Flexible, Wide-Area Storage for
Distributed Systems with WheelFS

Jeremy Stribling,
Yair Sovran, Irene Zhang, Xavid Pretzer,
Jinyang Li, M. Frans Kaashoek, and Robert Morris

MIT CSAIL & New York University g

Yo

Wide-Area Storage: The Final Frontier

. ._ 'Lqﬁ. ;: =t .
AR S ~— i
l-‘: H .'I L L .‘ y .'..:.:':'l -

g PlanetLab :
 Apps store data on widely-spread resources

— Testbeds, Grids, data centers, etc.
— Yet there’s no universal storage layer

» What’s so hard about the wide-area?
— Failures and latency and bandwidth, oh my!

Apps Handle Wide-Area Differently

» CoralCDN prefers low delay to strong
consistency (Coral Sloppy DHT)

» Google stores email near consumer
(Gmail’s storage layer)

« Facebook forces writes to one data center
(Customized MySQL/Memcached)

—> Each app builds its own storage layer

Problem:
No Flexible Wide-Area Storage

» Apps need control of wide-area tradeoffs
— Fast timeouts vs. consistency
— Fast writes vs. durability
— Proximity vs. availability

» Need a common, familiar API: File system
— Easy to program, reuse existing apps

* No existing DFS allows such control

Solution: Semantic Cues

- Small set of app-specified controls

» Correspond to wide-area challenges:
— EventualConsistency: relax consistency
— RepLevel=N: control number of replicas
— Site=site: control data placement

- Allow apps to specity on per-file basis
— /fs/.EventualConsistency/file

Contribution: WheelFS

» Wide-area file system

* Apps embed cues directly in pathnames
» Many apps can reuse existing software
 Multi-platform prototype w/ several apps

WheelFS Design Overview

Distributed Application confiouration

[D ' —— (Pa;ir\-/:CF?SM)
'Q;HHEEHIH!E!IH‘?VH!E%f!F=\\

. J

FUSE

/’1,’ h\'\’ -\\\
1, "~\
WheelFS client nodes T ;
WheelFS !
WheelFS storage nodes client) Y

_ software }—upp

=N=N=N=N=N=F=F=Cy

Files and directories are
spread across storage nodes

y/
\

] ﬂ
\
\

~

WheelFS Default Operation

* Files have a primary and two replicas
— A file’s primary is its creator

» Clients can cache files
— Lease-based invalidation protocol

» Strict close-to-open consistency
— All operations serialized through the primary

Enforcing Close-to-Open Consistency

By default, failing to reach the
primary blocks the operation to
offer close-to-open consistency
in the face of partitions

(backup)

Eventually, the configuration
service decides to promote a
backup to be primary

Wide-Area Challenges

 Transient failures are common
— Fast timeouts vs. consistency

 High latency

— Fast writes vs. durability

« Low wide-area bandwidth
— Proximity vs. availability

Only applications can make these tradeoffs

Semantic Cues Gives Apps Control

+ Apps want to control consistency, data
placement ...

» How? Embed cues in path names

/wis/cachefsieaalobaiérbifooifostency/foo

-> Flexible and minimal interface change

Semantic Cue Details
» Cues can apply to directory subtrees

/wfs/cache/.EventualConsistency/a/b/foo

Cues apply recursively over
an entire subtree of files

- Multiple cues can be in effect at once
/wfs/cache/.EventualConsistency/.RepLevel=2/a/b/foo

Both cues apply to
the entire subtree

» Assume developer applies cues sensibly

A Few WheelFS Cues

Name Purpose
Durability RepLevel= How many replicgs of this file should be
(permanent) maintained
Large reads HotSpot This file will be read simultaneously by
(transient) many nodes, so use p2p caching
Hint about data || Site= Hint which group of nodes a file
placement (permanent) should be stored
Eventual- Control whether reads
Consistency Consistency must see fresh data, and whether writes
(trans/perm) must be serialized

Cues designed to match wide-area challenges

Eventual Consistency: Reads

- Read latest version of the file you can find quickly
* In a given time limit (.MaxTime=)

Eventual Consistency: Writes

» Write to any replica of the file

Reconciling divergent replicas:
: : e . v3
Directories _ Files
- Merge replicas into single Choose one of the replicas to
directory by taking union of win S
entries rite
- Tradeoff: May lose some - Tradeoff: May lose some lle
unlinks writes
(No application involvement) ss
V3 | will merge divergent replicas

, (backup)
Create new version at backup

Example Use of Cues:

Cooperative Web Cache (CWC)

Blocks under failure with
default strong consistency

Apache Apache Apache Apache \
Caching (Caching Caching (Caching
Proxy Proxy Proxy Proxy url exists | he di
| | read $url from WheelF
D D else f i
__________________ >" T —---~ get page web server
O =TT e nwhearsS

~
-
____ < - -
L -
~o Pl e
~— o L

- -
S~ ="

One line change in Apache config file: /wfs/cache/$URL

Example Use of Cues: CWC

 Apache proxy handles potentially stale files well

— The freshness of cached web pages can be
determined from saved HT TP headers

Cache dir: /wfs/cache/.EventualConsistency/.MaxTime=200/.HotSpot

= NN

Read a cached file Write the file data Reads onl
cada Ch - anywhere even o eif 20y0 Tells WheelFS to
even when the when the ocK Tor read data from
corresponding

. ms; after that, .
primary cannot be corresponding the nearest client

fall back to
contacted

primary cannot be . cache it can find
contacted origin server

WheelFS Implementation

* Runs on Linux, MacQOS, and FreeBSD
» User-level file system using FUSE

« 20K+ lines of C++

« Unix ACL support, network coordinates
» Deployed on PlanetLab and Emulab

Applications Evaluation

Lines of
App Cues used code/configuration
written or changed
Cooperative .EventualConsistency, .MaxTime, ’
Web Cache .HotSpot
. . .EventualConsistency, .MaxTime,
All-Pairs-Pings .HotSpot, .WholeFile 13
.EventualConsistency, .Site,
Distributed Mail .RepLevel, .RepSites, 4
.KeepTogether
File distribution .WholeFile, .HotSpot N/A
Distributed .EventualConsistency (for objects), 10
make .Strict (for source), .MaxTime

Performance Questions

1. Does WheelFS scale better than a single-
server DFS?

2. Can WheelFS apps achieve performance
comparable to apps w/ specialized storage?

3. Do semantic cues improve application
performance?

WheelFS Out-scales NFS on PlanetLab

25

20

Median 15
1MB read

latency
(seconds) 10

5

0

Working set of files
exceeds NFS server’s
buffer cache

——\WheelFS
-=-NFS
P —
— PlanetLab
VS.
dedicated MIT server
0 50 100 150 200 250 300

Number of concurrent clients

CWC Evaluation

* 40 PlanetLab nodes as Web proxies

« 40 PlanetLab nodes as clients
« Web server

— 400 Kbps link
— 100 unique 41 KB pages

» Each client downloads random pages
— (Same workload as in CoralCDN paper)

» CoralCDN vs. WheelFS + Apache

WheelFS Achieves Same Rate As CoralCDN

1000 -
100 - CoralCDN ramps up
Total more quickly due to
reqs/sec special optimizations
served —WheelFS
(log) o \ \ —CoralCDN
.. . but WheelFS soon
achieves similar
performance
1
0 200 400 600 800 1000

Total regs/unique page: > 32,000
Origin regs/unique page: 1.5 (CoralCDN) 2.6 (WheelFS)

CWC Failure Evaluation

15 proxies at 5 wide-area sites on Emulab
1 client per site

Each minute, one site offline for 30 secs
— Data primaries at site unavailable

Eventual vs. strict consistency

EC Improves Performance
oo Under Failures

EventualConsistency
allows nodes to use

cached version when

primary is unavailable

100 —fy@\
Total

reqs/sec A
served —WheelFS - Eventual
(log) —WheelFS - Strict
10 - \.\}
L BRA T .
200 300 400 500 600 700

Time (seconds)

Related File Systems

» Single-server FS: NFS, AFS, SFS
 Cluster FS: Farsite, GFS, xFS, Ceph
« Wide-area FS: Shark, CFS, JetFile
 Grid: LegionFS, GridFTP, IBP

« WheelFS gives applications control over
wide-area tradeoffs

Storage Systems with
Configurable Consistency

« PNUTS [VLDB ‘08]
— Yahoo!’s distributed, wide-area database

* PADS [See next talk]
— Flexible toolkit for creating new storage layers

» WheelFS offers broad range of controls in
the context of a single file system

Conclusion

» Storage must let apps control data behavior

 Small set of semantic cues to allow control

— Placement, Durability, Large reads and
Consistency

 WheelFS:

— Wide-area file system with semantic cues
— Allows quick prototyping of distributed apps

g http://pdos.csail.mit.edu/wheelfs

3
| 4

