# Tolerating Latency in Replicated State Machines through Client Speculation

April 22, 2009

Benjamin Wester<sup>1</sup>, James Cowling<sup>2</sup>, Edmund B. Nightingale<sup>3</sup>, Peter M. Chen<sup>1</sup>, Jason Flinn<sup>1</sup>, Barbara Liskov<sup>2</sup>

University of Michigan<sup>1</sup>, MIT CSAIL<sup>2</sup>, Microsoft Research<sup>3</sup>

## Simple Service Configuration



# Replicated State Machines (RSM)



# RSMs have high latency



## Hide the Latency

- Use speculative execution inside RSM
- Speculate before consensus is reached
  - Without faults, any reply predicts consensus value
  - Let client continue after receiving one reply

#### Overview

- Introduction
- Improving RSMs with speculation
- Application to PBFT
- Performance
- Conclusion

## Speculative Execution in RSM



Continue processing while waiting

## Critical path: first reply



- Completion latency less relevant
- First reply latency sets critical path
  - Speed
  - Accuracy
- Other desirable properties
  - Throughput
  - Stability under contention
  - Smaller number of replicas

## Requests while speculative

```
while !check_lottery():
    submit_tps()
buy_corvette()

yes

buy

Win?

What do we do with this?
```

- Bad performance
- 2. Distributed commit/rollback
  - State tracking complex

## Resolve speculations on the replicas



- Explicitly encode dependencies as predicates
- No special request handling needed
- Replicas need to log past replies
- Local decision at replicas matches client

#### Overview

- Introduction
- Improving RSMs with speculation
- Application to PBFT
- Performance
- Conclusion

## Practical BFT-CS

[Castro and Liskov 1999]



#### **Additional Details**

- Tentative execution
  - PBFT/PBFT-CS complete in 4 phases
- Read-only optimization
  - Accurate answer from backup replica
- Failure threshold
  - Bound worst-case failure
- Correctness

#### Overview

- Introduction
- Improving RSMs with speculation
- Application to PBFT
- Performance
- Conclusion

#### Benchmarks

- Shared counter
  - Simple checkpoint
  - No computation

- NFS: Apache httpd build
  - Complex checkpoint
  - Significant computation

# Topology

- Primary-local
- 2. Primary-remote
- 3. Uniform



## Base case: no replication

- Primary-local
- 2. Primary-remote
- 3. Uniform



#### Primary-local topology



#### Primary-local topology



#### Uniform & Primary-remote topology



#### Uniform & Primary-remote topology



# NFS: Apache build



## NFS: Apache build



## NFS: Apache build



#### NFS: With Failure



## **Throughput (Shared Counter)**



#### Conclusion

- Integrate client speculation within RSMs
- Predicated requests: performance without complexity
- Clients less sensitive to latency between replicas
- 5x speedup over non-speculative protocol

Makes WAN deployments more practical