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Web-Account Abuse Attack
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Problems and Challenges

 Detect Web-account Abuse with Hotmail Logs
— Input: user activity traces (signup, login, email-sending records)
— Goal: stop aggressive account signup, limit outgoing spam

e Algorithmic challenge:

— Attack is stealthy: individual account detection difficult
— Attack is large scale: finding correlated activities
— Low false positive and false negative rate

* Engineering challenge:

— Large user population: >500 million accounts
— Large data volume: 300GB-400GB data per month



The BotGraph System

* A graph-based approach to attack detection
— A large user-user graph to capture bot-account correlations
— ldentify 26M bot-accounts with a low false positive rate in two
months
 Efficient implementation using Dryad/DryadLINQ
— Graph construction/analysis is not easily parallelizable
— hundreds of millions of nodes, hundreds of billions of edges

— Process 200GB-300GB data in 1.5 hours with a 240-machine
cluster

The first to provide a systematic solution to the new
attack



System Architecture
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« Simple and efficient
e Detect 20 million malicious accounts in 2 months




System Architecture
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Detect Stealthy Accounts by Graphs

* Observation: bot-accounts work collaboratively

A user-user graph to model behavior similarities

e Normal Users

— Share IP addresses in one AS with DHCP assighment

e Bot-users
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Detect Stealthy Accounts by Graphs

* Observation: bot-accounts work collaboratively

A user-user graph to model behavior similarities

e Normal Users

— Share IP addresses in one AS with DHCP assighment

e Bot-users

— Likely to share different IPs across ASes
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User-user Graph

Node: Hotmail account

Edge weight: # of ASes of the shared
IP addresses

— Consider edges with weight>1

3 ASes

Key Observations

— Bot-users form a giant
connected-component while

normal users do not , A
— Interpreted by the random

graph theory



Random Graph Theory

 Random Graph G(n,p)
— n nodes and each pair of nodes has an edge with
probability p and average degree d = (n-1) - p
e Theorem

— If d < 1, then with high probability the largest component
in the graph has size less than O(log n)

==) No large connected subgraph

— If d > 1, with high probability the graph will contain a giant
component with size at the order of O(n)

== Most nodes are in one connected subgraph



Graph-based Bot-user Detection

Step 1: detect giant connected-components from the
user-user graph

Step 2: hierarchical algorithm to identify the correct
groupings

— Different bot-user groups may be mixed

— Difficult to choose a fixed edge-threshold

— Easier validation with correct group statistics

Step 3: prune normal-user groups

— Due to national proxies, cell phone users, facebook applications,
etc.



Hierarchical Bot-Group Extraction
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System Architecture

=) 3. Parallelel Algorithm
on DryadLINQ clusters




Parallel Implementation on DryadLINQ

« EWMA-based Signup Abuse Detection
— Partition data by IP
— Can achieve real-time detection

e User-User Graph Construction
— Two algorithms and optimizations

— Process 200GB-300GB data in 1.5 hours with 240
machines

* Connected Component Extraction
— Divide and conquer
— Process a graph of 8.6 billion edges in 7 minutes



Graph Construction 1: Simple Data Parallelism

* Potential Edges

— Select ID group by IP (Map)

— Generate potential edges (/D,, ID;, IP;) (Reduce)
 Edge Weights

— Select IP group by ID pair (Map)

— Calculate edge weight (Reduce)
* Problem

— Weight 1 edge is two orders of magnitude more than
others

— Their computation/communication is unnecessary



Graph Construction 2: Selective Filtering

1. Input: partitioned data by user IDs

-::%jﬁ@@giggﬂzsymmary: list of IPs

EETEE

4.Selectively return login records

5. Hash distribute selected login records

6. Aggregate hashed distributed login records
8. Local graph construction

9. Final graph results
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Comparison of Two Algorithms

Method 1

— Simple and scalable

Method 2

— Optimized to filter out weight 1 edges

— Utilize Join functionality, data compression and
broadcast optimization

Communication data size

Total running time

Method 1 (no comp.) 2.71' TB 135 min
Method I (with comp.) 1.02TB 116 min
Method 2 (no comp.) 460 GB 28 min
Method 2 (with comp.) 181 GB 21 min
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Detection Results

* Data description

— Two datasets
e Jun 2007 and Jan 2008

— Three types of data
 Signup log (IP, ID, Time)
e Login log (IP, ID, Time)
— 500M users and 200~300GB data per month
* Sendmail log (ID, time, # of recipients)



Detection of Signup Abuse

Month 06/20071 01/2008

# of bot IPs 82,026 | 240,784

# of bot-user accounts || 4.83 M|16.41 M
Avg. anomaly window (| 1.45 day | 1.01 day
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Detection by User-user Graph

Month 06/2007{01/2008

# of bot-groups 13 40
# of bot-accounts || 2.66M| 8.68M
# of unique IPs 2.69M| 1.60M
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Validations
Manual Check

— Sampled groups verified by the Hotmail team
— Almost no false positives

Comparison with Known Spamming Users
— Detect 86% of complained accounts
— Up to 54% of detected accounts are our new findings

Email Sending Sizes per Group

— Most groups have a sharp peak
— The remaining contain several peaks

False Positive Estimation
— Naming pattern (0.44%)
— Signup time (0.13%)



Possible to Evade BotGraph?

* Evade signhup detection: Be stealthy

* Evade graph-based detection
— Fixed IP/AS binding

* Low utilization rate
* Bot-accounts bound to one host are easy to be grouped

— Be stealthy (sending as few emails as normal user)

== Severely limit attackers’ spam throughput



Conclusions

* A graph-based approach to attack detection

— ldentify 26M bot-accounts with a low false positive rate in
two months
* Efficient implementation using Dryad/DryadLINQ

— Process 200GB-300GB data in 1.5 hours with a 240-
machine cluster

Large-scale data-mining for network
security is effective and practical
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