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Wireless Media Access Control Protocols 

• No single one-size-fits-all MAC 
▫  definition of performance, and how to achieve  

it, varies greatly  

• Wireless MACs: extremely diverse 
▫  long-haul, mesh, lossy, dense, mobile … 

• Novel fundamental wireless optimizations: 
▫  MIXIT, PPR, Successive IC, ZigZag, … 
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How can we easily implement diverse 
MAC protocols and optimizations? 



+  High Performance (DSP) 

+  Low cost ($30) 

-  Closed source 
▫  most of the MAC 

-  Fixed functionality: 
▫  Physical layer, 2.4GHz 

Wireless NICs Software Radios 
+  Various open source 

platforms 

+  Fully reprogrammable 
▫  and various frequencies!  

- Higher  cost ($700-$10K) 

-  Lower performance (GPP) 
▫  large delays 
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Current MAC Protocol Development 



Implementing MACs on SDRs 

• Various projects using SDRs for evaluation: 
▫  MIXIT, PPR, Successive IC, ZigZag …  

•  The above all use GNU Radio + USRP: 
▫  “extreme” SDR all processing in userspace 
▫   great as a research platform (PHY+MAC) 

• No high-performance MAC protocol implemented 
on GNU Radio & USRP 
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Outline of the Talk 

• Why MAC implementation on SDRs is challenging 

• How to overcome SDR limitations, enabling high-
performance and flexible MAC implementations 
▫  A novel approach: Split-functionality API 

•  Present evaluation of the first high-performance 
MACs on an extreme architecture 

•  Implications and Conclusions 
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“Extreme” SDR Architecture 
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Solutions to Bypass Delay  

• Common: move the layers closer to the frontend 
▫  WARP: PHY+MAC on the radio hardware 
▫  SORA: PHY+MAC in kernel, core ded., SIMD, LUT 

• Completely viable solutions, but: 
▫  costly (hardware is more complex, WARP: $10K+) 
▫  can require special toolkits (e.g., XPS) 
▫  requires embedded architecture knowledge 
▫  portability and interface (SIMD, PCI-E) 
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An Alternate Solution 
•  Split-functionality approach, break all core MAC 

functions (e.g., carrier sense) in to 2 pieces: 
▫  1 small piece on the radio hardware (performance) 
▫  1 piece on the host (flexibility) 

•  Then, develop an API for the core functions 
▫  logical control channel and per-block metadata 
▫  per-packet control of the functions & hardware 
▫  applicable to other SDR architectures 
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Indentifying the Core MAC Functions 

• Building blocks of MAC protocols: 
▫  carrier sense 
▫  precision scheduling 
▫  backoff 
▫  fast-packet detection 
▫  dependent packet generation 
▫  fine-grained radio control 

• Difficult to claim that any list is correct and complete 
▫  reasonable first “toolbox” 
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Precision Scheduling 
•  Split-functionality API approach: 
▫  Scheduling on the host (flexibility) 
▫  Triggering on the hardware (performance) 
▫  requires a lead time that varies based on architecture 
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Precision Scheduling 
•  Split-functionality API approach: 
▫  Scheduling on the host (flexibility) 
▫  Triggering on the hardware (performance) 
▫  requires a lead time that varies based on architecture 

• Average measured error in TX scheduling using 
GNU Radio and USRP: 
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Revisiting the Core MAC Functions 

• Building blocks of MAC protocols: 
▫  carrier sense 
▫  precision scheduling 
▫  backoff 
▫  fast-packet detection 
▫  dependent packet generation 
▫  fine-grained radio control 

• Difficult to claim that any list is correct and 
complete 
▫  reasonable first “toolbox” 
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Fast-Packet Detection 
•  Goal: accurately detect packets in the hardware 

•  The longer it takes to detect a packet, the longer a 
response packet takes (dependent packet) 
▫  Can be used to trigger pre-modulated DPs (ACKs) 

•  Demodulate only when necessary (CPU intensive)  
▫  provides host confidence of a packet in the stream 
▫  not only detect a packet, but that it is for this radio 

•  Can be used in other architectures: 
▫  SORA: used to trigger core dedication 
▫  Kansas SDR: battery powered, reduces consumption 
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Fast-Packet Detection in Hardware 

•  Perform signal detection using a matched filter 
▫  optimal linear filter for maximizing SNR 
▫  widely used technique in communications 
▫  flexible to all modulation schemes 
▫  cross-correlation of unknown & known signals 

14 

Incoming 
sample stream 

Modulated 
framing bits 



Packet Detection Host Setup 
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Packet Detection in Hardware 
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Fast Packet Detection Accuracy 
•  Simulation: detect 1000 data packets destined to the 

host in varying noise using GMSK and the mfilter 

•  Confirmed in 
real world 
(in paper) 

•  100% accuracy 
detecting frames 

•  <.5% false 
detections (i.e., 
falsely claiming an 
incoming packet) 
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Revisiting the Core MAC Functions 

• Building blocks of MAC protocols: 
▫  carrier sense 
▫  precision scheduling 
▫  backoff 
▫  fast-packet detection 
▫  dependent packet generation 
▫  fine-grained radio control 
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… details in the paper! 



Putting it all together… 

• Core MAC functions and the split-functionality 
API implemented on GNU Radio & USRP 

•  “The proof is in the pudding” – we implement 
two popular MACs 
▫  802.11-like and Bluetooth-like protocols 
▫  shows ability in keeping flexibility 
▫  used to evaluate total performance gain 
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CSMA 802.11-like Protocol 
• Uses the following core functions: 
▫  Carrier sense, backoff, fast-packet recognition, and 

dependent packets 

• Compare host based-implementation to split-
functionality implementation 
▫  host implements everything in GNU Radio (GPP) 

• Cannot interoperate with 802.11 due to 
limitations of the USRP, but possible with USRP2 
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• USRP (SDR board) configuration: 
▫   Target bitrate of 500Kbps 
▫  Use 2.485GHz, avoid 802.11 interference 
▫  Ten transfers of 1MB files between pairs of nodes 

802.11-like Protocol Evaluation 
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TDMA Bluetooth-like Protocol Design 

•  TDMA-based protocol like Bluetooth: 
▫  Construct piconet consisting of a master & slaves 
▫  Slaves synchronize to a master’s beacon frame 
▫  650µs slot times 

• Compare split-functionality to host-based again 

• Bluetooth-like since the USRP cannot frequency 
hop at Bluetooth’s rate 
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• USRP: target bitrate of 500Kbps 

•  Perform ten  
100KB file xfers 

• Vary number of 
slaves 

• Vary guard time 
(needed to account 
 for scheduling error) 

Bluetooth-like Protocol Evaluation 
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Conclusions 
•  The API developed enables a split-functionality 

approach: 
▫  maintains flexibility & performance  
▫  aspects applicable to other architectures 

•  Identified core MAC functions suitable as a first 
“toolbox” that can be extended 

•  First to implement high-performance MACs on an 
extreme SDR such as GNU Radio & USRP 
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