in
production. The first type is that of public infrastructure
cloud services that rent virtual machines along with other
shared services such as storage and load balancers. In
these datacenters, clients can submit arbitrary VM im-
ages and choose which applications to run, who to talk to,
how much traffic to send, when to send that traffic, and
what protocols to use to exchange that traffic (TCP, UDP,
of flows). The second type is that of platform cloud
services that support map-reduce workloads. Consider
a map-reduce cluster that supports a search engine. It is
used to analyze logs and improve query and advertisement
relevance. Though this cluster is shared across many users
and business groups, the execution platform (i.e., the job
compiler and runtime) is proprietary code controlled by
the datacenter provider.

Through case studies on these datacenters we observe
how the network is shared today, the problems that arise
from such sharing and the requirements for an improved
sharing mechanism.

In all datacenters, the servers have multiple cores, mul-
tiple disks, and tens of GBs of RAM. The network is a
tree like topology [26] with 20–40 servers in a rack and
a small over-subscription factor on the upstream links of
the racks.

2.1 Performance interference in infrastructure
cloud services

Recent measurements demonstrate considerable varia-
tion in network performance metrics – medium instances
in EC2 experience throughput that can vary by 66% [25,
43]. We conjecture, based on anecdotal evidence, that a
primary reason for the variation is the inability to control
the network traffic share of a VM.

Unlike CPU and memory, network usage is harder to
control because it is a distributed resource. For exam-
ple, consider the straw man where each VM’s network
share is statically limited to a portion of the host’s NIC
rate (the equivalent of assigning the VM a fixed number
of cores or a static memory size). A tenant with many
VMs can cumulatively send enough traffic to overflow the
receiver, some network link en route to that host, or other
network bottlenecks. Some recent work [33] shows how
to co-locate a trojan VM with a target VM. Using this, a
malicious tenant can degrade the network performance of
targeted victims. Finally, a selfish client, by using vari-
able numbers of flows, or higher rate UDP flows, can hog
network bandwidth.

We note that out-of-band mechanisms to mitigate these
problems exist. Commercial cloud providers employ a
combination of such mechanisms. First, the provider
can account for the network usage of tenants (and VMs)
and quarantine or ban the misbehavers. Second, cloud
providers might provide even less visibility into their
clusters to make it harder for a malicious client to co-
locate with target VMs. However, neither approach is fool-
proof. Selfish or malicious traffic can mimic legitimate
traffic, making it hard to distinguish. Further, obfuscation
schemes may not stop a determined adversary.

Our position, instead, is to get at the root of the problem.
The reason existing solutions fail is that they primarily
rely on TCP flows. But VMs are free to choose their
number of flows, congestion control variant, and even
whether they respond to congestion, allowing a small
number of VMs to disproportionately impact the network.
Hence, we seek alternative ways to share the network
that are independent of the clients’ traffic matrices and
implementations.

2.2 Poorly-performing schedules in Cosmos
We shift focus to Cosmos [9], a dedicated internal

cluster that supports map-reduce workloads. We obtained
detailed logs over several days from a production cluster
with thousands of servers that supports the Bing search
engine. The logs document the begin and end times of

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 311

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 50 100 150

C
u

m
u

la
ti
v
e

of flows per task

70% of tasks
use 30-100
flows

20% of tasks
use 1 flow

2% of tasks use >
150 flows

Figure 1: Distribution of the
number of flows per task in Cos-
mos.

Task
Type

#flows
per
task

% of
net
tasks

Aggregate 56.1 94.9
Partition 1.2 3.7
Extract 8.8 .2
Combine 2.3 1.0
other 1.0 .2

Figure 2: Variation
in number of flows per
task is due to the role
of the task

jobs, tasks and flows in this cluster.
Performance interference happens here as well. In-

stances of high network load are common. A few enti-
ties (jobs, background services) contribute a substantial
share of the traffic [22]. Tasks that move data over con-
gested links suffer collateral damage – they are more
likely to experience failures and become stragglers at the
job level [6, 22].

Uniquely, however, we find that the de facto way of
sharing the network leads to poor schedules. This is
because schedulers for map-reduce platforms [27, 45]
explicitly allocate local resources such as compute slots
and memory. But, the underlying network primitives pre-
vent them from exerting control over how tasks share the
network. Map-reduce tasks naturally vary in the number
of flows and the volume of data moved – a map task may
have to read from just one location but a reduce task has
to read data from all the map tasks in the preceding stage.
Figure 1 shows that of the tasks that read data across
racks, 20% of the tasks use just one flow, another 70% of
the tasks vary between 30 and 100 flows, and 2% of the
tasks use more than 150 flows. Figure 2 shows that this
variation is due to the role of the task.

Because reduce tasks use a large number of flows, they
starve other tasks that share the same paths. Even if the
scheduler is tuned to assign a large number of compute
slots for map tasks, just a few reduce tasks will cause
these map tasks to be bottlenecked on the network. Thus,
the compute slots held by the maps make little progress.

In principle, such unexpectedly idle slots could be put
to better use on compute-heavy tasks or tasks that use
less loaded network paths. However, current map-reduce
schedulers do not support such load redistribution.1

A simple example illustrates this problem. Figure 3
examines different ways of scheduling six tasks, five maps
that each want to move 1 unit of data across a link of unit
capacity and one reduce that wants to move 10 units of
data from ten different locations over the same link. If
the reduce uses 10 flows and each map uses 1 flow, as
they do today, each of the flows obtains 1

15 ’th of the link
bandwidth and all six tasks finish at t = 15 (the schedule
shown in black). The total activity period, since each task

Figure 3: Poor sharing of the network leads to poor per-
formance and wasted resources

use local resources that no one else can use during the
period it is active, is 6 ∗ 15 = 90.

If each task gets an even share of the link, it is easy to
see that the map tasks will finish at t = 6 and the reduce
task finishes at t = 15. In this case, the total activity
period is 5 ∗ 6 + 1 ∗ 15 = 45, or a 50% reduction in
resource usage (the green solid line in Fig. 3). These
spare resources can be used for other jobs or subsequent
tasks within the same job.

The preceding example shows how the inherent varia-
tion in the way applications use the network can lead to
poor schedules in the absence of control over how the net-
work is shared. Our goal is to design ways of sharing the
network that are efficient (no link goes idle if pent-up de-
mand exists) and are independent of the traffic mix (UDP,
#’s of TCP flows).

We note that prescribing the optimal bandwidth shares
is a non-goal for this paper. In fact, evenly allocating
bandwidth across tasks is not optimal for some metrics.
If the provider has perfect knowledge about demands,
scheduling the shortest remaining transfer first will mini-
mize the activity period [18]. Going back to the example,
this means that the five map tasks get exclusive access
to the link and finish one after the other resulting in an
activity period of 30 (the red dashed line in Fig. 3). How-
ever, this scheme has the side-effect of starving all the
waiting transfers and requires perfect knowledge about
client demands, which is hard to obtain in practice.

2.3 Magnitude of scale and churn

(a) Cosmos: Scale (b) Cosmos: Churn

Figure 4: Scale and churn seen in the observed datacenter.

We attempt to understand the nature of the sharing prob-
lem in production datacenters. We find that the number
of classes to share bandwidth among is large and varies

312 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

frequently. Figure 4(a) shows the distribution of the num-
ber of concurrent entities that share the examined Cosmos
cluster. Note that the x-axis is in log scale. We see that at
median, there are 500 stages (e.g., map, reduce, join), 104

tasks and 105 flows in the cluster. The number of traffic
classes required is at least two orders of magnitude larger
than is feasible with current CoS tags or the number of
WFQ/DRR queues that switches can handle per port.

Figure 4(b) shows the distribution of the number of
new arrivals in the observed cluster. Note that the x-axis
is again in log scale. At median, 10 new stages, 104 new
tasks and 5 ∗ 104 new flows arrive in the cluster every
minute. Anecdotal analysis of EC2, based on decoding
the instance identifiers, concluded that O(104) new VM
instances are requested each day [34]. Updating VLANs
or re-configuring switches whenever a VM arrives is sev-
eral orders of magnitude more frequent than is achievable
in today’s enterprise networks.

Each of the observed data centers is large, with up to
tens of thousands of servers, thousands of ToR switches,
several tens of aggregation switches, load balancers, etc.
Predicting traffic is easier in platform datacenters (e.g.,
Cosmos) wherein high level descriptions of the jobs are
available. However, the scale and churn numbers indi-
cate that obtaining up-to-date information (e.g., within a
minute) may be a practical challenge. In cloud datacen-
ters (e.g., EC2) traffic is even harder to predict because
customer’s traffic is unconstrained and privacy concerns
limit instrumentation.

3. REQUIREMENTS
From the above case studies and from interviews with

operators of production clusters, we identify these require-
ments for sharing the datacenter network.

An ideal network sharing solution for datacenters has
to scale, keep up with churn and retain high network
utilization. It must do so without assuming well-behaved
or TCP-compliant tenants. Since changes to the NICs and
switches are expensive, take some time to standardize and
deploy, and are hard to customize once deployed, edge-
and software- based solutions are preferable.
• Traffic Agnostic, Simple Service Interface: Tenants

cannot be expected to know or curtail the nature of their
traffic. It is good business sense to accommodate di-
verse applications. While it is tempting to design shar-
ing mechanisms that require tenants to specify a traffic
matrix, i.e., the pattern and volume of traffic between
the tenant’s VMs, we find this to be an unrealistic bur-
den. Changes in demands from the tenant’s customers
and dynamics of their workload (e.g., map-reduce) will
change the requirements. Hence, it is preferable to
keep a thin service interface, e.g., have tenants choose
a class of network service.

• Require no changes to network topology or hard-
ware: Recently, many data center network topologies

have been proposed [2, 3, 16, 21]. Cost benefit trade-
offs indicate that the choice of topology depends on the
intended usage. For example, EC2 recently introduced
a full bisection bandwidth network for high perfor-
mance computing (HPC); less expensive EC2 service
levels continue to use the over-subscribed tree topol-
ogy. To be widely applicable, mechanisms to share the
network should be agnostic to network topology.

• Scale to large numbers of tenants and high churn:
To have practical benefit, any network sharing mecha-
nism would need to scale to support the large workloads
seen in real datacenters.

• Enforce sharing without sacrificing efficiency: Stat-
ically apportioning fractions of the bandwidth improves
sharing at the cost of efficiency and can result in band-
width fragmentation that makes it harder to accommo-
date new tenants. At the same time, a tenant with pent
up demand can use no more than its reservation even if
the network is idle.

To meet these requirements, Seawall relies on congestion-
controlled tunnels implemented in the host but requires
no per-flow state within switches. In this way, Seawall is
independent of the physical data center network. Seawall
does benefit from measurements at switches, if they are
available. Seawall scales to large numbers of tenants and
handles high churn, because provisioning new VMs or
tasks is entirely transparent to the physical network. As
tenants, VMs, or tasks come and go, there is no change
to the physical network through signaling or configura-
tion. Seawall’s design exploits the homogeneity of the
data center environment, where end host software is easy
to change and topology is predictable. These properties
enable Seawall to use a system architecture and algorithms
that are impractical on the Internet yet well-suited for data
centers.

4. Seawall DESIGN
Seawall exposes the following abstraction. A network

weight is associated with each entity that is sharing the
network. The entity can be any traffic source that is con-
fined to a single node, such as a VM, process, or col-
lection of port numbers, but not a tenant or set of VMs.
On each link in the network, Seawall provides the en-
tity with a bandwidth share that is proportional to its
weight; i.e., an entity k with weight wk sending traffic
over link l obtains this share of the total capacity of that
link Share(k, l) = wk

Σi∈Active(l)wi
. Here, Active(l) is the

set of entities actively sending traffic across l. The alloca-
tion is end-to-end, i.e., traffic to a destination will be lim-
ited by the smallest Share(k, l) over links on the path to
that destination. The allocation is also work-conserving:
bandwidth that is unused because the entity needs less
than its share or because its traffic is bottlenecked else-
where is re-apportioned among other users of the link in

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 313

Figure 5: Seawall’s division of functionality. (New compo-
nents are shaded gray.)

proportion to their weights. Here, we present a distributed
technique that holds entities to these allocations while
meeting our design requirements.

Weights can be adjusted dynamically and allocations re-
converge rapidly. The special case of assigning the same
weight to all entities divides bandwidth in a max-min fair
fashion. By specifying equal weights to VMs, a public
cloud provider can avoid performance interference from
misbehaving or selfish VMs (§2.1). We defer describing
further ways to configure weights and enforcing global
allocations, such as over a set of VMs belonging to the
same tenant, to §4.6.

4.1 Data path
To achieve the desired sharing of the network, Sea-

wall sends traffic through congestion-controlled logical
tunnels. As shown in Figure 5, these tunnels are imple-
mented within a shim layer that intercepts all packets
entering and leaving the server. At the sender, each tunnel
is associated with an allowed rate for traffic on that tunnel,
implemented as a rate limiter. The receive end of the tun-
nel monitors traffic and sends congestion feedback back
to the sender. A bandwidth allocator corresponding to
each entity uses feedback from all of the entity’s tunnels
to adapt the allowed rate on each tunnel. The bandwidth
allocators take the network weights as parameters, work
independently of each other, and together ensure that the
network allocations converge to their desired values.

The Seawall shim layer is deployed to all servers in the
data center by the management software that is respon-
sible for provisioning and monitoring these servers (e.g.,
Autopilot, Azure Fabric). To ensure that only traffic
controlled by Seawall enters the network, a provider can
use attestation-based 802.1x authentication to disallow
servers without the shim from connecting to the network.

The feedback to the control loop is returned at regular
intervals, spaced T apart. It includes both explicit control
signals from the receivers as well as congestion feedback
about the path. Using the former, a receiver can explicitly
block or rate-limit unwanted traffic. Using the latter, the
bandwidth allocators adapt allowed rate on the tunnels. To
help the receiver prepare congestion feedback, the shim at
the sender maintains a byte sequence number per tunnel
(i.e., per (sending entity, destination) pair). The sender
shim stamps outgoing packets with the corresponding
tunnel’s current sequence number. The receiver detects
losses in the same way as TCP, by looking for gaps in the

Figure 6: Content of Seawall’s feedback packet

received sequence number space. At the end of an interval,
the receiver issues feedback that reports the number of
bytes received and the percentage of bytes deemed to
be lost (Figure 6). Optionally, if ECN is enabled along
the network path, the feedback also relays the fraction of
packets received with congestion marks.

We show efficient ways of stamping packets without
adding a header and implementing queues and rate lim-
iters in §5. Here, we describe the bandwidth allocator.

1: .Begin (weight W)
2: { rate r ← I , weight w ← W } � Initialize
3: .TakeFeedback (feedback f , proportion p)
4: {
5: if feedback f indicates loss then
6: r ← r − r ∗ α ∗ p � Multiplicative Decrease
7: else
8: r ← r + w ∗ p � Weighted Additive Increase
9: end if

10: }
Class 1: A Strawman Bandwidth Allocator: an instance of
this class is associated with each (entity, tunnel) pair.

4.2 Strawman
Consider the strawman bandwidth allocator in Class 1.

Recall that the goal of the bandwidth allocator is to con-
trol the entity’s network allocation as per the entity’s net-
work weight. Apart from the proportion variable, which
we’ll ignore for now, Class 1 is akin to weighted addi-
tive increase, multiplicative decrease (AIMD). It works
as follows: when feedback indicates loss, it multiplica-
tively decreases the allowed rate by α. Otherwise, the rate
increases by an additive constant.

This simple strawman satisfies some of our require-
ments. By making the additive increase step size a func-
tion of the entity’s weight, the equilibrium rate achieved
by an entity will be proportional to its weight. Unused
shares are allocated to tunnels that have pent up demand,
favoring efficiency over strict reservations. Global co-
ordination is not needed. Further, when weights change,
rates re-converge quickly (within one sawtooth period).

We derive the distributed control loop in Class 1 from
TCP-Reno though any other flow-oriented protocol [4, 1,
29, 32] can be used, so long as it can extend to provide
weighted allocations, as in MulTCP or MPAT [11, 39].
Distributed control loops are sensitive to variation in RTT.
However, Seawall avoids this by using a constant feedback

314 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: When entities talk to different numbers of des-
tinations, pair-wise allocation of bandwidth is not sufficient.
Reduce tasks behave like the orange entity while maps re-
semble the green. (Assume that both orange and green en-
tities have the same weight.)

period T , chosen to be larger than the largest RTT of the
intra datacenter paths controlled by Seawall. Conserva-
tively, Seawall considers no feedback within a period of T
as if a feedback indicating loss was received.

Simply applying AIMD, or any other distributed con-
trol loop, on a per-tunnel basis does not achieve the de-
sired per-link bandwidth distribution. Suppose a tenant
has N VMs and opens flows between every pair of VMs.
This results in a tunnel between each VM; with one AIMD
loop per tunnel, thus each VM achieves O(N) times its
allocation at the bottleneck link. Large tenants can over-
whelm smaller tenants, as shown in Figure 7.

Seawall improves on this simple strawman in three ways.
First, it has a unique technique to combine feedback from
multiple destinations. By doing so, an entity’s share of
the network is governed by its network weight and is in-
dependent of the number of tunnels it uses (§4.3). The
resulting policy is consistent with how cloud providers
allocate other resources, such as compute and memory,
to a tenant, yet is a significant departure from prior ap-
proaches to network scheduling. Second, the sawtooth
behavior of AIMD leads to poor convergence on paths
with high bandwidth-delay product. To mitigate this, Sea-
wall modifies the adaptation logic to converge quickly and
stay at equilibrium longer (§4.4). Third, we show how to
nest traffic with different levels of responsiveness to con-
gestion signals (e.g., TCP vs. UDP) within Seawall (§4.5).

4.3 Seawall’s Bandwidth Allocator
The bandwidth allocator, associated with each entity,

takes as input the network weight of that entity, the con-
gestion feedback from all the receivers that the entity is
communicating with and generates the allowed rate on
each of the entity’s tunnels. It has two parts: a distributed
congestion control loop that computes the entity’s cumu-
lative share on each link and a local scheduler that divides
that share among the various tunnels.

Step 1: Use distributed control loops to determine
per-link, per-entity share. The ideal feedback would be
per-link. It would include the cumulative usage of the en-
tity across all the tunnels on this link, the total load on the
link, and the network weights of all the entities using that
link. Such feedback is possible if switches implement ex-
plicit feedback (e.g., XCP, QCN) or from programmable
switch sampling (e.g., SideCar [38]). Lacking these, the

baseline Seawall relies only on existing congestion signals
such as end-to-end losses or ECN marks. These signals
identify congested paths, rather than links.

To approximate link-level congestion information us-
ing path-level congestion signals, Seawall uses a heuristic
based on the observation that a congested link causes
losses in many tunnels using that link. The logic is de-
scribed in Class 2. One instance of this class is associated
with each entity and maintains separate per-link instances
of the distributed control loop (rcl). Assume for now that
rc is implemented as per the strawman Class 1, though
we will replace it with Class 3. The sender shim stores
the feedback from each destination, and once every pe-
riod T , applies all the feedback cumulatively (lines 8–10).
The heuristic scales the impact of feedback from a given
destination in proportion to the volume of traffic sent to
that destination by the shim in the last period (line 7, 10).

To understand how this helps, consider the example
in Figure 7. An instance of class 2, corresponding to
the orange entity, cumulatively applies the feedback from
all three destinations accessed via the bottleneck link to
the single distributed control loop object representing
that link. Since the proportions sum up to 1 across all
destinations, the share of the orange entity will increase
by only so much as that of the green entity.

A simplification follows because the shim at the re-
ceiver reports the fraction of bytes lost or marked. Hence,
rather than invoking the distributed control loop once per
destination, Class 2 computes just three numbers per link
– the proportions of total feedback indicating loss, ECN
marks, and neither, and invokes the distributed control
loop once with each.

1: .Begin (weight W)
2: { rcl.Begin(W) ∀ links l used by sender } � Initialize
3: .TakeFeedback (feedback fdest)
4: { store feedback }
5: .Periodically ()
6: {
7: proportion of traffic to d, pd = fd.bytesRcvd∑

fi.bytesRcvd

8: for all destinations d do
9: for all links l ∈ PathTo(d) do

10: rcl.TakeFeedback(fd, pd)
11: end for
12: end for
13: � rcl now contains per-link share for this entity
14: nl ← count of dest with paths through link l
15: � rd is allowed rate to d

16: rd ← minl∈PathTo(d)

((
βpd + 1−β

nl

)
rcl.rate

)

17: }
Class 2: Seawall’s bandwidth allocator: A separate in-
stance of this class is associated with each entity. It com-
bines per-link distributed control loops (invoked in lines 2,
10) with a local scheduler (line 16).

Step 2: Convert per-link, per-entity shares to per-link,
per-tunnel shares. Next, Seawall runs a local allocator to

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 315

assign rate limits to each tunnel that respects the entity’s
per-link rate constraints. A naı̈ve approach divides each
link’s allowed rate evenly across all downstream desti-
nations. For the example in Fig. 7, this leads to a 1

3

′
rd

share of the bottleneck link to the three destinations of
the orange entity. This leads to wasted bandwidth if the
demands across destinations vary. For example, if the
orange entity has demands (2x, x, x) to the three desti-
nations and the bottleneck’s share for this entity is 4x,
dividing evenly causes the first destination to get no more
than 4x

3 while bandwidth goes wasted. Hence, Seawall ap-
portions link bandwidth to destinations as shown in line
16, Class 2. The intuition is to adapt the allocations to
match the demands. Seawall uses an exponential moving
average that allocates β fraction of the link bandwidth
proportional to current usage and the rest evenly across
destinations. By default, we use β = .9. Revisiting the
(2x, x, x) example, note that while the first destination
uses up all of its allowed share, the other two destinations
do not, causing the first to get a larger share in the next
period. In fact, the allowed share of the first destination
converges to within 20% of its demand in four iterations.

Finally, Seawall converts these per-link, per-destination
rate limits to a tunnel (i.e., per-path) rate limit by com-
puting the minimum of the allowed rate on each link on
the path. Note that Class 2 converges to a lower bound
on the per-link allowed rate. At bottleneck links, this is
tight. At other links, such as those used by the green
flow in Figure 7 that are not the bottleneck, Class 2 can
under-estimate their usable rate. Only when the green
entity uses these other links on paths that do not overlap
with the bottleneck, will the usable rate on those links
increase. This behavior is the best that can be done using
just path congestion signals and is harmless since the rate
along each tunnel, computed as the minimum along each
link on that path, is governed by the bottleneck.

4.4 Improving the Rate Adaptation Logic
Weighted AIMD suffers from inefficiencies as adap-

tation periods increase, especially for paths with high
bandwidth-delay product [23] such as those in datacen-
ters. Seawall uses control laws from CUBIC [32] to
achieve faster convergence, longer dwell time at the equi-
librium point, and higher utilization than AIMD. As with
weighted AIMD, Seawall modifies the control laws to sup-
port weights and to incorporate feedback from multiple
destinations. If switches support ECN, Seawall also in-
corporates the control laws from DCTCP [4] to further
smooth out the sawtooth and reduce queue utilization at
the bottleneck, resulting in reduced latency, less packet
loss, and improved resistance against incast collapse.

The resulting control loop is shown in Class 3; the sta-
bility follows from that of CUBIC and DCTCP. Though
we describe a rate-based variant, the equivalent window
based versions are feasible and we defer those to future

1: .Begin (weight W)
2: { rate r ← I , weight w ← W , c ← 0, inc ← 0 } � Init
3: .TakeFeedback (feedback f , proportion p)
4: {
5: c ← c+ γ ∗ p ∗ (f.bytesMarked− c)
6: � maintain smoothed estimate of congestion
7: if f.bytesMarked > 0 then
8: rnew ← r − r ∗ α ∗ p ∗ c � Smoothed mult. decrease
9: inc ← 0

10: tlastdrop ← now
11: rgoal ← (r > rgoal)?r : r+rnew

2
12: else � Increase rate
13: if r < rgoal then � Less than goal, concave increase

14: ∆t = min
(

now−tlastdrop

Ts
, .9

)

15: ∆r = δ ∗ (rgoal − r) ∗ (1−∆t)3

16: r ← r + w ∗ p ∗∆r
17: else � Above goal, convex increase
18: r ← r + p ∗ inc
19: inc ← inc+ w ∗ p
20: end if
21: end if
22: }
Class 3: Seawall’s distributed control loop: an instance of
this class is associated with each (link, entity) pair. Note
that Class 2 invokes this loop (lines 2, 10).

work. We elaborate on parameter choices in §4.6. Lines
14-17 cause the rate to increase along a concave curve, i.e.,
quickly initially and then slower as rate nears rgoal. After
that, lines 18-19 implement convex increase to rapidly
probe for a new rate. Line 5 maintains a smoothed es-
timate of congestion, allowing multiplicative decreases
to be modulated accordingly (line 8) so that the average
queue size at the bottleneck stays small.

4.5 Nesting Traffic Within Seawall

Nesting traffic of different types within Seawall’s
congestion-controlled tunnels leads to some special cases.
If a sender always sends less than the rate allowed by
Seawall, she may never see any loss causing her allowed
rate to increase to infinity. This can happen if her flows
are low rate (e.g., web traffic) or are limited by send or
receive windows (flow control). Such a sender can launch
a short overwhelming burst of traffic. Hence, Seawall
clamps the rate allowed to a sender to a multiple of the
largest rate she has used in the recent past. Clamping rates
is common in many control loops, such as XCP [23], for
similar reasons. The specific choice of clamp value does
not matter as long as it is larger than the largest possible
bandwidth increase during a Seawall change period.

UDP and TCP flows behave differently under Seawall.
While a full burst UDP flow immediately uses all the
rate that a Seawall tunnel allows, a set of TCP flows can
take several RTTs to ramp up; the more flows, the faster
the ramp-up. Slower ramp up results in lower shares on
average. Hence, Seawall modifies the network stack to
defer congestion control to Seawall’s shim layer. All other

316 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TCP functionality, such as flow control, loss recovery and
in order delivery remain as before.

The mechanics of re-factoring are similar to Congestion
Manager (CM) [7]. Each TCP flow queries the appropri-
ate rate limiter in the shim (e.g., using shared memory) to
see whether a send is allowed. Flows that have a backlog
of packets register callbacks with the shim to be notified
when they can next send a packet. In virtualized settings,
the TCP stack defers congestion control to the shim by
expanding the paravirtualized NIC interface. Even for
tenants that bring their own OSes, the performance gain
from refactoring the stack incentivizes adoption. Some re-
cent advances in designing device drivers [36] reduce the
overhead of signaling across the VM boundary. However,
Seawall uses this simplification that requires less signaling:
using hypervisor IPCs, the shim periodically reports a
maximum congestion window to each VM to use for all
its flows. The max congestion window is chosen large
enough that each VM will pass packets to the shim yet
small enough to not overflow the queues in front of the
rate limiters in the shim.

We believe that deferring congestion control to the Sea-
wall shim is necessary in the datacenter context. Enforcing
network shares at the granularity of a flow no longer suf-
fices (see §2). Though similar in spirit to Congestion
Manager, Seawall refactors congestion control for differ-
ent purposes. While CM does so to share congestion
information among flows sharing a path, Seawall uses it to
ensure that the network allocation policy holds regardless
of the traffic mix. In addition, this approach allows for
transparent changes to the datacenter transport.

4.6 Discussion
Here, we discuss details deferred from the preceding

description of Seawall.

Handling WAN traffic: Traffic entering and leaving the
datacenter is subject to more stringent DoS scrubbing at
pre-defined chokepoints and, because WAN bandwidth is
a scarce resource, is carefully rate-limited, metered and
billed. We do not expect Seawall to be used for such traffic.
However, if required, edge elements in the datacenter,
such as load balancers or gateways, can funnel all incom-
ing traffic into Seawall tunnels; the traffic then traverses
a shim within the edge element. Traffic leaving the data
center is handled analogously.

Mapping paths to links: To run Seawall, each sender
requires path-to-link mapping for the paths that it is send-
ing traffic on (line 10, Class 2). A sender can acquire this
information independently, for example via a few tracer-
outes. In practice, however, this is much easier. Data
center networks are automatically managed by software
that monitors and pushes images, software and configura-
tion to every node [19, 28]. Topology changes (e.g., due
to failures and reconfiguration) are rare and can be dis-

seminated automatically by these systems. Many pieces
of today’s datacenter ecosystem use topology informa-
tion (e.g., Map-Reduce schedulers [27] and VM place-
ment algorithms). Note that Seawall does work with a
partial mapping (e.g., a high level mapping of each server
to its rack, container, VLAN and aggregation switch) and
does not need to identify bottleneck links. However, path-
to-link mapping is a key enabler; it lets Seawall run over
any datacenter network topology.

Choosing network weights: Seawall provides several
ways to define the sending entity and the corresponding
network weight. The precise choices depend on the dat-
acenter type and application. When VMs are spun up in
a cloud datacenter, the fabric sets the network weight of
that VM alongside weights for CPU and memory. The
fabric can change the VMs weight, if necessary, and Sea-
wall re-converges rapidly. However, a VM cannot change
its own weight. The administrator of a cloud datacenter
can assign equal weights to all VMs, thereby avoiding
performance interference, or assign weights in proportion
to the size or price of the VM.

In contrast, the administrator of a platform datacenter
can empower trusted applications to adjust their weights
at run-time (e.g., via setsockopt()). Here, Seawall can
also be used to specify weights per executable (e.g., back-
ground block replicator) or per process or per port ranges.
The choice of weights could be based on information that
the cluster schedulers have. For example, a map-reduce
scheduler can assign the weight of each sender feeding
a task in inverse proportion to the aggregation fan-in of
that task, which he knows before hand. This ensures that
each task obtains the same bandwidth (§2.2). Similarly,
the scheduler can boost the weight of outlier tasks that
are starved or are blocking many other tasks [6], thereby
improving job completion times.

Enforcing global allocations: Seawall has so far focused
on enforcing the network share of a local entity (VM, task
etc.). This is complementary to prior work on Distributed
Rate Limiters (DRL) [31] that controls the aggregate rate
achieved by a collection of entities. Controlling just the
aggregate rate is vulnerable to DoS: a tenant might focus
the traffic of all of its VMs on a shared service (such
as storage) or link (e.g., ToR containing victim tenant’s
servers), thereby interfering with the performance of other
tenants while remaining under its global bandwidth cap.
Combining Seawall with a global allocator such as DRL
is simple. The Seawall shim reports each entity’s usage to
the global controller in DRL, which employs its global
policy on the collection of entities and determines what
each entity is allowed to send. The shim then caps the rate
allowed to that entity to the minimum of the rate allowed
by Seawall and the rate allowed by DRL’s global policy.
Further, the combination lets DRL scale better, since with
Seawall, DRL need only track per-entity usage and not

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 317

Figure 8: The Seawall prototype is split into an in-kernel
NDIS filter shim (shaded gray), which implements the rate
limiting datapath, and a userspace rate adapter, which im-
plements the control loop. Configuration shown is for in-
frastructure data centers.

per-flow state that it would otherwise have to.

Choosing parameters: Whenever we adapt past work,
we follow their guidance for parameters. Of the parame-
ters unique to Seawall, their specific values have the fol-
lowing impact. We defer a formal analysis to future work.
Reducing the feedback period T makes Seawall’s adapta-
tion logic more responsive at the cost of more overhead.
We recommend choosing T ∈ [10, 50] ms. The multi-
plicative factor α controls the decrease rate. With the
CUBIC/DCTCP control loop (see Class 3), Seawall is
less sensitive to α than the AIMD control loop, since the
former ramps back up more aggressively. In Class 2, β
controls how much link rate is apportioned evenly versus
based on current usage. With a larger β, the control loop
reacts more quickly to changing demands but delays ap-
portioning unused rate to destinations that need it. We
recommend β > .8.

5. Seawall PROTOTYPE
The shim layer of our prototype is built as an NDIS

packet filter (Figure 8). It interposes new code between
the TCP/IP stack and the NIC driver. In virtualized set-
tings, the shim augments the vswitch in the root partition.
Our prototype is compatible with deployments that use
the Windows 7 kernel as the server OS or as the root par-
tition of Hyper-V. The shim can be adapted to other OSes
and virtualization technologies, e.g., to support Linux and
Xen, one can reimplement it as a Linux network queuing
discipline module. For ease of experimentation, the logic
to adapt rates is built in user space whereas the filters on
the send side and the packet processing on the receive
side are implemented in kernel space.

Clocking rate limiters: The prototype uses software-
based token bucket filters to limit the rate of each tunnel.
Implementing software rate limiters that work correctly
and efficiently at high rates (e.g., 100s of Mbps) requires
high precision interrupts; which are not widely available

to drivers. Instead, we built a simple high precision clock.
One core, per rack of servers, stays in a busy loop, and
broadcasts a UDP heartbeat packet with the current time
to all the servers within that rack once every 0.1ms; the
shim layers use these packets to clock their rate limiters.
We built a roughly equivalent window-based version of
the Seawall shim as proof-of-concept. Windowing is easier
to engineer, since it is self-clocking and does not require
high precision timers, but incurs the expense of more
frequent feedback packets (e.g., once every 10 packets).

Bit-stealing and stateless offload compatibility: A
practical concern is the need to be compatible with NIC
offloads. In particular, adding an extra packet header to
support Seawall prevents the use of widely-used NIC of-
floads, such as large send offload (LSO) and receive side
coalescing (RSC) which only work for known packet for-
mats such as UDP or TCP. This leads to increased CPU
overhead and decreased throughput. On a quad core 2.66
Intel Core2 Duo with an Intel 82567LM NIC, sending at
the line rate of 1Gbps requires 20% more CPU without
LSO (net: 30% without vs 10% with LSO) [37].

NIC vendors have plans to improve offload support for
generic headers. To be immediately deployable without
performance degradation, Seawall steals bits from existing
packet headers, that is, it encodes information in parts
of the packet that are unused or predictable and hence
can be restored by the shim at the receiver. For both
UDP and TCP, Seawall uses up to 16 bits from the IP ID
field, reserving the lower order bits for the segmentation
hardware if needed. For TCP packets, Seawall repurposes
the timestamp option: it compresses the option Kind and
Length fields from 16 bits down to 1 bit, leaving the rest
for Seawall data. In virtualized environments, guest OSes
are para-virtualized to always include timestamp options.
The feedback is sent out-of-band in separate packets. We
also found bit-stealing easier to engineer than adding
extra headers, which could easily lead to performance
degradation unless buffers were managed carefully.

Offloading rate limiters and direct I/O: A few emerg-
ing standards to improve network I/O performance, such
as Direct I/O and SR-IOV, let guest VMs bypass the vir-
tual switch and exchange packets directly with the NIC.
But, this also bypasses the Seawall shim. Below, we pro-
pose a few ways to restore compatibility. However, we
note that the loss of the security and manageability fea-
tures provided by the software virtual switch has limited
the deployment of direct I/O NICs in public clouds. To
encourage deployment, vendors of such NICs plan to
support new features specific to datacenters.

By offloading token bucket- and window-based lim-
iters from the virtual switch to NIC or switch hardware,
tenant traffic can be controlled even if guest VMs di-
rectly send packets to the hardware. To support Seawall,
such offloaded rate limiters need to provide the same

318 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

granularity of flow classification (entity to entity tunnels)
as the shim and report usage and congestion statistics.
High end NICs that support stateful TCP, iSCSI, and
RDMA offloads already support tens of thousands to mil-
lions of window-control engines in hardware. Since most
such NICs are programmable, they can likely support the
changes needed to return statistics to Seawall. Switch po-
licers have similar scale and expressiveness properties. In
addition, low cost programmable switches can be used to
monitor the network for violations [38]. Given the diver-
sity of implementation options, we believe that the design
point occupied by Seawall, i.e., using rate- or window-
controllers at the network edge, is feasible now and as
data rates scale up.

6. EVALUATION
We ran a series of experiments using our prototype to

show that Seawall achieves line rate with minimal CPU
overhead, scales to typical data centers, converges to net-
work allocations that are agnostic to communications pat-
tern (i.e., number of flows and destinations) and protocol
mix (i.e., UDP and TCP), and provides performance isola-
tion. Through experiments with web workloads, we also
demonstrate how Seawall can protect cloud-hosted ser-
vices against DoS attacks, even those using UDP floods.

All experiments used the token bucket filter-based shim
(i.e., rate limiter), which is our best-performing prototype
and matches commonly-available hardware rate limiters.
The following hold unless otherwise stated: (1) Seawall
was configured with the default parameters specified in §4,
(2) all results were aggregated from 10 two minute runs,
with each datapoint a 15 second average and error bars
indicating the 95% confidence interval.
Testbed: For our experiments, we used a 60 server cluster
spread over three racks with 20 servers per rack. The
physical machines were equipped with Xeon L5520 2.27
GHz CPUs (quad core, two hyperthreads per core), Intel
82576 NICs, and 4GB of RAM. The NIC access links
were 1Gb/s and the links from the ToR switches up to
the aggregation switch were 10Gb/s. There was no over-
subscription within each rack. The ToR uplinks were 1:4
over-subscribed. We chose this topology because it is
representative of typical data centers.

For virtualization, we use Windows Server 2008R2
Hyper-V with Server 2008R2 VMs. This version of
Hyper-V exploits the Nehalem virtualization optimiza-
tions, but does not use the direct I/O functionality on the
NICs. Each guest VM was provisioned with 1.5 GB of
RAM and 4 virtual CPUs.

6.1 Microbenchmarks

6.1.1 Throughput and overhead
To evaluate the performance and overhead of Seawall,

we measured the throughput and CPU overhead of tunnel-
ing a TCP connection between two machines through the

Throughput CPU @ Sender CPU @ Receiver
(Mb/s) (%) (%)

Seawall 947± 9 20.7± 0.6 14.2± 0.4
NDIS 977± 4 18.7± 0.4 13.5± 1.1
Baseline 979± 6 16.9± 1.9 10.8± 0.8

Table 1: CPU overhead comparison of Seawall, a null
NDIS driver, and an unmodified network stack. Seawall
achieved line rate with low overhead.

shim. To minimize extraneous sources of noise, no other
traffic was present in the testbed during each experiment
and the sender and receiver transferred data from and to
memory.

Seawall achieved nearly line rate at steady state, with
negligible increase in CPU utilization, adding 3.8% at the
sender and 3.4% at the receiver (Table 1). Much of this
overhead was due to the overhead from installing a NDIS
filter driver: the null NDIS filter by itself added 1.8% and
2.7% overhead, respectively. The NDIS framework is
fairly light weight since it runs in the kernel and requires
no protection domain transfers.

Subtracting out the contributions from the NDIS filter
driver reveals the overheads due to Seawall: it incurred
slightly more overhead on the sender than the receiver.
This is expected since the sender does more work: on
receiving packets, a Seawall receiver need only buffer
congestion information and bounce it back to the sender,
while the sender incurs the overhead of rate limiting and
may have to merge congestion information from many
destinations.

Seawall easily scales to today’s data centers. The shim at
each node maintains a rate limiter, with a few KBs of state
each, for every pair of communicating entities terminating
at that node. The per-packet cost on the data path is fixed
regardless of data center size. A naive implementation of
the rate controller incurs O(DL) complexity per sending
entity (VM or task) where D is the number of destinations
the VM communicates with and L is the number of links
on paths to those destinations. In typical data center
topologies, the diameter is small, and serves as an upper
bound for L. All network stacks on a given node have
collective state and processing overheads that grow at
least linearly with D; these dominate the corresponding
contributions from the rate controller and shim.

6.1.2 Traffic-agnostic network allocation
Seawall seeks to control the network share obtained by a

sender, regardless of traffic. In particular, a sender should
not be able to attain bandwidth beyond that allowed by
the configured weight, no matter how it varies protocol
type, number of flows, and number of destinations.

To evaluate the effectiveness of Seawall in achieving this
goal, we set up the following experiment. Two physical
nodes, hosting one VM each, served as the sources, with
one VM dedicated to selfish traffic and the other to well-
behaved traffic. One physical node served as the sink for

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 319

TCP victim
throughput (Mb/s)

Seawall 429.76
No protection 1.49

(a) Full Burst UDP

(b) Many TCP Flows

Figure 9: Seawall ensures that despite using full burst
UDP flows or many TCP flows, the share of a selfish user is
held proportional to its weight. (In (b), the bars show total
throughput, with the fraction below the divider correspond-
ing to selfish traffic and the fraction above corresponding to
well-behaved traffic.)

all traffic; it was configured with two VMs, with one VM
serving as the sink for well-behaved traffic and the other
serving as the sink for selfish traffic.

Both well-behaved and selfish traffic used the same
number of source VMs, with all Seawall senders assigned
the same network weight. The well-behaved traffic con-
sisted of a single long-lived TCP flow from each source,
while the selfish traffic used one of three strategies to
achieve a higher bandwidth share: using full burst UDP
flow, using large numbers of TCP flows, and using many
destinations
Selfish traffic = Full-burst UDP: Figure 9(a) shows the
aggregate bandwidth achieved by the well-behaved traf-
fic (long-lived TCP) when the selfish traffic consisted
of full rate UDP flows. The sinks for well-behaved and
selfish traffic were colocated on a node with a single
1Gbps NIC. Because each sender had equal weight, Sea-
wall assigned half of this capacity to each sender. Without
Seawall, selfish traffic overwhelms well-behaved traffic,
leading to negligible throughput for well-behaved traffic.
By bundling the UDP traffic inside a tunnel that imposed
congestion control, Seawall ensured that well-behaved traf-
fic retained reasonable performance.
Selfish traffic = Many TCP flows: Figure 9(b) shows the
bandwidth shares achieved by selfish and well-behaved
traffic when selfish senders used many TCP flows. As
before, well-behaved traffic ideally should have achieved
1
2 of the bandwidth. When selfish senders used the same
number of flows as well-behaved traffic, bandwidth was
divided evenly (left pair of bars). In runs without Seawall,
selfish senders that used twice as many flows obtained
2
3 ’rds the bandwidth because TCP congestion control di-

Figure 10: By combining feedback from multiple desti-
nations, Seawall ensures that the share of a sender remains
independent of the number of destinations it communicates
with. (The fraction of the bar below the divider corresponds
to the fraction of bottleneck throughput achieved by selfish
traffic.)

vided bandwidth evenly across flows (middle pair of bars).
Runs with Seawall resulted in approximately even band-
width allocation. Note that Seawall achieved slightly lower
throughput in aggregate. This was due to slower recovery
after loss– the normal traffic had one sawtooth per TCP
flow whereas Seawall had one per source VM; we believe
this can be improved using techniques from §4. When
the selfish traffic used 66 times more flows, it achieved
a dominant share of bandwidth; the well-behaved traf-
fic was allocated almost no bandwidth (rightmost pair of
bars). We see that despite the wide disparity in number of
flows, Seawall divided bandwidth approximately evenly.
Again, Seawall improved the throughput of well-behaved
traffic (the portion above the divider) by several orders of
magnitude.
Selfish traffic = Arbitrarily many destinations: This
experiment evaluated Seawall’s effectiveness against self-
ish tenants that opened connections to many destinations.
The experiment used a topology similar to that in Figure 7.
A well-behaved sender VM and a selfish sender VM were
located on the same server. Each sink was a VM and ran
on a separate, dedicated machine. The well-behaved traf-
fic was assigned one sink machine and the selfish traffic
was assigned a variable number of sink machines. Both
well-behaved and selfish traffic consisted of one TCP flow
per sink. As before, the sending VMs were configured
with the same weight, so that well-behaved traffic would
achieve an even share of the bottleneck.

Figure 10 plots the fraction of bottleneck bandwidth
achieved by well-behaved traffic with and without Seawall.
We see that without Seawall, the share of the selfish traffic
was proportional to the number of destinations. With
Seawall, the share of the well-behaved traffic remained
constant at approximately half, independent of the number

320 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Throughput (Mb/s) Latency (s)
Seawall 181 0.61
No protection 157 0.91

Figure 11: Despite bandwidth pressure, Seawall ensures
that the average HTTP request latency remains small with-
out losing throughput.

of destinations.

6.2 Performance isolation for web servers
To show that Seawall protects against performance in-

terference similar to that shown in §2, we evaluated the
achieved level of protection against a DoS attack on a
web server. Since cloud datacenters are often used to host
web-accessible services, this is a common use case.

In this experiment, an attacker targeted the HTTP re-
sponses sent from the web server to its clients. To launch
such attacks, an adversary places a source VM and a
sink VM such that traffic between these VMs crosses the
same bottleneck links as the web server. The source VM
is close to the server, say on the same rack or machine,
while the sink VM is typically on another rack. Depend-
ing on where the sink is placed, the attack can target the
ToR uplink or another link several hops away.

All machines were colocated on the same rack. The
web server VM, running Microsoft IIS 7, and attacker
source VM, generating UDP floods, resided in separate,
dedicated physical machines. A single web client VM
requested data from the server and shared a physical ma-
chine with an attacker sink VM. The web clients used
WcAsync to generate well-formed web sessions. Session
arrivals followed a Poisson process and were exponen-
tially sized with a mean of 10 requests. Requests followed
a WebStone distribution, varying in size from 500B re-
sponses to 5MB responses with smaller files being much
more popular.

As expected, a full-rate UDP attack flood caused con-
gestion on the access link of the web client, reducing
throughput to close to zero and substantially increasing
latency. With Seawall, the web server behaved as if there
were no attack. To explore data points where the access
link was not overwhelmed, we dialed down the UDP at-
tack rate to 700Mbps, enough to congest the link but not
to stomp out the web server’s traffic. While achieving
roughly the same throughput as in the case of no protec-
tion, Seawall improved the latency observed by web traffic
by almost 50% (Figure 11). This is because sending the
attack traffic through a congestion controlled tunnel en-
sured that the average queue size at the bottleneck stays
small, thereby reducing queuing delays.

7. DISCUSSION
Here, we discuss how Seawall can be used to imple-

ment rich cloud service models that provide bandwidth
guarantees to tenants, the implications of our architectural
decisions given trends in data centers and hardware, and

the benefits of jointly modifying senders and receivers to
achieve new functionality in data center networks.

7.1 Sharing policies
Virtual Data Centers (VDCs) have been proposed [20,

17, 40] as a way to specify tenant networking require-
ments in cloud data centers. VDCs seek to approximate,
in terms of security isolation and performance, a dedi-
cated data center for each tenant and allows tenants to
specify SLA constraints on network bandwidth at per-port
and per-source/dest-pair granularities. When allocating
tenant VMs to physical hardware, the data center fabric
simultaneously satisfies the specified constraints while
optimizing node and network utilization.

Though Seawall policies could be seen as a simpler-
to-specify alternative to VDCs that closely matches the
provisioning knobs (e.g., disk, CPU, and memory size) of
current infrastructure clouds, Seawall’s weight-based poli-
cies can enhance VDCs in several ways. Some customers,
through analysis or operational experience, understand
the traffic requirements of their VMs; VDCs are attrac-
tive since they can exploit such detailed knowledge to
achieve predictable performance. To improve VDCs with
Seawall, the fabric uses weights to implement the hard
bandwidth guarantees specified in the SLA: with appro-
priate weights, statically chosen during node- and path-
placement, Seawall will converge to the desired allocation.
Unlike implementations based on static reservations [17],
the Seawall implementation is work-conserving, max-min
fair, and achieves higher utilization through statistical
multiplexing.

Seawall also improves a tenant’s control of its own VDC.
Since Seawall readily accepts dynamic weight changes,
each tenant can adjust its allocation policy at a fine gran-
ularity in response to changing application needs. The
fabric permits tenants to reallocate weights between differ-
ent tunnels so long as the resulting weight does not exceed
the SLA; this prevents tenants from stealing service and
avoids having to rerun the VM placement optimizer.

7.2 System architecture
Topology assumptions: The type of topology and avail-
able bandwidth affects the complexity requirements of
network sharing systems. In full bisection bandwidth
topologies, congestion can only occur at the core. System
design is simplified [44, 40, 30], since fair shares can be
computed solely from information about edge congestion,
without any topology information or congestion feedback
from the core.

Seawall supports general topologies, allowing it to pro-
vide benefits even in legacy or cost-constrained data cen-
ters networks. Such topologies are typically bandwidth-
constrained in the core; all nodes using a given core link
need to be accounted for to achieve fair sharing, band-
width reservations, and congestion control. Seawall ex-

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 321

plicitly uses topology information in its control layer to
prevent link over-utilization.
Rate limiters and control loops: Using more rate lim-
iters enables a network allocation system to support richer,
more granular policies. Not having enough rate limiters
can result in aliasing. For instance, VM misbehavior can
cause Gatekeeper [40] to penalize unrelated VMs sending
to the same destination. Using more complex rate lim-
iters can improve system performance. For instance, rate
limiters based on multi-queue schedulers such as DWRR
or Linux’s hierarchical queuing classes can utilize the
network more efficiently when rate limiter parameters
and demand do not match, and the self-clocking nature
of window-based limiters can reduce switch buffering re-
quirements as compared to rate-based limiters. However,
having a large number of complex limiters can constrain
how a network sharing architecture can be realized, since
NICs and switches do not currently support such rate
limiters at scale.

To maximize performance and policy expressiveness,
a network allocation system should support a large num-
ber of limiters of varying capability. The current Seawall
architecture can support rate- and window-based limiters
based in hardware and software. As future work, we are
investigating ways to map topology information onto hi-
erarchical limiters; to compile policies given a limited
number of available hardware limiters; and to tradeoff
rate limiter complexity with controller complexity, us-
ing longer adaptation intervals when more capable rate
limiters are available.

7.3 Partitioning sender/receiver functionality
Control loops can benefit from receiver-side informa-

tion and coordination, since the receiver is aware of the
current traffic demand from all sources and can send feed-
back to each with lower overhead. Seawall currently uses
a receiver-driven approach customized for map-reduce to
achieve better network scheduling; as future work we are
building a general solution at the shim layer.

In principal, a purely receiver-directed approach to im-
plementing a new network allocation policy, such as that
used in [44, 40], might reduce system complexity since
the sender TCP stack does not need to be modified. How-
ever, virtualization stack complexity does not decrease
substantially, since the rate controller simply moves from
the sender to the receiver. Moreover, limiting changes to
one endpoint in data centers provides little of the adoption
cost advantages found in the heterogeneous Internet envi-
ronment. Modifying the VMs to defer congestion control
to other layers can help researchers and practitioners to
identify and deploy new network sharing policies and
transport protocols for the data center.

A receiver-only approach can also add complexity.
While some allocation policies are easy to attain by
treating the sender as a black box, others are not. For

instance, eliminating fatesharing from Gatekeeper and
adding weighted, fair work-conserving scheduling ap-
pears non-trivial. Moreover, protecting a receiver-only
approach from attack requires adding a detector for non-
conformant senders. While such detectors have been stud-
ied for WAN traffic [13], it is unclear whether they are
feasible in the data center. Such detectors might also per-
mit harmful traffic that running new, trusted sender-side
code can trivially exclude.

8. RELATED WORK
Proportional allocation of shared resources has been

a recurring theme in the architecture and virtualization
communities [42, 15]. To the best of our knowledge,
Seawall is the first to extend this to the data center network
and support generic sending entities (VMs, applications,
tasks, processes, etc.).

Multicast congestion control [14], while similar at first
blush, targets a very different problem since they have to
allow for any participant to send traffic to the group while
ensuring TCP-friendliness. It is unclear how to adapt
these schemes to proportionally divide the network.

Recent work in hypervisor, network stack, and soft-
ware routers have shown that software-based network
processing, like that used in Seawall for monitoring and
rate limiting, can be more flexible than hardware-based
approaches yet achieve high performance. [35] presents
an optimized virtualization stack that achieves compara-
ble performance to direct I/O. The Sun Crossbow network
stack provides an arbitrary number of bandwidth-limited
virtual NICs [41]. Crossbow provides identical semantics
regardless of underlying physical NIC and transparently
leverages offloads to improve performance. Seawall’s us-
age of rate limiters can benefit from these ideas.

QCN is an emerging Ethernet standard for congestion
control in datacenter networks [29]. In QCN, upon de-
tecting a congested link, the switch sends feedback to the
heavy senders. The feedback packet uniquely identifies
the flow and congestion location, enabling senders that
receive feedback to rate limit specific flows. QCN uses
explicit feedback to drive a more aggressive control loop
than TCP. While QCN can throttle the heavy senders, it
is not designed to provide fairness guarantees, tunable
or otherwise. Further, QCN requires changes to switch
hardware and can only cover purely Layer 2 topologies.

Much work has gone into fair queuing mechanisms in
switches [12]. Link local sharing mechanisms, such as
Weighted Fair Queuing and Deficit Round Robin, sepa-
rate traffic into multiple queues at each switch port and
arbitrate service between the queues in some priority or
proportion. NetShare [24] builds on top of WFQ support
in switches. This approach is useful to share the network
between a small number of large sending entities (e.g.,
a whole service type, such as “Search” or “Distributed
storage” in a platform data center). The number of queues

322 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

available in today’s switches, however, is several orders
of magnitude smaller than the numbers of VMs and tasks
in today’s datacenters. More fundamentally, since link
local mechanisms lack end-to-end information they can
let significant traffic through only to be dropped at some
later bottleneck on the path. Seawall can achieve better
scalability by mapping many VMs onto a small, fixed
number of queues and achieves better efficiency by using
end-to-end congestion control.

9. FINAL REMARKS
Economies of scale are pushing distributed applica-

tions to co-exist with each other on shared infrastructure.
The lack of mechanisms to apportion network bandwidth
across these entities leads to a host of problems, from re-
duced security to unpredictable performance and to poor
ability to improve high level objectives such as job com-
pletion time. Seawall is a first step towards providing data
center administrators with tools to divide their network
across the sharing entities without requiring any coopera-
tion from the entities. It is novel in its ability to scale to
massive numbers of sharing entities and uniquely adapts
ideas from congestion control to the problem of enforcing
network share agnostic to traffic type. The design space
that Seawall occupies – push functionality to software at
the network edge – appears well-suited to emerging hard-
ware trends in data center and virtualization hardware.

Acknowledgements
We thank Deepak Bansal, Dave Maltz, our shepherd Bill Weihl
and the NSDI reviewers for discussions that improved this work.

Notes
1Perhaps because it is hard to predict such events and find

appropriate tasks at short notice. Also, running more tasks
requires spare memory and has initialization overhead.

References
[1] Understanding the Available Bit Rate (ABR) Service Category for ATM

VCs. Cisco Systems, 2006.
[2] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,

and S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In
SIGCOMM, 2009.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM, 2008.

[4] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In
SIGCOMM, 2010.

[5] Amazon.com. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris. Reining in the Outliers in MapReduce Clusters Using
Mantri. In OSDI, 2010.

[7] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion
management architecture for internet hosts. In SIGCOMM, 1999.

[8] Bill Claybrook. Comparing cloud risks and virtualization risks for data
center apps. http://searchdatacenter.techtarget.com/tip/
0,289483,sid80 gci1380652,00.html.

[9] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive
Datasets. In VLDB, 2008.

[10] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the three CPU
schedulers in Xen. In SIGMETRICS, 2007.

[11] J. Crowcroft and P. Oechslin. Differentiated end-to-end Internet services
using a weighted proportional fair sharing TCP. ACM CCR, 28(3), 1998.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. ACM CCR, 19(4), 1989.

[13] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control
in the Internet. IEEE TON, 7(4), 1999.

[14] J. Golestani and K. Sabnani. Fundamental observations on multicast
congestion control in the Internet. In INFOCOM, 1999.

[15] A. Gulati and C. A. Waldspurger. PARDA: Proportional Allocation of
Resources for Distributed Storage Access. In FAST, 2009.

[16] C. Guo et al. Bcube: High performance, server-centric network
architecture for data centers. In SIGCOMM, 2009.

[17] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang.
SecondNet: A Data Center Network Virtualization Architecture with
Bandwidth Guarantees. In ACM CoNEXT, 2010.

[18] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based
scheduling to improve web performance. ACM TOCS, 21(2), 2003.

[19] M. Isard. Autopilot: Automatic Data Center Management. OSR, 41(2),
2007.

[20] M. Kallahalla, M. Yusal, R. Swaminathan, D. Lowell, M. Wray,
T. Christian, N. Edwards, C. I. Dalton, and F. Gittler. SoftUDC: A
Software-Based Data Center for Utility Computing. Computer, 2004.

[21] S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center
networks. In HotNets, 2009.

[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
Nature of Datacenter Traffic: Measurements & Analysis. In IMC, 2009.

[23] D. Katabi, M. Handley, and C. Rohrs. Internet Congestion Control for
High Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[24] T. Lam et al. NetShare : Virtualizing Data Center Networks across
Services. Technical Report CS2010-0957, UCSD, 2010.

[25] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: Comparing public
cloud providers. In IMC, 2010.

[26] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data
Center Network Architecture. In SIGCOMM, 2008.

[27] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg.
Quincy: Fair scheduling for distributed computing clusters. In SOSP, 2009.

[28] Microsoft. An Overview of Windows Azure. http://download.
microsoft.com/download/A/A/6/AA6A260A-B920-4BBC-AE33-
8815996CD8FB/02-Article Introduction to Windows
Azure.docx.

[29] R. Pan, B. Prabhakar, and A. Laxmikantha. QCN: Quantized Congestion
Notification. http://www.ieee802.org/1/files/public/
docs2007/au-prabhakar-qcn-description.pdf, 2007.

[30] L. Popa, S. Y. Ko, and S. Ratnasamy. CloudPolice: Taking Access Control
out of the Network. In HotNets, 2010.

[31] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren. Cloud control with distributed rate limiting. In SIGCOMM, 2007.

[32] I. Rhee and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP
Variant. OSR, 42(5), 2008.

[33] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get Off of
My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In ACM CCS, 2009.

[34] G. Rosen. Anatomy of an Amazon EC2 Resource ID.
http://www.jackofallclouds.com/2009/09/anatomy-of-an-amazon-ec2-
resource-id/.

[35] J. R. Santos, Y. Turner, G. J. Janakiraman, and I. Pratt. Bridging the Gap
between Software and Hardware Techniques for I / O Virtualization.
Technical Report HPL-2008-39, HP Labs, 2008.

[36] L. Shalev, J. Satran, E. Borovik, and M. Ben-yehuda. IsoStack Highly
Efficient Network Processing on Dedicated Cores. In USENIX ATC.

[37] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall: Performance
isolation for cloud datacenter networks. In HotCloud, 2010.

[38] A. Shieh, S. Kandula, and E. Sirer. SideCar: Building Programmable
Datacenter Networks without Programmable Switches. In HotNets, 2010.

[39] M. Singh, P. Pradhan, and P. Francis. MPAT: Aggregate TCP Congestion
Management as a Building Block for Internet QoS. In ICNP, 2004.

[40] P. V. Soares, J. R. Santos, N. Tolia, D. Guedes, and Y. Turner. Gatekeeper:
Distributed Rate Control for Virtualized Datacenters. Technical Report
HPL-2010-151, HP Labs, 2010.

[41] S. Tripathi, N. Droux, T. Srinivasan, and K. Belgaied. Crossbow: from
hardware virtualized NICs to virtualized networks. In ACM VISA, 2009.

[42] C. A. Waldspurger. Lottery and Stride Scheduling : Proportional Share
Resource Management. PhD thesis, MIT, 1995.

[43] G. Wang and T. S. E. Ng. The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center. In INFOCOM, 2010.

[44] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion Control
for TCP in Data Center Networks. In ACM CoNEXT, 2010.

[45] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Improving
MapReduce Performance in Heterogeneous Environments. In OSDI, 2008.

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 323

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica
University of California, Berkeley

{alig,matei,benh,andyk,shenker,istoica}@cs.berkeley.edu

Abstract
We consider the problem of fair resource allocation

in a system containing different resource types, where
each user may have different demands for each resource.
To address this problem, we propose Dominant Resource
Fairness (DRF), a generalization of max-min fairness
to multiple resource types. We show that DRF, unlike
other possible policies, satisfies several highly desirable
properties. First, DRF incentivizes users to share re-
sources, by ensuring that no user is better off if resources
are equally partitioned among them. Second, DRF is
strategy-proof, as a user cannot increase her allocation
by lying about her requirements. Third, DRF is envy-
free, as no user would want to trade her allocation with
that of another user. Finally, DRF allocations are Pareto
efficient, as it is not possible to improve the allocation of
a user without decreasing the allocation of another user.
We have implemented DRF in the Mesos cluster resource
manager, and show that it leads to better throughput and
fairness than the slot-based fair sharing schemes in cur-
rent cluster schedulers.

1 Introduction
Resource allocation is a key building block of any shared
computer system. One of the most popular allocation
policies proposed so far has been max-min fairness,
which maximizes the minimum allocation received by a
user in the system. Assuming each user has enough de-
mand, this policy gives each user an equal share of the
resources. Max-min fairness has been generalized to in-
clude the concept of weight, where each user receives a
share of the resources proportional to its weight.

The attractiveness of weighted max-min fairness
stems from its generality and its ability to provide perfor-
mance isolation. The weighted max-min fairness model
can support a variety of other resource allocation poli-
cies, including priority, reservation, and deadline based
allocation [31]. In addition, weighted max-min fairness
ensures isolation, in that a user is guaranteed to receive

her share irrespective of the demand of the other users.
Given these features, it should come as no surprise

that a large number of algorithms have been proposed
to implement (weighted) max-min fairness with various
degrees of accuracy, such as round-robin, proportional
resource sharing [32], and weighted fair queueing [12].
These algorithms have been applied to a variety of re-
sources, including link bandwidth [8, 12, 15, 24, 27, 29],
CPU [11, 28, 31], memory [4, 31], and storage [5].

Despite the vast amount of work on fair allocation, the
focus has so far been primarily on a single resource type.
Even in multi-resource environments, where users have
heterogeneous resource demands, allocation is typically
done using a single resource abstraction. For example,
fair schedulers for Hadoop and Dryad [1, 18, 34], two
widely used cluster computing frameworks, allocate re-
sources at the level of fixed-size partitions of the nodes,
called slots. This is despite the fact that different jobs
in these clusters can have widely different demands for
CPU, memory, and I/O resources.

In this paper, we address the problem of fair alloca-
tion of multiple types of resources to users with heteroge-
neous demands. In particular, we propose Dominant Re-
source Fairness (DRF), a generalization of max-min fair-
ness for multiple resources. The intuition behind DRF is
that in a multi-resource environment, the allocation of a
user should be determined by the user’s dominant share,
which is the maximum share that the user has been allo-
cated of any resource. In a nutshell, DRF seeks to max-
imize the minimum dominant share across all users. For
example, if user A runs CPU-heavy tasks and user B runs
memory-heavy tasks, DRF attempts to equalize user A’s
share of CPUs with user B’s share of memory. In the
single resource case, DRF reduces to max-min fairness
for that resource.

The strength of DRF lies in the properties it satis-
fies. These properties are trivially satisfied by max-min
fairness for a single resource, but are non-trivial in the
case of multiple resources. Four such properties are

1

324 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sharing incentive, strategy-proofness, Pareto efficiency,
and envy-freeness. DRF provides incentives for users to
share resources by guaranteeing that no user is better off
in a system in which resources are statically and equally
partitioned among users. Furthermore, DRF is strategy-
proof, as a user cannot get a better allocation by lying
about her resource demands. DRF is Pareto-efficient as
it allocates all available resources subject to satisfying
the other properties, and without preempting existing al-
locations. Finally, DRF is envy-free, as no user prefers
the allocation of another user. Other solutions violate at
least one of the above properties. For example, the pre-
ferred [3, 22, 33] fair division mechanism in microeco-
nomic theory, Competitive Equilibrium from Equal In-
comes [30], is not strategy-proof.

We have implemented and evaluated DRF in
Mesos [16], a resource manager over which multiple
cluster computing frameworks, such as Hadoop and MPI,
can run. We compare DRF with the slot-based fair shar-
ing scheme used in Hadoop and Dryad and show that
slot-based fair sharing can lead to poorer performance,
unfairly punishing certain workloads, while providing
weaker isolation guarantees.

While this paper focuses on resource allocation in dat-
acenters, we believe that DRF is generally applicable to
other multi-resource environments where users have het-
erogeneous demands, such as in multi-core machines.

The rest of this paper is organized as follows. Sec-
tion 2 motivates the problem of multi-resource fairness.
Section 3 lists fairness properties that we will consider in
this paper. Section 4 introduces DRF. Section 5 presents
alternative notions of fairness, while Section 6 analyzes
the properties of DRF and other policies. Section 7 pro-
vides experimental results based on traces from a Face-
book Hadoop cluster. We survey related work in Sec-
tion 8 and conclude in Section 9.

2 Motivation
While previous work on weighted max-min fairness has
focused on single resources, the advent of cloud com-
puting and multi-core processors has increased the need
for allocation policies for environments with multiple
resources and heterogeneous user demands. By multi-
ple resources we mean resources of different types, in-
stead of multiple instances of the same interchangeable
resource.

To motivate the need for multi-resource allocation, we
plot the resource usage profiles of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October
2010) in Figure 1. The placement of a circle in Figure 1
indicates the memory and CPU resources consumed by
tasks. The size of a circle is logarithmic to the number of
tasks in the region of the circle. Though the majority of
tasks are CPU-heavy, there exist tasks that are memory-

Figure 1: CPU and memory demands of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October 2010).
Each bubble’s size is logarithmic in the number of tasks in its
region.

heavy as well, especially for reduce operations.
Existing fair schedulers for clusters, such as Quincy

[18] and the Hadoop Fair Scheduler [2, 34], ignore the
heterogeneity of user demands, and allocate resources at
the granularity of slots, where a slot is a fixed fraction
of a node. This leads to inefficient allocation as a slot is
more often than not a poor match for the task demands.

Figure 2 quantifies the level of fairness and isola-
tion provided by the Hadoop MapReduce fair sched-
uler [2, 34]. The figure shows the CDFs of the ratio
between the task CPU demand and the slot CPU share,
and of the ratio between the task memory demand and
the slot memory share. We compute the slot memory
and CPU shares by simply dividing the total amount of
memory and CPUs by the number of slots. A ratio of
1 corresponds to a perfect match between the task de-
mands and slot resources, a ratio below 1 corresponds to
tasks underutilizing their slot resources, and a ratio above
1 corresponds to tasks over-utilizing their slot resources,
which may lead to thrashing. Figure 2 shows that most of
the tasks either underutilize or overutilize some of their
slot resources. Modifying the number of slots per ma-
chine will not solve the problem as this may result either
in a lower overall utilization or more tasks experiencing
poor performance due to over-utilization (see Section 7).

3 Allocation Properties
We now turn our attention to designing a max-min fair al-
location policy for multiple resources and heterogeneous
requests. To illustrate the problem, consider a system
consisting of 9 CPUs and 18 GB RAM, and two users:
user A runs tasks that require 〈1 CPUs, 4 GB〉 each, and
user B runs tasks that require 〈3 CPUs, 1 GB〉 each.
What constitutes a fair allocation policy for this case?

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 325

Figure 2: CDF of demand to slot ratio in a 2000-node cluster at
Facebook over a one month period (October 2010). A demand
to slot ratio of 2.0 represents a task that requires twice as much
CPU (or memory) than the slot CPU (or memory) size.

One possibility would be to allocate each user half of
every resource. Another possibility would be to equal-
ize the aggregate (i.e., CPU plus memory) allocations of
each user. While it is relatively easy to come up with a
variety of possible “fair” allocations, it is unclear how to
evaluate and compare these allocations.

To address this challenge, we start with a set of de-
sirable properties that we believe any resource alloca-
tion policy for multiple resources and heterogeneous de-
mands should satisfy. We then let these properties guide
the development of a fair allocation policy. We have
found the following four properties to be important:

1. Sharing incentive: Each user should be better off
sharing the cluster, than exclusively using her own
partition of the cluster. Consider a cluster with iden-
tical nodes and n users. Then a user should not be
able to allocate more tasks in a cluster partition con-
sisting of 1

n of all resources.

2. Strategy-proofness: Users should not be able to
benefit by lying about their resource demands. This
provides incentive compatibility, as a user cannot
improve her allocation by lying.

3. Envy-freeness: A user should not prefer the allo-
cation of another user. This property embodies the
notion of fairness [13, 30].

4. Pareto efficiency: It should not be possible to in-
crease the allocation of a user without decreasing
the allocation of at least another user. This prop-
erty is important as it leads to maximizing system
utilization subject to satisfying the other properties.

We briefly comment on the strategy-proofness and
sharing incentive properties, which we believe are of
special importance in datacenter environments. Anec-
dotal evidence from cloud operators that we have talked

with indicates that strategy-proofness is important, as it
is common for users to attempt to manipulate schedulers.
For example, one of Yahoo!’s Hadoop MapReduce dat-
acenters has different numbers of slots for map and re-
duce tasks. A user discovered that the map slots were
contended, and therefore launched all his jobs as long
reduce phases, which would manually do the work that
MapReduce does in its map phase. Another big search
company provided dedicated machines for jobs only if
the users could guarantee high utilization. The company
soon found that users would sprinkle their code with in-
finite loops to artificially inflate utilization levels.

Furthermore, any policy that satisfies the sharing in-
centive property also provides performance isolation, as
it guarantees a minimum allocation to each user (i.e., a
user cannot do worse than owning 1

n of the cluster) irre-
spective of the demands of the other users.

It can be easily shown that in the case of a single re-
source, max-min fairness satisfies all the above proper-
ties. However, achieving these properties in the case
of multiple resources and heterogeneous user demands
is not trivial. For example, the preferred fair division
mechanism in microeconomic theory, Competitive Equi-
librium from Equal Incomes [22, 30, 33], is not strategy-
proof (see Section 6.1.2).

In addition to the above properties, we consider four
other nice-to-have properties:

• Single resource fairness: For a single resource, the
solution should reduce to max-min fairness.

• Bottleneck fairness: If there is one resource that is
percent-wise demanded most of by every user, then
the solution should reduce to max-min fairness for
that resource.

• Population monotonicity: When a user leaves the
system and relinquishes her resources, none of the
allocations of the remaining users should decrease.

• Resource monotonicity: If more resources are added
to the system, none of the allocations of the existing
users should decrease.

4 Dominant Resource Fairness (DRF)
We propose Dominant Resource Fairness (DRF), a new
allocation policy for multiple resources that meets all
four of the required properties in the previous section.
For every user, DRF computes the share of each resource
allocated to that user. The maximum among all shares
of a user is called that user’s dominant share, and the
resource corresponding to the dominant share is called
the dominant resource. Different users may have dif-
ferent dominant resources. For example, the dominant
resource of a user running a computation-bound job is

3

326 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User A User B

CPUs
(9 total)

Memory
(18GB total)

100%

50%

0%

3 CPUs 12 GB

6 CPUs 2 GB

Figure 3: DRF allocation for the example in Section 4.1.

CPU, while the dominant resource of a user running an
I/O-bound job is bandwidth.1 DRF simply applies max-
min fairness across users’ dominant shares. That is, DRF
seeks to maximize the smallest dominant share in the
system, then the second-smallest, and so on.

We start by illustrating DRF with an example (§4.1),
then present an algorithm for DRF (§4.2) and a defini-
tion of weighted DRF (§4.3). In Section 5, we present
two other allocation policies: asset fairness, a straightfor-
ward policy that aims to equalize the aggregate resources
allocated to each user, and competitive equilibrium from
equal incomes (CEEI), a popular fair allocation policy
preferred in the micro-economic domain [22, 30, 33].

In this section, we consider a computation model with
n users and m resources. Each user runs individual tasks,
and each task is characterized by a demand vector, which
specifies the amount of resources required by the task,
e.g., 〈1 CPU, 4 GB〉. In general, tasks (even the ones
belonging to the same user) may have different demands.

4.1 An Example

Consider a system with of 9 CPUs, 18 GB RAM, and two
users, where user A runs tasks with demand vector 〈1
CPU, 4 GB〉, and user B runs tasks with demand vector
〈3 CPUs, 1 GB〉 each.

In the above scenario, each task from user A consumes
1/9 of the total CPUs and 2/9 of the total memory, so
user A’s dominant resource is memory. Each task from
user B consumes 1/3 of the total CPUs and 1/18 of the
total memory, so user B’s dominant resource is CPU.
DRF will equalize users’ dominant shares, giving the al-
location in Figure 3: three tasks for user A, with a total
of 〈3 CPUs, 12 GB〉, and two tasks for user B, with a
total of 〈6 CPUs, 2 GB〉. With this allocation, each user
ends up with the same dominant share, i.e., user A gets
2/3 of RAM, while user B gets 2/3 of the CPUs.

This allocation can be computed mathematically as
follows. Let x and y be the number of tasks allocated

1A user may have the same share on multiple resources, and might
therefore have multiple dominant resources.

Algorithm 1 DRF pseudo-code

R = 〈r1, · · · , rm〉 � total resource capacities
C = 〈c1, · · · , cm〉 � consumed resources, initially 0
si (i = 1..n) � user i’s dominant shares, initially 0
Ui = 〈ui,1, · · · , ui,m〉 (i = 1..n) � resources given to

user i, initially 0

pick user i with lowest dominant share si
Di ← demand of user i’s next task
if C +Di ≤ R then

C = C +Di � update consumed vector
Ui = Ui +Di � update i’s allocation vector
si = maxmj=1{ui,j/rj}

else
return � the cluster is full

end if

by DRF to users A and B, respectively. Then user A
receives 〈x CPU, 4x GB〉, while user B gets 〈3y CPU,
y GB〉. The total amount of resources allocated to both
users is (x+3y) CPUs and (4x+ y) GB. Also, the dom-
inant shares of users A and B are 4x/18 = 2x/9 and
3y/9 = y/3, respectively (their corresponding shares of
memory and CPU). The DRF allocation is then given by
the solution to the following optimization problem:

max (x, y) (Maximize allocations)
subject to

x+ 3y ≤ 9 (CPU constraint)
4x+ y ≤ 18 (Memory constraint)

2x

9
=

y

3
(Equalize dominant shares)

Solving this problem yields2 x = 3 and y = 2. Thus,
user A gets 〈3 CPU, 12 GB〉 and B gets 〈6 CPU, 2 GB〉.

Note that DRF need not always equalize users’ domi-
nant shares. When a user’s total demand is met, that user
will not need more tasks, so the excess resources will
be split among the other users, much like in max-min
fairness. In addition, if a resource gets exhausted, users
that do not need that resource can still continue receiv-
ing higher shares of the other resources. We present an
algorithm for DRF allocation in the next section.

4.2 DRF Scheduling Algorithm

Algorithm 1 shows pseudo-code for DRF scheduling.
The algorithm tracks the total resources allocated to each
user as well as the user’s dominant share, si. At each
step, DRF picks the user with the lowest dominant share
among those with tasks ready to run. If that user’s task
demand can be satisfied, i.e., there are enough resources

2Note that given last constraint (i.e., 2x/9 = y/3) allocations x
and y are simultaneously maximized.

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 327

Schedule
User A User B CPU RAM

res. shares dom. share res. shares dom. share total alloc. total alloc.
User B 〈0, 0〉 0 〈3/9, 1/18〉 1/3 3/9 1/18
User A 〈1/9, 4/18〉 2/9 〈3/9, 1/18〉 1/3 4/9 5/18
User A 〈2/9, 8/18〉 4/9 〈3/9, 1/18〉 1/3 5/9 9/18
User B 〈2/9, 8/18〉 4/9 〈6/9, 2/18〉 2/3 8/9 10/18
User A 〈3/9, 12/18〉 2/3 〈6/9, 2/18〉 2/3 1 14/18

Table 1: Example of DRF allocating resources in a system with 9 CPUs and 18 GB RAM to two users running tasks that require
〈1 CPU, 4 GB〉 and 〈3 CPUs, 1 GB〉, respectively. Each row corresponds to DRF making a scheduling decision. A row shows the
shares of each user for each resource, the user’s dominant share, and the fraction of each resource allocated so far. DRF repeatedly
selects the user with the lowest dominant share (indicated in bold) to launch a task, until no more tasks can be allocated.

available in the system, one of her tasks is launched. We
consider the general case in which a user can have tasks
with different demand vectors, and we use variable Di to
denote the demand vector of the next task user i wants
to launch. For simplicity, the pseudo-code does not cap-
ture the event of a task finishing. In this case, the user
releases the task’s resources and DRF again selects the
user with the smallest dominant share to run her task.

Consider the two-user example in Section 4.1. Table 1
illustrates the DRF allocation process for this example.
DRF first picks B to run a task. As a result, the shares
of B become 〈3/9, 1/18〉, and the dominant share be-
comes max(3/9, 1/18) = 1/3. Next, DRF picks A, as
her dominant share is 0. The process continues until it
is no longer possible to run new tasks. In this case, this
happens as soon as CPU has been saturated.

At the end of the above allocation, user A gets 〈3 CPU,
12 GB〉, while user B gets 〈6 CPU, 2 GB〉, i.e., each user
gets 2/3 of its dominant resource.

Note that in this example the allocation stops as soon
as any resource is saturated. However, in the general
case, it may be possible to continue to allocate tasks even
after some resource has been saturated, as some tasks
might not have any demand on the saturated resource.

The above algorithm can be implemented using a bi-
nary heap that stores each user’s dominant share. Each
scheduling decision then takes O(log n) time for n users.

4.3 Weighted DRF

In practice, there are many cases in which allocating re-
sources equally across users is not the desirable policy.
Instead, we may want to allocate more resources to users
running more important jobs, or to users that have con-
tributed more resources to the cluster. To achieve this
goal, we propose Weighted DRF, a generalization of both
DRF and weighted max-min fairness.

With Weighted DRF, each user i is associated a weight
vector Wi = 〈wi,1, . . . , wi,m〉, where wi,j represents the
weight of user i for resource j. The definition of a dom-
inant share for user i changes to si = maxj{ui,j/wi,j},
where ui,j is user i’s share of resource j. A particular

case of interest is when all the weights of user i are equal,
i.e., wi,j = wi, (1 ≤ j ≤ m). In this case, the ratio be-
tween the dominant shares of users i and j will be simply
wi/wj . If the weights of all users are set to 1, Weighted
DRF reduces trivially to DRF.

5 Alternative Fair Allocation Policies
Defining a fair allocation in a multi-resource system is
not an easy question, as the notion of “fairness” is itself
open to discussion. In our efforts, we considered numer-
ous allocation policies before settling on DRF as the only
one that satisfies all four of the required properties in
Section 3: sharing incentive, strategy-proofness, Pareto
efficiency, and envy-freeness. In this section, we con-
sider two of the alternatives we have investigated: Asset
Fairness, a simple and intuitive policy that aims to equal-
ize the aggregate resources allocated to each user, and
Competitive Equilibrium from Equal Incomes (CEEI),
the policy of choice for fairly allocating resources in the
microeconomic domain [22, 30, 33]. We compare these
policies with DRF in Section 5.3.

5.1 Asset Fairness

The idea behind Asset Fairness is that equal shares of
different resources are worth the same, i.e., that 1% of
all CPUs worth is the same as 1% of memory and 1%
of I/O bandwidth. Asset Fairness then tries to equalize
the aggregate resource value allocated to each user. In
particular, Asset Fairness computes for each user i the
aggregate share xi =

∑
j si,j , where si,j is the share of

resource j given to user i. It then applies max-min across
users’ aggregate shares, i.e., it repeatedly launches tasks
for the user with the minimum aggregate share.

Consider the example in Section 4.1. Since there are
twice as many GB of RAM as CPUs (i.e., 9 CPUs and
18 GB RAM), one CPU is worth twice as much as one
GB of RAM. Supposing that one GB is worth $1 and
one CPU is worth $2, it follows that user A spends $6
for each task, while user B spends $7. Let x and y be
the number of tasks allocated by Asset Fairness to users
A and B, respectively. Then the asset-fair allocation is

5

328 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

given by the solution to the following optimization prob-
lem:

max (x, y) (Maximize allocations)
subject to

x+ 3y ≤ 9 (CPU constraint)
4x+ y ≤ 18 (Memory constraint)

6x = 7y (Every user spends the same)

Solving the above problem yields x = 2.52 and y =
2.16. Thus, user A gets 〈2.5 CPUs, 10.1 GB〉, while user
B gets 〈6.5 CPUs, 2.2 GB〉, respectively.

While this allocation policy seems compelling in its
simplicity, it has a significant drawback: it violates the
sharing incentive property. As we show in Section 6.1.1,
asset fairness can result in one user getting less than 1/n
of all resources, where n is the total number of users.

5.2 Competitive Equilibrium from Equal Incomes

In microeconomic theory, the preferred method to fairly
divide resources is Competitive Equilibrium from Equal
Incomes (CEEI) [22, 30, 33]. With CEEI, each user re-
ceives initially 1

n of every resource, and subsequently,
each user trades her resources with other users in a per-
fectly competitive market.3 The outcome of CEEI is both
envy-free and Pareto efficient [30].

More precisely, the CEEI allocation is given by the
Nash bargaining solution4 [22, 23]. The Nash bargain-
ing solution picks the feasible allocation that maximizes∏

i ui(ai), where ui(ai) is the utility that user i gets from
her allocation ai. To simplify the comparison, we assume
that the utility that a user gets from her allocation is sim-
ply her dominant share, si.

Consider again the two-user example in Section 4.1.
Recall that the dominant share of user A is 4x/18 =
2x/9 while the dominant share of user B is 3y/9 = y/3,
where x is the number of tasks given to A and y is the
number of tasks given to B. Maximizing the product
of the dominant shares is equivalent to maximizing the
product x · y. Thus, CEEI aims to solve the following
optimization problem:

max (x · y) (maximize Nash product)
subject to

x+ 3y ≤ 9 (CPU constraint)
4x+ y ≤ 18 (Memory constraint)

Solving the above problem yields x = 45/11 and y =
18/11. Thus, user A gets 〈4.1 CPUs, 16.4 GB〉, while
user B gets 〈4.9 CPUs, 1.6 GB〉.

3A perfect market satisfies the price-taking (i.e., no single user af-
fects prices) and market-clearance (i.e., matching supply and demand
via price adjustment) assumptions.

4For this to hold, utilities have to be homogeneous, i.e., u(αx) =
αu(x) for α > 0, which is true in our case.

User A User B

a) DRF b) Asset Fairness

CPU Mem CPU Mem CPU Mem

100%

50%

0%

100%

50%

0%

100%

50%

0%

c) CEEI
Figure 4: Allocations given by DRF, Asset Fairness and CEEI
in the example scenario in Section 4.1.

Unfortunately, while CEEI is envy-free and Pareto ef-
ficient, it turns out that it is not strategy-proof, as we will
show in Section 6.1.2. Thus, users can increase their al-
locations by lying about their resource demands.

5.3 Comparison with DRF

To give the reader an intuitive understanding of Asset
Fairness and CEEI, we compare their allocations for the
example in Section 4.1 to that of DRF in Figure 4.

We see that DRF equalizes the dominant shares of the
users, i.e., user A’s memory share and user B’s CPU
share. In contrast, Asset Fairness equalizes the total frac-
tion of resources allocated to each user, i.e., the areas of
the rectangles for each user in the figure. Finally, be-
cause CEEI assumes a perfectly competitive market, it
finds a solution satisfying market clearance, where ev-
ery resource has been allocated. Unfortunately, this ex-
act property makes it possible to cheat CEEI: a user can
claim she needs more of some underutilized resource
even when she does not, leading CEEI to give more tasks
overall to this user to achieve market clearance.

6 Analysis
In this section, we discuss which of the properties pre-
sented in Section 3 are satisfied by Asset Fairness, CEEI,
and DRF. We also evaluate the accuracy of DRF when
task sizes do not match the available resources exactly.

6.1 Fairness Properties

Table 2 summarizes the fairness properties that are sat-
isfied by Asset Fairness, CEEI, and DRF. The Appendix
contains the proofs of the main properties of DRF, while
our technical report [14] contains a more complete list of
results for DRF and CEEI. In the remainder of this sec-
tion, we discuss some of the interesting missing entries
in the table, i.e., properties violated by each of these dis-
ciplines. In particular, we show through examples why
Asset Fairness and CEEI lack the properties that they

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 329

Allocation Policy
Property Asset CEEI DRF
Sharing Incentive � �
Strategy-proofness � �
Envy-freeness � � �
Pareto efficiency � � �
Single Resource Fairness � � �
Bottleneck Fairness � �
Population Monotonicity � �
Resource Monotonicity

Table 2: Properties of Asset Fairness, CEEI and DRF.

do, and we prove that no policy can provide resource
monotonicity without violating either sharing incentive
or Pareto efficiency to explain why DRF lacks resource
monotonicity.

6.1.1 Properties Violated by Asset Fairness

While being the simplest policy, Asset Fairness violates
several important properties: sharing incentive, bottle-
neck fairness, and resource monotonicity. Next, we use
examples to show the violation of these properties.

Theorem 1 Asset Fairness violates the sharing incen-
tive property.

Proof Consider the following example, illustrated in
Figure 5: two users in a system with 〈30, 30〉 total re-
sources have demand vectors D1 = 〈1, 3〉, and D2 =
〈1, 1〉. Asset fairness will allocate the first user 6 tasks
and the second user 12 tasks. The first user will receive
〈6, 18〉 resources, while the second will use 〈12, 12〉.
While each user gets an equal aggregate share of 24

60 , the
second user gets less than half (15) of both resources.
This violates the sharing incentive property, as the sec-
ond user would be better off to statically partition the
cluster and own half of the nodes. �

Theorem 2 Asset Fairness violates the bottleneck fair-
ness property.

Proof Consider a scenario with a total resource vector of
〈21, 21〉 and two users with demand vectors D1 = 〈3, 2〉
and D2 = 〈4, 1〉, making resource 1 the bottleneck re-
source. Asset fairness will give each user 3 tasks, equal-
izing their aggregate usage to 15. However, this only
gives the first user 3

7 of resource 1 (the contended bottle-
neck resource), violating bottleneck fairness. �

Theorem 3 Asset fairness does not satisfy resource
monotonicity.

 Resource 1 Resource 2

User 1 User 2
100%

50%

0%

Figure 5: Example showing that Asset Fairness can fail to meet
the sharing incentive property. Asset Fairness gives user 2 less
than half of both resources.

User 1 User 2

a) With truthful
demands

b) With user 1
lying

Res. 1

100%

50%

0%

100%

50%

0%
Res. 2 Res. 1 Res. 2

Figure 6: Example showing how CEEI violates strategy proof-
ness. User 1 can increase her share by claiming that she needs
more of resource 2 than she actually does.

Proof Consider two users A and B with demands 〈4, 2〉
and 〈1, 1〉 and 77 units of two resources. Asset fairness
allocates A a total of 〈44, 22〉 and B 〈33, 33〉 equalizing
their sum of shares to 66

77 . If resource two is doubled, both
users’ share of the second resource is halved, while the
first resource is saturated. Asset fairness now decreases
A’s allocation to 〈42, 21〉 and increases B’s to 〈35, 35〉,
equalizing their shares to 42

77 + 21
154 = 35

77 + 35
154 = 105

154 .
Thus resource monotonicity is violated. �

6.1.2 Properties Violated by CEEI

While CEEI is envy-free and Pareto efficient, it turns
out that it is not strategy proof. Intuitively, this is be-
cause CEEI assumes a perfectly competitive market that
achieves market clearance, i.e., matching of supply and
demand and allocation of all the available resources.
This can lead to CEEI giving much higher shares to users
that use more of a less-contended resource in order to
fully utilize that resource. Thus, a user can claim that she
needs more of some underutilized resource to increase
her overall share of resources. We illustrate this below.

Theorem 4 CEEI is not strategy-proof.

7

330 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User 1 User 2 User 3

a) With 3 users b) After user 3
leaves

Res. 1

100%

50%

0%

100%

50%

0%
Res. 2 Res. 1 Res. 2

Figure 7: Example showing that CEEI violates population
monotonicity. When user 3 leaves, CEEI changes the alloca-
tion from a) to b), lowering the share of user 2.

Proof Consider the following example, shown in Figure
6. Assume a total resource vector of 〈100, 100〉, and two
users with demands 〈16, 1〉 and 〈1, 2〉. In this case, CEEI
allocates 100

31 and 1500
31 tasks to each user respectively

(approximately 3.2 and 48.8 tasks). If user 1 changes her
demand vector to 〈16, 8〉, asking for more of resource
2 than she actually needs, CEEI gives the the users 25

6
and 100

3 tasks respectively (approximately 4.2 and 33.3
tasks). Thus, user 1 improves her number of tasks from
3.2 to 4.2 by lying about her demand vector. User 2 suf-
fers because of this, as her task allocation decreases. �

In addition, for the same intuitive reason (market
clearance), we have the following result:

Theorem 5 CEEI violates population monotonicity.

Proof Consider the total resource vector 〈100, 100〉 and
three users with the following demand vectors D1 =
〈4, 1〉, D2 = 〈1, 16〉, and D3 = 〈16, 1〉 (see Figure 7).
CEEI will yield the allocation A1 = 〈11.3, 5.4, 3.1〉,
where the numbers in parenthesis represent the number
of tasks allocated to each user. If user 3 leaves the system
and relinquishes her resource, CEEI gives the new allo-
cation A2 = 〈23.8, 4.8〉, which has made user 2 worse
off than in A1. �

6.1.3 Resource Monotonicity vs. Sharing Incentives
and Pareto efficiency

As shown in Table 2, DRF achieves all the properties ex-
cept resource monotonicity. Rather than being a limita-
tion of DRF, this is a consequence of the fact that sharing
incentive, Pareto efficiency, and resource monotonicity
cannot be achieved simultaneously. Since we consider
the first two of these properties to be more important (see
Section 3) and since adding new resources to a system is
a relatively rare event, we chose to satisfy sharing incen-
tive and Pareto efficiency, and give up resource mono-
tonicity. In particular, we have the following result.

Theorem 6 No allocation policy that satisfies the shar-
ing incentive and Pareto efficiency properties can also
satisfy resource monotonicity.

Proof We use a simple example to prove this prop-
erty. Consider two users A and B with symmetric de-
mands 〈2, 1〉, and 〈1, 2〉, respectively, and assume equal
amounts of both resources. Sharing incentive requires
that user A gets at least half of resource 1 and user B
gets half of resource 2. By Pareto efficiency, we know
that at least one of the two users must be allocated more
resources. Without loss of generality, assume that user A
is given more than half of resource 1 (a symmetric argu-
ment holds if user B is given more than half of resource
2). If the total amount of resource 2 is now increased by
a factor of 4, user B is no longer getting its guaranteed
share of half of resource 2. Now, the only feasible allo-
cation that satisfies the sharing incentive is to give both
users half of resource 1, which would require decreas-
ing user 1’s share of resource 1, thus violating resource
monotonicity. �

This theorem explains why both DRF and CEEI vio-
late resource monotonicity.

6.2 Discrete Resource Allocation

So far, we have implicitly assumed one big resource
pool whose resources can be allocated in arbitrarily small
amounts. Of course, this is often not the case in prac-
tice. For example, clusters consist of many small ma-
chines, where resources are allocated to tasks in discrete
amounts. In the reminder of this section, we refer to
these two scenarios as the continuous, and the discrete
scenario, respectively. We now turn our attention to how
fairness is affected in the discrete scenario.

Assume a cluster consisting of K machines.
Let max-task denote the maximum demand vec-
tor across all demand vectors, i.e., max-task =
〈maxi{di,1},maxi{di,2}, · · · ,maxi{di,m}〉. Assume
further that any task can be scheduled on every machine,
i.e., the total amount of resources on each machine
is at least max-task. We only consider the case when
each user has strictly positive demands. Given these
assumptions, we have the following result.

Theorem 7 In the discrete scenario, it is possible to al-
locate resources such that the difference between the al-
locations of any two users is bounded by one max-task
compared to the continuous allocation scenario.

Proof Assume we start allocating resources on one ma-
chine at a time, and that we always allocate a task to the
user with the lowest dominant share. As long as there
is at least a max-task available on the first machine, we

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 331

Figure 8: CPU, memory and dominant share for two jobs.

continue to allocate a task to the next user with least dom-
inant share. Once the available resources on the first ma-
chine become less than a max-task size, we move to the
next machine and repeat the process. When the alloca-
tion completes, the difference between two user’s alloca-
tions of their dominant resources compared to the con-
tinuous scenario is at most max-task. If this were not the
case, then some user A would have more than max-task
discrepancy w.r.t. to another user B. However, this can-
not be the case, because the last time A was allocated a
task, B should have been allocated a task instead. �

7 Experimental Results
This section evaluates DRF through micro- and macro-
benchmarks. The former is done through experiments
running an implementation of DRF in the Mesos cluster
resource manager [16]. The latter is done using trace-
driven simulations.

We start by showing how DRF dynamically adjusts the
shares of jobs with different resource demands in Section
7.1. In Section 7.2, we compare DRF against slot-level
fair sharing (as implemented by Hadoop Fair Scheduler
[34] and Quincy [18]), and CPU-only fair sharing. Fi-
nally, in Section 7.3, we use Facebook traces to compare
DRF and the Hadoop’s Fair Scheduler in terms of utiliza-

tion and job completion time.

7.1 Dynamic Resource Sharing

In our first experiment, we show how DRF dynamically
shares resources between jobs with different demands.
We ran two jobs on a 48-node Mesos cluster on Amazon
EC2, using “extra large” instances with 4 CPU cores and
15 GB of RAM. We configured Mesos to allocate up to
4 CPUs and 14 GB of RAM on each node, leaving 1 GB
for the OS. We submitted two jobs that launched tasks
with different resource demands at different times during
a 6-minute interval.

Figures 8 (a) and 8 (b) show the CPU and memory al-
locations given to each job as a function of time, while
Figure 8 (c) shows their dominant shares. In the first 2
minutes, job 1 uses 〈1 CPU, 10 GB RAM〉 per task and
job 2 uses 〈1 CPU, 1 GB RAM〉 per task. Job 1’s dom-
inant resource is RAM, while job 2’s dominant resource
is CPU. Note that DRF equalizes the jobs’ shares of their
dominant resources. In addition, because jobs have dif-
ferent dominant resources, their dominant shares exceed
50%, i.e., job 1 uses around 70% of the RAM while job
2 uses around 75% of the CPUs. Thus, the jobs benefit
from running in a shared cluster as opposed to taking half
the nodes each. This captures the essence of the sharing
incentive property.

After 2 minutes, the task sizes of both jobs change, to
〈2 CPUs, 4 GB〉 for job 1 and 〈1 CPU, 3 GB〉 for job
2. Now, both jobs’ dominant resource is CPU, so DRF
equalizes their CPU shares. Note that DRF switches allo-
cations dynamically by having Mesos offer resources to
the job with the smallest dominant share as tasks finish.

Finally, after 2 more minutes, the task sizes of both
jobs change again: 〈1 CPU, 7 GB〉 for job 1 and 〈1 CPU,
4 GB〉 for job 2. Both jobs’ dominant resource is now
memory, so DRF tries to equalize their memory shares.
The reason the shares are not exactly equal is due to re-
source fragmentation (see Section 6.2).

7.2 DRF vs. Alternative Allocation Policies

We next evaluate DRF with respect to two alternative
schemes: slot-based fair scheduling (a common policy in
current systems, such as the Hadoop Fair Scheduler [34]
and Quincy [18]) and (max-min) fair sharing applied
only to a single resource (CPU). For the experiment, we
ran a 48-node Mesos cluster on EC2 instances with 8
CPU cores and 7 GB RAM each. We configured Mesos
to allocate 8 CPUs and 6 GB RAM on each node, leav-
ing 1 GB free for the OS. We implemented these three
scheduling policies as Mesos allocation modules.

We ran a workload with two classes of users, repre-
senting two organizational entities with different work-
loads. One of the entities had four users submitting small
jobs with task demands 〈1 CPU, 0.5 GB〉. The other en-

9

332 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: Number of large jobs completed for each allocation
scheme in our comparison of DRF against slot-based fair shar-
ing and CPU-only fair sharing.

Figure 10: Number of small jobs completed for each alloca-
tion scheme in our comparison of DRF against slot-based fair
sharing and CPU-only fair sharing.

tity had four users submitting large jobs with task de-
mands 〈2 CPUs, 2 GB〉. Each job consisted of 80 tasks.
As soon as a job finished, the user would launch another
job with similar demands. Each experiment ran for ten
minutes. At the end, we computed the number of com-
pleted jobs of each type, as well as their response times.

For the slot-based allocation scheme, we varied the
number of slots per machine from 3 to 6 to see how it
affected performance. Figures 9 through 12 show our re-
sults. In Figures 9 and 10, we compare the number of
jobs of each type completed for each scheduling scheme
in ten minutes. In Figures 11 and 12, we compare aver-
age response times.

Several trends are apparent from the data. First, with
slot-based scheduling, both the throughput and job re-
sponse times are worse than with DRF, regardless of the
number of slots. This is because with a low slot count,
the scheduler can undersubscribe nodes (e.g.,, launch
only 3 small tasks on a node), while with a large slot
count, it can oversubscribe them (e.g., launch 4 large
tasks on a node and cause swapping because each task
needs 2 GB and the node only has 6 GB). Second, with
fair sharing at the level of CPUs, the number of small
jobs executed is similar to DRF, but there are much fewer
large jobs executed, because memory is overcommitted
on some machines and leads to poor performance for all
the high-memory tasks running there. Overall, the DRF-
based scheduler that is aware of both resources has the
lowest response times and highest overall throughput.

7.3 Simulations using Facebook Traces

Next we use log traces from a 2000-node cluster at Face-
book, containing data for a one week period (October

Figure 11: Average response time (in seconds) of large jobs
for each allocation scheme in our comparison of DRF against
slot-based fair sharing and CPU-only fair sharing.

Figure 12: Average response time (in seconds) of small jobs
for each allocation scheme in our comparison of DRF against
slot-based fair sharing and CPU-only fair sharing.

2010). The data consists of Hadoop MapReduce jobs.
We assume task duration, CPU usage, and memory con-
sumption is identical as in the original trace. The traces
are simulated on a smaller cluster of 400 nodes to reach
higher utilization levels, such that fairness becomes rel-
evant. Each node in the cluster consists of 12 slots, 16
cores, and 32 GB memory. Figure 13 shows a short 300
second sub-sample to visualize how CPU and memory
utilization looks for the same workload when using DRF
compared to Hadoop’s fair scheduler (slot). As shown in
the figure, DRF provides higher utilization, as it is able
to better match resource allocations with task demands.

Figure 14 shows the reduction of the average job com-
pletion times for DRF as compared to the Hadoop fair
scheduler. The workload is quite heavy on small jobs,
which experience no improvements (i.e., −3%). This is
because small jobs typically consist of a single execu-
tion phase, and the completion time is dominated by the
longest task. Thus completion time is hard to improve
for such small jobs. In contrast, the completion times of
the larger jobs reduce by as much as 66%. This is be-
cause these jobs consists of many phases, and thus they
can benefit from the higher utilization achieved by DRF.

8 Related Work
We briefly review related work in computer science and
economics.

While many papers in computer science focus on
multi-resource fairness, they are only considering multi-
ple instances of the same interchangeable resource, e.g.,
CPU [6, 7, 35], and bandwidth [10, 20, 21]. Unlike these
approaches, we focus on the allocation of resources of
different types.

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 333

Figure 13: CPU and memory utilization for DRF and slot fair-
ness for a trace from a Facebook Hadoop cluster.

Figure 14: Average reduction of the completion times for dif-
ferent job sizes for a trace from a Facebook Hadoop cluster.

Quincy [18] is a scheduler developed in the context
of the Dryad cluster computing framework [17]. Quincy
achieves fairness by modeling the fair scheduling prob-
lem as a min-cost flow problem. Quincy does not cur-
rently support multi-resource fairness. In fact, as men-
tioned in the discussion section of the paper [18, pg. 17],
it appears difficult to incorporate multi-resource require-
ments into the min-cost flow formulation.

Hadoop currently provides two fair sharing sched-
ulers [1, 2, 34]. Both these schedulers allocate resources
at the slot granularity, where a slot is a fixed fraction of
the resources on a machine. As a result, these sched-
ulers cannot always match the resource allocations with
the tasks’ demands, especially when these demands are
widely heterogeneous. As we have shown in Section 7,
this mismatch may lead to either low cluster utilization
or poor performance due to resource oversubscription.

In the microeconomic literature, the problem of equity
has been studied within and outside of the framework of
game theory. The books by Young [33] and Moulin [22]
are entirely dedicated to these topics and provide good
introductions. The preferred method of fair division in
microeconomics is CEEI [3, 33, 22], as introduced by
Varian [30]. We have therefore devoted considerable at-
tention to it in Section 5.2. CEEI’s main drawback com-

pared to DRF is that it is not strategy-proof. As a result,
users can manipulate the scheduler by lying about their
demands.

Many of the fair division policies proposed in the mi-
croeconomics literature are based on the notion of utility
and, hence, focus on the single metric of utility. In the
economics literature, max-min fairness is known as the
lexicographic ordering [26, 25] (leximin) of utilities.

The question is what the user utilities are in the multi-
resource setting, and how to compare such utilities. One
natural way is to define utility as the number of tasks al-
located to a user. But modeling utilities this way, together
with leximin, violates many of the fairness properties we
proposed. Viewed in this light, DRF makes two contri-
butions. First, it suggests using the dominant share as a
proxy for utility, which is equalized using the standard
leximin ordering. Second, we prove that this scheme is
strategy-proof for such utility functions. Note that the
leximin ordering is a lexicographic version of the Kalai-
Smorodinsky (KS) solution [19]. Thus, our result shows
that KS is strategy-proof for such utilities.

9 Conclusion and Future Work
We have introduced Dominant Resource Fairness (DRF),
a fair sharing model that generalizes max-min fairness to
multiple resource types. DRF allows cluster schedulers
to take into account the heterogeneous demands of dat-
acenter applications, leading to both fairer allocation of
resources and higher utilization than existing solutions
that allocate identical resource slices (slots) to all tasks.
DRF satisfies a number of desirable properties. In par-
ticular, DRF is strategy-proof, so that users are incen-
tivized to report their demands accurately. DRF also in-
centivizes users to share resources by ensuring that users
perform at least as well in a shared cluster as they would
in smaller, separate clusters. Other schedulers that we in-
vestigated, as well as alternative notions of fairness from
the microeconomic literature, fail to satisfy all of these
properties.

We have evaluated DRF by implementing it in the
Mesos resource manager, and shown that it can lead to
better overall performance than the slot-based fair sched-
ulers that are commonly in use today.

9.1 Future Work

There are several interesting directions for future re-
search. First, in cluster environments with discrete tasks,
one interesting problem is to minimize resource frag-
mentation without compromising fairness. This prob-
lem is similar to bin-packing, but where one must pack
as many items (tasks) as possible subject to meeting
DRF. A second direction involves defining fairness when
tasks have placement constraints, such as machine pref-
erences. Given the current trend of multi-core machines,

11

334 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a third interesting research direction is to explore the use
of DRF as an operating system scheduler. Finally, from
a microeconomic perspective, a natural direction is to
investigate whether DRF is the only possible strategy-
proof policy for multi-resource fairness, given other de-
sirable properties such Pareto efficiency.

10 Acknowledgements
We thank Eric J. Friedman, Hervé Moulin, John Wilkes,
and the anonymous reviewers for their invaluable feed-
back. We thank Facebook for making available their
traces. This research was supported by California MI-
CRO, California Discovery, the Swedish Research Coun-
cil, the Natural Sciences and Engineering Research
Council of Canada, a National Science Foundation Grad-
uate Research Fellowship,5 and the RAD Lab spon-
sors: Google, Microsoft, Oracle, Amazon, Cisco, Cloud-
era, eBay, Facebook, Fujitsu, HP, Intel, NetApp, SAP,
VMware, and Yahoo!.

References
[1] Hadoop Capacity Scheduler.

http://hadoop.apache.org/common/docs/r0.

20.2/capacity_scheduler.html.
[2] Hadoop Fair Scheduler.

http://hadoop.apache.org/common/docs/r0.

20.2/fair_scheduler.html.
[3] Personal communication with Hervé Moulin.
[4] A. K. Agrawala and R. M. Bryant. Models of memory

scheduling. In SOSP ’75, 1975.
[5] J. Axboe. Linux Block IO – Present and Future

(Completely Fair Queueing). In Ottawa Linux
Symposium 2004, pages 51–61, 2004.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: A notion of fairness in
resource allocation. Algorithmica, 15(6):600–625, 1996.

[7] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources. In
IPPS ’95, 1995.

[8] J. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In INFOCOM, 1996.

[9] D. Bertsekas and R. Gallager. Data Networks. Prentice
Hall, second edition, 1992.

[10] J. M. Blanquer and B. Özden. Fair queuing for
aggregated multiple links. SIGCOMM ’01,
31(4):189–197, 2001.

[11] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng.
Group ratio round-robin: O(1) proportional share
scheduling for uniprocessor and multiprocessor systems.
In USENIX Annual Technical Conference, 2005.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM
’89, pages 1–12, New York, NY, USA, 1989. ACM.

5Any opinions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the authors and do not nec-
essarily reflect the views of the NSF.

[13] D. Foley. Resource allocation and the public sector. Yale
Economic Essays, 7(1):73–76, 1967.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. Technical
Report UCB/EECS-2011-18, EECS Department,
University of California, Berkeley, Mar 2011.

[15] P. Goyal, H. Vin, and H. Cheng. Start-time fair queuing:
A scheduling algorithm for integrated services packet
switching networks. IEEE/ACM Transactions on
Networking, 5(5):690–704, Oct. 1997.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys 07, 2007.

[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair scheduling for
distributed computing clusters. In SOSP ’09, 2009.

[19] E. Kalai and M. Smorodinsky. Other Solutions to Nash’s
Bargaining Problem. Econometrica, 43(3):513–518,
1975.

[20] J. M. Kleinberg, Y. Rabani, and É. Tardos. Fairness in
routing and load balancing. J. Comput. Syst. Sci.,
63(1):2–20, 2001.

[21] Y. Liu and E. W. Knightly. Opportunistic fair scheduling
over multiple wireless channels. In INFOCOM, 2003.

[22] H. Moulin. Fair Division and Collective Welfare. The
MIT Press, 2004.

[23] J. Nash. The Bargaining Problem. Econometrica,
18(2):155–162, April 1950.

[24] A. Parekh and R. Gallager. A generalized processor
sharing approach to flow control - the single node case.
ACM/IEEE Transactions on Networking, 1(3):344–357,
June 1993.

[25] E. A. Pazner and D. Schmeidler. Egalitarian equivalent
allocations: A new concept of economic equity.
Quarterly Journal of Economics, 92:671–687, 1978.

[26] A. Sen. Rawls Versus Bentham: An Axiomatic
Examination of the Pure Distribution Problem. Theory
and Decision, 4(1):301–309, 1974.

[27] M. Shreedhar and G. Varghese. Efficient fair queuing
using deficit round robin. IEEE Trans. Net, 1996.

[28] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah,
J. Gehrke, and G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems.
In IEEE RTSS 96, 1996.

[29] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: Achieving approximately fair bandwidth
allocations in high speed networks. In SIGCOMM, 1998.

[30] H. Varian. Equity, envy, and efficiency. Journal of
Economic Theory, 9(1):63–91, 1974.

[31] C. A. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional Share Resource Management.
PhD thesis, MIT, Laboratory of Computer Science, Sept.
1995. MIT/LCS/TR-667.

[32] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 335

flexible proportional-share resource management. In
OSDI ’94, 1994.

[33] H. P. Young. Equity: in theory and practice. Princeton
University Press, 1994.

[34] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in
Cluster Scheduling. In EuroSys 10, 2010.

[35] D. Zhu, D. Mossé, and R. G. Melhem.
Multiple-Resource Periodic Scheduling Problem: how
much fairness is necessary? In IEEE RTSS, 2003.

A Appendix: DRF Properties
In this appendix, we present the main properties of DRF.
The technical report [14] contains a more complete list
of results for DRF and CEEI. For context, the following
table summarizes the properties satisfied by Asset Fair-
ness, CEEI, and DRF, respectively.

In this section, we assume that all users have an un-
bounded number of tasks. In addition, we assume that
all tasks of a user have the same demand vector, and we
will refer to this vector as the user’s demand vector.

Next, we present progressive filling [9], a simple tech-
nique to achieve DRF allocation when all resources are
arbitrary divisible. This technique is instrumental in
proving our results.

A.1 Progressive Filling for DRF

Progressive filling is an idealized algorithm to achieve
max-min fairness in a system in which resources can
be allocated in arbitrary small amounts [9, pg 450]. It
was originally used in a networking context, but we now
adapt it to our problem domain. In the case of DRF, pro-
gressive filling increases all users’ dominant shares at the
same rate, while increasing their other resource alloca-
tions proportionally to their task demand vectors, until at
least one resource is saturated. At this point, the alloca-
tions of all users using the saturated resource are frozen,
and progressive filling continues recursively after elim-
inating these users. In this case, progressive filling ter-
minates when there are no longer users whose dominant
shares can be increased.

Progressive filling for DRF is equivalent to the
scheduling algorithm presented in Figure 1 after appro-
priately scaling the users’ demand vectors. In particular,
each user’s demand vector is scaled such that allocating
resources to a user according to her scaled demand vec-
tor will increase her dominant share by a fixed ε, which
is the same for all users. Let Di = 〈di,1, di,2, . . . , di,m〉
be the demand vector of user i, let rk be her domi-
nant share6, and let si =

di,k

rk
be her dominant share.

We then scale the demand vector of user i by ε
si

, i.e.,
D′

i =
ε
si
Di =

ε
si
〈di,1, di,2, . . . , di,m〉. Thus, every time

6Recall that in this section we assume that all tasks of a user have
the same demand vector.

a task of user i is selected, she is allocated an amount
ε
si
di,k = ε ·rk of the dominant resource. This means that

the share of the dominant resource of user i increases by
(ε · rk)/rk = ε, as expected.

A.2 Allocation Properties

We start with a preliminary result.

Lemma 8 Every user in a DRF allocation has at least
one saturated resource.

Proof Assume this is not the case, i.e., none of the re-
sources used by user i is saturated. However, this con-
tradicts the assumption that progressive filling has com-
pleted the computation of the DRF allocation. Indeed,
as long as none of the resources of user i are saturated,
progressive filling will continue to increase the alloca-
tions of user i (and of all the other users sharing only
non-saturated resources). �

Recall that progressive filling always allocates the re-
sources to a user proportionally to the user’s demand
vector. More precisely, let Di = 〈di,1, di,2, . . . , di,m〉
be the demand vector of user i. Then, at any time t dur-
ing the progressive filling process, the allocation of user
i is proportional to the demand vector,

Ai(t) = αi(t) ·Di = αi(t) · 〈di,1, di,2, . . . , di,m〉 (1)

where αi(t) is a positive scalar.
Now, we are in position to prove the DRF properties.

Theorem 9 DRF is Pareto efficient.

Proof Assume user i can increase her dominant share,
si, without decreasing the dominant share of anyone else.
According to Lemma 8, user i has at least one saturated
resource. If no other user is using the saturated resource,
then we are done as it would be impossible to increase i’s
share of the saturated resource. If other users are using
the saturated resource, then increasing the allocation of
i would result in decreasing the allocation of at least an-
other user j sharing the same saturated resource. Since
under progressive filling, the resources allocated by any
user are proportional to her demand vector (see Eq. 1),
decreasing the allocation of any resource used by user i
will also decrease i’s dominant share. This contradicts
our hypothesis, and therefore proves the result. �

Theorem 10 DRF satisfies the sharing incentive and
bottleneck fairness properties.

Proof Consider a system consisting of n users. Assume
resource k is the first one being saturated by using pro-
gressive filling. Let i be the user allocating the largest
share on resource k, and let ti,k denote her share of k.
Since resource k is saturated, we have trivially ti,k ≥ 1

n .

13

336 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Furthermore, by the definition of the dominant share, we
have si ≥ ti,k ≥ 1

n . Since progressive filling increases
the allocation of each user’s dominant resource at the
same rate, it follows that each user gets at least 1

n of her
dominant resource. Thus, DRF satisfies the sharing in-
centive property. If all users have the same dominant
resource, each user gets exactly 1

n of that resource. As a
result, DRF satisfies the bottleneck fairness property as
well. �

Theorem 11 Every DRF allocation is envy-free.

Proof Assume by contradiction that user i envies an-
other user j. For user i to envy another user j, user j
must have a strictly higher share of every resource that i
wants; otherwise i cannot run more tasks under j’s allo-
cation. This means that user j’s dominant share is strictly
larger than user i’s dominant share. Since every resource
allocated to user i is also allocated to user j, this means
that user j cannot reach its saturated resource after user i,
i.e., tj ≤ ti, where tk is the time that user k’s allocation
gets frozen due to saturation. However, if tj ≤ ti, under
progressive filling, the dominant shares of users j and i
will be equal at time tj , after which the dominant share
of user i can only increase, violating the hypothesis. �

Theorem 12 (Strategy-proofness) A user cannot in-
crease her dominant share in DRF by altering her true
demand vector.

Proof Assume user i can increase her dominant share by
using a demand vector d̂i �= di. Let ai,j and âi,j denote
the amount of resource j user i is allocated using pro-
gressive filling when the user uses the vector di and d̂i,
respectively. For user i to be better off using d̂i, we need
that âi,k > ai,k for every resource k where di,k > 0.
Let r denote the first resource that becomes saturated for
user i when she uses the demand vector di. If no other
user is allocated resource r (aj,r = 0 for all j �= i),
this contradicts the hypothesis as user i is already allo-
cated the entire resource r, and thus cannot increase her
allocation of r using another demand vector d̂i. Thus,
assume there are other users that have been allocated r
(aj,r > 0 for some j �= i). In this case, progressive fill-
ing will eventually saturate r at time t when using di, and
at time t′ when using demand d̂i. Recall that the domi-
nant share is the maximum of a user’s shares, thus i must
have a higher dominant share in the allocation â than in
a. Thus, t′ > t, as progressive filling increases the dom-
inant share at a constant rate. This implies that i—when
using d̂—does not saturate any resource before time t′,
and hence does not affect other user’s allocation before
time t′. Thus, when i uses d̂, any user m using resource
r has allocation am,r at time t. Therefore, at time t, there
is only ai,r amount of r left for user i, which contradicts
the assumption that âi,r > ai,r. �

The strategy-proofness of DRF shows that a user will
not be better off by demanding resources that she does
not need. The following example shows that excess de-
mand can in fact hurt user’s allocation, leading to a lower
dominant share. Consider a cluster with two resources,
and 10 users, the first with demand vector 〈1, 0〉 and the
rest with demand vectors 〈0, 1〉. The first user gets the
entire first resource, while the rest of the users each get
1
9 of the second resource. If user 1 instead changes her
demand vector to 〈1, 1〉, she can only be allocated 1

10 of
each resource and the rest of the users get 1

10 of the sec-
ond resource.

In practice, the situation can be exacerbated as re-
sources in datacenters are typically partitioned across
different physical machines, leading to fragmentation.
Increasing one’s demand artificially might lead to a situ-
ation in which, while there are enough resources on the
whole, there are not enough on any single machine to
satisfy the new demand. See Section 6.2 for more infor-
mation.

Next, for simplicity we assume strictly positive de-
mand vectors, i.e., the demand of every user for every
resource is non-zero.

Theorem 13 Given strictly positive demand vectors,
DRF guarantees that every user gets the same dominant
share, i.e., every DRF allocation ensures si = sj , for all
users i and j.

Proof Progressive filling will start increasing every
users’ dominant resource allocation at the same rate until
one of the resources becomes saturated. At this point, no
more resources can be allocated to any user as every user
demands a positive amount of the saturated resource. �

Theorem 14 Given strictly positive demands, DRF sat-
isfies population monotonicity.

Proof Consider any DRF allocation. Non-zero demands
imply that all users have the same saturated resource(s).
Consider removing a user and relinquishing her currently
allocated resources, which is some amount of every re-
source. Since all users have the same dominant share α,
any new allocation which decreases any user i’s domi-
nant share below α would, due to Pareto efficiency, have
to allocate another user j a dominant share of more than
α. The resulting allocation would violate max-min fair-
ness, as it would be possible to increase i’s dominant
share by decreasing the allocation of j, who already has
a higher dominant share than i. �

However, we note that in the absence of strictly posi-
tive demand vectors, DRF no longer satisfies the popula-
tion monotonicity property [14].

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 337

PIE in the Sky:

Online Passive Interference Estimation for Enterprise WLANs

Vivek Shrivastava Shravan Rayanchu, Suman Banerjee

Nokia Research Center ∗ University of Wisconsin-Madison

Konstantina Papagiannaki

Intel Labs, Pittsburgh

Abstract

Trends in enterprise WLAN usage and deployment

point to the need for tools that can capture interference

in real time. A tool for interference estimation can not

only enable WLAN managers to improve network per-

formance by dynamically adjusting operating parameters

like the channel of operation and transmit power of ac-

cess points, but also diagnose and potentially proactively

fix problems. In this paper, we present the design, imple-

mentation, and evaluation of a Passive Interference Esti-

mator (PIE) that can dynamically generate fine-grained

interference estimates across an entire WLAN. PIE in-

troduces no measurement traffic, and yet provides an ac-

curate estimate of WLAN interference tracking changes

caused by client mobility, dynamic traffic loads, and

varying channel conditions. Our experiments conducted

on two different testbeds, using both controlled and real

traffic patterns, show that PIE is not only able to provide

high accuracy but also operate beyond the limitations of

prior tools. It helps with performance diagnosis and real-

time WLAN optimization, we describe its use in multiple

WLAN optimization applications: channel assignment,

transmit power control, and data scheduling.

1 Introduction

Radio interference remains a key performance bottle-

neck for enterprise WLANs [25]. In spite of significant

progress in planning, deploying, and managing enter-

prise WLANs, administrators today have very tools that

can help them understand how much interference exists

in their network, and how interference patterns evolve

over time. Building an on-line tool for enterprise-wide

WLAN interference estimation is particularly challeng-

ing, because interference is highly dynamic in nature.

Each time a new client arrives, departs, moves, or

changes its traffic pattern, the number of other nodes in

the network it interferes with (and the degree to which it

interferes) changes. Further, wireless channel conditions

are never static but continuously evolve with changes in

the environment, e.g., even with the opening or closing

of a door, people walking, etc.

The goal of this paper is to answer the following

question: Given an enterprise WLAN consisting of

a number of Access Points (APs) and mobile clients,

∗Vivek Shrivastava worked on this project as a PhD student at UW-
Madison

compute its real-time conflict graph, i.e., identify the

precise set of nodes that interfere with each other and

the degree to which they do so at any specified point of

time.

Applications of interference estimation: This prob-

lem of interference estimation is fundamental to under-

standing the behavior of any wireless network. Further,

interference estimates and the conflict graph serve as im-

portant inputs to many WLAN configuration problems,

e.g., channel assignment for each AP, transmit power se-

lection, and even emerging strategies for data scheduling

across the enterprise WLAN [22].

A number of research efforts have made significant

progress toward this tool building goal. Prior techniques

for interference estimation mainly employ active prob-

ing (interference maps [15] and micro-probing [3]) and

suffer from three main problems: a) they incur moder-

ate to significant measurement overhead and cannot be

employed to continuously obtain interference informa-

tion across time, b) they offer limited visibility into the

root cause of interference, c) they often require specific

client modifications. While some recent work has also

explored the potential for passive interference estimation,

it is mostly limited to offline trace collection and analysis,

and thus cannot be employed in real time.

In this paper, we explore an alternate design for a prac-

tical online interference estimation mechanism, one that

does not impose any active measurement traffic on the

WLAN. It is completely passive in nature, and estimates

interference by simply observing ongoing traffic at the

different APs. Specifically, we present the design, imple-

mentation, and detailed evaluation of a Passive Interfer-

ence Estimator (PIE) system.

Our work is inspired by two key passive WLAN mon-

itoring approaches proposed earlier: Jigsaw [8, 9] and

WIT [13]. These systems provide us with two useful

building blocks: (i) a platform for capturing wireless traf-

fic and merging traces collected from different vantage

points and (ii) specific tools to infer interesting proper-

ties about the 802.11 network from such merged traffic

traces. However, both these research efforts stop short of

addressing our goal of designing a real-time interference

estimation tool. The key features of PIE are:

1. It captures dynamic interference information

quickly and robustly: PIE captures interference infor-

mation across the entire WLAN within a few hundred

milliseconds. It can effectively identify the real interfer-

1

338 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ers when multiple overlapping transmitters are present.

2. It uses real traffic patterns: PIE is passive; it esti-

mates interference using actual traffic patterns in the net-

work, capturing the effects of bit rate adaptation, varying

packet sizes, and traffic burstiness.

3. It has low overhead and causes no downtime: Be-

ing passive, PIE does not take away wireless bandwidth

resources from users.

4. It does not require client modifications: The PIE

mechanism is implemented at the APs and a central con-

troller placed within the enterprise wired network. No

client modifications are required.

PIE relies on the accurate timestamping of transmis-

sions by the AP. These timestamps could be reported ac-

curately by the firmware of the AP’s wireless card. How-

ever, most off-the-shelf wireless cards do not expose this

functionality and hence in our current implementation

we use a second card at the AP to gather accurate times-

tamps of wireless transmissions.

Key contributions

This paper makes the following key contributions:

• We identify the key requirements for a practical inter-

ference estimation mechanism. We then carefully design

PIE to meet those requirements and report various design

choices to infer interference in real time.

• We evaluate the accuracy and agility of PIE using

both controlled experiments as well as by playing back

real traffic traces. For 95% of the links, PIE achieves

accuracy comparable to the state-of-the-art technique of

bandwidth tests (see §2). We further show that PIE can ef-

ficiently track the changing interference patterns caused

by client mobility, variable transmission rates and vary-

ing traffic loads. Results from our playback of real traces

indicate that PIE can converge to the correct interference

estimate within 540 ms, 700 ms and 900 ms for heavy,

medium and low traffic load periods. This represents up

to 300× of speed up over bandwidth tests.

• Demonstrate the utility of PIE in interference miti-

gation mechanisms: We show the usefulness of PIE by

integrating it with three interference mitigation mecha-

nisms 1) Centralized scheduling, 2) Transmit power con-

trol and 3) Channel assignment. We show that real-time

conflict information provided by PIE can enhance the

performance of such mechanisms and outperform band-

width tests under dynamic settings.

• Employ PIE to uncover performance issues in two

production WLANs: We use PIE to monitor two produc-

tion WLANs. We show that PIE can correctly infer sub-

tle performance issues like asymmetric channel access

and hidden terminal problems.

The rest of the paper is organized as follows. §2 dis-

cusses the current state of art in wireless interference es-

timation. The fundamental principles behind PIE are de-

scribed in § 3. We present the design and operation of

PIE in §4. We evaluate and validate our mechanism in

§5. Finally we conclude in §6.

Interference Microprobing CMAP
PIE

maps [15] [3] [24]
No client mods ×

√
×

√

Online ×
√ √ √

Zero downtime
√

×
√ √

Real traffic × × √ √
No wireless × × × √

control traffic

Table 1: Comparing PIE with other interference estimation mech-
anisms.

2 Related work

We classify prior interference estimation and wireless

monitoring efforts into the following categories.

Interference estimation tools : Bandwidth test mech-

anisms [16, 15] systematically transmit a simultaneous

burst of traffic along each pair of AP-client links and

observe how the aggregate throughput differs from the

throughput achieved by each link operating in isolation.

Recently, Ahmed et al. [3, 4] proposed the use of micro-

experiments, each lasting less than a millisecond, to de-

tect different kinds of conflict between WLAN nodes.

Such mechanisms require network downtime and must

rely on certain traffic pattern to test the interfering links,

which may be deviant from real traffic scenarios.

CMAP [24] is a technique designed to solve exposed

terminal problem using passive conflict graphs. However,

it requires the interferers to be in the communication

range of the receiver and will miss conflicts in which the

interferer is outside the communication range but inside

the interference range. Further, it requires driver level

modifications to both APs and clients. Given that CMAP

relies on modified clients, it is better able to infer uplink

conflicts as well. However, since the fraction of uplink

traffic might be limited (as reported for some enterprise

WLANs [22]), we take the penalty of missing some up-

link conflicts in order to avoid client modifications. Ta-

ble 1 presents a comparison of our design of PIE with

some prior proposed interference estimation tools.

Wireless monitoring studies: Researchers have recently

conducted several studies to understand the performance

of different 802.11 networks using trace collection, fol-

lowed by empirical analysis. Each system is designed to

analyze specific aspects of an 802.11 wireless network,

ranging from physical and link-level behavior [21, 2, 24],

client coverage [7], to understanding the performance of

TCP/IP in wireless environments [9]. However, most of

these mechanisms are geared towards offline analysis of

wireless traces to derive interesting measures for their tar-

get 802.11 network. Recently, a short paper [6] proposed

a machine learning approach to infer high-level interfer-

ence. However, the proposed technique provides limited

visibility and does not capture all types of interference.

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 339

Finally, WIT [13] and Jigsaw [8] are interesting mea-

surement studies that have influenced some of the design

decisions in PIE . In WIT, traces are captured using 5

sniffers in a wireless network and a state machine based

learning approach is proposed to study the performance

of the 802.11 MAC protocol in a practical deployment.

Jigsaw deploys a large wireless monitoring infrastruc-

ture consisting of 150 sniffers to monitor a production

WLAN and performs a cross-layer analysis to diagnose

performance problems. Both these mechanisms present

excellent insights into the functioning of a 802.11 net-

work, but unlike PIE, they do not focus on evaluating

the accuracy and agility of their interference estimation

mechanisms, especially under interference settings that

can arise due to client mobility and the use of bit rate

adaption mechanisms. Also, they do not discuss the inte-

gration of their interference estimation mechanisms with

applications like power control and channel assignment.

3 Interference estimation in PIE

Interference in an enterprise WLAN can be broadly clas-

sified into two categories: (a) sender-side interference

caused by carrier sensing between two transmitters, and

(b) receiver-side interference caused by collision at the

receiver. While carrier sensing determines how the trans-

mitters share the wireless medium, collision-induced in-

terference determines whether transmissions are success-

fully decoded at the intended receiver. The goal of PIE is

to identify both of these interference properties in a non-

intrusive manner. We now explain the intuition behind

PIE with the help of a simple example.

Intuition behind PIE: Consider a scenario from an en-

terprise WLAN (shown in Figure 1) where APs A and B

are far enough apart such that they cannot carrier sense

(CS) each other. Assume that two clients CA and CB are

associated to APs A and B respectively. Suppose some

downlink packets are being enqueued and being transmit-

ted by APs A and B, for transmission to their respective

clients, CA and CB . The APs follow the regular 802.11

carrier sensing mechanism, and transmit to their clients

whenever possible.

In PIE, APs A and B periodically send their frame

transmission timestamps to the controller. Further, the

frames are tagged with their reception status indicating

whether this frame transmission was successful or not

(i.e., whether the AP has received an ACK for this frame

or not). The controller parses these timestamps and iden-

tifies the four scenarios shown in Figure 1(b). Looking

at scenarios 1 and 2, the controller observes that frame

transmissions from A and B (denoted by PA and PB)

overlap in both directions, indicating that A and B do

not defer to each other, and hence are not within car-

rier sense range. Additionally, the controller can also

infer that whenever a transmission for client CB over-

T1

t∆

T2

T1

T1

T1

T1

T2

T2

T2

T2

No CS

One-way CS

One-way CS

Mutual CS

t∆

1)

2)

3)

4)

Cases

Figure 2: Detecting the carrier sense relationship between two
links on the basis of timestamps of transmissions by the two trans-
mitters A and B. Timestamps refer to the MAC timestamp of wire-
less frames as reported by the wireless card.

laps with a transmission by AP A, then CB is not able to

decode the transmission (i.e., PB is lost). On the other

hand, transmissions for CA are not lost despite overlap-

ping transmissions by AP B. Hence the controller con-

cludes that AP A interferes with link (B, CB) but B does

not interfere with (A, CA). The controller can then use

this information to efficiently mitigate interference for

CB . For example, it can perform downlink data schedul-

ing [22] and allocate different time slots to (A, CA) and

(B, CB). Alternatively, the controller can also assign dif-

ferent channels to APs A and B, thereby allowing both

transmissions to proceed simultaneously without any in-

terference. As this example demonstrates, having accu-

rate interference estimates could enable the controller

to improve client performance in an enterprise WLAN

by employing interference mitigation mechanisms effec-

tively. We now give a detailed explanation of how PIE

identifies these interference properties in a non-intrusive

manner.

3.1 Estimating carrier sense (CS)

interference
PIE identifies the carrier sense relationships based on the

order in which competing transmitters access the wire-

less channel. Figure 2 shows the possible order of chan-

nel access for different carrier sensing relationships. As

shown, there can be four cases of channel access:

(a) Overlapping frame transmissions (Cases 1, 2 and

3): Case 1) When two competing transmitters are not in

carrier sensing range, they can access the channel in any

order and hence the controller would observe that their

frames overlap in both directions. Case 2,3) In case of

one-way carrier sensing, the frames will only overlap in

one direction. For example, if T1 ← T2 (i.e., T1 car-

rier senses T2) then T1 will defer for T2’s transmissions.

However, T2 will not defer for T1’s transmissions, and

would transmit even if T1’s frame is still in air. Hence

the controller should only observe overlaps when T1’s

transmission is already in the air and is overlapped by a

later T2 transmission.

(b) Non overlapping transmissions (Case 4): If both

the transmitters can mutually carrier sense each other,

3

340 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

41 2 3

ReportA ReportB

S1
S2Reference timestamp: TS

CA
(start, dur, retry)

(start, dur, retry)

CA (start, dur, retry)

A

B
CA

CB

ReportA

ReportB

PIE

Controller

 WLAN
mechanisms

Reception

Scenario

Time
PA

PB

PA

PB

PA

PBX X

PA PA PA

PB PB PB

A B

CA CB

Conflict graph

 Channel

Assignment

 Transmit

power control

Centralized

 Scheduling

 WLAN
mechanisms

(a) (b) (c)

PIE Infrastructure Feedback processing

 at Controller Applications of PIE

Figure 1: Overview of PIE, showing the overall infrastructure, the feedback processing performed at the Controller and the integration
of PIE with channel assignment and scheduling. The detection of conflict between AP B and client C2A i) places the two APs in separate
channels when channel assignment is performed, or ii) serializes the transmissions between AP A and B.

the controller should not see any overlaps as carrier sens-

ing will serialize their frame transmissions. However, we

note that non-overlapping transmissions may also be ob-

served in scenarios where the two transmitters do not si-

multaneously contend for the channel, and transmit their

frames one after another due to their specific traffic pat-

terns. In such a scenario, it is difficult to make any infer-

ence regarding carrier sense relationship of the two trans-

mitters. In order to distinguish the cases where transmit-

ters are actually contending for the medium, we use the

mechanism outlined in [13]. The controller labels a pair

of frames as being transmitted by c̈ontending” transmit-

ters if their starting timestamps are within a time interval

γ, where γ is the total time that can be spent by compet-

ing transmitters performing back-off. Although all traf-

fic within the γ interval may not contend for the channel,

this heuristic was shown to be effective for practical set-

tings [13]. We use a value of γ = 28 + 320µs (DIFS

+ Max back-off period for 802.11g). The pseudo-code

for estimating carrier sense properties in PIE is shown in

Algorithm 1 (Procedure ComputeCS).

3.2 Estimating collision induced

interference

PIE identifies collision-induced interference at the re-

ceiver by computing the probability of a frame loss at the

receiver when it overlaps with a simultaneous transmis-

sion from a competing transmitter. Intuitively, the extent

of interference is directly proportional to the probability

of losing overlapping frames. Note that this allows PIE

to maintain a continuous interference model, where the

extent of interference can be any value between 0 and 1.

Such a model is better suited for realistic environments

where the binary model of interference may not suffice.

On the basis of this observation, in PIE, we use the Link

Algorithm 1 PIE : CS and INT computation

Procedure ComputeCS:
Inputs: number of frames in contention nc, number of case (3)
overlaps nf , and number of case (2) overlaps nr , cs threshold δt

(δt = 0.8 in our implementation)
no = nf + nr

nn = nc − no

if (nn

nc

> δt) then

/* case 4 (A and B sense each other) */
return nn

nc

else if (no

nc

> δt) then /* sufficient overlaps to compute prob */

if (nr

nc

> δt) then

/* cases 3 (A senses B) */
return nr

nc

else
/* case 1 (A and B do not sense each other) */
return nn

nc

else
/* inconclusive (wait for more samples) */
return −

Procedure ComputeINT:
Inputs: total number of frames np, number of frames lost nl, num-
ber of overlapping frames no, number of overlapping frames lost
nol, overlapping packets threshold βt (βt = 20 in our implementa-
tion)
if (no > βt) then

liso = (nl − nol)/(np − no) /*loss in isolation*/

lint = nol/no /*loss under interference */
LIR = (1 − lint)/(1 − liso)
return LIR

else
/* inconclusive (wait for more samples) */
return (−)

Interference Ratio (LIR) described below, as the metric

to quantify interference for a link.

Link Interference Ratio (LIR): For a pair of interfer-

ing links, LIR captures the loss in performance observed

when the two links are interfering, as opposed to operat-

ing in isolation. Consider a link (A, B) and its interferer

C. We measure DAB, the delivery probability of the link

(A, B) in isolation (A is active, C is inactive). We then

measure D
C

AB
, the delivery probability of the link when

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 341

interferer C is also active with A. The LIR is given by:

LIR = D
C

AB/DAB (1)

LIR takes values between 0 and 1. LIR of 0 means

that link (A, B) cannot deliver frames in the presence of

C, while LIR of 1 means that C does not impact link

(A, B). LIR values between 0 and 1 indicate the extent

of interference on link (A, B) by interferer C. When A

and C are in carrier sense range, LIR will be equal to 1,

since the interferer C is able to share the channel with

the transmitter A without causing any decrease in the de-

livery ratio of link (A, B) 1. The pseudo-code for esti-

mating interference is shown in Algorithm 1 (Procedure

ComputeINT). PIE requires a certain threshold of over-

lap packets (βt) to accurately estimate the loss rate under

interference. We use βt = 40 for our implementation as

it is the smallest threshold that yields stable interference

estimates under diverse experimental scenarios.

Handling simultaneous overlaps from multiple inter-

ferers: A client packet may overlap with multiple si-

multaneous transmissions from potential interferers. In

such a scenario, the packet overlap and its subsequent

loss or success is attributed to each overlapping interferer.

Further transmission diversity will allow PIE to observe

events that will distinguish the true interferer from the

nodes that happened to transmit at the same time (fu-

ture overlapping transmissions by false interferers will

not lead to loss). As we show later in our evaluation

in §5.1.3, there is significant diversity in wireless trans-

missions in realistic settings to allow PIE to operate effi-

ciently in practice.

4 PIE Design and Operation

In this section, we describe the design and operation of

PIE. A schematic overview of the overall design can be

seen in Figure 1. PIE has the following three compo-

nents.

Sniffing at the APs: In our current implementation of

PIE sniffing of the wireless medium is limited to the

APs in the enterprise WLAN. This allows us to avoid

the additional overhead associated with the deployment

and management of extra sniffers in the enterprise build-

ing. However, sniffing solely at the APs might result in

reduced coverage of uplink client traffic, as compared to

a dense sniffer deployment (e.g., as in Jigsaw [8]). In or-

der to overcome this limitation, we employ the finite state

mechanisms outlined in [13] (based on 802.11 states) to

infer some of the missing client transmissions. We note

1Note that this measure of LIR differs slightly from the interfer-
ence metric proposed in [16], that relies on effective throughput and
not delivery probability. However, throughput based LIR is ambiguous
for carrier sensing scenarios, where a LIR value of 0.5 could mean 50%
loss or carrier sensing. Hence we use delivery probability as it provides
greater clarity into the LIR values in all scenarios.

that even with such mechanisms, it is difficult to cap-

ture all uplink client transmissions using monitors at the

AP, and hence PIE may not be able to detect all uplink

conflicts accurately. However, we accept this penalty of

missing some uplink client conflicts in order to avoid de-

ploying additional monitors.

PIE requires accurate timestamp information for accu-

rate interference estimation. However, due to limitations

of the existing Atheros driver and firmware, it is difficult

to extract the exact time at which a packet is transmitted

over the medium2. In order to overcome this problem, in

our implementation of PIE, APs are equipped with two

radios: one radio is used for normal packet transmissions

and receptions, while the other radio is used for captur-

ing packets on the wireless medium. The Atheros driver

timestamps every frame that is received over the interface

using an on-board 64-bit microsecond resolution timer.

Thus a second radio that captures packets can record the

exact timestamp of the packet transmission. Moreover,

the proximity of the two radios ensures that the second

radio receives the majority of frames transmitted by the

AP due to capture effect.

Synchronization of clocks at the APs: PIE needs the

APs to synchronize their clocks so that the controller can

compare their packet transmission reports and determine

the extent of overlap between any two transmissions re-

ported by the APs. Further, time synchronization should

be tight to allow accurate 802.11 analysis, on the order

of 20-30 µs [8]. Prior mechanisms for 802.11 analy-

sis [8, 9, 13, 26] synchronized the APs by finding com-

mon beacon packets in their transmission reports. How-

ever, performing such offline synchronization at the con-

troller can be time consuming, and impractical for a real

time interference estimation mechanism. To synchronize

the clocks across the APs, we use the time synchroniza-

tion protocol implemented by the Atheros driver [1]. As

part of the protocol, the AP embeds a 64-bit microsec-

ond granularity time stamp in every beacon frame, and

the nodes that listen to the AP adjust their local clock

based on this broadcast timestamp [12]. In order to make

this synchronization seamless, we set up a virtual ad hoc

interface on the second radio of each AP. Now all the APs

that join the ad hoc network, synchronize themselves in

real time using the beacons of the reference AP for the

network. This approach has two key benefits:1) it is an

online mechanism, meaning the nodes synchronize their

clocks every time beacons are received from neighboring

nodes, and, 2) it is transitive in nature, and works as long

as the network is not partitioned.

2This is because once the driver passes the packet to the firmware,
a variable delay is introduced based on the length of the firmware
transmit queue and the amount of time the radio performs carrier
sensing/back-off. Further, retry and other 802.11 packets (like beacons)
are handled solely by the firmware, making timestamp estimation more
challenging.

5

342 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Section Objective Topology Observation

§ 5.1.1 Accuracy of PIE for 2-link (Hidden / Exposed / PIE is accurate within ±0.1 of ground

canonical topology Normal) topology truth for 95% of scenarios

§ 5.1.2 Accuracy of PIE under client mobility, 2-link (Hidden) topology PIE is able to track the changing

variable bit rates and packet sizes interference patterns in real-time (∼ 100 ms)

§ 5.1.3 Evaluate accuracy with multiple 15-node topology PIE is accurate when transmitters overlap

simultaneous transmitters less than 75% of time

§ 5.2.2,5.3 Convergence time of PIE under real 15-node topology Median convergence time is 400, 600, 720 ms

trace-based traffic replay for heavy, medium and light client traffic

§ 5.4.1,5.4.2 Performance of channel assignment, 15-node topology Outperforms bandwidth tests in dynamic cases

§ 5.4.3 power control & scheduling with PIE (1.25×, 1.50× gain in goodput, fairness)

§ 5.4.4 Performance diagnostics in 386 & 464 AP-client links 8-11% links suffer from hidden terminals and

two production WLANs 20% links show rate anomaly problems

Table 2: Summary of evaluation results.

Collecting and processing feedback from the APs: In

PIE the Controller periodically polls the APs for their

transmission reports. The granularity of polling is a

tunable parameter, which can be determined empirically.

Lower polling periods will enable PIE to update interfer-

ence estimates faster. On the other hand, increasing the

polling period allows APs to sample more packets per

transmission report, increasing the accuracy of interfer-

ence estimates. We evaluate this tradeoff in §5 and show

that a polling period of at least ∼100 ms is needed to

achieve good accuracy for PIE . Feedback processing at

the Controller takes O(m2
n) time, where m is the num-

ber of APs and n is the number of packets per AP3.

Handling multi-rate links: The exact impact of an in-

terferer on a transmitter-receiver pair also depends on the

physical layer bit rate being used by the transmitter. PIE

tags the LIR value for each link-interferer pair with the

bit rate being used for packet transmission on the wire-

less link. During the computation of LIR values as de-

scribed in §3.2, overlap and isolation losses are recorded

separately for each physical layer data rate and then the

corresponding LIR value is computed for each rate. The

Controller maintains a two-level lookup table for LIR val-

ues, where the first level is indexed by the link-interferer

pair and the second level provides values for different

rates used by the link for the given interferer. This data

structure can also be extended for tagging conflicts with

the transmit power level of the interferer, allowing the

Controller to estimate the level of conflict under differ-

ent power levels.

Interaction with external interference: External inter-

ference can be caused by non-enterprise wireless traffic

and/or non-WiFi traffic (like microwaves). In the first

case, if the non-enterprise traffic source is visible to any

enterprise AP, its transmission timestamps would be re-

ported to the PIE controller, which could then use the

normal procedure to detect if the external source is caus-

ing any problems for the enterprise clients. In the sec-

ond case, when the external interferer is not visible (like

3Since the transmission report by each AP is already sorted, the
overhead of merging at the Controller is small.

a non-WiFi source or a hidden external WiFi source) to

any enterprise AP, PIE would not be able to identify the

source of interference.

5 Evaluation of PIE

We divide the evaluation section into three distinct sub-

sections. First, we demonstrate that PIE accurately cap-

tures interference in real time. We do so by comparing

PIE with bandwidth tests. Next, we measure the time

taken by PIE to converge to accurate interference esti-

mates, under both controlled traffic loads and realistic

trace replay on the wireless testbed. Lastly, we inte-

grate PIE with a number of real time WLAN optimiza-

tion mechanisms to offer evidence that PIE is useful for

real-time problem diagnosis on a WLAN.

We evaluate PIE on two different testbeds. We run our

central controller on a standard Linux PC (3.33 GHz dual

core Pentium IV, 2 GB DRAM) (in about 3,000 lines of C

code and a few hundred lines of Perl script), and Soekris

(Testbed 1) as well as VIA-based (Testbed 2) wireless

APs, modified slightly to improve path latencies. Each

node in the two testbeds is equipped with two Atheros

AR5212 chipset wireless NICs. We use saturated UDP

traffic for our experiments unless otherwise specified.

Summary: A summary of the results presented in this

section is shown in Table 2. Our results show that (i) PIE

accurately estimates LIR under different carrier sensing

and interference relationships, (ii) PIE can handle client

mobility, variable bit rates and packet sizes, (iii) PIE

is able to distinguish between multiple interferers when

overlap in transmissions is less than 75%, (iv) PIE con-

verges within 100 ms for saturated traffic, and within 400

ms, 600 ms and 720 ms when heavy, medium and light

activity traffic periods are replayed from a real trace, (v)

PIE enables WLAN applications to perform efficiently

in dynamic scenarios, (vi) PIE can identify performance

problems in hidden terminals and rate anomaly in pro-

duction WLANs.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 343

Interference

A C2
 &
B C1

Carrier
Sense A B

LIR(A, C1) LIR(B, C2)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)
 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

 0

 0.5

 1

 0 0.5 1
LIR(Actual)

L
IR

(P
IE

)

A C2
 &
B C1

A C2
 &
B C1

A C2
 &
B C1

A B A B A B

 Two-way Hidden

Figure 3: Scatter plots comparing the LIR values of PIE with the
ground truth computed using unicast bandwidth test for all possi-
ble combinations for carrier sensing and interference relationships
that can occur in a two link canonical topology. Packet size and
data rate was fixed at 1400 bytes and 6M respectively. Note that
for all scenarios, the value computed by PIE is close to the value
reported by bandwidth test, as indicated by the proximity of these
values to the x=y line in the plots.

(a) Error in CS

 0

 20

 40

 60

 80

 100

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

%
 o

f
L
in

k
-I

n
te

rf
e
re

r
p
a
ir
s

Error in CS probability estimation

(b) Error in LIR

 0

 20

 40

 60

 80

 100

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

%
 o

f
L
in

k
-I

n
te

rf
e
re

r
p
a
ir
s

Error in LIR estimation

Figure 4: Distribution of error in predicting (a) Carrier Sense
probability, and (b) LIR value as compared to the ground truth
computed using unicast bandwidth tests, for the sixteen canonical
scenarios outlined in Figure 3.

5.1 Accuracy of PIE

We evaluate PIE’s accuracy using two different methods.

First, we construct all possible conflict scenarios using a

canonical two link topology. This experiment serves as

our controlled experiment that allows us to assess accu-

racy and focus on the underlying phenomena causing any

discrepancies between PIE and bandwidth tests. Second,

we generalize our findings across a large-scale testbed,

quantifying PIE’s overall accuracy. Overall accuracy is

further evaluated across a number of dimensions that take

into account diverse transmission rates, packets sizes, in-

terference scenarios, and density.

Metrics for comparison: Both experiments are evalu-

ated according to the Link Interference Ratio (LIR) de-

scribed in §3.2. LIR is the ratio of the frame delivery

probability 4 of a link (A, B) under interference from C

and in isolation (DC

AB
/DAB).

Compared schemes: We compare three approaches that

measure LIR with differing levels of overhead.

1) Unicast bandwidth tests (Ground truth): The

4802.11 ACK is included into frame delivery rate for unicast frames

conventional approach, is to use unicast bandwidth tests

(UBT) to determine the impact of an interferer on a

link [16]. In unicast bandwidth tests, A transmits unicast

packets to B in isolation and under interference from C.

We then report LIR as the ratio of frame delivery proba-

bilities under the two scenarios. This is an accurate test to

determine LIR as it uses unicast traffic, which takes into

account the impact of C on the receiver (data packet col-

lisions) and the sender (ack collisions). Henceforth, we

use the LIR value reported by unicast bandwidth tests as

the g̈round truth” in our experiments. Note that UBT in-

curs significant overhead – it takes O(n4) measurements

to compute a conflict graph for a n node topology, and

hence is not practical to use under dynamic wireless en-

vironments.

2) Broadcast bandwidth tests : In broadcast band-

width tests (BBT), broadcast traffic from A to B is used

to compute the frame delivery ratios, both in isolation

and under interference from C. This method was pro-

posed as a relatively fast way to measure interference re-

lationships among a large number of links [16]. Broad-

cast tests can compute the conflict graph for a topology of

n nodes using O(n2) measurements (as opposed to O(n4)

for UBT). However, broadcast tests do not take data-ack

collisions into account and hence may be inaccurate in

some scenarios.

3) PIE : PIE computes the LIR value in a passive fash-

ion by determining the conditional loss probability of

packets on link (A, B) that are interfered by interferer C.

A packet Pi on link (A, B) is considered to be interfered

if it overlaps with a transmission from interferer C that

leads to packet loss. The LIR in this case is computed by

passively observing the events in the wireless medium as

recorded at the controller. Psuedocode for PIE is shown

in Algorithm 1 (function ComputeINT).

In what follows, all experiments are performed using

802.11a (except the live WLAN measurements in §5.4.4),

to prevent interference from the co-located department

WLAN that uses 802.11g. Furthermore, the PIE mea-

surements are collected passively through the observa-

tion of the probe traffic generated by the bandwidth tests.

5.1.1 Static interference settings

We start by comparing the LIR generated by the three

mechanisms for different canonical scenarios, as shown

in Figure 3. In order to have a fair comparison, we

first evaluate the accuracy of PIE under static data rate

(6Mbps) and packet size (1400 bytes) settings, as the

overhead for computing LIR for dynamic (client mobil-

ity, variable rates) can be significant for bandwidth tests.

We then relax these constraints and evaluate the perfor-

mance of PIE under dynamic interference scenarios trig-

gered by client mobility, the use of variable transmission

rates and different packet sizes.

7

344 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

-0.4 -0.2 0 0.2 0.4

%
 o

f
L
in

k
-I

n
te

rf
e
re

r
p
a
ir
s

Mean error in LIR estimation

Figure 5: Distribution of error for PIE as compared to LIR val-
ues computed using UBT. We note that in 95% of the interference
scenarios PIE is within 0.1 of the actual LIR value.

Controlled experiments: Using a canonical two link

topology we benchmark different carrier sensing and in-

terference scenarios. We selectively disable the carrier

sensing of transmitters to create the complete set of sce-

narios. The possible interference relationship between

the two links assuming that C1 is associated with AP

A, and C2 is associated with AP B are as follows: (i)

A interferes with C2 and B interferes with C1 (A →

C2∧B → C1), (ii) A interferes with C2, B does not with

C1 (A → C2∧B � C1), (iii) B interferes with C1, A does

not with C2 (A � C2 ∧ B → C1), and (iv) A, and B do

not interfere with each others client (A � C2 ∧ B � C1).

Further, the possible carrier sensing relationship between

the two transmitters are: (i) A and B carrier sense each

other (A ↔ B), (ii) B carrier senses A (A → B), (iii) A

carrier senses B (A ← B), and (iv) A and B are not in

carrier sensing range (A � B).

Figure 3 compares the LIR values computed by PIE

and unicast bandwidth test for the sixteen possible sce-

narios of carrier sensing and interference between two

links. It also identifies cases which correspond to mu-

tual (two-way) and asymmetric (one-way) hidden termi-

nals. As shown in the figure, the LIR estimates of PIE

are very close to the values reported by the unicast band-

width tests. Also, Figure 4 shows the distribution of error

in estimating carrier sense probability and LIR values for

these different scenarios. As clear from the figure, PIE is

able to estimate the carrier sensing and LIR values with

good accuracy (±0.15) for all scenarios. Note that identi-

fying both carrier sensing and LIR values accurately can

characterize client performance under any scenario. For

instance, in the scenario where the interference relation-

ship is A → C2 ∧B → C1, the links can achieve similar

throughputs when they are carrier sensing and sharing

the channel (A ↔ B) or when they are not carrier sens-

ing (two-way hidden terminal) and there is close to 40%

loss rate for the links. PIE can provide this greater visi-

bility, as to which phenomenon is actually taking place,

which can then be used by interference mitigation mech-

anisms.

Accuracy in larger testbed: We repeat the experiments

reported in Figure 3 for a large number of link pairs in our

testbed, comprising 30 nodes spread across five floors of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

L
IR

 (
B

B
T

)

LIR (Actual)

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

L
IR

 (
P

IE
)

LIR (Actual)

Figure 6: Scatter plot of delivery ratios obtained using bandwidth
tests (unicast - LIR(Actual), broadcast - LIR(BBT)) and PIE on 43
link pairs. Note that LIR(BBT) may underestimate the loss rates
as it does not take the ACK loss into account.

our department building. We select links whose delivery

ratio in isolation is greater than 0.9 in both directions [3]5.

Figure 5 compares the values of LIR achieved using uni-

cast bandwidth test and PIE for 43 interference scenarios.

We note that for 95% of the interference scenarios, PIE

is within 0.1 of the actual LIR value. We experimented

with different convergence thresholds and found that con-

vergence within 0.1 of the actual LIR value was sufficient

for practical applications (see §5.4 for performance of

such applications).

Finally, we note some inaccuracies that are intro-

duced through approaches like BBT, which aim to col-

lect interference information at low overhead. BBT will

mis-estimate when interference impacts the reception of

ACKs rather than data packets. Figure 6 does indeed con-

firm that such cases do exist in reality and that they lead

to the underestimation of loss.

5.1.2 Dynamic interference settings

The previous experiments quantified PIE’s accuracy as

compared to the ground truth generated using unicast

bandwidth tests. However, PIE is not only able to ac-

curately capture interference under static conditions, but

more importantly, also under dynamic conditions.

Handling client mobility: Any practical interference es-

timation mechanism must be able to handle client mo-

bility, i.e. it should be able to update the conflict graph

in real time to reflect the changing interference patterns

that arise due to client movement. In order to evaluate

PIE ’s ability to handle mobile clients, we perform a mi-

cro experiment, where a mobile client is moving away

from its AP towards a hidden interferer as shown in Fig-

ure 7. In this experiment, the client is moving at a pace of

0.25 m/s 6. The bottom plot in the Figure shows the sig-

nal strength at the client from the AP and the interferer,

while the middle and top plots show the throughput of the

mobile client and the LIR estimate by PIE at each instant

in the experiment. As shown in the Figure, PIE’s LIR

estimate decreases as the client moves towards the inter-

ferer. Furthermore, it closely matches the trend shown

5 We wanted to consider stable links (high SNR) for analysis. In re-
ality, poor SNR links would rarely be selected during client association
to APs.

6Normal walking speed for mobile user.

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 345

-90

-80

-70

-60

-50

-40

-30

 0 5 10 15 20 25 30 35 40 45

S
N

R
 (

d
B

m
)

Time (sec)

AP RSS
INTF RSS

 0

 1

 2

 3

 4

 5

T
p
u
t
(M

b
p
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

L
IR

(P
IE

)

Figure 7: PIE ’s ability to track the changing interference patterns
for a mobile client. In this experiment, a mobile client is moving
away from its AP towards a hidden interferer. The bottom plot
shows the signal strength at the client from the AP and the inter-
ferer. The middle plot shows the throughput achieved by the client
at each instant. The top plot shows the LIR as measured by PIE.

by the instantaneous throughput during the experiment,

which confirms PIE’s accuracy in predicting the end user

performance in dynamic wireless environments.

Variable rate and packet sizes Prior research [24, 5]

has shown that the interference properties of wireless

links are impacted by the data transmission rate and

packet size. In order to evaluate PIE for different packet

sizes and data rates, we repeat our canonical experiments

with different packet sizes and data rates on multiple

interferer-link pairs. To evaluate multiple data rates, we

first activate a link in isolation and then activate an inter-

ferer, which forces the transmitter to adjust its data rate

to minimize losses. We use the default Atheros rate adap-

tation algorithm, SampleRate. Figure 8 (left) shows the

impact of data rate on the delivery ratio of a link (LIR by

UBT) and the estimate of LIR generated by PIE for each

rate in the experiment.

Next, we fix the data rate and vary the packet size for

a link under interference (right plot). As expected, LIR

is worse for larger packet sizes, which are prone to more

errors. We observe that the combination of data rate and

packet size can result in varying interference properties

and PIE is able to efficiently identify the impact of in-

terference accurately in each such scenario (confirmed

by the agreement with UBT). This also shows that us-

ing bandwidth tests or other active measurements may

require performing an exponential number of tests with

varying packet sizes and rates to determine the interfer-

ence impact for any given traffic scenario. PIE, on the

other hand, can passively determine the extent of inter-

ference for each scenario efficiently and accurately.

5.1.3 Classifying interferers accurately

PIE’s fundamental operation relies on observing overlap

in transmissions and correlating such events with packet

loss. One could argue that PIE’s accuracy is likely to be

affected by scale since the probability of observing over-

lap in transmissions across the network increases with

greater scale. Then the probability of identifying the

 0

 0.2

 0.4

 0.6

 0.8

 1

6 12 18 36 54

L
IR

Data rate (Mbps)

Actual
PIE

 0

 0.2

 0.4

 0.6

 0.8

 1

100 600 1400

L
IR

Packet Size (Bytes)

Actual
PIE

Figure 8: Impact of physical layer data rate and packet size on
the delivery ratio of a link in a canonical hidden terminal topol-
ogy. While varying data rate, packet size is fixed at 1400 bytes, and
while varying packet size, data rate is fixed at 24Mbps. Note the sig-
nificant drop in delivery ratio with rate while the impact of packet
size is less pronounced. 90% Confidence intervals were found to be
tight and hence are omitted for clarity.

(a) PIE accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

L
IR

% Overlap in tx time (active transmitters)

Interferer LIR(PIE)
Non-Interferer LIR(PIE)

Interferer LIR (Actual)
Non-Interferer LIR (Actual)

(b) Transmission diversity in
UCSD WLAN trace

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f
T

ra
n
s
.
p
a
ir
s

% of Transmit overlap

Figure 9: Ability of PIE to identify true interferers from a set of
active transmitters. (a) LIR measured by PIE for both the true
interferer and the non-interfering transmitter as a function of the
overlap in transmission times. If the overlap fraction is less than
75%, PIE can distinguish the false and true interferers accurately.
(b) Overlap in transmission times for all wireless transmitter pairs
that are active during a one hour time window (2pm - 3pm) in the
USCD wireless trace. As clear from the trace, about 90% of the
transmitter pairs overlap less than 20% of the times, providing suf-
ficient traffic diversity for PIE.

transmitter responsible for loss becomes much harder. To

answer this question we attempt to quantify the success

of PIE in correctly identifying an interferer depending

on the amount of time that it tends to overlap with the

transmitter suffering the loss.

Canonical experiments: Consider a link (A, B) and

two interferers C1 and C2. We compute the actual LIR

of the link under C1 and C2 by performing individual

unicast bandwidth tests, first with C1 and then with C2.

According to the unicast tests, the LIR of the link under

interference from C1 and C2 is 0.6 and 0.99 respectively,

indicating substantial interference from C1 and no inter-

ference from C2. We term C1 as the interfering transmit-

ter and C2 as the non-interfering transmitter. Our goal is

to evaluate the accuracy of PIE in identifying the inter-

fering (C1) and non-interfering (C2) transmitters, when

both C1 and C2 are activated simultaneously. Both C1

and C2 follow a http traffic model, with sleep and active

times being drawn from a 802.11 wireless trace [13]. We

then identify the time periods (1s) in the experiment with

varying overlaps between the transmission times of C1

and C2 and measure the LIR values for C1 and C2 ac-

cording to PIE.

9

346 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9(a) shows the LIR obtained by PIE for both

the interfering (C1) and non-interfering (C2) transmitter

as a function of the overlap in their wireless transmis-

sion times. As expected, when the overlap in transmis-

sion times is close to 100%, PIE is unable to distinguish

between true and false interferers. When the overlap is

less than 60% PIE can distinguish between the false and

true interferer. In fact, notice that even for high overlaps

(close to 75%), the median loss probability for false in-

terferer is close to 0. Further, as shown in Figure 9(b)

more than 90% of the transmitters in a real WLAN trace

(UCSD WLAN [8]) overlap less than 20% of the time, in-

dicating rich diversity in transmission patterns for wire-

less users. Such diversity will enable PIE to function

efficiently in realistic deployments.

Multiple interferer experiments: To validate the previ-

ous result with multiple interferers, we repeat the afore-

mentioned experiments in a larger topology. In our ex-

periments, we try to emulate the structure of our in-

building WLAN by placing one testbed AP node near

each production AP in the environment. We present re-

sults from a representative topology that randomly dis-

tributes client nodes into offices. The topology has 7

APs and 8 clients. Clients connect to the AP with the

strongest signal strength. Each transmitter follows a http

on-off model for transmitting data with the on and off

times derived from the UCSD trace. We classify all in-

terferers for which the UBT LIR is less than 0.8 (> 20%

loss) as strong (interfering) transmitters and the rest are

classified as weak (non-interfering) transmitters.

Figure 10 (a) shows the number of strong and weak

interferers per client as determined by UBT in our topol-

ogy. Figure 10 (b) shows the ability of PIE to identify

multiple strong and weak interferers in this topology. As

shown in the Figure, the LIR values estimated by PIE are

within +/- 0.15 of the actual LIR determined by pairwise

bandwidth tests using unicast traffic (UBT). Summariz-

ing, PIE is able to accurately identify the exact impact of

each interferer on every client in the system even in the

presence of multiple simultaneous transmitters. We show

the overall impact of such an accurate conflict graph on

application level performance for wireless clients in the

system in §5.4.

5.2 Agility of PIE

PIE can be integrated in today’s centralized WLANs, re-

quiring software-only modifications to the central con-

troller. However, as is apparent from the design section,

there are a number of knobs in PIE ’s design that are

likely to affect its accuracy. In this section, we study

appropriate values for the polling interval, and measure

PIE’s convergence time under varying loads.

(a) Per client interferers

 0%

 20%

 40%

 60%

 80%

 100%

54321

In
te

rf
e
re

r
c
la

s
s
if
ic

a
ti
o
n

Client index

weak (LIR > 0.8)

strong (LIR < 0.8)

876

(b) PIE error in multi-link conflict
graph

 0

 20

 40

 60

 80

 100

-0.4 -0.2 0 0.2 0.4

%
 o

f
L

in
k
-I

n
te

rf
e

re
r

p
a

ir
s

Mean error in LIR estimation

Weak interferers
Strong interferers

Figure 10: Accuracy of PIE for a 8 client, 7 AP topology. (a) Distri-
bution of strong (LIR < 0.8) and weak (LIR > 0.8) interferers. (b)
CDF shows the error in PIEś estimation of LIR for a link-interferer
pair as compared to pairwise bandwidth test (UBT). PIE identifies
both multiple strong and weak interferers accurately (all estimates
are withing +/- 0.15 of UBT LIR values). PIE is able to identify the
extent of interference accurately in the presence of multiple strong
and weak interferers.

(a) Polling period

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 25 45 65 85 105 125 145 165 185

L
IR

Polling period (ms)

LIR (PIE)
LIR (Actual)

(b) Convergence time

 0

 200

 400

 600

0.2 0.4 0.8 1.6 3.2 6.0

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

m
s
)

Offered load (Mbps)

Figure 11: (a) Impact of polling period on the accuracy of the inter-
ference measures produced by PIE . LIR value stabilizes for polling
periods greater than 100ms. The experiment time was adjusted to
ensure same sample size for different polling periods. (b) Conver-
gence time for a canonical hidden terminal link as a function of
traffic load on the link and the interferer.

5.2.1 Polling interval

Any online interference estimation mechanism must

identify conflicts in real time to be useful. In PIE ,

the controller periodically polls the APs for transmission

summaries and then determines link conflicts. Higher

polling periods can provide more information to the con-

troller, thereby improving the quality of interference es-

timation. However, having a higher polling period also

makes the system less responsive, which may be critical

to dynamic interference scenarios. Here we evaluate the

performance of PIE with different polling periods and de-

termine the minimum period for which PIE can provide

stable LIR values. We define a LIR value reported by

PIE to be stable when the 90th and 10th percentiles of

the LIR estimates differ by less than 0.1 of the mean LIR

value. Figure 11 (a) demonstrates that a value of 100

ms provides a good compromise between reactivity and

accuracy.

Note that smaller polling periods will also increase

the communication overheads for sending traffic reports

from the AP to the Controller. Using an average packet

size of 600 bytes, and a medium constantly busy at 54

Mbps, the AP in PIE will have to store a summary for

1125 packets. This results in 9 KBytes sent from each

AP every 100 ms, i.e. 1 Mbps, easily sustained by the

AP.

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 347

(a) Light traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

12 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

L
IR

Interferer Index (1-6 for each client)

Actual
PIE

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
im

e
(m

s
) Client 1 Client 2

Client 3 Client 4 Client 5

Client 6 Client 7

Client 8

Light traffic

(b) Heavy traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

L
IR

Interferer Index (1-6 for each client)

Actual
PIE

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
im

e
(m

s
)

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8

Heavy traffic

Figure 12: Convergence time and accuracy for PIE on a 7 AP - 8 Client topology under realistic patterns replayed from a period of (a) light
client activity and (b) heavy client activity (using TCP). Top part of both figures shows the convergence time for each link-interferer pair
and the bottom figure shows its corresponding accuracy when traffic traces are replayed on our representative topology. As shown in the
figure, for light (heavy) traffic scenarios, PIE takes 1150ms (650ms) or less for 95% link-interferer pairs to converge within ± 0.1 of their
actual value.

5.2.2 Convergence time

Convergence time is defined as the amount of time taken

by PIE to gather sufficient samples to compute an accu-

rate LIR estimate (within ±0.1 of ground truth). Accord-

ingly, the time taken by PIE to converge on an accurate

estimate for link interference depends on two key factors:

i) the polling period used by PIE to collect statistics from

the APs, and ii) the actual amount of traffic that is cap-

tured by the APs in a given polling period. We first under-

stand the impact of traffic load on the convergence of PIE

by systematically varying the load on the canonical two

link topology. Figure 11(b) shows the convergence time

for a canonical hidden terminal link as a function of traf-

fic load on the link and the interferer. Both the link and

the interferer use a physical data rate of 6Mbps, while the

traffic load is varied from 6Mbps (saturated) to 0.2 Mbps

(light). Reduction in traffic load leads to longer conver-

gence times because of the reduced frequency of inter-

ference events. Note, however, that LIR values would

correspond to perceived client performance degradation

only under relatively heavy loads, in which case PIE

could capture events in 100 ms. In contrast, the mea-

surement overheads of prior bandwidth test based active

interference estimation mechanisms (e.g. Interference-

maps [15]) is in the range of 20-30 seconds per link-

pair [16].

Next, in order to understand the convergence of PIE

under realistic traffic patterns, we replay a real WLAN

trace [18] on the representative (7AP - 8 Client) topology

(described in Section 5.1).

5.3 Experiments with real wireless traces

We now present experimental results on the performance

of PIE using the publicly available Sigcomm 2004 traf-

fic traces [18]. The Sigcomm trace was partitioned into

heavy, medium, and light periods corresponding to peri-

ods with airtime utilization of more than 50%, between

20-50%, and less than 20% respectively, at different

times of the conference [19]. In these traces, HTTP trans-

actions were categorized into a series of HTTP sessions.

Each session consists of a set of timestamped operations

starting with a connect, followed by a series of sends and

receives (called transactions), and finally a close. The

HTTP sessions are then replayed on our testbed using the

mechanism described in [10]. In our experiments, each

client emulated the behavior of one real client from the

trace, faithfully imitating its HTTP transactions. We use

TCP as the underlying transport protocol for trace replay.

Figure 12 shows the convergence time (top plot) and

accuracy (bottom plot) of PIE for each link-interferer

pair when access patterns from the light and heavy load

periods are replayed on the representative topology. As

shown in the figure, for light (heavy) trafc scenarios, PIE

converges to ± 0.1 of the actual LIR value within 1150

ms (800 ms) for more than 95% of the link-interferer

pairs 7 Further figure 13 shows the distribution of conver-

gence time of PIE for different link-interferer pairs under

all three load periods. As expected, the convergence time

is smaller for higher activity periods. The median conver-

gence time for the light, medium, and heavy traffic loads

are 400 ms, 620 ms, and 700 ms respectively.

7We skip detailed results from medium activity periods and instead
show only the distribution for medium activity period to save space.

11

348 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

%
 o

f
L

in
k
-I

n
te

rf
e

re
r

p
a

ir
s

Convergence time (ms)

Heavy
Medium

Light

Figure 13: Distribution of convergence time for all link-interferer
pairs under realistic traffic scenarios. Traffic scenarios (TCP
based) are classified as heavy, medium and light depending on the
total traffic load. As expected, PIE’s convergence is faster for heavy
traffic scenarios (median of 400 ms), followed by medium (median
of 620 ms) and light (median of 700) traffic.

5.4 Applying PIE to improve WLAN

performance

Being able to track interference in a highly dynamic

environment may be considered as an admirable aca-

demic exercise. In this section, we will prove that ac-

cess to such information can better enable a number

of real time mechanisms that have been proposed for

the performance optimization of wireless networks. To

that end, we have integrated PIE with three such mech-

anisms (channel selection, dynamic packet scheduling,

and power control) and tested them on two different

testbeds. Our results clearly demonstrate that all these

functions become a viable tool in the hands of network

operators as long as we can supply reliable interference

information in real time.

We use the same 7 AP and 8 client topology that we

described in §5. We set the polling period to 1 second as

per our observation in §5.2.2, thus capturing interference

accurately even under low traffic loads. In mobility ex-

periments, each client moves along a corridor at ∼0.25

m/s. We use UDP traffic for our experiments to mea-

sure the performance of PIE with different applications.

We also perform experiments with TCP traffic for cen-

tralized scheduling application and report the results for

the same.

Conflict Mechanism System Jain’s Fairness
graph (Num Channels) Tput(Mbps) Index
NA Single (1) 9.2 0.52
NA LCCS (3) 17.1 0.58

UBT Conflict aware (3) 24.6 0.72
PIE Conflict aware (3) 24.9 0.71

Table 3: Performance of conflict-aware channel assignment (using
conflict graph generated by PIE and bandwidth tests) as compared
with single channel and LCCS (least congested channel search) as-
signments. Under static conditions, PIE leads to similar results as
UBT, offering significant improvement compared to single channel
and LCCS assignments. Note that UBT being an active technique
has significantly higher measurement overhead and is not practical.

5.4.1 Application I: Channel assignment

Efficiently assigning channels to access points (APs) in

an enterprise WLAN can significantly affect the network

performance and capacity [14, 20]. We implement a

conflict aware channel assignment heuristic (Random-

ized Compaction), proposed in [20], that takes a conflict

graph as input and performs channel assignment with

the objective to minimize interference. We compare the

performance of the conflict-aware channel assignment

scheme when based on the conflict graph generated by

PIE and that of unicast bandwidth tests.

Table 3 shows the total system throughput and Jain’s

fairness index achieved by each channel assignment

mechanism. Bandwidth tests are performed with uni-

cast traffic at data rate and packet size of 6Mbps and

1400 bytes. Experiments are performed under static set-

tings for a fair comparison with bandwidth tests. We

consider the conflict graph generated by bandwidth tests

as the true interference information. Results are aver-

aged over 20 runs. We note that conflict aware chan-

nel assignment significantly improves system throughput

over LCCS [11] (least congested channel search) and sin-

gle channel assignments. Moreover, the performance of

the heuristic is similar with PIE and bandwidth tests, il-

lustrating PIE’s ability to generate high quality conflict

graphs in real time.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

A
P

 I
n

d
e

x

Client Index

Iter(0) [9.2, 0.53] Iter(10)[11.2, 0.71] Iter(20)[12.7, 0.79]

Figure 14: Performance of an iterative power control mechanism
that uses PIE. Each matrix represents the conflict graph, with over-
all capacity (total system throughput in Mbps) and Jain’s fairness
index listed in the title. Intensity of darkness is proportional to
the extent of interference. The final state corresponds to reduced
interference, improved overall network capacity and fairness.

5.4.2 Application II: Transmit Power Control

We implement a simple centralized power control heuris-

tic that uses the dynamic conflict information produced

by PIE to reduce interference in the system. We measure

the performance of the system through LIRall, i.e. the

sum of LIR values, for all link-interferer pairs in the sys-

tem. Our goal is then to maximize this value by iterating

over different power levels of the transmitters.

In each iteration of power control, we identify the most

dominant interferer, as the AP that sources links with the

minimum cumulative LIR. We reduce its transmit power

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 349

(by 10mW) and recompute the conflict graph using PIE.

If the new conflict graph has lower cumulative LIR, then

we discard the new power settings and reduce the power

level of the next strongest interferer. In this way, we

always move to a new set of power levels only if it in-

creases the overall performance of the system. We quit

when there is no improvement in the overall LIR value

for 10 iterations.

Figure 14 shows the impact of such a power control

mechanism. We present three matrices that capture the

interference caused by each AP (row) to each client (col-

umn) in the network (the darker the cell, the stronger

the interference). The title of each matrix further cap-

tures the iteration, the overall network capacity, and the

fairness index. The leftmost matrix corresponds to the

default power level setting, while the middle and right

columns indicate the intermediate and final stages of

the power level settings achieved by the aforementioned

power control heuristic. We clearly see that our sim-

ple power control mechanism reduces the overall con-

flict in the system (matrix cells get increasingly lighter),

while increasing overall network capacity and fairness.

The point of this evaluation is not on the power control

mechanism itself, since there are a number of solutions

that could achieve such an objective more effectively

(like [17]). Our focus is to demonstrate the effectiveness

of PIE when used for power control.

5.4.3 Application III: Centralized scheduling

Accurate, fast and scalable conflict graph construction is

critical for realizing centralized data plane mechanisms.

In a recent work on centralized data path scheduling

(Centaur [22]), authors relied on micro-probing [3], an

online mechanism that performs micro experiments to

determine link conflicts. Although micro-probing can

generate an accurate conflict graph in very short time

scales (4 seconds for a 10 link topology), it may still be

inefficient in high mobility scenarios, especially given

the need for silencing the network during the measure-

ment of the conflict graph. We re-evaluate the perfor-

mance of Centaur using the conflict graph generated by

PIE and contrast it to bandwidth tests for consistency. We

show that PIE improves the performance of Centaur un-

der high mobility and varying traffic properties (variable

packet sizes and data rates).

Table 4 shows the Centaur’s performance when oper-

ating on conflict information from PIE and bandwidth

tests respectively, in one static and one mobile scenario.

The UBT conflict graph is generated using 6 Mbps and

a fixed packet size of 1400 bytes for static client loca-

tions. Due to the overhead of recomputing bandwidth

tests, we use the static conflict graph for the mobility sce-

nario too. One can clearly see that exploiting real time

conflict information in scheduling is not only increasing

Scenario Mechanism System Jain’s Fairness
Tput(Mbps) Index

Static(UDP)
DCF 11.2 0.64

Centaur (UBT) 12.6 0.88
Centaur (PIE) 13.0 0.84

Static(TCP)
DCF 9.5 0.60

Centaur (UBT) 12.2 0.85
Centaur (PIE) 12.4 0.89

Mobile(UDP)
DCF 10.1 0.61

Centaur (UBT) 10.4 0.71
Centaur (PIE) 12.4 0.95

Table 4: Performance of centralized scheduling (Centaur) using
PIE ’s conflict graph. UBT and PIE lead to equivalent performance
under static settings. The introduction of mobility confirms PIE’s
superiority to provide real time information. Note that UBT has
very high measurement overheads compared to PIE .

the overall network throughput but also the fairness in-

dex across clients. More interestingly, the inaccuracies in

the conflict graph generated using bandwidth tests almost

negate the benefits of centralized scheduling under mobil-

ity. We performed similar experiments with auto-rate and

observe that Centaur with PIE ’s conflict graph provides

32% overall system throughput gain as compared to us-

ing the conflict graph generated using bandwidth tests

under static scenarios (6Mbps, 1400 bytes).

TCP performance: We also analyze TCP performance

for different conflict graphs. We observe system through-

puts (fairness) of 9.5 Mbps (0.60), 12.2 Mbps (0.85)

and 12.4 Mbps (0.89) for DCF, Centaur(UBT) and Cen-

taur(PIE) respectively. As expected UBT and PIE per-

form close to each other and outperform DCF. However,

as noted earlier, the measurement overhead of UBT is

much higher than PIE making it impractical for real time

mechanisms like Centaur.

5.4.4 Application IV: Wireless troubleshooting

Beyond PIE’s ability to enable real time performance op-

timization in enterprise WLANs, its real time nature al-

lows it to serve as a diagnosis tool that could be used

proactively by a network operator to avoid performance

problems. We test this property by running PIE in two

production 802.11b/g WLANs (W1 and W2), co-located

with our two testbeds.

These WLANs differ from each other in many signifi-

cant ways as follows. WLAN1 spans 5 floors of a build-

ing and uses 9 APs manufactured by vendor A. The net-

work administrator was responsible for conducting RF

site surveys, identifying locations to place the APs, and

manually assigning the channel of operation of each AP

to minimize interference. Exactly 3 APs were placed on

channels 1, 6, and 11 in WLAN1 to minimize the level

of inter-AP interference. In contrast, WLAN2 occupies

a single floor of a different building, uses 21 APs man-

ufactured by a different vendor, B, and features a con-

troller in charge of dynamic channel assignment. The

number of APs on each channel, thus, varies over time.

In WLAN2 the vendor was responsible for conducting

the RF site surveys and making AP placement decisions.

13

350 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WLAN HT-Links Anomaly-Link pairs
(LIR < 0.7) (Ratio < 0.2)

WLAN1 31 / 386 231 / 1087
WLAN2 53 / 464 305 / 1391

Table 5: Performance issues observed in two production WLANs.
The extent of hidden terminal interference ranges from 8% to 11%
but can be significant for a small number of links. Rate anomaly
affects approximately 20% of the links in both networks.

We select testbed nodes closest to the production APs

to provide transmission reports to the PIE controller,

sniffing the transmissions on the operational network.

We use those reports to measure the carrier sense and

interference relationships between different links in the

production WLAN. PIE reveals two performance issues:

1) Hidden terminals: Performance degradation beyond

a certain level due to interference can significantly im-

pact client performance. We set LIRthresh equal to 0.7

to identify those links that suffer more than 30% reduc-

tion in their LIR under interference and classify them as

hidden terminals.

2) Rate anomaly: Rate anomaly is a well documented

problem [23] in wireless environments. If a transmitter

of a link operating at a high data rate (say 54 Mbps), car-

rier senses the transmitter of another link operating at a

low rate (say 6Mbps), then the link operating at higher

rate will experience significant slowdown in throughput

(by a factor of 1/10 in this case). We classify a given link

pair as a case of rate anomaly, when the ratio of their

transmission rates is less than 0.2.

Both these issues are observed in both production net-

works. Table 5 shows the extent of hidden interference

and rate anomaly in the two WLANs. The extent of hid-

den interference is rather limited (8% for WLAN1 and

11% for WLAN2). For comparison, Jigsaw [8] also re-

ports that 5% of their links observe an LIR of less than

0.8. While limited on average, however, we do still ob-

serve, across both WLANs that hidden interference can

lead to up to 70% LIR degradation for as many as 4%

and 3% of the links in WLAN 1 and 2 respectively.

In terms of rate anomaly issues, we observe that for

about 20% carrier sensing link pairs, the transmission

rates differ by more than 80%. This could be one of the

reasons for sudden performance slowdown experienced

by perfectly good quality links in WLANs.

6 Conclusions
We presented a detailed evaluation of a passive, real time

interference estimation mechanism (PIE). We showed

that PIE is accurate in estimating link interference and

can also adapt to changing interference patterns in real

time. This enables PIE to be especially effective in real-

istic wireless environments, where client mobility, vari-

able transmission rates, and bursty traffic result in chang-

ing interference scenarios, thereby limiting the useful-

ness of static bandwidth test mechanisms. Further, we

showed that PIE is completely passive, does not require

client support, and does not cause any network downtime,

making it attractive for use in real WLAN settings. We

have integrated PIE with interference mitigation mech-

anisms like centralized scheduling, transmit power con-

trol, and channel assignment and showed that PIE can en-

able these mechanisms to function efficiently and dynam-

ically by providing an accurate conflict graph in real time.

We also used PIE to monitor two production WLANs and

demonstrated that PIE can diagnose certain performance

issues in real systems.

Acknowledgments: We would like to thank the anony-

mous reviewers and our shepherd Hari Balakrishnan,

whose comments helped bring the paper into its final

form. V. Shrivastava, S. Rayanchu, and S. Banerjee have

been supported in part by US NSF through awards CNS-

1040648, CNS-0916955, CNS-0855201, CNS-0747177,

and CNS-1059306.

References
[1] Madwifi atheros drivers. http://madwifi-project.org.
[2] D. Aguayo et al. Link-level measurements from an 802.11b

mesh network. In SIGCOMM, 2004.
[3] N. Ahmed and S. Keshav. Smarta: A self-managing architecture

for thin access points. In CoNEXT, 2006.
[4] N. Ahmed et al. Online estimation of RF interference. In CoNext,

2008.
[5] N. Ahmed et al. Measuring multi-parameter conflict graphs for

802.11 networks. In MC2R, 2009.
[6] K. Cai et al. Non-intrusive, dynamic interference detection for

802.11 networks. In IMC, 2009.
[7] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A location-

based management system for enterprise wireless LANs. In
NSDI, 2007.

[8] Y.-C. Cheng et al. Jigsaw: solving the puzzle of enterprise
802.11 analysis. In SIGCOMM, 2006.

[9] Y.-C. Cheng et al. Automating cross-layer diagnosis of enter-
prise wireless networks. In SIGCOMM, 2007.

[10] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye. Feasibility study
of mesh networks for all-wireless offices. In MobiSys, 2006.

[11] J. Geier. Assigning 802.11b access point channels. Wi-Fi Planet
’04.

[12] IEEE. Wireless LAN Medium Access Control (MAC) and phys-
ical layer (PHY) spec, IEEE 802.11 standard. IEEE Standard
802.11, 1999.

[13] R. Mahajan et al. Analyzing the MAC-level behavior of wireless
networks in the wild. SIGCOMM 2006.

[14] A. Mishra et al. A client-driven approach for channel manage-
ment in wireless LANs. In INFOCOM, 2006.

[15] D. Niculescu. Interference map for 802.11 networks. In IMC,
2007.

[16] J. Padhye et al. Estimation of link interference in static multi-
hop wireless networks. In IMC, 2005.

[17] K. Ramachandran et al. Symphony: synchronous two-phase rate
and power control in 802.11 WLANs. In Mobisys, 2008.

[18] M. Rodrig et al. CRAWDAD data set uw/sigcomm2004.
[19] M. Rodrig et al. Measurement-based characterization of 802.11

in a hotspot setting. In SIGCOMM E-WIND, 2005.
[20] E. Rozner, Y. Mehta, A. Akella, and L. Qiu. Traffic-aware chan-

nel assignment in enterprise wireless LANs. In ICNP, 2007.
[21] A. Sheth et al. MOJO: a distributed physical layer anomaly de-

tection system for 802.11 WLANs. In MobiSys, 2006.
[22] V. Shrivastava et al. CENTAUR: realizing the full potential of

centralized WLANs through a hybrid data path. In MobiCom,
2009.

[23] G. Tan and J. Guttag. Time-based fairness improves perfor-
mance in multi-rate WLANs. In USENIX, 2004.

[24] M. Vutukuru, K. Jamieson, and H. Balakrishnan. Harnessing
exposed terminals in wireless networks. In NSDI, 2008.

[25] White-paper from Meru Networks. Microcell deployments:
Making a bad problem worse for pervasive wireless LAN de-
ployments. http://www.merunetworks.com/pdf/whitepapers/.

[26] J. Yeo, M. Youssef, and A. Agrawala. A framework for wireless
LAN monitoring and its applications. In WiSe, 2004.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 351

SpecNet: Spectrum Sensing Sans Frontières
Anand Padmanabha Iyer
Microsoft Research India

Krishna Chintalapudi
Microsoft Research India

Vishnu Navda
Microsoft Research India

Ramachandran Ramjee
Microsoft Research India

Venkata N. Padmanabhan
Microsoft Research India

Chandra R. Murthy
Indian Institute of Science

Abstract
While the under-utilization of licensed spectrum based

on measurement studies conducted in a few developed
countries has spurred lots of interest in opportunistic
spectrum access, there exists no infrastructure today for
measuring real-time spectrum occupancy across vast ge-
ographical regions. In this paper, we present the design
and implementation of SpecNet, a first-of-its-kind plat-
form that allows spectrum analyzers around the world to
be networked and efficiently used in a coordinated man-
ner for spectrum measurement as well as implementa-
tion and evaluation of distributed sensing applications.
We demonstrate the value of SpecNet through three ap-
plications: 1) remote spectrum measurement, 2) pri-
mary transmitter coverage estimation and 3) Spectrum-
Cop, which quickly identifies and localizes transmitters
in a frequency range and geographic region of interest.

1 Introduction
Radio Frequency (RF) spectrum measurement studies [9,
10, 5, 7] have confirmed that vast spans of licensed spec-
trum, deemed white-spaces, are heavily under-utilized.
Such studies have helped make a case for allowing unli-
censed devices to utilize unused parts of the spectrum op-
portunistically. Opportunistic Spectrum Access (OSA) is
now increasingly seen as a necessity to meet the grow-
ing demands of wireless applications. In fact, the his-
toric FCC ruling in 2008 permitting such opportunistic
use (and in 2010 allowing use without the need to sense
primaries) is a testament to the success of these measure-
ment studies.

Nevertheless, most spectrum measurement studies to
date have been conducted in a few developed nations,
using only a handful of spectrum analyzers. Even today,
the US remains the only country to have allowed an OSA
model. Many more measurement studies, especially in
developing nations, are perhaps necessary to make the
OSA model accepted worldwide.

Further, these measurements represent static spectrum
occupancy information over small parts of a country.
While spectrum allocation is mostly static today, the
adoption of OSA will result in much more dynamic use
of spectrum. Thus, access to real-time spatio-temporal
maps is beneficial for OSA devices to sense other OSA
devices and determine which parts of the spectrum are
free/lightly loaded. However, there exists no infrastruc-
ture today for measuring real-time spectrum occupancy
across vast geographical regions.

Over the past few years, several researchers have
proposed novel schemes for efficient media access and
network design in white-spaces [3, 20]. Other re-
searchers have proposed novel collaborative spectrum
sensing techniques [11] to allow robust detection of spec-
trum occupancy. However, thorough evaluation of these
techniques using real data is hard today. Further, cross-
geographic questions such as “How do spatio-temporal
access usage patterns in India differ from those in the
US?” or “How would a certain OSA technique that works
well in the US perform in the UK?” cannot be answered
today.

The primary contribution of this paper is SpecNet—
a platform that allows researchers across the world not
only to conduct spectrum measurement studies remotely
in real time, but also implement and test novel distributed
collaborative spectrum sensing applications for OSA.
SpecNet advances OSA in several ways. First, it helps
gather spectrum data in many countries, thereby helping
the adoption of the OSA model worldwide. Second, by
providing real-time spectrum occupancy maps, OSA de-
vices may be able to quickly identify lightly loaded parts
of the spectrum. Third, it provides real trace data that
can be used to evaluate novel research ideas in OSA. Fi-
nally, in countries such as India, where there is no readily
available database of primary users, it can help create an
accurate database that can be used by OSA devices.

In SpecNet (Section 4), participant owners of spec-
trum analyzers register and connect their instruments to
the SpecNet server. Each owner volunteers to provide
time periods when SpecNet users are allowed to use the
instrument to remotely conduct experiments. SpecNet
provides its users with a rich API implemented as XML-
RPC calls. Thus, SpecNet users can develop and re-
motely execute measurements or distributed sensing ap-
plications in a programming/scripting language of their
choice. To the best of our knowledge SpecNet is the first
programmable distributed spectrum sensing platform of
its kind. SpecNet can be accessed at [15].

SpecNet provides an API that supports three classes
of users (Section 4.2). For sophisticated users, SpecNet
provides full access to the low-level APIs of the spec-
trum analyzer. For policy users and others mainly inter-
ested in measurement data, say for longituidinal analy-
sis, SpecNet provides APIs that allow access to historic
measurement data that SpecNet collects and stores in a
database. For other users such as network operators or
government personnel, SpecNet provides a set of high-

1

352 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

level APIs that allow these users to write novel appli-
cations without having to worry about the intricacies of
the spectrum analyzer. For example, a government user
interested in spectrum occupancy data need only spec-
ify the part of the spectrum (e.g., 500-800 MHz), the
geographical boundary (e.g., specified by a center and
radius of a circular region), the time interval (e.g., be-
tween 12:00 - 16:00 hrs today) and the minimum signal
strength of the transmitter that needs to be detected (say
-95 dBm). Behind the scenes, SpecNet determines the
group of relevant spectrum analyzers and their respec-
tive settings that will help satisfy the measurement re-
quest, executes the task on these spectrum analyzers and
delivers the results to the user. Other users such as OSA
network operators may be interested in determining the
coverage of their networks at locations where spectrum
analyzers may not be available. SpecNet provides an
interpolation tool that uses measurements from nearby
spectrum analyzers to estimate power at the location(s)
of interest.

Given that spectrum analyzers are expensive ($10-
40K) and their time of availability for SpecNet’s use
might be restricted depending on the owner’s needs, an
important design goal for SpecNet is efficient manage-
ment of spectrum analyzer time. When two or more
spectrum analyzers lie in the region of interest, it may be
possible to coordinate their measurements in a manner
so as to reduce the overall scanning time while satisfying
the user’s request. One approach could be to partition
the frequency spectrum equally among all the spectrum
analyzers in the region of interest. Another approach is
to leverage the spatial diversity in the locations of the
spectrum analyzers and partition the scanning efforts ge-
ographically. Finally, a hybrid approach that combines
these two approaches is also feasible.

Two fundamental tradeoffs underlying the very
physics of spectrum measurements make this problem of
partitioning the measurement task among spectrum ana-
lyzers a significant challenge. First, the time-frequency
uncertainty principle dictates that the finer the resolution
of the spectrum scan, the longer it takes to perform the
scan. Second, weaker signals require longer scan times
to be amenable to detection. Further, the heterogeneity
in capability as well as processing speeds across differ-
ent models of spectrum analyzers adds to the complexity.
SpecNet considers these tradeoffs and uses a novel task
partitioning scheme for scheduling individual spectrum
analyzers (Section 5).

We demonstrate the power of SpecNet through three
applications (Section 7). The first application is simply
a spectrum scan that is performed across different coun-
tries, illustrating the ability to conduct remote measure-
ments. The second application is a coverage estimation
application that may be useful to network operators. The

application first helps localize a TV transmission tower
and then predict its footprint so that operators may avoid
the primary owner of the spectrum. This is especially
useful in developing countries where a database of pri-
mary transmitters is unavailable or incorrect. The third
application is SpectrumCop, which may be of interest
to government users. Today, it is hard to detect viola-
tors of spectrum policy unless a primary owner of the
spectrum complains of interference. The SpectrumCop
application allows a user to quickly detect and localize a
transmitter in a given frequency range and geographic re-
gion, demonstrating the utility of SpecNet’s coordinated
sensing platform.

Thus, we make the following contributions:
• We present the design and implementation of a novel

platform called SpecNet that allows spectrum analyz-
ers around the world to be networked and used in a
coordinated manner for remote measurement as well
as testing and implementation of distributed sensing
applications. SpecNet is open for access at [15].

• We present a scheduling algorithm for coordinating
measurements among neighboring spectrum analyzers
that optimizes spectrum analyzer usage time.

• Finally, we present three applications that demonstrate
the value of the SpecNet platform.

2 Related Work
Measurement Studies. One of the earliest studies that
aimed at quantifying spectrum usage [9] is by the Shared
Spectrum Company. The study, conducted at six differ-
ent locations in the US, concluded that the average occu-
pancy of spectrum was about 5.2% in the 30 MHz to 3
GHz frequency range. A study by McHenry et al. [10] in
Chicago and New York revealed that the occupancy was
limited to 17% and 13% respectively. Since then, there
has been a number of measurement studies [5, 7, 19] in
different parts of the world. The common finding of all
these studies has been that spectrum is heavily under-
utilized. In [4], authors derive various statistics from
the collected data, and propose a prediction algorithm for
channel availability.

All of these studies have been performed using a hand-
ful (maximum of 4 according to [4]) of spectrum an-
alyzers scanning spectrum in a small geographical re-
gion in an uncoordinated fashion. In contrast, SpecNet
provides a platform for coordinating spectrum analyzers
across different geographical regions, thus opening doors
to more interesting measurement studies. Further, it also
enables building occupancy maps of large geographical
areas over long durations for longitudinal analysis.
Whitespace Research. Whitespace networking has
been gaining attention as an important research field in
the networking community. In [3], the authors propose

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 353

a Wi-Fi like system built on UHF whitespaces. Yang
et al. propose a distributed spectrum access technique
using frequency agile radios transmitting in orthogonal
frequencies [20]. Most of these proposals have been
evaluated in restricted settings. We believe that SpecNet
would aid whitespace research by allowing evaluation of
proposals based on broader, more real-world data. For
instance, spectrum measurement data from different con-
tinents could be used to evaluate detection techniques.
Cooperative Sensing & Sensor Networks. Cooperative
sensing is a well explored topic [11, 16, 6]. The main
focus of these papers is detecting a primary whose fre-
quency of transmission and/or location is known. More-
over, the emphasis is on novel collaborative detection
techniques. SpecNet and research in collaborative sens-
ing are complementary to each other. For example, mea-
surements from SpecNet can be useful for evaluating
these collaborative detection algorithms while advanced
collaborative detection techniques can be incorporated
into the SpecNet platform as an API.

SpecNet uses Voronoi partitioning for optimizing scan
time of spectrum analyzers. The use of Voronoi diagrams
has been proposed in sensor networks as well [17, 2].
However, the main motivation for applying a partition-
ing scheme in sensor networks has been energy savings
and/or interference avoidance. Thus, the problem formu-
lations and objective functions are very different.
Testbeds/Platforms. A number of distributed research
testbeds/platforms have been built by the community [12,
1, 18]. To the best of our knowledge, SpecNet is the
first platform targeted at co-ordinating spectrum analyz-
ers across geographical regions.

3 Spectrum Sensing Using Spectrum Ana-
lyzers - A Primer

In this section we attempt to answer the question,“what
are the key settings and choices available to a spectrum
analyzer user for spectrum scanning and how do they in-
fluence the spectrum sensing process?”

3.1 Spectrum Scanning - An Example
We begin with an example spectrum scan of an active
wireless microphone depicted in Figure 1. When scan-
ning using a spectrum analyzer, a user typically needs
to specify two key parameters—the scanning frequency
range and the resolution bandwidth. The frequency
range, (fmin, fmax) in MHz, specifies that the user is
interested in scanning the spectrum from fmin MHz to
fmax MHz. In Figure 1, the scanning frequency range
is (702.05 MHz , 702.35 MHz). Resolution bandwidth
specifies the granularity in Hz at which the scan is to
be performed—the lower the resolution bandwidth, the
greater the observed detail in the scan.

Figure 1 depicts the results of the scan at four differ-
ent resolution bandwidths. When the resolution band-
width is 1 MHz, the microphone’s transmission is not
at all perceivable. Upon reducing the resolution band-
width to 30 KHz, a single clear peak emerges indicat-
ing the microphone’s transmission. Further reducing
the resolution bandwidth to 10 KHz reveals even finer
detail—three distinct peaks, which are the signature of
an FM-modulated transmission. At 1 KHz resolution
bandwidth, the three peaks are revealed as distinct sharp
tones.

702.05 702.1 702.15 702.2 702.25 702.3 702.35−110

−100

−90

−80

−70

−60

−50

−40

Frequency in MHz

R
ec

ei
ve

d
Po

w
er

 in
 d

B
m

RBW = 1 KHz

RBW = 10 KHz

RBW = 30 KHz

RBW = 1 MHz

−102

−96

−88

−52

Figure 1: Effect of resolution bandwidth
As seen in Figure 1, a lower resolution bandwidth has

two significant effects on the scan. First, greater detail
about the signal structure is revealed and second, the
noise floor is reduced (from -52 to -102 dBm).

3.2 Occupancy Detection
Often, the goal behind scanning the spectrum is occu-
pancy detection, i.e., to determine which parts of the
spectrum have ongoing transmissions. Fundamentally,
the problem of occupancy detection attempts to distin-
guish between signal and noise. While there are sev-
eral varieties of occupancy detection schemes, perhaps
the simplest scheme is to check whether the Signal to
Noise Ratio (SNR) is greater than a certain threshold.

1 1 2 3 4 5 6
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Resolution Bandwidth in Hz

N
oi

se
 F

lo
or

 in
 d

B
m

N9320B Agilent
FieldFox N9912A
N9010A Agilent

10 10 10 10 1010

Figure 2: Noise floor versus resolution bandwidth
Dependence of noise floor on resolution bandwidth:

As we saw in Figure 1, the noise floor depends on the
resolution bandwidth of the scan. This decrease in noise
floor arises from the fact that as frequency bins become
finer, they accumulate less noise. A lower noise floor
typically results in a greater SNR and consequently more
reliable occupancy detection.

3

354 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The noise floor (in watts) as a function of resolution
bandwidth is typically given by

N ∝ ρ (1)

In Eqn 1, the proportionality constant depends on the
spectrum analyzer model, the antenna, the cabling,
etc. Figure 2 depicts the dependence of noise floor on
resolution bandwidth for three different models of spec-
trum analyzer. While practical measurements indicate
minor deviations in linearity, as seen in Figure 2, the lin-
ear model (Eqn 1) holds approximately true for all spec-
trum analyzers we used.

Dependence of detection range on resolution band-
width: Typically, the farther a transmitter is from a
spectrum analyzer, the lower the received power at the
spectrum analyzer. The weaker the received signal, the
lower the SNR and hence the less reliable its detection.
Detection range of a spectrum analyzer at a certain res-
olution bandwidth is the farthest distance from which an
ongoing transmission can be detected reliably.

Path loss models such as the Log Distance Path Loss
(LDPL) model are typically used to estimate received
power as a function of distance. The received power Pr

at a distance d from a transmitter transmitting with power
P0 based on the LPDL model is given by

Pr = P0 − 10γ log (d) + L (2)

In Eqn 2, γ (usually between 2 and 3 for outdoor envi-
ronments) is the path loss exponent and L dB (usually
modeled as a Gaussian with standard deviation between
5-10 dB for outdoor environments) is a random variable
that captures variations in the signal due to fading effects.

If ∆ is the minimum SNR required for reliable occu-
pancy detection using a certain detection scheme, then in
order to detect a transmission from a distance d, the noise
floor must be∆ dB less than Pr, i.e., P0 − 10γ log (d)−
∆. Since noise floor is dictated by the resolution band-
width (Eqn 1), this in turn implies that one must choose
a lower resolution bandwidth to reliably detect a trans-
mitter that is farther away from the spectrum analyzer.
The dependence of detection range d on resolution band-
width can be derived from (Eqn 1) (after converting from
dB) as

ρ ∝
(

10
P0−∆

10

)

d−γ (3)

Eqn 3 indicates an important aspect of detecting trans-
missions from a distance, namely, the maximum usable
resolution bandwidth decreases super-linearly (as dγ)
with detection range.

4 SpecNet Architecture
SpecNet is a shared infrastructure consisting of geo-
distributed, networked, programmable spectrum analyz-
ers that are contributed and used by the community. The

Figure 3: SpecNet Architecture
following two goals drive the design of SpecNet. 1) Ease
of Use: We expect SpecNet to support the needs of three
different classes of users. First, sophisticated users such
as whitespace researchers will likely need real-time, low-
level access to the full functionality of the spectrum an-
alyzers. Second, some users such as spectrum policy re-
searchers may simply need access to the data collected
by the spectrum analyzers. Finally, users such as sec-
ondary network service providers or government person-
nel interested in spectrum monitoring may require high-
level APIs that abstract the details/complexity of Spec-
Net and provide services such as tower localization or
spectrum occupancy detection. 2) Efficiency: Given that
spectrum analyzers are expensive ($10-40K) and may be
available to SpectNet for limited duration, it is important
that the usage of spectrum analyzers be optimized where
possible. Since the spectrum analyzers cannot be arbi-
trarily “time-sliced” for fine-grained sharing, optimiza-
tion requires completing each task as efficiently as pos-
sible. We now present an overview of the SpecNet archi-
tecture.

4.1 Overview
The SpecNet architecture is shown in Figure 3. It
contains three key components: users or clients, slave
servers that comprise laptops/PCs connected to spec-
trum analyzers, and master servers that manage the slave
servers. The typical work-flow is as follows: clients sub-
mit jobs to the master servers; the master servers trans-
late these jobs into spectrum analyzer commands based
on Standard Commands for Programmable Instruments
(SCPI) [14]. The master server also schedules these at
the appropriate slave server nodes for execution at the de-
sired/available time. The output of the commands is then
either forwarded immediately to the client or the client is
notified of when/where the output data from the submit-
ted job would be available.

XML-RPC: In order to support a wide range of client
platforms, the SpecNet service is exposed by the master
servers as XML-RPC calls, i.e., remote procedure calls
that are encoded in XML and transported over HTTP
using the XML-RPC standard. This allows clients to

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 355

post jobs using the SpecNet APIs from any Internet-
connected node, written in any language of their choice.

Push-vs-Pull: The jobs posted to the master server
can either be pushed to or pulled by the slave servers.
While a pull-based publish-subscribe model is less com-
plex in terms of state maintenance at the server, it is not
suitable for SpecNet users who may want to execute jobs
with inter-dependent API calls that require reaction at
sub-second intervals (see the Spectrum Cop application
in Section 7.3). We thus adopt a push-based model where
a persistent TCP connection is maintained between the
slave servers and the master servers and jobs are pushed
to the slave servers.

Registration: Users contributing slave servers need
to first register with the SpecNet master server. They
may specify times during which the nodes are available
to SpecNet. Upon completion of registration, a simple
daemon is downloaded and executes on the slave server.
This software establishes an outbound persistent TCP
connection to the master server and another connection
to the spectrum analyzer, thereby serving as a bridge be-
tween the master server and the spectrum analyzer.

Benchmarking: The master server first runs a suite
of experiments to benchmark the fundamental character-
istics such as noise floor and scan times of each spec-
trum analyzer (details in [8]). This benchmarking helps
the master server efficiently schedule jobs at the slave
server nodes. Further, this is also necessary for abstract-
ing some of the low-level details of the spectrum ana-
lyzer through higher-level APIs, necessary for masking
some of the heterogeneity among spectrum analyzers.
We discuss this next.

4.2 APIs
As mentioned earlier, SpecNet is designed to support
three classes of users. Table 4.2 lists a subset of the APIs
supported by SpecNet.

For sophisticated users who require low-level access
to the spectrum analyzer, SpecNet has a reservation API
that users can use to reserve a block of time on the de-
sired slave servers. The users can then issue their de-
sired low-level commands, which are simply forwarded
through the master server to the slave servers for execu-
tion.

For policy users and others who are interested
mainly in spectrum usage data, possibly for longitu-
dinal studies, SpecNet schedules up to 10% of the
available time at each slave server for itself. Dur-
ing this time, the server performs a high resolution
scan of the entire spectrum, stores this data in a
SQL database and exposes this data to users through
APIs such as GetPowerSpectrumHistory() or
GetOccupancyHistory(). This stored data can
also serve as a cache and may help respond (partly) to

other submitted jobs.
The interesting challenges in SpecNet’s design arise

mainly in supporting the third class of users (e.g., net-
work operators). These users may require support for
high-level APIs that abstract out many of the details of
using spectrum analyzers. While we have designed a
few of these APIs (6-9 in Table 4.2), we expect the set
of high-level APIs to expand over time based on interest
and through community contributions.

Localization and Interpolation: Estimating the ge-
ographical coverage of a primary transmitter is essential
to creating a spectrum usage map. However, this requires
knowledge of specifics of the transmitter such as its loca-
tion and transmit power. Such information is usually not
available or may be incorrect, especially in developing
countries (Section 7.2).

In order to localize transmitters, SpecNet provides
the LocalizeTransmitter() API that uses signal
strength observed at spectrum analyzers from various lo-
cations but does not require input of parameters such as
location and transmit power of the transmitter. Instead,
SpecNet estimates these parameters that best explain the
signal observations (in least mean square error terms) us-
ing well known path loss models such as Longley-Rice
or Log Distance Path Loss (LDPL). The number of un-
knowns that can be estimated, however, fundamentally
depends on the number of different locations from which
signal strength was observed. In case of the LDPL model
(Eqn 2), for example, if signal strengths from only three
locations are available, SpecNet sets γ = 3, takes the
transmit power (P0) as input from the user and estimates
the location through triangulation. If signal strength from
four different locations are available, SpecNet can esti-
mate P0 and the transmitter location simultaneously by
choosing γ = 3. When observations from five or more
locations are available, SpecNet can estimate the trans-
mitter location, transmit power P0 and γ simultaneously
that best fit the observations. Once the location of the
transmitter and other parameters are determined, con-
structing a spectrum map is straightforward. SpecNet
provides the FindPowerAtLocation() API that
takes these parameters and predicts the likely received
power at desired new locations (e.g., locations with no
spectrum analyzer).

Spectrum Occupancy Detection: The next two
high-level APIs help users obtain spectrum occupancy
at desired locations. The GetPowerSpectrum() is
simply a spectrum scan over a given frequency range on a
given device, except that users do not even need to spec-
ify the resolution bandwidth. Instead users can specify
a region and desired minimum power level of transmit-
ter to be detected. SpecNet then automatically chooses
the best resolution bandwidth (based on the fundamental
properties of occupancy detection discussed in Section 3)

5

356 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

API Description
Low-level APIs (e.g., for sophisticated users)

1 GetDevices([Boundary], [Timespan]) Returns a list of spectrum analyzer IDs. Fewer/no arguments possible.
2 ReserveDevice(ID, Timespan) Reserves and returns success, if available.
3 RunCommandOnDevice(ID,Command) Issues SCPI command to device and returns result.

Commands to access stored data (e.g., for policy users)
4 GetPowerSpectrumHistory(ID, Fs, Fe, Timespan) Returns (avg) power values from device for given time/frequency range (Fs-Fe).
5 GetOccupancyHistory(ID/Boundary, Fs, Fe,

Timespan, Threshold)
Returns 0-1 list indicating occupancy in Fs-Fe at device or in region, based on
threshold.

High-level APIs (e.g., for operators or government users)
6 LocalizeTransmitter(Boundary, Locations, Powers,

Model, Parameters)
Localizes transmitter inside area, given observed power level(s) at location(s)
using Model (LDPL, HATA, Longley-Rice, etc.) .

7 FindPowerAtLocation(Location, [Transmitter
Parameters], Model, [Model Parameters])

Interpolates power at new location given transmitter location/parameters and
model; useful for estimating coverage of transmitter.

8 GetPowerSpectrum(ID, Fs, Fe, [Boundary, P]) Schedules a scan for given frequency range (SpecNet determines optimal reso-
lution bandwidth) in order to detect minimum power level P in given area.

9 GetOccupancy(ID/Boundary, Fs, Fe, P) Provides a 0-1 list corresponding to frequencies occupied at a device or region.
P is the minimum transmitter power (SpecNet minimizes scan time).

Table 1: Core APIs supported by SpecNet

and returns the results. GetOccupancy() API goes
further by allowing the user to specify a region of interest
for detecting occupancy of signals above a given thresh-
old, without even identifying the desired slave server
IDs. This API is useful for applications like Spectrum
Cop (Section 7.3), which monitor unauthorized spectrum
usage. To support this API, SpecNet computes the opti-
mal set of spectrum analzyers and their corresponding
resolution bandwidth values that minimize scan time and
returns the results. Optimizing scan time across multiple
spectrum analyzers is a challenging problem which we
discuss next.

5 Task Scheduling in SpecNet
SpecNet allows users to deploy and execute spectrum
sensing applications in real time. Users expect their sens-
ing tasks to be dispatched and completed as soon as pos-
sible. Consequently, SpecNet schedules participant spec-
trum analyzers in a manner so as to minimize task com-
pletion time. In this section we describe the challenges
posed in the design of a task scheduler for SpecNet.

5.1 Scanning Time of a Spectrum Analyzer
For a spectrum analyzer, the time to perform a scan from
fmin MHz to fmax MHz depends on two parameters
namely, span Q = fmax−fmin and the resolution band-
width ρ used for the scan. Increasing the span requires
a spectrum analyzer to scan a larger part of the spectrum
and consequently requires a longer scan time. Scanning
at a smaller resolution bandwidth requires a larger num-
ber of samples to be collected in order to reliably esti-
mate the power in each of the finer frequency bins and
hence, more time. For modern spectrum analyzers, the
scan time may be modeled as

T ∝ Q

ρ
(4)

In Eqn 4, T is the scanning time. The proportionality
constant in Equation 4 can vary significantly across dif-
ferent models of spectrum analyzers as discussed next.

Theory versus Reality : Figure 4 depicts the scan times
measured from different spectrum analyzers at different
resolution bandwidths as a function of span. As seen
from Figure 4, the dependence of scanning time on span
Q is strictly linear as dictated by Eqn 4. Consequently, it
is convenient to characterize scan times of spectrum an-
alyzers in terms of scan time per MHz, τ . The scanning
time for a scan from fmin to fmax is then determined by
the product (fmax − fmin)τ .

Figure 5 depicts the measured scan times per MHz (τ)
as a function of resolution bandwidth for three different
models of spectrum analyzers in a log-log plot. Based on
Eqn 4, the variation of scan times with resolution band-
width should be linear. However, Figure 5 indicates sig-
nificant departure from linearity. Rather the variation is
piece-wise linear. For example, for FieldFox N9912A,
the variation is linear in sections A-B and C-D sepa-
rately. The piece-wise linearity arises because spectrum
analyzers likely use different sets of circuits and modes
for different ranges of resolution bandwidths and these
circuits/modes presumably have different performance
characteristics. To allow for these non-linearities, Spec-
Net maintains lookup tables τ(ρ) describing the scanning
time per MHz for a given resolution bandwidth setting
for each spectrum analyzer.

5.1.1 Minimizing Scan Time by Automatic Resolu-
tion Bandwidth Selection

When scanning a part of the spectrum, users often care
about having a low noise floor. The noise floor, how-
ever, as discussed in Section 3, depends on the resolu-
tion bandwidth chosen. SpecNet allows users to request
a scan by a remote spectrum analyzer by specifying the
maximum tolerable noise floor. Behind the scenes, Spec-
Net determines the resolution bandwidth that provides
for the fastest scan time that satisfies the required noise
floor. In order to enable such an API, the SpecNet server
maintains lookup tables that provide scanning times per
MHz at various resolution bandwidths, for each Spec-
trum Analyzer connected to SpecNet.

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 357

10 20 30 40 50
0

2

4

6

8

10

12

Span in MHz

Sc
an

ni
ng

 ti
m

e
in

 S
ec

on
ds

N9320B, RBW=3Khz
N9320B, RBW=1Khz
Fieldfox, RBW=3Khz
Fieldfox, RBW=1Khz

Figure 4: Scanning time versus span

0 1 2 3 4

−1

0

1

2

Resolution Bandwidth in Hz

Sc
an

ni
ng

 T
im

e
in

 S
ec

N9320B Agilent
N9010A Agilent
FieldFox N9912A

10 10 10 10 10

10

10

10

10
D

C
A

B

Figure 5: Scanning time per MHz ver-
sus resolution bandwidth

0 50 100 150 200
−100

−90

−80

−70

−60

−50

−40

−30

Distance in mts

R
ec

ei
ve

d
po

w
er

 in
 d

B
m

Figure 6: Decay in received signal
strength for microphone

Dependence of Scanning Time on Detection Range: A
greater detection range requires using a narrower resolu-
tion bandwidth (Section 3). This in turn implies that to
increase the detection range of a spectrum analyzer one
must accept a longer scanning time. More specifically,
from Equations 3 and 4, scanning time depends on de-
tection range as

T ∝
(

10−
P0−∆

10

)

Qdγ (5)

Eqn 5 reveals a crucial aspect of sensing—namely, scan-
ning time increases super-linearly with increase in de-
tection distance and linearly with span. As described in
Section 5.2, SpecNet uses this dependence to efficiently
share load among spectrum analyzers given a scanning
task.

To account for the deviations in scanning time from
Equation 4 as depicted in Figure 5, given a detection
range d , instead of using Eqn 5, SpecNet uses the lookup
table τ(ρ) to determine the resolution bandwidth that has
the fastest scanning time per MHz while ensuring a min-
imum noise floor of P0 − 10γ log (d) − ∆. P0 = −50
and ∆ = 10 are chosen as default unless specified by the
user and γ = 3 is chosen as a conservative estimate.

Evaluation: Given a detection range, SpecNet
chooses a resolution bandwidth so as to minimize scan-
ning time. How well does the resolution bandwidth se-
lection scheme work in practical deployments? A resolu-
tion bandwidth chosen too low will take too long to scan
while a resolution bandwidth chosen too high will not
provide the necessary SNR to allow detection. There are
several practical considerations. First, the path loss ex-
ponent is not a fixed quantity and depends on the nature
of the environment. Line of sight and non line of sight
paths offer different path loss characteristics. Further,
significant signal attenuation often occurs due to walls in
indoor environments.

To answer this question, we tested SpecNet in a real
deployment at the Indian Institute of Science (IISC) cam-
pus as depicted in Figure 7 on two different models of
spectrum analyzer. The campus is lush with very dense

trees and this provided an excellent opportunity to eval-
uate SpecNet in various scenarios such as Line of Sight
(LOS), Non-Line of Sight (N-LOS) and Indoors. In Fig-
ure 7, two different models of spectrum analyzer are lo-
cated at O, while a wireless microphone was placed at
six different locations, two each in the LOS, NLOS and
indoor categories. In each of the six detection experi-
ments, the detection range was set to the exact distance
between the microphone and the spectrum analyzer. P0

was set to -35 dBm which was determined by measur-
ing the power of microphone at a distance of 1m. For all
our experiments we fixed ∆ = 10 dB. In other words,
given a detection range, SpecNet must choose the res-
olution bandwidth that provides the minimum scanning
time while ensuring that the SNR is a minimum of 10
dB. Table 8 provides a summary of the results.

Line of Sight: As seen from Table 8, for both the LOS
experiments and for both spectrum analyzers, SpecNet
chose a very conservative noise floor—while the target
SNR is 10 dB, the observed SNR is about 25 dB. Figure 6
depicts the decay of signal strength with distance for the
microphone in line of sight. The path loss decay expo-
nent γ was estimated to be around 2.5, however, SpecNet
conservatively chooses γ = 3.0 in estimating the target
noise floor. This results in the conservative choice of the
resolution bandwidth.
Non Line of Sight: For NLOS experiments, the reso-
lution bandwidth choice of SpecNet allows for an SNR
close to the target 10dB for both spectrum analyzers in-
dicating that γ was closer to 3 for these experiments.
Indoors: When the microphone was kept indoors, how-
ever, SpecNet finds itself underestimating the signal de-
cay. For example, in both the experiments, the chosen
resolution bandwidths allow only SNR of about 6 dB
rather than 10 dB.

While choosing a conservative resolution bandwidth
ensures detection, it results in longer scanning times.
What is the loss in scanning time due to the conserva-
tive choices of resolution bandwidth? To answer this
question, we attempted to detect the microphone at sev-

7

358 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Occupancy detection
using a single spectrum analyzer

Distance SNR Loss in Sec
in mts in dB Scanning Time

Line Of 31 24 28 0.005 0.018
Sight 71 25 28 0.016 0.046

Non-Line 124 15 23 0.123 2.23
Of Sight 131 17 24 0.123 2.24
Indoor 35 16 6 0.005 0.0

Locations 50 0.2 8 0.0 0.0

Figure 8: Performance of Resolution Bandwidth
Selection in SpecNet; the two columns for SNR
and Scanning time represent two different spec-
trum analyzers

Figure 9: Occupancy detection
using two spectrum analyzers

eral different resolution bandwidths without the use of
SpecNet’s resolution bandwidth selection. We then de-
termined the optimal resolution bandwidth for each ex-
periment that allowed an SNR of 10 dB. Table in figure 8
depicts the loss in scanning time in seconds due to the
sometimes conservative choice of SpecNet for each ex-
periment. As seen from table, the loss in scanning time
is in the range of a few milliseconds most of the time
and up to a few seconds in some cases. Thus, we con-
clude that the automatic resolution bandwidth estimation
in SpecNet works as intended.

5.2 Occupancy Detection
In many practical applications of occupancy detection,
users are interested in spectrum occupancy in a specific
geographic region. For example, “are there any ongo-
ing transmissions in the spectrum range 700 MHz to 800
MHz within a 5 km radius of my location?” SpecNet
allows users to specify a circular region specified by a
center and a radius for spectrum measurement. Behind
the scenes, SpecNet determines the set of relevant spec-
trum analyzers that can be used to accomplish this task.
Any spectrum analyzer whose maximum detection range
(determined by the lowest resolution bandwidth) over-
laps with the user-specified region of interest is deemed
relevant. When there are multiple relevant spectrum ana-
lyzers, SpecNet schedules the scanning task load among
them so as to minimize the overall scanning time.

5.2.1 Load sharing across multiple spectrum ana-
lyzers

There are two distinct dimensions along which a scan-
ning task can be shared among multiple spectrum ana-
lyzers, namely, spectrum and geography. Spectral load
sharing involves different spectrum analyzers scanning
complementary parts of the spectrum while geographical
load sharing involves different spectrum analyzers scan-
ning different spatial sections of the overall geographi-
cal area of interest. SpecNet uses a combination of both
these techniques to minimize overall scanning time.

The Scheduling Metric: If n different spectrum analyz-
ers are scheduled to share a certain task load, they scan
in parallel and accomplish their respective sub-tasks in
parallel. Suppose that the ith spectrum analyzer takes
time Ti to complete its assigned sub-task. The task is
deemed complete when all spectrum analyzers have ac-
complished their respective sub-tasks. Since all spectrum
analyzers are tasked in parallel, the time to task comple-
tion is given by T = max (T1, T2, · · · , Tn). The goal of
the SpecNet task scheduler is to minimize the task com-
pletion time. Hence, SpecNet attempts to schedule var-
ious spectrum analyzers in such a manner that the max-
imum over all sub-task completion tasks is minimized
i.e., in a min-max manner.

Spectral Load Sharing: Figure 9 depicts a circular
region of interest and two spectrum analyzers S1 and
S2 located at X1 and X2 that can potentially be used to
scan the circular region of interest. Suppose that the user
needs to scan from fmin MHz to fmax MHz. S1 and S2
could then share the task such that S1 scans from fmin

MHz to fmin+Q1 MHz, while S2 scans from fmin+Q1

MHz to fmax. Such spectral load sharing results in a re-
duction in span for the participant spectrum analyzers,
thus reducing the overall scanning time.

In the above example Q1 must be chosen in a man-
ner so that the maximum of the scanning times of S1 and
S2 are minimized. In order to detect any transmission
in the entire region of interest, S1 must have a detection
range equal to |X1O1| = d1 where O1 corresponds to the
farthest possible transmitter location within the region of
interest from S1 (as depicted in Figure 9). Similarly, the
detection range of S2 should be |X2O2| = d2 in order to
detect any transmitter in the region of interest. Let τi be
the minimum scanning time per MHz for spectrum ana-
lyzer Si required to achieve a detection range of di. Then
the overall scanning time is given by max (τ1Q1, τ2Q2),
where Q2 = fmax − fmin − Q1. The optimal choice
then corresponds to when

Q1 : Q2 =
1

τ1
:
1

τ2
(6)

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 359

Eqn 6 can be easily generalized to spectral partitioning
for several spectrum analyzers. In case of several spec-
trum analyzers, the span of spectrum allocated to each
spectrum analyzer is inversely proportional to the mini-
mum scanning time per MHz required to scan the circu-
lar region of interest.

Geographical Load Sharing: Another way to share
the load between S1 and S2 (Figure 9) is to partition
the region of interest geographically by requiring them
to scan only parts of the region of interest rather than
the entire region. In Figure 9, the region is divided into
two sections by the line |O′

1
O′

2
|. S1 and S2 are deemed

responsible to scan each of the two sections. The advan-
tage of partitioning in this manner is that individual spec-
trum analyzers can now use a smaller detection range. As
seen in Figure 9, S1 and S2 use detection ranges equal to
|X1O′

1
| = d′

1
< d1 and |X2O′

2
| = d′

2
< d2 respectively.

As described in Equation 5, reduced detection range im-
plies reduced scanning time. Thus, each of the spec-
trum analyzers takes a shorter time to scan its respective
region—thus reducing overall task completion time.

Since every spectrum analyzer scans a different geo-
graphical region, each must scan the entire spectrum of
interest fmin to fmax. If the scanning times per MHz
of n geographically task sharing spectrum analyzers are
given by τ1,τ2,· · ·,τn, then the over all task completion
time will be max (Qτ1, Qτ2, · · · , Qτn). Consequently,
in order to minimize over all task completion time, we
need τi = τ , ∀i such that τ is minimized while ensuring
that the entire area of interest is covered.

First consider the case of homogeneous spectrum an-
alyzers. Ensuring equal τi translates to ensuring equal
maximum detection ranges to all the spectrum analyzers.
This problem can be optimally solved using Voronoi par-
titioning with each spectrum analyzer being treated as a
Voronoi site. Each Voronoi cell, then, would correspond
to the geographical region assigned to the spectrum an-
alyzer. The resolution bandwidth of each spectrum an-
alyzer would correspond to the detection range required
to accommodate the farthest point in its Voronoi cell.

Now consider the case of heterogeneous spectrum an-
alyzers. Since the scanning times of different analzyers
are different, standard Voronoi partitioning is no longer
optimal. Instead, the SpecNet scheduler performs a mod-
ified version of Voronoi partitioning – equal detection
time partitioning – where proximity is measured in terms
of detection time rather than Euclidean distance.

Given the non-linear and discontinuous nature of de-
pendence of detection time on detection range (Equa-
tion 5), to the best of our knowledge there exists no
known exact solution to this partitioning problem. Con-
sequently we resort to solving the problem numerically.
The entire area of interest is sampled at several locations
generated randomly over the area of interest. Each ran-

dom location is then assigned to its nearest spectrum ana-
lyzer in terms of the scan-time required to detect a trans-
mitter at that grid point. Note that if a point is located
beyond the detection range of a spectrum analyzer, the
corresponding scanning time is set to infinity. Finally,
each spectrum analyzer is assigned a resolution band-
width by setting its detection range to the farthest ran-
dom location assigned to it. The run-time complexity of
this numerical scheme depends on the number of random
points chosen. In our implementation we generated ran-
dom locations with a density of 1 location per sq meter.
For an area of 1 Sq Km (1 × 106 random locations) we
found that geographic partitioning took under a few hun-
dred milliseconds on the SpecNet server.

5.2.2 Geographical versus Spectral Load Sharing
Which of the above two load-sharing schemes should
we use and under what circumstances? To answer this
question we describe the results of two experiments con-
ducted in the Indian Institute of Science (IISC) campus,
depicted in Figures 10a and 10b, scanning from 700-800
MHz. In each of the experiments we compared three
different scheduling methods. In Best Select, the spec-
trum analyzer that can accomplish the task in the shortest
time is selected and used to accomplish the scanning task
without any load sharing. We compared Best Select with
spectral and geographical load sharing.
Experiment I : Two identical spectrum analyzers (both
N9320B Agilent models) were placed 103 m apart at A
and B as depicted in Figure 10a. The region of interest
was specified as a circle of radius 50 m.
Experiment II : Two identical spectrum analyzers (both
N9320B Agilent models) were both placed at location
A and the region of interest was specified as a circle of
radius 50 m as shown in Figure 10b.

Experiment Best Select Spectral Geographical
in sec in sec in sec

Experiment I 1054 561 129
Experiment II 1054 561 1054

Table 2: Comparison of load sharing schemes

Results of Experiment I : As depicted in Table 2, since
the spectrum analyzers are identical, the optimal spec-
tral load sharing resulted in both the spectrum analyz-
ers taking an almost equal amount of time (in practice
a slight difference in their noise floors resulted in one
spectrum analyzer scanning a bit more spectrum than
the other). Consequently, spectral partitioning completed
about twice as fast as Best Select. Curiously, geographi-
cal load sharing completed almost five times faster than
spectral load sharing. In this particular experiment,
Voronoi partitioning resulted in two halves of the circle
indicated by regions R1 and R2 in Figure 10a. Conse-

9

360 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Experiment I (b) Experiment II (c) Experiment III

Figure 10: Comparison of scheduling schemes

quently, the detection range required for each of the spec-
trum analyzers in geographical load sharing was smaller
than that required in spectral load sharing. Eqn 5 reveals
that scanning time decreases super-linearly as detection
range, explaining the 5x gains.
Results from Experiment II : As depicted in Table 2,
since the spectrum analyzers are co-located and identi-
cal, optimal spectral load sharing assigns two halves of
the span to each spectrum analyzer. Consequently, spec-
tral load sharing performs approximately twice as well
as scheduling without load sharing. Here, however, geo-
graphical load sharing performs exactly the same as hav-
ing no load sharing and takes twice as long as spectral
partitioning! The Voronoi partition for the experiment
is indicated by the dashed line separating R1 and R2 in
Figure 10b. The maximum detection range required by
each of the two spectrum analyzers to cover their respec-
tive partitions is actually almost the same as that required
to cover the entire circular region of interest. Since both
the spectrum analyzers scan the entire spectrum, one of
the spectrum analyzers is actually redundant. This ex-
periment shows that when spectrum analyzers are very
closely located, spectral partitioning can be more advan-
tageous than geographical partitioning.

5.2.3 Geo-Spectral Load Sharing
Spectral and geographical task sharing, as described in
Section 5.2.1, each optimize along a single dimension
only, namely either frequency (spectral) or area (geo-
graphical). As seen from Experiments I and II (Sec-
tion 5.2.2), while geographical task sharing may be su-
perior to spectral in some scenarios, the opposite may be
true in others. A more general task partitioning scheme
then is geo-spectral partitioning—where optimization is
performed simultaneously along both the spectral and
geographic dimensions.

Optimal geo-spectral task sharing, where spectrum an-
alyzers are assigned a combination of frequency range

and geographical area to minimize overall task comple-
tion time while ensuring that the entire area and spec-
trum of interest are covered, falls under a class of non-
convex optimization problems for which, to the best of
our knowledge, there exists no known exact solution.
However, Experiments I and II (Section 5.2.2) reveal
two key observations that allow us to develop a heuristic
to enable geo-spectral task sharing. First, geographical
partitioning typically out-performs spectral partitioning
owing to the super-linear relationship between detection
range and scanning time. Second, when spectrum ana-
lyzers are located near each other, spectral partitioning
tends to outperform geographical partitioning.

In order to facilitate explanation of our heuristic for
geo-spectral task sharing, we introduce the notion of a
spectrally sharing cluster (SSC) of spectrum analyzers –
a set of spectrum analyzers that share their scanning tasks
spectrally over the same geographical region (possibly
over only a small part of the entire region of interest). An
SSC can be replaced by a single representative Virtual
Spectrum Analyzer (VSA). The distance of a location
from this VSA is then the maximum over the distances
all spectrum analyzers in the corresponding SSC, since
even the farthest constituent spectrum analyzer must de-
tect occupancy at this location. The occupancy detection
time for any location using the VSA is determined by op-
timally partitioning the spectrum among the constituent
spectrum analyzers in the corresponding SSC (as de-
scribed in Section 5.2.1). The union of two SSCs yields
a VSA comprising the union of all constituent spectrum
analyzers in both SSCs.

Our geo-spectral task sharing heuristic for n spectrum
analyzers is initialized by creating n SSCs, each com-
prising a single distinct spectrum analyzer and perform-
ing geographical task sharing on them. The algorithm
is a greedy iterative scheme, where at each step, pair-
wise SSC unions are considered in order to determine if
overall task completion time can be reduced. In order

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 361

Model Frequency Range RBW steps
Agilent N9320B 9 KHz- 3 GHz 11 (10 Hz - 1 MHz)
Agilent Fieldfox N9912A 5 KHz - 6 GHz 36 (10 Hz - 1 MHz)
Agilent EXA N9010A 9 KHz - 26.5 GHz 62 (1 Hz - 8 MHz)
Agilent PSA E4440A 3 Hz - 26.5 GHz 68 (1 Hz - 8 MHz)
Hewlett-Packard E4403B 9 KHz- 3 GHz 15 (10 Hz - 5 MHz)

Table 3: Spectrum analyzer models used in SpecNet

to determine overall task completion time given a set of
SSCs, each SSC is replaced by its corresponding VSA
and geographical partitioning is performed on this set of
VSAs. The SSC pair union that results in the maximum
reduction in overall task completion time is accepted for
the next iterative step. The procedure continues until no
further opportunities to unite SSCs exist that can reduce
the overall task completion time. In the worst case, the
algorithm terminates in n steps, as at each step the num-
ber of SSCs decreases by 1. As, at each step all pairs
of SSCs must be explored, the worst-case running time
of this algorithm is O(n3). Since spectral sharing typi-
cally yields benefits only when two spectrum analyzers
are “close”, in practice the running time can be reduced
to O(n2) by considering a fixed number of closest SSCs
rather than all possible SSC pairs at each step.

Figure 10c depicts an example of Geo-Spectral load
sharing. The scanning frequency range was chosen as
700 MHz to 800 MHz. Spectrum analyzers S1, S2 and
S3 are located at A, B and C respectively. S3 (Fieldfox)
is a much faster spectrum analyzer compared to S1 and
S2 (both N9320B Agilent). The circular region of in-
terest is geographically partitioned into two regions R1
and R2. S1 and S2 scan region R1 using spectral load
sharing while S3 scans the entire spectrum in geographic
region R2. To compare the performance of geo-spectral
partitioning we also tried scheduling using the purely ge-
ographic and spectral schemes. Geographic load sharing
took 1205 seconds; spectral load sharing 1118 seconds;
and geo-spectral load sharing only 526 seconds.

In summary, load sharing across multiple spectrum
analyzers is a challenging problem. SpecNet’s Geo-
Spectral load sharing algorithm is able to achieve 2-5X
speedup compared to using a single spectrum analyzer in
our experiments.

6 Implementation
The SpecNet platform is accessible at [15] via a web ser-
vice API. It consists of a master server that manages sev-
eral slave servers.

6.1 Master Server
The master server performs two major functions—
first, it exposes an API (Section 4) which the Spec-
Net clients/users utilize to write programs and second,
it manages all the slave servers connected to it.

As mentioned in Section 4, the API is exposed as
XML-RPC calls to allow access from a wide-range of

platforms. The master server implements a push-based
model and thus, TCP connections to the slave servers are
kept persistent using heartbeats. The current implemen-
tation of the master server is centralized and consists of
approximately 5000 lines of C# code. However, parti-
tioning of the slave servers along geographic boundaries
is possible, thus allowing distributed execution across
multiple master servers if scalability concerns arise.

One of the key challenges in managing slave servers
is dealing with the heterogeneity of spectrum analyz-
ers. As shown in Table 3, spectrum analyzers differ
in their supported resolution bandwidth steps and fre-
quency range of operation. Further, as discussed earlier,
scan times (Figure 5) and noise floor (Figure 2) also vary
across spectrum analyzers. SpecNet accounts for each of
the above variations through a novel, automatic remote
benchmarking process, described in detail in [8], that al-
lows the master server to quickly build up a lookup table
of scan times and noise floor values at different resolu-
tion bandwidth steps for each of its slave servers.

6.2 Slave Servers
The slave server is a small piece of software that runs
on a desktop or laptop that are directly connected to the
spectrum analyzer. The main task of the slave server is to
act as a bridge between the spectrum analyzer connected
to it and the master server. To avoid issues with NAT/-
firewalls, the slave server initiates an outbound TCP con-
nection on port 22 to the master server. It also connects
to the local spectrum analyzer through VISA. Once con-
nected, it translates commands from the master server
to the spectrum-analyzer-specific-commands, runs spec-
trum scans, and returns the results.

In order to support multiple platforms, we have im-
plemented the slave server in Python in approximately
1000 lines of code. We use the PyInstaller [13] package
to generate platform specific (Windows & Linux as of
today) executables.

7 Applications
In this section, we present three example user applica-
tions on the SpecNet platform that highlight the simplic-
ity of building a networked, geo-distributed system of
spectrum analyzers.

7.1 Remote Spectrum Measurement
In this section we demonstrate how SpecNet can be used
to make spectrum measurements anywhere in the world.
The user code fragment written in Python is shown in
Listing 1. One simply needs to connect to the SpecNet
server, identify available devices in the region of interest
and then use the GetPowerSpectrum() API to ob-
tain power values in the desired parts of the spectrum.
This data can be used, for example, to compare avail-
able free spectrum in different parts of the world or as

11

362 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Bangalore, India (b) Edinburgh, UK (c) Stony Brook, USA

Figure 11: Spectrum occupancy in various geographic regions

traces for evaluation of new white-space protocols such
as WhiteFI [3].

Listing 1: Code snippet for remote measurement.
connect to SpecNet server
apiServer = xmlrpclib.ServerProxy(

"http://bit.ly/SpecNetAPI",
allow_none=True);

Find devices from region of interest
devices = APIServer.GetDevices(

[55.944350, -3.187745, 500.0], None);
for device in devices:

power_vals = APIServer.GetPowerSpectrum(
device[ʼIDʼ], Fs, Fe, 1e3);

At the time of writing, in addition to a few spectrum
analyzers in Bangalore (India), we had one spectrum an-
alyzer in Stony Brook (USA) and one in Edinburgh (UK)
that were connected to SpecNet. Figure 11 shows the
spectrum measurements at these three sites located in
three different continents, demonstrating the world-wide
reach of the SpecNet platform. As seen from Figure 11,
spectrum measurements at each of these locations across
the world clearly identify the well-known transmitters
such as FM, TV, etc., and the available spectrum whites-
paces.

7.2 Primary Coverage
The next example application determines the spatial foot-
print of a TV transmitter located within a large city. This
may be useful for whitespace network operators in plan-
ning their deployments. Determining the footprint of a
TV transmitter invariably requires knowledge of its lo-
cation. While accurate databases of these locations are
available in countries such as the US, such a database
is not readily available in many developing countries, in-
cluding India. We tried to obtain this information by con-
tacting the Indian government agencies via postal mail
(under the Right-to-Information Act). While we received
information on about 150 TV tower locations (out of an
estimated 700 towers), we found many inaccuracies in
the data. For example, one tower’s location was mapped
well into a bay! Upon analyzing this TV tower data for

five cities (ground truth based on Wikimapia), we found
localization errors to range between 2-83 km (average
22 km, median 5 km). We now highlight how SpecNet
could be used as a low-cost solution to improve the cov-
erage and accuracy of the existing TV tower database.

Listing 2: Code snippet for primary coverage.
Get Spectrum Analyzers in region
area_of_interest = [13.02236,77.56558, 100000.0];
devices = APIServer.GetDevices(area_of_interest, None);

Get Power Spectrum Values
for device in devices:

power_vals = APIServer.GetPowerSpectrum(
device[ʼIDʼ], Fs, Fe, 1e3);

power_vals.append(average(power_vals));
observation_locations.append([device[ʼlatitudeʼ],

device[ʼlongitudeʼ]]);
Localize
if number_of_locations < 5

localization_res = APIServer.LocalizeTransmitter(
area_of_interest, observation_locations,
power_values, ʼLDPLʼ, [-35.0, 3.0]);

else
localization_res = APIServer.LocalizeTransmitter(
area_of_interest, observation_locations,
power_values, ʼLDPLʼ, None);

Interpolate
pow = APIServer.FindPowerAtLocation(new_location,
[localization_res], ʼLDPLʼ, None);

The code snippet for this application is shown in List-
ing 2. The region of interest is identified and power
spectrum values from devices in that region are ob-
tained. Then the TV transmitter is localized using the
LocalizeTransmitter() API. Finally, a path loss
model is used to build the spatial footprint of the TV
transmitter. The API FindPowerAtLocation() is
then used to determine the received power at desired new
locations.

Bangalore city has one terrestrial TV transmitter. For
the purpose of evaluation in a large-scale setting, we
needed data from multiple spectrum analyzers at differ-
ent locations in the city. Also, the accuracy of the lo-
calization API depends on the number of measurement
locations. However, at the time of evaluation we only
had access to four slave servers inside Bangalore. To get

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 363

around this problem, we modified the master server to
allow mobile slave servers to connect to it. This enabled
us to gather data from multiple locations in the city us-
ing just one mobile slave server by driving on the major
roads and highways of the city. Figure 12 depicts the lo-
cations in the city where measurements were collected.

Figure 13 shows the TV tower localization error mean,
25th and 75th percentile (y-axis) as the number of mea-
surement locations are varied (x-axis). To generate each
point in Figure 13, twenty subsets of locations were ran-
domly picked from the set of all measurement locations.
We see that even when the number of measurement loca-
tions is between 5-10, the mean localization error varies
between 2.5-3.8 km. This demonstrates that even by us-
ing measurements from a small number of spectrum an-
alyzers in each city, the gaps and inaccuracies in the gov-
ernment database can be corrected significantly.1 As the
number of measurement locations is increased to 100,
we see that the localization error goes below 0.5 km.
While it is unrealistic to assume that SpecNet would have
over 100 spectrum analyzers in each city, an alternative
is to have spectrum analzyers that are mobile as part of
SpecNet—we plan to look into this in the future.

Figure 14 shows the mean, 25th and 75th percentile er-
rors in signal strength predictions obtained by using the
interpolation API. The mean signal error varies between
6 to 8 dB, similar in magnitude to the expected signal
variations due to the environment.2 Thus, using SpecNet
to calculate coverage of a primary transmitter can pro-
vide a good estimate to an operator.

7.3 SpectrumCop
Our final application demonstrates the two key features
of SpecNet: 1) simplicity of writing a complex real-time
application through the use of high-level APIs and 2) ef-
ficiency of SpecNet in scanning a wide frequency range
when more than one spectrum analyzer is available, in
order to detect violators quickly.

The goal of this application is to quickly detect a static
narrow-band transmitter within a certain geographical re-
gion of interest and then localize the transmitter. The
transmitter can be operating anywhere within a wide fre-
quency range. This application is especially useful for,
say, government officials to monitor unauthorized trans-
mitters in a certain band.

The code snippet for this application is shown in List-
ing 3. The application uses the GetOccupancy()API
for the transmitter detection part, which basically tasks

1Note that we used basic triangulation to locate the T.V tower, it
may be possible to achieve a higher accuracy through more sophisti-
cated localization schemes proposed in literature.

2In our implementation we used a simple log distance path loss
model. The use of more sophisticated path loss models such as those
that use terrain information may provide more accurate predictions

one or more spectrum analyzers in the vicinity to per-
form scans at an appropriate resolution bandwidth and
frequency range. The result of this API call is an occu-
pancy list, which indicates frequencies that have ongoing
transmissions. A more detailed spectrum measurement
is then performed only in the region around the detected
frequency. The results of the scan are then fed to the
LocalizeTransmitter()API to determine the lo-
cation of the transmitter.

Listing 3: Code snippet for SpectrumCop.
Find occupancy in desired region
bound = [lat, lng, radius];
options = [lat, lng, radius, min_power_to_detect];
occupancy_list = APIServer.GetOccupancy(bound,
start_frequency, end_frequency, min_power_detect);

Get power spectrum for transmitter frequency
for occupancy in occupancy_list:

if (occupancy[ʼOccupiedʼ] == 1):
new_f_start = occupancy[ʼFrequencyʼ] - 250e3;
new_f_end = occupancy[ʼFrequencyʼ] + 250e3;
devices = APIServer.GetDevices(bound, None);
for device in devices:

locs.append([device[ʼLatitudeʼ],
device[ʼLongitudeʼ]]);

results[device[ʼIDʼ]] = APIServer.
GetPowerSpectrum(device[ʼIDʼ],
new_f_start, new_f_end,
options); # Actual call in new thread.

break;

Localize transmitter based on power measurements
for r in results:

powers.append(max(r));
print APIServer.LocalizeTransmitter(bounds, locs,
powers, ʼLDPLʼ, [P, 3.0]);

Evaluation: We used this application to detect and lo-
calize a microphone in a region of 75 meters radius in
IISc. The setup consisted of 3 spectrum analyzers that
were placed near 3 corners of the region of interest. The
microphone transmits in a 250 KHz narrow band and the
frequency range of the search space is set to 3 MHz. The
SpectrumCop application detected the microphone per-
fectly and localized it to within 20 meters of the actual
location. The entire process of detecting and locating the
microphone took 165 seconds.

8 Limitations
First, spectrum analyzers are expensive equipment that
researchers have procured for specific needs. It may not
be easy to convince owners to volunteer this resource to
the community, especially during the bootstrapping stage
where the benefit of the platform is not clear to the owner.
To date, we have approached a few of our acquaintances
and have observed mixed results. In the long run, per-
haps governments may be willing to sponsor a set of
spectrum analyzers dedicated for SpecNet use.

Second, spectrum analyzers are typically used inside
labs that may be in basements or deep inside buildings.
Our measurements indicate that buildings can add 5-20
dB of attenuation (20dB in the basement for FM/TV

13

364 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 12: Measurement locations

0 10 20 30 40 50 60 70 80 900

1

2

3

4

5

Training Points

Lo
ca

tio
n

Er
ro

r (
K

M
)

Mean
25th %ile
75th %ile

Figure 13: TV Tower Localization

10 20 30 40 50 606

6.5

7

7.5

8

8.5

9

Sensing Locations

Pr
ed

ic
tio

n
Er

ro
r (

dB
)

Mean
25th %ile
75th %ile

Figure 14: Interpolation results

transmissions) which restricts the detection range of the
analyzer. If the owner can be convinced to mount the an-
tenna near a window, the utility of the spectrum analyzer
can be significantly increased. To minimize variability
due to antenna placements, SpecNet can choose to only
include spectrum analyzers with unobstructed antennas.

Finally, we have not considered the privacy/security
implications of allowing remote scanning of the spec-
trum. For now, SpecNet only exposes the power values
measured from the spectrum scan. Thus, it prevents di-
rect security and privacy threats such as fine-grained traf-
fic monitoring or user tracking. Advanced spectrum ana-
lyzers can provide time domain (I/Q) samples of the scan
and support for these features in SpecNet would require
sophisticated controls for privacy and security.

9 Conclusion
After the FCC ruling in the U.S. allowing opportunistic
access to portions of licensed frequency bands, there has
been tremendous interest in both academia and indus-
try in developing novel wireless techniques and products
that take advantage of the new rules. A key requirement
for enabling this new ecosystem is a measurement infras-
tructure that can provide real data. SpecNet fulfills this
critical need by enabling geographically distributed spec-
trum analyzers to be networked, thereby allowing both
real-time remote measurements as well as collection of
historic spectrum usage data. Furthermore, SpecNet ex-
poses an API that allows users to build interesting dis-
tributed sensing applications like SpectrumCop with rel-
ative ease. There is still a lot of work left to achieve our
goal of building a planet-scale networked spectrum an-
alyzer testbed, but we believe SpecNet provides a good
base to build upon.

10 Acknowledgements
We thank our shepherd, Brad Karp, and the anony-
mous reviewers for their constructive comments. We
also thank Arsham Farshad, Mahesh Marina, and Akshay

Athalye for helping us conduct remote spectrum mea-
surements.

References
[1] http://www.emulab.net/.
[2] AMMARI, H., AND DAS, S. Promoting heterogeneity, mobility,

and energy-aware voronoi diagram in wireless sensor networks.
IEEE Transactions on Parallel and Distributed Systems 19, 7 (jul.
2008), 995 –1008.

[3] BAHL, P., CHANDRA, R., MOSCIBRODA, T., MURTY, R., AND
WELSH, M. White space networking with wi-fi like connectivity.
ACM SIGCOMM (2009).

[4] CHEN, D., YIN, S., ZHANG, Q., LIU, M., AND LI, S. Mining
spectrum usage data: a large-scale spectrum measurement study.
In ACM MobiCom (2009).

[5] CHIANG, R., ROWE, G., AND SOWERBY, K. A quantitative
analysis of spectral occupancy measurements for cognitive radio.
In Vehicular Technology Conference (2007).

[6] GANESAN, G., AND LI, Y. Cooperative spectrum sensing in
cognitive radio networks. In DySpan (2005), IEEE.

[7] ISLAM, M., KOH, C., OH, S., QING, X., LAI, Y., WANG,
C., LIANG, Y.-C., TOH, B., CHIN, F., TAN, G., AND TOH,
W. Spectrum survey in singapore: Occupancy measurements and
analyses. In CrownCom (2008).

[8] IYER, A., CHINTALAPUDI, K., NAVDA, V., RAMJEE, R., PAD-
MANABHAN, V., AND MURTHY, C. Specnet: Spectrum sensing
sans frontieres. Tech. rep., Microsoft Research, Feb 2011.

[9] MCHENRY, M. A. NSF Spectrum Occupancy Measurement
Project Summary. In Shared Spectrum Company Report (2005).

[10] MCHENRY, M. A., TENHULA, P. A., MCCLOSKEY, D.,
ROBERSON, D. A., AND HOOD, C. S. Chicago spectrum oc-
cupancy measurements & analysis and a long-term studies pro-
posal. In TAPAS (2006).

[11] MISHRA, S. M., SAHAI, A., AND BRODERSEN, R. W. Co-
operative Sensing Among Cognitive Radios. In ICC (2006),
pp. 1658–1663.

[12] http://www.planet-lab.org/.
[13] PYINSTALLER. http://www.pyinstaller.org/.
[14] SCPI. http://www.ivifoundation.org/docs/SCPI-99.PDF.
[15] SPECNET WEBSITE. http://bit.ly/SpecNet.
[16] UNNIKRISHNAN, J., AND VEERAVALLI, V. Cooperative spec-

trum sensing and detection for cognitive radio. In GLOBECOM
(2007), IEEE.

[17] VIERA, M., VIERA, L., RUIZ, L., LOUREIRO, A., FERNAN-
DES, A., AND NOGUEIRA, J. Scheduling nodes in wireless sen-
sor networks: a voronoi approach. In LCN (2003), IEEE.

[18] WERNER-ALLEN, G., SWIESKOWSKI, P., AND WELSH, M.
MoteLab: A Wireless Sensor Network Testbed. In IPSN (2005).

[19] WILLCOMM, D., MACHIRAJU, S., BOLOT, J., AND WOLISZ,
A. Primary Users In Celular Networks : A Large Scale Measure-
ment Study. In DySPAN (Oct 2008).

[20] YANG, L., HOU, W., CAO, L., ZHAO, B. Y., AND ZHENG,
H. Supporting demanding wireless applications with frequency-
agile radios. In NSDI (2010), USENIX.

14

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 365

Towards Street-Level Client-Independent IP Geolocation

Yong Wang
UESTC/Northwestern University

Daniel Burgener
Northwestern University

Marcel Flores
Northwestern University

Aleksandar Kuzmanovic
Northwestern University

Cheng Huang
Microsoft Research

Abstract
A highly accurate client-independent geolocation service
stands to be an important goal for the Internet. Despite an
extensive research effort and signicant advances in this
area, this goal has not yet beenmet. Motivated by the fact
that the best results to date are achieved by utilizing ad-
ditional �’hints�’ beyond inherently inaccurate delay-based
measurements, we propose a novel geolocation method
that fundamentally escalates the use of external informa-
tion. In particular, many entities (e.g., businesses, uni-
versities, institutions) host their Web services locally and
provide their actual geographical location on their Web-
sites. We demonstrate that the information provided in
this way, when combined with network measurements,
represents a precious geolocation resource. Our method-
ology automatically extracts, veries, utilizes, and op-
portunistically inates such Web-based information to
achieve high accuracy. Moreover, it overcomes many of
the fundamental inaccuracies encountered in the use of
absolute delay measurements. We demonstrate that our
system can geolocate IP addresses 50 times more accu-
rately than the best previous system, i.e., it achieves a
median error distance of 690 meters on the correspond-
ing data set.

1 Introduction

Determining the geographic location of an Internet host
is valuable for a number of Internet applications. For ex-
ample, it simplies network management in large-scale
systems, helps network diagnoses, and enables location-
based advertising services [17,24]. While coarse-grained
geolocation, e.g., at the state- or city-level, is sufcient in
a number of contexts [19], the need for a highly accurate
and reliable geolocation service has been identied as an
important goal for the Internet (e.g., [17]). Such a sys-
tem would not only improve the performance of existing
applications, but would enable the development of novel
ones.

While client-assisted systems capable of providing
highly accurate IP geolocation inferences do exist [3, 5,
9], many applications such as location-based access re-
strictions, context-aware security, and online advertising,
can not rely on clients�’ support for geolocation. Hence,
a highly accurate client-independent geolocation system
stands to be an important goal for the Internet.
An example of an application that already extensively

uses geolocation services, and would signicantly ben-
et from a more accurate system, is online advertising.
For example, knowing that a Web user is from New York
is certainly useful, yet knowing the exact part of Man-
hattan where the user resides enables far more effective
advertising, e.g., of neighboring businesses. On the other
side of the application spectrum, example services that
would benet from a highly accurate and dependable ge-
olocation system, are the enforcement of location-based
access restrictions and context-aware security [2]. Also
of rising importance is cloud computing. In particular,
in order to concurrently use public and private cloud im-
plementations to increase scalability, availability, or en-
ergy efciency (e.g., [22]), a highly accurate geolocation
system can help select a properly dispersed set of client-
hosted nodes within a cloud.
Despite a decade of effort invested by the network-

ing research community in this area, e.g., [12, 15�–19],
and despite signicant improvements achieved in recent
years (e.g., [17, 24]), the desired goal, a geolocation
service that would actually enable the above applica-
tions, has not yet been met. On one hand, commercial
databases currently provide rough and incomplete loca-
tion information [17, 21]. On the other hand, the best
result reported by the research community (to the best
of our knowledge) was made by the Octant system [24].
This system was able to achieve a median estimation er-
ror of 22 miles (35 kilometers). While this is an ad-
mirable result, as we elaborate below, it is still insuf-
cient for the above applications.
The key contribution of our paper lies in designing a

novel client-independent geolocation methodology and

1

366 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in deploying a system capable of achieving highly accu-
rate results. In particular, we demonstrate that our system
can geolocate IP addresses with a median error distance
of 690 meters in an academic environment. Comparing
to recent results on the same dataset shows that we im-
prove the median accuracy by 50 times relative to [24]
and by approximately 100 times relative to [17]. Im-
provements at the tail of the distribution are even more
signicant.
Our methodology is based on the following two in-

sights. First, many entities host their Web services lo-
cally. Moreover, such Websites often provide the actual
geographical location of the entity (e.g., business and
university) in the form of a postal address. We demon-
strate that the information provided in this way repre-
sents a precious resource, i.e., it provides access to a
large number of highly accurate landmarks that we can
exploit to achieve equally accurate geolocation results.
We thus develop a methodology that effectively mines,
veries, and utilizes such information from the Web.
Second, while we utilize absolute network delay mea-

surements to estimate the coarse-grained area where an
IP is located, we argue that absolute network delay mea-
surements are fundamentally limited in their ability to
achieve ne-grained geolocation results. This is true in
general even when additional information, e.g., network
topology [17] or negative constraints such as uninhabit-
able areas [24], is used. One of our key ndings, how-
ever, is that relative network delays still heavily correlate
with geographical distances. We thus fully abandon the
use of absolute network delays in the nal step of our ap-
proach, and show that a simple method that utilizes only
relative network distances achieves the desired accuracy.
Combining these two insights into a single methodol-

ogy, we design a three-tier system which begins at the
large, coarse-grained scale, rst tier where we utilize a
distance constraint-based method to geolocate a target IP
into an area. At the second tier, we effectively utilize a
large number of Web-based landmarks to geolocate the
target IP into a much smaller area. At the third tier, we
opportunistically inate the number of Web landmarks
and demonstrate that a simple, yet powerful, closest node
selection method brings remarkably accurate results.
We extensively evaluate our approach on three dis-

tinct datasets �– Planetlab, residential, and an online maps
dataset �– which enables us to understand how our ap-
proach performs on an academic network, a residential
network, and in the wild. We demonstrate that our algo-
rithm functions well in all three environments, and that it
is able to locate IP addresses in the real world with high
accuracy. The median error distances for the three sets
are 0.69 km, 2.25 km, and 2.11 km, respectively.
We demonstrate that factors that inuence our sys-

tem�’s accuracy are: (i) Landmark density, i.e., the more
landmarks there are in the vicinity of the target, the bet-
ter accuracy we achieve. (ii) Population density, i.e., the

more people live in the vicinity of the target, the higher
probability we obtain more landmarks, the better accu-
racy we achieve. (iii) Access technology, i.e., our sys-
tem has slightly reduced accuracy (by approximately 700
meters) for cable users relative to DSL users. While our
methodology effectively resolves the last mile delay in-
ation problem, it is necessarily less resilient to the high
last-mile latency variance, common for cable networks.
Given that our approach utilizes Web-based landmark

discovery and network measurements on the y, one
might expect that the measurement overhead (crawling in
particular) hinders its ability to operate in real time. We
show that this is not the case. In a fully operational net-
work measurement scenario, all the measurements could
be done within 1-2 seconds. Indeed, Web-based land-
marks are stable, reliable, and long lasting resources.
Once discovered and recorded, they can be reused for
many measurements and re-veried over longer time
scales.

2 A Three-Tier Methodology

Our overall methodology consists of two major compo-
nents. The rst part is a three-tier active measurement
methodology. The second part is a methodology for
extracting and verifying accurate Web-based landmarks.
The geolocation accuracy of the rst part fundamentally
depends on the second. For clarity of presentation, in this
section we present the three-tier methodology by simply
assuming the existence of Web-based landmarks. In the
next section, we provide details about the extraction and
verication of such landmarks.
We deploy the three-tier methodology using a dis-

tributed infrastructure. Motivated by the observation that
the sparse placement of probing vantage points can avoid
gathering redundant data [26], we collect 163 publicly
available ping and 136 traceroute servers geographically
dispersed at major cities and universities in the US.

2.1 Tier 1
Our nal goal is to achieve a high level of geolocation
precision. We achieve this goal gradually, in three steps,
by incrementally increasing the precision in each step.
The goal of the rst step is to determine a coarse-grained
region where the targeted IP is located. In an attempt
not to �’reinvent the wheel,�’ we use a variant of a well es-
tablished constrained-based geolocation (CBG) method
[15], with minor modications.
To geolocate the region of an IP address, we rst send

probes to the target from the ping servers, and convert
the delay between each ping server and the target into a
geographical distance. Prior work has shown that pack-
ets travel in ber optic cables at 2/3 the speed of light
in a vacuum (denoted by c) [20]. However, others have

2

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 367

Figure 1: An example of intersection created by distance
constraints

demonstrated that 2/3 c is a loose upper bound in practice
due to transmission delay, queuing delay etc. [15, 17].
Based on this observation, we adopt 4/9 c from [17] as
the converting factor between measured delay and geo-
graphical distance. We also demonstrate in Section 4,
by using this converting factor, we are always capable of
yielding a viable area covering the targeted IP.
Once we establish the distance from each vantage

point, i.e., ping server, to the target, we use multilater-
ation to build an intersection that covers the target using
known locations of these servers. In particular, for each
vantage point, we draw a ring centered at the vantage
point, with a radius of the measured distance between
the vantage point and the target. As we show in Section
4, this approach indeed allows us to always nd a region
that covers the targeted IP.
Figure 1 illustrates an example. It geolocates a col-

lected target (we will elaborate the way of collecting the
targets in the wild in Section 4.1.2) whose IP address
is 38.100.25.196 and whose postal address is �’1850, K
Street NW, Washington DC, DC, 20006�’. We draw rings
centered at the locations of our vantage points. The ra-
dius of each ring is determined by the measured distance
between the vantage point (the center of this ring) and the
target. Finally, we geolocate this IP in an area indicated
by the shaded region, which covers the target, as shown
in Figure 1.
Thus, by applying the CBG approach, we manage to

geolocate a region where the targeted IP resides. Ac-
cording to [17, 24], CBG achieves a median error be-
tween 143 km and 228km distance to the target. Since
we strive for a much higher accuracy, this is only the
starting point for our approach. To that end, we depart
from pure delay measurements and turn to the use of ex-
ternal information available on the Web. Our next goal is
to further determine a subset of ZIP Codes, i.e., smaller
regions that belong to the bigger region found via the

Figure 2: An example of measuring the delay between
landmark and target

CBG approach. Once we nd the set of ZIP Codes, we
will search for additional websites served within them.
Our goal is to extract and verify the location information
about these locally-hosted Web services. In this way, we
obtain a number of accurate Web-based landmarks that
we will use in Tiers 2 and 3 to achieve high geolocation
accuracy.
To nd a subset of ZIP Codes that belong to the given

region, we proceed as follows. We rst determine the
center of the intersection area. Then, we draw a ring
centered in the intersection center with a diameter of 5
km. Next, we sample 10 latitude and longitude pairs at
the perimeter of this ring, by rotating by 36 degrees be-
tween each point. For the 10 initial points, we verify that
they belong to the intersection area as follows. Denote
by U the set of latitude and longitude pairs to be veried.
Next, denote by V the set of all vantage points, i.e., ping
servers, with known location. Each vantage point vi is
associated with the measured distance between itself and
the target, denoted by ri. We wish to nd all u ∈ U that
satisfy

distance(u, vi) ≤ ri for all vi ∈ V

The distance function here is the great-circle distance
[23], which takes into account the earth�’s sphericity and
is the shortest distance between any two points on the
surface of the earth measured along a path on the surface
of the earth. We repeat this procedure by further obtain-
ing 10 additional points by increasing the distance from
the intersection center by 5 km in each round (i.e., to 10
km in the second round, 15 km in the third etc.). The
procedure stops when not a single point in a round be-
longs to the intersection. In this way, we obtain a sample
of points from the intersection, which we convert to ZIP
Codes using a publicly available service [4]. Thus, with
the set of ZIP Codes belonging to the intersection, we
proceed to Tier 2.

3

368 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 Tier 2
Here, we attempt to further reduce the possible region
where the targeted IP is located. To that end, we aim to
nd Web-based landmarks that can help us achieve this
goal. We explain the methodology for obtaining such
landmarks in Section 3. Although these landmarks are
passive, i.e., we cannot actively send probes to other In-
ternet hosts using them, we use the traceroute program to
indirectly estimate the delay between landmarks and the
target.
Learning from [11] that the more traceroute servers

we use, the more direct a path between a landmark and
the target we can nd, we rst send traceroute probes to
the landmark (the empty circle in Figure 2) and the tar-
get (the triangle in Figure 2) from all traceroute servers
(the solid squares V1 and V2 in Figure 2). For each van-
tage point, we then nd the closest common router to
the target and the landmark, shown as R1 and R2 in
Figure 2, on the routes towards both the landmark and
the target. Next, we calculate the latency between the
common router and the landmark (D1 and D3 in Fig-
ure 2) and the latency between the common router and
the target (D2 and D4 in Figure 2). We nally select
the sum (D) of two latencies as the delay between land-
mark and target. In the example above, from V1�’s point
of view, the delayD between the target and the landmark
is D = D1 +D2, while from V2�’s perspective, the delay
D is D = D3 +D4.
Since different traceroute servers have different routes

to the destination, the common routers are not necessar-
ily the same for all traceroute servers. Thus, each van-
tage point (a traceroute server) can estimate a different
delay between a Web-based landmark and the target. In
this situation, we choose the minimum delay from all
traceroute servers�’ measurements as the nal estimation
of the latency between the landmark and the target. In
Figure 2, since the path between landmark and target
from V1�’s perspective is more direct than that from V2�’s
(D1 +D2 < D3 +D4), we will consider the sum ofD1

andD2 (D1 +D2) as the nal estimation.
Routers in the Internet may postpone responses. Con-

sequently, if the delay on the common router is inated,
we may underestimate the delay between landmark and
target. To examine the �’quality�’ of the common router we
use, we rst traceroute different landmarks we collected
previously and record the paths between any two land-
marks, which also branch at that router. We then calcu-
late the great circle distance [23] between two landmarks
and compare it with their measured distance. If we ob-
serve that the measured distance is smaller than the cal-
culated great circle distance for any pair of landmarks,
we label this router as �’inating�’, record this informa-
tion, and do not consider its path (and the corresponding
delay) for this or any other measurement.
Through this process, we can guarantee that the esti-

Figure 3: An example of shrinking the intersection

mated delay between a landmark and the target is not un-
derestimated. Nonetheless, such estimated delay, while
converging towards the real latency between the two en-
tities, is still usually larger. Hence, it can be considered
as the upper bound of the actual latency. Using multilat-
eration with the upper bound of the distance constraints,
we further reduce the feasible region using the new tier 2
and the old tier 1 constraints.
Figure 3 shows the zoomed-in subset of the con-

strained region together with old tier 1 constraints,
marked by thick lines, and new tier 2 constraints, marked
by thin lines. The gure shows a subset of sampled land-
marks, marked by the solid dots, and the IP that we aim
to geolocate, marked by a triangle. The tier 1 constrained
area contains 257 distinctive ZIP Codes, in which we are
able to locate and verify 930 Web-based landmarks. In
the gure, we show only a subset of 161 landmarks for
a clearer presentation. Some sampled landmarks lie out-
side the original tier 1 level intersection. This happens
because the sampled ZIP Codes that we discover at the
borders of the original intersection area typically spread
outside the intersection as well. Finally, the gure shows
that the tier 2 constrained area is approximately one order
of magnitude smaller than the original tier 1 area.

2.3 Tier 3
In this nal step, our goal is to complete our geoloca-
tion of the targeted IP address. We start from the region
constrained in Tier 2, and aim to nd all ZIP Codes in
this region. To this end, we repeat the sampling proce-
dure deployed in the Tier 2. This time from the center of
the Tier 2 constrained intersection area, and at a higher
granularity. In particular, we extend the radius distance
by 1 km in each step, and apply a rotation angle of 10
degrees. Thus, we achieve 36 points in each round. We
apply the same stopping criteria, i.e., when no points in
a round belong to the intersection. This ner-grain sam-

4

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 369

Figure 4: An example of associating a landmark with the
target as the result

pling process enables us to discover all ZIP Codes in the
intersection area. For ZIP Codes that were not found in
the previous step, we repeat the landmark discovery pro-
cess (Section 3). Moreover, to obtain the distance es-
timations between newly discovered landmarks and the
target, we apply the active probing traceroute process ex-
plained above.
Finally, knowing the locations of all Web-based land-

marks and their estimated distances to the target, we se-
lect the landmark with the minimum distance to the tar-
get, and associate the target�’s location with it. While this
approach may appear ad hoc, it signies one of the key
contributions of our paper. We nd that on the smaller-
scale, relative distances are preserved by delay measure-
ments, overcoming many of fundamental inaccuracies
encountered in the use of absolute measurements. For
example, a delay of several milliseconds, commonly seen
at the last mile, could place an estimate of a scheme that
relies on absolute delay measurements hundreds of kilo-
meters away from the target. On the contrary, select-
ing the closest node in an area densely populated with
landmarks achieves remarkably accurate estimates, as we
show below in our example case, and demonstrate sys-
tematically in Section 4 via large-scale analysis.
Figure 4 shows the striking accuracy of this approach.

We manage to associate the targeted IP location with a
landmark which is �’across the street�’, i.e., only 0.103 km
distant from the target. We analyze this result in more
detail below. Here, we provide the general statistics for
the Tier 3 geolocation process. In this last step, we dis-
cover 26 additional ZIP Codes and 203 additional land-
marks in the smaller Tier 2 intersection area. We then
associate the landmark, which is at �’1776K Street North-
west, Washington, DC�’ and has a measured distance of
10.6 km, yet a real geographical distance of 0.103 km,
with the target. To clearly show the association, Figure 4
zooms into a very ner-grain street level in which the

 200

 400

 600

 800

 1000

 0.1 0.2 0.3 0.4 0.5 0.6

M
ea

su
re

d
di

st
an

ce
 [k

m
]

Geographical distance [km]

Figure 5: Measured distance vs. geographical distance.

constrained rings and relatively more distant landmarks
are not shown.

2.3.1 The Power of Relative Network Distance

Here, we explore how the relative network distance ap-
proach achieves such good results. Figure 5 sheds more
light on this phenomenon. We examine the 13 landmarks
within 0.6 km of the target shown in Figure 4. For each
landmark, we plot the distance between the target and the
Web-based landmarks (y-axis) (measured via the tracer-
oute approach) as a function of the actual geographical
distance between the landmarks and the target (x-axis).
The rst insight from the gure is that there is indeed
a signicant difference between measured distance, i.e.,
their upper bounds, and the real distances. This is not
a surprise. A path between a landmark, over the com-
mon router, to the destination (Figure 2) can often be cir-
cuitous and inated by queuing and processing delays,
as demonstrated in [17]. Hence, the estimated distance
dramatically exceeds the real distance, by approximately
three orders of magnitude in this case.

However, Figure 5 shows that the distance estimated
via network measurements (y-axis) is largely in propor-
tion with the actual geographical distance. Thus, de-
spite the fact that the direct relationship between the
real geographic distance and estimated distance is in-
evitably lost in inated network delay measurements,
the relative distance is largely preserved. This is be-
cause the network paths that are used to estimate the
distance between landmarks and the target share vastly
common links, hence experience similar transmission-
and queuing-delay properties. Thus, selecting a land-
mark with the smallest delay is an effective approach,
as we also demonstrate later in the text.

5

370 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Extracting and Verifying Web-Based
Landmarks

Many entities, e.g., companies, academic institutions,
and government ofces, host their Web services locally.
One implication of this setup is that the actual geographic
addresses, (in the form of a street address, city, and ZIP
Code), which are typically available at companies�’ and
universities�’ home Web pages, correspond to the actual
physical locations where these services are located. Ac-
cordingly, the geographical location of the correspond-
ing web-servers�’ IP addresses becomes available, and
the servers themselves become viable geolocation land-
marks. Indeed, we have demonstrated above that such
Web-based landmarks constitute an important geoloca-
tion resource. In this section, we provide a compre-
hensive methodology to automatically extract and verify
such landmarks.

3.1 Extracting Landmarks

To automatically extract landmarks, we mine numerous
publicly available mapping services. In this way, we are
able to associate an entity�’s postal address with its do-
main name using such mapping services. Note that the
use of online mapping services is a convenience, not a
requirement for our approach. Indeed, the key resource
that our approach relies upon is the existence of geo-
graphical addresses at locally hosted websites, which can
be accessed directly at locally hosted websites.
In order to discover landmarks in a given ZIP Code,

which is an important primitive of our methodology ex-
plained in Section 2 above, we proceed as follows. We
rst query the mapping service by a request that consists
of the desired ZIP Code and a keyword, i.e., �’business�’,
�’university�’, and �’government ofce�’. The service replies
with a list of companies, academic institutions, or gov-
ernment ofces within, or close to, this ZIP Code. Each
landmark in the list includes the geographical location of
this entity at the street-level precision and its web site�’s
domain name.
As an example, a jewelry company at �’55 West 47th

Street, Manhattan, New York, NY, 10036�’, with the do-
main name www.zaktools.com, is a landmark for the ZIP
Code 10036. For each entity, we also convert its domain
name into an IP address to form a (domain name, IP ad-
dress, and postal address) mapping. For the example
above, the mapping in this case is (www.zaktools.com,
69.33.128.114, �’55 West 47th Street, Manhattan, New
York, NY, 10036�’). A domain name can be mapped into
several IP addresses. Initially, we map each of the IP
addresses to the same domain name and postal address.
Then, we verify all the extracted IP addresses using the
methodology we present below.

3.2 Verifying Landmarks
A geographic address extracted from a Web page using
the above approach may not correspond to the associated
server�’s physical address for several reasons. Below, we
explain such scenarios and propose verication methods
to automatically detect and remove such landmarks.

3.2.1 Address Verication

The businesses and universities provided by online map-
ping services may be the landmarks near the areas cov-
ered by the ZIP Code, not necessarily within the ZIP
Code. Thus, we rst examine the ZIP Code in the postal
address of each landmark. If a landmark has a ZIP Code
different from the one we searched for, we remove it
from the list of candidate landmarks. For example, for
the ZIP Code 10036, a nancial services company called
Credit Suisse (www.credit-suisse.com) at �’11 Madison
Ave, New York, NY, 10010�’ is returned by online map-
ping services as an entity near the specied ZIP Code
10036. Using our verication procedure, we remove
such a landmark from the list of landmarks associated
with the 10036 ZIP Code.

3.2.2 Shared Hosting and CDN Verication

Additionally, a company may not always host its website
locally. It may utilize either a CDN network to distribute
its content or use shared hosting techniques to store its
archives. In such situations, there is no one-to-one map-
ping between an IP address and a postal address in both
CDN network and shared hosting cases. In particular,
a CDN server may serve multiple companies�’ websites
with distinct postal addresses. Likewise, in the shared
hosting case a single IP address can be used by hundreds
or thousands of domain names with diverse postal ad-
dresses. Therefore, for a landmark with such character-
istics, we should certainly not associate its geographical
location with its domain name, and in turn its IP address.
On the contrary, if an IP address is solely used by a sin-
gle entity, the postal address is much more trustworthy.
While not necessarily comprehensive, we demonstrate
that this method is quite effective, yet additional veri-
cations are needed, as we explain in Section 3.2.3 below.
In order to eliminate a bad landmark, we access its

website using (i) its domain name and (ii) its IP address
independently. If the contents, or heads (distinguished
by <head> and </head>), or titles (distinguished by
<title> and </title>) returned by the two methods are
the same, we conrm that this IP address belongs to a
single entity. One complication is that if the rst request
does not hit the �’final�’ content, but a redirection, we will
extract the �’real�’ URL and send an additional request to
fetch the �’final�’ content.
Take the landmark (www.manhattanmailboxes.com)

at �’676A 9 Avenue, New York, NY, 10036�’ as an ex-

6

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 371

ample. We end up with a web page showing �’access
error�’ when we access this website via its IP address,
216.39.57.104. Indeed, searching an online shared host-
ing check [8], we discover that there are more than 2,000
websites behind this IP address.

3.2.3 The Multi-Branch Verication

One nal scenario occurs often in the real world: A com-
pany headquartered in a place where its server is also
deployed may open a number of branches nationwide.
Likewise, a medium size organization can also have its
branch ofces deployed locally in its vicinity. Each such
branch ofce typically has a different location in a dif-
ferent ZIP Code. Still, all such entities have the same
domain name and associated IP addresses as their head-
quarters.
As we explained in Section 2, we retrieve landmarks in

a region covering a number of ZIP Codes. If we observe
that some landmarks, with the same domain name, have
different locations in different ZIP Codes, we remove
them all. For example, the Allstate Insurance Company,
with the domain name �’www.allstate.com�’ has many af-
liated branch ofces nationwide. As a result, it shows
up multiple times for different ZIP Codes in an intersec-
tion. Using the described method, we manage to elimi-
nate all such occurrences.

3.3 Resilience to Errors
Applying the above methods, we can remove the vast
majority of erroneous Web landmarks. However, excep-
tions certainly exist. One example is an entity (e.g., a
company) without any branch ofces that hosts a web-
site used exclusively by that company, but does not lo-
cate its Web server at the physical address available on
the Website. In this case, binding the IP address with
the given geographical location is incorrect, hence such
landmarks may generate errors. Here, we evaluate the
impact that such errors can have on our method�’s accu-
racy. Counterintuitively, we show that the larger the error
distance is between the claimed location (the street-level
address on a website) and the real landmark location, the
more resilient our method becomes to such errors. In all
cases, we demonstrate that our method poses signicant
resilience to false landmark location information.
Figure 6 illustrates four possible cases for the rela-

tionship between a landmark�’s real and claimed location.
The gure denotes the landmark�’s real location by an
empty circle, the landmark�’s claimed location by a solid
circle, and the target by a triangle. Furthermore, denote
R1 as the claimed distance, i.e., the distance between the
claimed location and the target. Finally, denote R2 as
the measured distance between the landmark�’s actual lo-
cation and the target.

Figure 6: The effects of improper landmark

Figure 6(a) shows the baseline error-free scenario. In
this case, the claimed and the real locations are identi-
cal. Hence, R1 = R2. Thus, we can draw a ring that is
centered at the solid circle and is always able to contain
the target, since the upper bound is used to measure the
distance in Section 2.2.
Figure 6(b) shows the case when the claimed land-

mark�’s location is different from the real location. Still,
the real landmark is farther away from the target than the
claimed location is. Hence, R2 > R1. Thus, we will
draw a bigger ring with the radius of R2, shown as the
dashed curve, than the normal case with the radius of
R1. Thus, such an overestimate yields a larger coverage
that always includes the target. Hence, our algorithm is
unharmed, since the target remains in the feasible region.
Figures 6 (c) and (d) show the scenario when the

real landmark�’s location is closer to the target than the
claimed location is, i.e., R2 < R1. There are two sub
scenarios here. In the underestimate case (shown in Fig-
ure 6(c)), the real landmark location is slightly closer to
the target and the measured delay is only a little smaller
than it should be. However, since the upper bound is
used to measure the delay and convert it into distance,
such underestimates can be counteracted. Therefore, we
can still draw a ring with a radius of R2, indicated by
the dashed curve, covering the target. In this case, the
underestimate does not hurt the geolocation process.
Finally, in the excessive underestimate case (shown

in Figure 6), the landmark is actually quite close to the
target and the measured delay is much smaller than ex-
pected. Consequently, we end with a dashed curve with
the radius of R2 that does not include the target, even
when the upper bounds are considered. In this case, the

7

372 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

excessive underestimate leads us to an incorrect intersec-
tion or an improper association between the landmark
and the target (R2 < R1). We provide a proof to demon-
strate that the excessive underestimate case is not likely
to happen in a technical report [10], yet we omit the proof
here due to space constraints.

4 Evaluation

4.1 Datasets
We use three different datasets, Planetlab, residential,
and online maps, as we explain below. Comparing with
the large online maps dataset, the number of targets in
the Planetlab and the residential datasets are relatively
small. However, these two datasets help us gain valuable
insights about the performance of our method in different
environments, since the online maps dataset can contain
both types of targets.

4.1.1 Planetlab dataset

One method commonly used to evaluate the accuracy of
IP geolocation systems is to geolocate Planetlab nodes,
e.g., [17, 24]. Since the locations of these nodes are
known publicly (universities must report the locations of
their nodes), it is straightforward to compare the location
given by our system with the location provided by the
Planetlab database. We select 88 nodes from Planetlab,
limiting ourselves to at most one node per location. Oth-
ers (e.g., [17]) have observed errors in the given Planet-
lab locations. Thus, we manually verify all of the nodes
locations.

4.1.2 Residential dataset

Since the set of Planetlab nodes are all located on aca-
demic networks, we needed to validate our approach on
residential networks as well. Indeed, many primary ap-
plications of IP geolocation target users on residential
networks. In order to do this, we created a website,
which we made available to our social networks, widely
dispersed all over the US. The site automatically records
users�’ IP addresses and enables them to enter their postal
address and the access provider. In particular, we enable
six selections for the provider: AT&T, Comcast, Veri-
zon, other ISPs, University, and Unknown. Moreover,
we explicitly request that users not enter their postal ad-
dress if they are accessing this website via proxy, VPN,
or if they are unsure about their connection. We then dis-
tribute the link to many people via our social networks,
and obtained 231 IP address and location pairs.
Next, we eliminate duplicate IPs, �’dead�’ IPs that are

not accessible over the course of the experiment, which
is one-month after the data was collected. We also elim-
inate a large number of IPs with access method �’univer-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

Population Density [people/square mile]

PlanetLab
Residential

Online Maps

Figure 7: The distribution of the population density of
three datasets

sity�’ or �’unknown�’, since we intend to extract residen-
tial IPs and compare with those of academic IPs in Sec-
tion 4.2. After elimination, we are left with 72 IPs.

4.1.3 Online Maps dataset

We obtained a large-scale query trace from a popular on-
line maps service. This dataset contains three-months of
users�’ search logs for driving directions.1 Each record
consists of the user access IP address, local access time
at user side, user browser agent, and the driving sequence
represented by two pairs of latitude and longitude points.
Our hypothesis here is that if we observe a location, as
either source or destination in the driving sequence, pe-
riodically associated with an IP address, then this IP ad-
dress is likely at that location. To extract such association
from the dataset, we employ a series of strict heuristics
as follows.
We rst exclude IP addresses associated with multi-

ple browser agents. This is because it is unclear whether
this IP address is used by only one user with multiple
browsers or by different users. We then select IP ad-
dresses for which a single location appears at least four
times in each of the three months, since such IP addresses
with �’stable�’ search records are more likely to provide ac-
curate geolocation information than the ones with only a
few search records. We further remove IP addresses that
are associated with two or more locations that appear at
least four times. Finally we remove all �’dead�’ IPs from
the remaining dataset.

4.1.4 Dataset characteristics

Here, our goal is to explore the characteristics of the lo-
cations where the IP addresses of the three datasets are.

1We respect a request of this online map service company and do
not disclose the number of requests and collected IPs here and in the
rest of the paper.

8

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 373

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

Error distance [km]

PlanetLab
Residential

Online Maps

Figure 8: Comparison of error distances of three datasets

In particular, population density is an important param-
eter that indicates the rural vs. urban nature of the area
in which an IP address resides. We will demonstrate be-
low that this parameter inuences the performance of our
method, since urban areas typically have a large number
of web-based landmarks.
Figure 7 shows the distribution of the population den-

sity of the ZIP Code at which the IP addresses of the
three datasets locate. We obtain the population density
for each ZIP Code by querying the website City Data [1].
Figure 7 shows that our three datasets cover both rural
areas, where the population density is small, and urban
areas, where the population density is large. In particu-
lar, all three datasets have more than 20% of IPs in ZIP
Codes whose population density is less than 1,000. The
gure also shows that PlanetLab dataset is the most �’ur-
ban�’ one, while the Online Maps datasets has the longest
presence in rural areas. In particular, about 18% of IPs
in the Online Maps dataset reside in ZIP Codes whose
population density is less than 100.

4.2 Experimental results
4.2.1 Baseline results

Figure 8 shows the results for the three datasets. In par-
ticular, it depicts the cumulative probability of the error
distance, i.e., the distance between a target�’s real location
and the one geolocated by our system. Thus, the closer
the curve is to the upper left corner, the smaller the error
distance, and the better the results. The median error for
the three datasets, a measure typically used to represent
the accuracy of geolocation systems [15,17,24], are 0.69
km for Planetlab, 2.25 km for the residential dataset, and
2.11 km for the online maps dataset. Beyond excellent
median results, the gure shows that the tail of the dis-
tribution is not particularly long. Indeed, the maximum
error distances are 5.24 km, 8.1 km, and 13.2 km for

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

La
nd

m
ar

k
de

ns
ity

The radius of the distance from the target [km]

PlanetLab
Residential

Online Maps

Figure 9: Landmark density of three datasets

Planetlab, residential, and online maps datasets, respec-
tively. The gure shows that the performances of the res-
idential and online maps datasets are very similar. This
is not a surprise because the online maps dataset is dom-
inated by residential IPs. On the other hand, our system
achieves clearly better results in the Planetlab scenario.
We analyze this phenomenon below.

4.2.2 Landmark density

Here, we explore the number of landmarks in the prox-
imity of targeted IPs. The larger the number of land-
marks we can discover in the vicinity of a target, the
larger the probability we will be able to more accurately
geolocate the targeted IP. We proceed as follows. First,
we count the number of landmarks in circles of radius r,
which we increase from 0 to 6 km, shown in Figure 9.
Then, we normalize the number of landmarks for each
radius relative to the total number of landmarks seen by
all three datasets that t into the 6 km radius. Because
of such normalization, the normalized number of targets
for x = 6km sum up to 1. Likewise, due to normaliza-
tion, the value on y-axis could be considered the land-
mark density.
Figure 9 shows the landmark density for the three

datasets as a function of the radius. The gure shows
that the landmark density is largest in the Planetlab case.
This is expected because one can nd a number of Web-
based landmarks on a University campus. This certainly
increases the probability of accurately geolocating IPs in
such an environment, as we demonstrated above. The
gure shows that residential targets experience a lower
landmark density relative to the Planetlab dataset. At the
same time, the online maps dataset shows an even lower
landmark density. As shown in Figure 7, our residen-
tial dataset is more biased towards urban areas. On the
contrary, the online maps provide a more comprehensive
and unbiased breakdown of locations. Some of them are

9

374 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.1

 1

 10

 100

1 6000 12000 18000

of

 �’c
le

an
�’ la

nd
m

ar
ks

ZIP Code

within ZIP Code
<= 2km
<= 6km

<= 15km
<=30km

Figure 10: Number of clean landmarks for each ZIP
Code

rural areas, where the density of landmarks is naturally
lower. In summary, the landmark density is certainly a
factor that clearly impacts our system�’s geolocation ac-
curacy. Still, additional factors such as access network
level properties do play a role, as we show below.

4.2.3 Global landmark density

To understand the global landmark density (more pre-
cisely, US-wide landmark density), we evenly sample
18,000 ZIP Codes over all states in US. Figure 10 shows
that there are 79.4% ZIP Codes which contain at least
one landmark within the ZIP Code. We manually check
the remaining ZIP Codes and realize that they are typ-
ically the rural areas, where local entities, e.g., busi-
nesses, are rare naturally. Nonetheless, for 83.78% of
ZIP Codes, we are capable of nding out at least one
landmark in its vicinity of 6 km; for 88.51% of ZIP
Codes, we are always able to discover at least one land-
mark in its vicinity of 15 km; nally, for 93.44% of ZIP
Codes, we nd at least one landmark in its vicinity of 30
km.
We make the following comments. First, Figure 10

can be used to predict US-wide performance of our
method from the area perspective. For example, it shows
that for 6.6% of the territory, the error can only be larger
than 30 km. Note, however, that such areas are extremely
sparsely populated. For example, the average population
density in the 6.6% of ZIP Codes that have no landmark
within 30 km is less than 100. Extrapolating conserva-
tively to the entire country, it can be computed that such
areas account for about 0.92% of the entire population.

4.2.4 The role of population density

Here, we return to our datasets and evaluate our system�’
s performance, i.e., error distance, as a function of pop-
ulation density. For the sake of clarity, we merge the

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Po
pu

la
tio

n
De

ns
ity

 [p
eo

pl
e/

sq
ua

re
 m

ile
]

Error Distance [km]

Figure 11: Error distance vs. population density

results of the three datasets. Figure 11 plots the best t
curve that captures the trends. It shows that the error dis-
tance is smallest in densely populated areas, while the
error grows as the population density decreases. This re-
sult is in line with our analysis in Section 4.2.3. Indeed,
the larger the population density is, the higher probabil-
ity we can discover more landmarks. Likewise, as shown
in Section 4.2.2, the more landmarks we can discover in
the vicinity of targeted IP address, the higher probability
we canmore accurately geolocate the targeted IP. Finally,
the results show that our system is still capable of geolo-
cating IP addresses in rural areas as well. For example,
we trace the IP that shows the worst error of 13.2 km.
We nd that this is an IP in a rural area with no land-
marks discovered within the ZIP Code, which has a pop-
ulation density of 47. The landmark with the minimum
measured distance is 13.2 km away, which our system
selected.

4.2.5 The role of access networks

Contrary to the academic environment, a number of res-
idential IP addresses access the Internet via DSL or ca-
ble networks. Such networks create the well-known last-
mile delay ination problem, which represents a funda-
mental barrier to methods that rely on absolute delay
measurements. Because our method relies on relative
delay measurements, it is highly resilient to such prob-
lems, as we show below. To evaluate this issue, we ex-
amine and compare our system�’s performance for three
different residential network providers that we collected
in Section 4.1.2. These are AT&T, Comcast, and Veri-
zon.
Figure 12 shows the CDF of the error distance for the

three providers. The median error distance is 1.48 km
for Verizon, 1.68 km for AT&T, and 2.38 km for Com-
cast. Thus, despite the fact that we measure signicantly
inated delays in the last mile, we still manage to geolo-

10

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 375

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

Error distance [km]

AT&T
Comcast
Verizon

Figure 12: Comparisons of error distance in different
ISPs

cate the endpoints very accurately. For example, a delay
of 5ms [13] that we commonly see at the last mile could
place a scheme relying on absolute delay measurements
700 km away from the target. Our approach effectively
addresses this problem and geolocates the targets within
a few kilometers.
Figure 12 shows that our method has reduced perfor-

mance for Comcast targets, who show a somewhat longer
tail than the other two providers. We explore this issue in
more depth. According to [7], AT&T and Verizon offer
DSL services. Comcast is dominantly a cable Internet
provider, and offers DSL only in a smaller number of ar-
eas. As demonstrated in [13], cable access networks have
a much larger latency variance, which may rapidly vary
over short time scales, than DSL networks. While our
relative delay approach is resilient to absolute delay in-
ation at the last mile, it can still be hurt by measured de-
lay variance. Because latency in cable networks changes
over short time scales, it blurs our measurements, which
are not fully synchronized. Hence, the landmarks�’ rela-
tive proximity estimation gets blurred, which causes the
effects shown in the gure. In particular, the median er-
ror distance of the cable case increases by approximately
700 meters relative to the DSL case (shown by the ar-
row from AT&T to Comcast in the middle of Figure 12),
while the maximum error distance increases by 2 km
(shown by the arrow from AT&T to Comcast at the top
of Figure 12).

5 Discussion

Measurement overhead. Our methodology incurs mea-
surement overhead due to Web crawling and network
probing. Still, it is capable of generating near real-time
responses, as we explain below. To geolocate an IP ad-
dress, we crawl Web landmarks for a portion of ZIP
Codes on the y, as we explained in Sections 2.2 and

2.3. It is important to understand that this is a one-time
overhead per ZIP Code because we cache all landmarks
for every ZIP Code that we visit. Thus, when we want to
geolocate other IP addresses in the vicinity of a previous
one, we reuse previously cached landmarks. Once this
dataset is built, only occasional updates are needed. This
is because the Web-based landmarks we use are highly
stable and long-lived in the common case.

On the network measurement side, we generate con-
current probes from multiple vantage points simultane-
ously. In the rst tier, we need 2 RTTs (1 RTT from
the master node to the vantage points, and 1 RTT for the
ping measurements). In the second and third tiers each,
the geolocation response time per IP can be theoretically
limited by 3 round-trip times (1 RTT from the master
node to the measurement vantage points, and 2 RTTs for
an advanced traceroute overhead2). Thus, the total over-
head on the network measurement side is 8 RTTs, which
typically translates to a 1-2 seconds delay.

Migrating web services to the cloud. Cloud services
are thriving in the Internet. One might have a concern
that this might dramatically reduce the number of land-
marks that we can rely upon. We argue that this is not the
case. While more websites might indeed be served on
the cloud, the total number of websites will certainly in-
crease over time. Even if the large percent of the websites
will end up in the cloud, the remaining percent of web-
sites will always create a reliable and accurate backbone
for our method. Moreover, even when an entity migrates
a Web site to the cloud, the associated e-mail exchange
servers do remain hosted locally (results not shown here
due to space constraints). Hence, such servers can serve
as accurate geolocation landmarks. Our key contribution
lies in demonstrating that all such landmarks (i.e., Web,
e-mail, or any other) can be effectively used for accurate
geolocation.

International coverage. Our evaluation is limited to
US simply as we were able to obtain the vast majority of
the ground-truth information from within the US. Still,
we argue that our approach can be equally used in other
regions as well. This is because other countries such as
Canada, UK, China, India, South Korea etc., also have
their own �“ZIP Code�” systems. We are currently adjust-
ing our system so that it can effectively work in these
countries. Moreover, we expect that our approach will
be applicable even in regions with potentially poor net-
work connectivity. This is because our relative-delay-
based method is insensitive to inated network latencies
characteristic for such environments.

2In the advanced traceroute case, 1 RTT is needed to obtain the IPs
of intermediate routers, while another RTT is needed to simultaneously
obtain round-trip time estimates to all intermediate routers by sending
concurrent probes.

11

376 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Related work

6.1 Client-independent IP geolocation sys-
tems

6.1.1 Data mining-based

DNS-based. Davis et al. [12] propose a DNS-based ap-
proach, which suggests adding location segments in the
format of a Resource Record (RR). Nevertheless, such
modication can not be easily deployed in practice and
the administrators have little incentive to register or mod-
ify new RRs. Moreover, Zhang et al. [25] have demon-
strated that DNS misnaming is common, and that it can
distort Internet topology mapping.
Whois-based. Moore et al. [18] argue that geoloca-

tion can also be obtained by mining the Whois database.
However, as the authors themselves pointed out, large en-
tities with machines dispersed in different locations can
register their domain names with the geographical loca-
tion of their headquarters. As an example, many exist-
ing IP geolocation databases that use this approach incor-
rectly locate all Google�’s servers worldwide to Mountain
View, CA.
Hostname-based. The machine hostnames can some-

times indicate the geolocation information. In particu-
lar, Padmanabhan�’s and Subramanian�’s GeoTrack [19]
parses the location of the last access router towards the
target to be located from its hostname and uses the loca-
tion of this router as that of the target. Unfortunately, this
method can be inhibited by several factors, as pointed
by [14]. First, not all machine names contain geolocation
associating information. Second, administrators can be
very creative in naming the machines; hence, parsing all
kinds of formats becomes technically difcult. Finally,
such last hop location substitution can incur errors.
Web-based. Guo et al.�’s [16]�’s Structon, mines the

geolocation information from the Web. In particular,
Structon builds a geolocation table and uses regular ex-
pressions to extract location information from each web
page of a very large-scale crawling dataset. Since Struc-
ton does not combine delay measurement with the land-
marks it discovers, it achieves a much coarser (city-level)
geolocation granularity. For example, they extract all lo-
cation keywords from a web page rather than just the lo-
cation address. Likewise, they geolocate a domain name
by choosing one from all locations provided by all the
web pages within this domain name. Indeed, such ap-
proaches are error prone. Moreover, geolocating a /24
segment with a city blurs the ner-grained characteris-
tics of each IP address in this segment.
Other sources. Padmanabhan�’s and Subramanian�’s

GeoCluster [19] geolocates IP addresses into a geograph-
ical cluster by using the address prexes in BGP rout-
ing tables. In addition, by acquiring the geolocation in-
formation of some IP addresses in a cluster from pro-

prietary sources, e.g., users�’ registration records in the
Hotmail service, GeoCluster deduces the location of this
entire cluster. This method highly depends on the cor-
rectness of users�’ input and the private location infor-
mation, which is in general not publicly available. Our
approach differs from GeoCluster in that web designers
have strong incentive to report correct location informa-
tion in their websites, while users are less likely to pro-
vide accurate location information in their registration
application with online services, on which GeoCluster
highly relies. Moreover, we have demonstrated that us-
ing active network measurements instead of extrapolat-
ing geo information to entire clusters, is far more accu-
rate.

6.1.2 Delay measurement-based

GeoPing. Padmanabhan and Subramanian design GeoP-
ing [19], which assumes that two machines that have
similar delay vectors tend to be close to each other. The
authors rely on a set of active landmarks, i.e., those capa-
ble of actively probing the target. Necessarily, the accu-
racy of such an approach (the comparable results shown
later in the text) depends on the number of active land-
marks, which is typically moderate.
CBG. Instead of yielding a discrete single geo point,

Gueye et al. [15] introduce Constraint Based Geoloca-
tion (CBG), a method that provides a continuous geo
space by using multilateration with distance constraints.
In particular, CBG rst measures the delays from all van-
tage points to the target. Then, it translates delays into
distance by considering the best network condition of
each vantage point, termed bestline. Finally, it returns
a continuous geo space by applying multilateration.
CBG uses bestline constraints to compensate for the

fact that Internet routes are sometimes undirected or in-
ated. However, due to the difculty of predicting the di-
rectness of a network route from a vantage point to a tar-
get, CBG only works well when the target is close to one
of the vantage points. As explained above, we use the
CBG approach straightforwardly in our tier 1 phase to
discover the coarse-grained area for a targeted IP. More-
over, using newly discovered web landmarks in this area,
we further constrain the targeted area in the tier 2 phase
as well. Thus, while CBG is good at limiting the destina-
tion area, it is inherently limited in its ability to achieve
very ne-grained resolution due to measurement inaccu-
racies.
TBG. Taking the advantage of the fact that routers

close to the targets can be more accurately located, Katz-
Bassett et al. [17] propose Topology-based Geolocation
(TBG), which geolocates the target as well as the routers
in the path towards the target. The key contribution of
this work lies in showing that network topology can be
effectively used to achieve higher geolocation accuracy.
In particular, TBG uses the locations of routers in the in-

12

USENIX Association NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation 377

terim as landmarks to better quantify the directness of the
path to the target and geolocate it.

In addition to using network topological information,
a TBG variant also takes advantage of passive landmarks
with known locations. However, such an approach is
constrained by the fact that it only has a very limited
number of such landmarks. On the contrary, our web-
based technique can conquer this difculty signicantly
by discovering a large number of web-based landmarks.
More substantially, TBG fundamentally relies on the ab-
solute delay measurements, which are necessarily inac-
curate at short distances. On the contrary, in addition to
relying on a large number of web-based landmarks in an
area, we demonstrate that our relative distance approach,
while technically less attractive, is far more accurate.

Octant. Wong et al. [24] propose Octant, which con-
siders the locations of intermediate routers as landmarks
to geolocate the target. Further, Octant considers both
positive information, the maximum distance that a tar-
get may be from the landmark, and negative information,
the minimum distance this target may be from the land-
mark. In addition to delay-based constraints, Octant also
enables any kind of positive and negative constraints to
be deployed into its system, e.g., the negative constraints
(oceans and uninhabitable areas) obtained from geogra-
phy and demographics.

In attempt to achieve high accuracy, Octant (as well
as the above TBG method) also adopts the locations of
routers in the path to the destination as landmarks to ge-
olocate the target. However, such an approach is ham-
pered to reach ner-grained accuracy because it fails to
accurately geolocate routers at such precision in the rst
place. Finally, while Octant �’pushes�’ the accuracy of
delay-based approaches to an absolutely admirable limit,
it is incapable of achieving a higher precision simply due
to the inherent inaccuracies associated with absolute de-
lay measurements.

Comparative results. According to [17], TBG has
the median estimation error of 67 km that a factor of
three outperforms CBG with the median estimation error
of 228 km. According to [24], comparing with GeoP-
ing and CBG, Octant with a median estimation error of
22 miles is three times better than GeoPing with an esti-
mation error of 68 miles and four times better than CBG
with an error distance of 89 miles respectively. Because
TBG and Octant used the PlanetLab nodes to evaluate
their system�’s accuracy, we can directly compare them
with our system. As outlined above, our system�’s me-
dian error distance is 50 times smaller than Octant�’s, and
approximately 100 times smaller than TBG�’s.

6.2 Client-dependent IP geolocation sys-
tems

6.2.1 Wireless geolocation

GPS-based geolocation Global Positioning System
(GPS) devices, that have been embedded into billions of
mobile phones and computers at nowadays, could pre-
cisely provide user�’s location. However, GPS technology
differs from our geolocation strategy in the sense that it
is a �’client-side�’ geolocation approach, which means that
the server does not know where the user is, unless the
user explicitly reports his information back to the server.
Cell tower and Wi-Fi -based geolocation. Google

My Location [5] and Skyhook [9] introduced their cell
tower-based and Wi-Fi -based geolocation approaches.
In particular, the cell tower-based geolocation offers
users estimated locations by triangulating from cell tow-
ers surrounding users, while theWi-Fi-based geolocation
uses Wi-Fi access point information instead of cell tow-
ers. Specically, every tower or Wi-Fi access point has
a unique identication and footprint. To nd a user�’s ap-
proximate location, such methods calculate user�’s posi-
tion relative to the unique identications and footprints
of nearby cell towers or Wi-Fi access points.
Such methods could provide accurate results, e.g., 200

- 1000 meters accuracy in cell tower scenario, and 10-20
meters in Wi-Fi scenario [9], on the expense of sacric-
ing the geolocation availability at three aspects.
First, these approaches require end user�’s permission

to share their location. However, as we discussed above,
many applications such as location-based access restric-
tions, context-aware security, and online advertising,
can not rely on client�’s support for geolocation. Sec-
ond, companies utilizing such an approach must deploy
drivers to survey every single street and alley in tens of
thousands of cities and towns worldwide, scanning for
cell towers and Wi-Fi access points, as well as plotting
their geographic locations. However, in our approach,
we avoid such �’heavy�’ overhead by lightly crawling land-
marks from theWeb. Third, these approaches are tailored
towards mobile phones and laptops. However, there are
many devices (IPs) bound with wired network on the In-
ternet. Such wireless geolocation methods are necessar-
ily incapable of geolocating these IPs, while our method
does not require any precondition on the end devices and
IPs.

6.2.2 W3C geolocation

A geolocation API specication [3] is going to become
a part of HTML 5 and appears to be a part of current
browsers already [6].This API denes a high-level in-
terface to location information, and is agnostic of the
underlying location information sources. The underly-
ing location database could be collected and calculated

13

378 NSDI ’11: 8th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

by GPS, Wi-Fi access point, cell tower, RFID, Bluetooth
MAC address, as well as IP address, associated with the
devices. Again, this approach requires end users�’ col-
laboration for geolocation. In addition, this method also
requires browser compatibility, e.g., Web browser must
supports HTML 5. Finally, to geolocate wired devices,
W3C geolocation has to conduct IP address-based ap-
proaches discussed in Section 6.1.1 and Section 6.1.2. In
this case, our method can be considered as an effective
alternative to improve the accuracy.

7 Conclusions
We have developed a client-independent geolocation sys-
tem able to geolocate IP addresses with more than an
order of magnitude better precision than the best previ-
ous method. Our methodology consisted of two powerful
components. First, we utilized a system that effectively
harvest geolocation information available on the Web to
build a database of landmarks in a given ZIP Code. Sec-
ond, we employed a three tiered system that begins at
a large, coarse-grained, scale and progressively works
its way to a ner, street-level, scale. At each stage, it
takes advantage of landmark data and the fact that on
the smaller-scale, relative distances are preserved by de-
lay measurements, overcoming many of fundamental in-
accuracies encountered in the use of absolute measure-
ments. By combining these we demonstrated the effec-
tiveness of using both active delay measurements and
web-mining for geo-location purposes.
We have shown that our algorithm functions well

in the wild, and is able to locate IP addresses in the
real world with extreme accuracy. Additionally, we
demonstrated that our algorithm is widely applicable
to IP addresses from both academic institutions, a
collection of residential addresses, as well as a larger
mixed collection of addresses. The high accuracy of
our system in a wide range of networking environments
demonstrates its potential to dramatically improve the
performance of existing location-dependent Internet
applications and to open the doors to novel ones.

References
[1] City data. http://www.city-data.com/.

[2] Geolocation and application delivery. www.f5.com/pdf/
white-papers/geolocation-wp.pdf.

[3] Geolocation api specication. http://dev.w3.org/geo/
api/spec-source.html.

[4] Geonames. http://www.geonames.org/.

[5] Google maps with my location. http://www.google.com/
mobile/gmm/mylocation/index.html.

[6] How google maps uses the w3c geolocation
api and google location services. http:

//apb.directionsmag.com/archives/
6094-How-Google-Maps-uses-the-W3C-Geolocation/
-API-and-Google-Location-Services.html.

[7] Ooakla�’s speedtest throughput measures. http:
//silicondetector.org/display/IEPM/Ookla%
27s+Speedtest+Throughput+Measures.

[8] Reverse ip domain check. http://www.yougetsignal.
com/tools/web-sites-on-web-server/.

[9] Skyhook. http://www.skyhookwireless.com/.
[10] Technical report. http://networks.cs.

northwestern.edu/technicalreport.pdf.
[11] CHENG, H., ANGELA, W., JIN, L., AND W, R. K. Measuring

and evaluating large-scale CDNs. In Microsoft Technical Report.
[12] DAVIS, C., VIXIE, P., GOODWIN, T., AND DICKINSON, I. A

means for expressing location information in the domain name
system. RFC 1876 (1996).

[13] DISCHINGER, M., HAEBERLEN, A., GUMMADI, K. P., AND
SAROIU, S. Characterizing residential broadband networks. In
IMC, �’07.

[14] FREEDMAN, M. J., VUTUKURU, M., FEAMSTER, N., AND
BALAKRISHNAN, H. Geographic locality of ip prexes. In IMC,
�’05.

[15] GUEYE, B., ZIVIANI, A., CROVELLA, M., AND FDIDA, S.
Constraint-based geolocation of internet hosts. Transactions on
Networking (2006).

[16] GUO, C., LIU, Y., SHEN, W., WANG, H. J., YU, Q., AND
ZHANG, Y. Mining the web and the internet for accurate ip ad-
dress geolocations. In Infocom mini conference, �’09.

[17] KATZBASSETT, E., JOHN, J. P., KRISHNAMURTHY, A.,
WETHERALL, D., ANDERSON, T., AND YATIN. Towards ip
geolocation using delay and topology measurements. In IMC,
�’06.

[18] MOORE, D., PERIAKARUPPAN, R., DONOHOE, J., AND
CLAFFY, K. Where in the world is netgeo.caida.org? In INET
�’00.

[19] PADMANABHAN, V. N., AND SUBRAMANIAN, L. An investiga-
tion of geographic mapping techniques for internet host. In ACM
SIGCOMM �’01.

[20] PERCACCI, R., AND VESPIGNANI, A. Scale-free behavior of
the internet global performance. The European Physical Journal
B - Condensed Matter (2003).

[21] SIWPERSAD, S., BAMBAGUEYE, AND UHLIG, S. Assessing
the geographic resolution of exhaustive tabulation for geolocating
internet hosts. In PAM, �’08.

[22] VALANCIUS, V., LAOUTARIS, N., MASSOULIE, L., DIOT, C.,
AND RODRIGUEZ, P. Greening the Internet with nano data cen-
ters. In CONEXT �’09.

[23] VINCENTY, T. Direct and inverse solutions of geodesics on the
ellipsoid with application of nested equations. Survey Review
(1975).

[24] WONG, B., STOYANOV, I., AND SIRER, E. G. Octant: A com-
prehensive framework for the geolocalization of internet hosts. In
NSDI, �’07.

[25] ZHANG, M., RUAN, Y., PAI, V., AND REXFORD, J. How dns
misnaming distorts internet topology mapping. In USENIX An-
nual Technical Conference, �’06.

[26] ZIVIANI, A., FDIDA, S., DE REZENDE, J. F., AND DUARTE, O.
C. M. Improving the accuracy of measurement-based geographic
location of internet hosts. Computer Networks, Elsevier Science
(2005).

14

	nsdi11_cover
	nsdi11_fm
	nsdi11_contents
	nsdi11_message
	nsdi11_1a
	nsdi11_1b
	nsdi11_1c
	nsdi11_1d
	nsdi11_2a
	nsdi11_2b
	nsdi11_2c
	nsdi11_2d
	nsdi11_3a
	nsdi11_3b

