
Enabling MAC Protocol
Implementations on
Software-defined Radios

George Nychis, Thibaud Hottelier, Zhuochen Yang,
Srinivasan Seshan, and Peter Steenkiste

Carnegie Mellon University

1

Wireless Media Access Control Protocols

• No single one-size-fits-all MAC
▫  definition of performance, and how to achieve

it, varies greatly

• Wireless MACs: extremely diverse
▫  long-haul, mesh, lossy, dense, mobile …

• Novel fundamental wireless optimizations:
▫  MIXIT, PPR, Successive IC, ZigZag, …

2

How can we easily implement diverse
MAC protocols and optimizations?

+  High Performance (DSP)

+  Low cost ($30)

-  Closed source
▫  most of the MAC

-  Fixed functionality:
▫  Physical layer, 2.4GHz

Wireless NICs Software Radios
+  Various open source

platforms

+  Fully reprogrammable
▫  and various frequencies!

- Higher cost ($700-$10K)

-  Lower performance (GPP)
▫  large delays

3

Current MAC Protocol Development

Implementing MACs on SDRs

• Various projects using SDRs for evaluation:
▫  MIXIT, PPR, Successive IC, ZigZag …

•  The above all use GNU Radio + USRP:
▫  “extreme” SDR all processing in userspace
▫  great as a research platform (PHY+MAC)

• No high-performance MAC protocol implemented
on GNU Radio & USRP

4

Outline of the Talk

• Why MAC implementation on SDRs is challenging

• How to overcome SDR limitations, enabling high-
performance and flexible MAC implementations
▫  A novel approach: Split-functionality API

•  Present evaluation of the first high-performance
MACs on an extreme architecture

•  Implications and Conclusions

5

“Extreme” SDR Architecture

6

+

Medium

ADC

DAC
Antenna

FPGA

Fr
on

t E
nd

Bus (USB)
+

K
er

ne
l

Userspace

Modulation,
Framing

negligible
15ns 25µs 120µs

25µs 1ms
802.11

SIFS DIFS ACK-TO CS

<10µs 10µs 28µs 22µs

Simply packing the
samples takes too
long for an ACK!

Solutions to Bypass Delay

• Common: move the layers closer to the frontend
▫  WARP: PHY+MAC on the radio hardware
▫  SORA: PHY+MAC in kernel, core ded., SIMD, LUT

• Completely viable solutions, but:
▫  costly (hardware is more complex, WARP: $10K+)
▫  can require special toolkits (e.g., XPS)
▫  requires embedded architecture knowledge
▫  portability and interface (SIMD, PCI-E)

7

An Alternate Solution
•  Split-functionality approach, break all core MAC

functions (e.g., carrier sense) in to 2 pieces:
▫  1 small piece on the radio hardware (performance)
▫  1 piece on the host (flexibility)

•  Then, develop an API for the core functions
▫  logical control channel and per-block metadata
▫  per-packet control of the functions & hardware
▫  applicable to other SDR architectures

8

Indentifying the Core MAC Functions

• Building blocks of MAC protocols:
▫  carrier sense
▫  precision scheduling
▫  backoff
▫  fast-packet detection
▫  dependent packet generation
▫  fine-grained radio control

• Difficult to claim that any list is correct and complete
▫  reasonable first “toolbox”

9

Random Backoff

Guard Periods

SIFS/DIFS
ACK

Synchronization
MIMO

Frequency Hop

Power Control

Slot Times
Rate Adaptation

Beacons
Carrier Sense

MIMO
Synchronization

Beacons

SIFS/DIFS

Precision Scheduling
•  Split-functionality API approach:
▫  Scheduling on the host (flexibility)
▫  Triggering on the hardware (performance)
▫  requires a lead time that varies based on architecture

10

+

Bus (USB)

H
os

t M
ac

hi
ne

Radio Hardware

Data

FPGA

Timestamp
=?

clock

clock
samples/bits/packet

Precision Scheduling
•  Split-functionality API approach:
▫  Scheduling on the host (flexibility)
▫  Triggering on the hardware (performance)
▫  requires a lead time that varies based on architecture

• Average measured error in TX scheduling using
GNU Radio and USRP:

11

35µs 125ns
Split-func. Kernel

Precision
Host
1ms

Revisiting the Core MAC Functions

• Building blocks of MAC protocols:
▫  carrier sense
▫  precision scheduling
▫  backoff
▫  fast-packet detection
▫  dependent packet generation
▫  fine-grained radio control

• Difficult to claim that any list is correct and
complete
▫  reasonable first “toolbox”

12

Fast-Packet Detection
•  Goal: accurately detect packets in the hardware

•  The longer it takes to detect a packet, the longer a
response packet takes (dependent packet)
▫  Can be used to trigger pre-modulated DPs (ACKs)

•  Demodulate only when necessary (CPU intensive)
▫  provides host confidence of a packet in the stream
▫  not only detect a packet, but that it is for this radio

•  Can be used in other architectures:
▫  SORA: used to trigger core dedication
▫  Kansas SDR: battery powered, reduces consumption

13

Fast-Packet Detection in Hardware

•  Perform signal detection using a matched filter
▫  optimal linear filter for maximizing SNR
▫  widely used technique in communications
▫  flexible to all modulation schemes
▫  cross-correlation of unknown & known signals

14

Incoming
sample stream

Modulated
framing bits

Packet Detection Host Setup

15

+

Host

Modulator (GMSK)

01100110101

Framing Bits

t

x[t]

known signal

Packet Detection in Hardware

16

+

Radio Hardware (RX)

FPGA

Matched Filter

unknown

known

Trigger

+ Host

smpls

corr. No Yes

Fast Packet Detection Accuracy
•  Simulation: detect 1000 data packets destined to the

host in varying noise using GMSK and the mfilter

•  Confirmed in
real world
(in paper)

•  100% accuracy
detecting frames

•  <.5% false
detections (i.e.,
falsely claiming an
incoming packet)

17

Revisiting the Core MAC Functions

• Building blocks of MAC protocols:
▫  carrier sense
▫  precision scheduling
▫  backoff
▫  fast-packet detection
▫  dependent packet generation
▫  fine-grained radio control

18

… details in the paper!

Putting it all together…

• Core MAC functions and the split-functionality
API implemented on GNU Radio & USRP

•  “The proof is in the pudding” – we implement
two popular MACs
▫  802.11-like and Bluetooth-like protocols
▫  shows ability in keeping flexibility
▫  used to evaluate total performance gain

19

CSMA 802.11-like Protocol
• Uses the following core functions:
▫  Carrier sense, backoff, fast-packet recognition, and

dependent packets

• Compare host based-implementation to split-
functionality implementation
▫  host implements everything in GNU Radio (GPP)

• Cannot interoperate with 802.11 due to
limitations of the USRP, but possible with USRP2

20

• USRP (SDR board) configuration:
▫  Target bitrate of 500Kbps
▫  Use 2.485GHz, avoid 802.11 interference
▫  Ten transfers of 1MB files between pairs of nodes

802.11-like Protocol Evaluation

21

TDMA Bluetooth-like Protocol Design

•  TDMA-based protocol like Bluetooth:
▫  Construct piconet consisting of a master & slaves
▫  Slaves synchronize to a master’s beacon frame
▫  650µs slot times

• Compare split-functionality to host-based again

• Bluetooth-like since the USRP cannot frequency
hop at Bluetooth’s rate

22

• USRP: target bitrate of 500Kbps

•  Perform ten
100KB file xfers

• Vary number of
slaves

• Vary guard time
(needed to account
 for scheduling error)

Bluetooth-like Protocol Evaluation

23

Conclusions
•  The API developed enables a split-functionality

approach:
▫  maintains flexibility & performance
▫  aspects applicable to other architectures

•  Identified core MAC functions suitable as a first
“toolbox” that can be extended

•  First to implement high-performance MACs on an
extreme SDR such as GNU Radio & USRP

24

