
 Ryan Newton,
Sivan Toledo, Lewis Girod,
Hari Balakrishnan,
Samuel Madden

+

• Gothic, CO deployment August 2007
• Voxnet Platform

•  2x PXA255, 64MB RAM, 8GB Flash,
802.11B, Mica2 supervisor, Li+ battery,
Charge controller
•  Sensors: 4x48KHz audio, 3-axis
accel, GPS, Internal temp

Example Application: Locating Marmots 2

with Lewis Girod & UCLA Blumstein Lab

+

Animal localization

We target sensing applications 3

Pothole detection

Computer
Vision Pipeline

leak detection

EEG Seizure detection Speaker identification

+ Heterogeneous Platforms 4

Low power sensors
weak cpu/radio

Smartphones
medium cpu,
strong radio

Router
weak cpu,
strong radio

Linux
microserver

JavaME
Symbian

Brew

iPhone SDK

Android

TinyOS

Java C++
Python

Contiki

Mix and
Match!

+ Contributions 5

Results

Sensor
source(s)

Network
Boundary

+ Contributions 6

Sensor
source(s)

Results

+ Contributions 7

Sensor
source(s)

Results

Compile & Load

Compile & Load

Contributions

• First broadly portable
sensenet programming

• Partitioning algorithm

• Optimize CPU/radio
tradeoff even if

app doesn’t “fit”

+ Architecture 8

Dataflow graph:
operators containing
code in portable
intermediate language

Partitioner

ANSI C
NesC/TinyOS JavaME

Backend
CodeGen

Wishbone

Sample data
(for profiling)

+
Targeting TinyOS

9

(,)
Execute!

tstart
 tend
time

WaveScope: TinyOS:

iterate x in S {	
 f();	
 for(i=…) {	

	 …	
 }	
 g();	
}	

•  16 bit microcontroller
•  10K RAM
•  No mem. protection
•  No threads

Task granularity, messaging model

f()	 for () {…}	 g()	

Profile-directed
Cooperative
Multitasking:

msg1 msg2 msg3

Tasks

Same goal as
Protothreads

+
Profiling Streams and Operators

 Every sensor source is
paired with sample data

 Includes timing info

 Measure rates,
execution times

 Separately: profile
network channel in
deployment environment

  per-node send rate

audioStream = 
IFPROF(readFile(“foo8kHz”,  
 readSensor()))	

10

3 ms
20 Kbps 27 Kbps

+
State, Replication, and Pinning

11

Pinning Constraints

• All stateless ops:
unpinned

• Stateful replicated ops:
unpinned

• Stateful global ops:
pinned to server –

don’t distribute!

+
Problem Scenario

12

Embedded Node Server / Base Station

Problem Inputs
•  profile data: net, cpu
•  network channel capacity

Network Boundary

3
19

4

11

12

23
Network:

CPU:
7

NP-Hard

+
Partitioning Algorithm:
Integer linear program formulation

 Introduce variables where 0=server, 1=sensor

 Introduce variables where 1 = cut edge

 Enforce resource bounds

  where

  where

 Minimize objective function

13

�

fu � {0,1}

�

guv � {0,1}

�

cpu < C

�

cpu = fu(computeu)
u

�

�

net < N

�

net = guv (datauv)
uv � Edges
�

�

min(� ◊cpu + net)

3 Parameters
C, N,α

Proxy for
Energy

Tricky bit (see paper):

Relating f and g while
staying linear

+ Evaluation: Two Applications

EEG-based seizure
onset detection

Human speech
detection/identification

1400 operators

14

cepstrals

hamming

FFT

filtbank

logs

prefilt

preemph
source

+ Observation:
Relative cost varies by platform

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

source

preem
ph

ham
m

ing

prefilt

FFT
filtBank

logs
cepstrals

F
ra

c
ti
o
n
 o

f
to

ta
l
C

P
U

 c
o
s
t

Operator

Mote
N80
PC

15

Wishbone’s profiling visualizations
(via graphviz) for four platforms

+ Visualizing Profile Data:
Bandwidth vs. Compute

 10

 100

 1000

 10000

 100000

 1e+06

source

preem
ph

ham
m

ing

prefilt

FFT
filtBank

logs
cepstrals

 0

 10

 20

 30

 40

 50

E
xe

cu
tio

n
 t

im
e

 o
f

o
p

e
ra

to
r

(m
ic

ro
se

co
n

d
s)

B
a

n
d

w
id

th
 o

f
cu

t
(K

B
yt

e
s/

S
e

c)

Cumulative CPU Cost
Bandwidth (Right-hand scale)

16

C
um

ul
at

iv
e

C
P

U
 c

os
t (

re
d)

Operators:

Reasonable
cutpoints

Processing reduces
data quantity

+
Optimal partitions across platforms

EEG Application (1 of 22 channels)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r

o
f

o
p

e
ra

to
rs

 in
 o

p
tim

a
l n

o
d

e
 p

a
rt

iti
o

n

Input data rate as a multiple of 8 kHz

TmoteSky/TinyOS
NokiaN80/Java

Each line represents 2100 partioner-runs

17

+ Speaker Detection: CPU performance
across partitions/platforms

Speaker Detection Application

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

source/1 filtbank/7 logs/8 cepstral/9

H
a

n
d

le
d

 in
p

u
t

ra
te

 a
s

m
u

lti
p

le
 o

f
8

 k
H

z

Cutpoint / number of operators in node partition

TinyOS
JavaME
iPhone
VoxNet

18

Putting the pieces together:

•  Cpu & net bounds 
optimal partition (if exists)

•  Partition  est. throughput

•  Binary search over rates
(aka cpu bounds) 

max possible throughput

example: picks cutpoint after
filtBank for speaker detection

+ Groundtruth:
Testbed deployment, 20 motes

 0

 1

 2

 3

 4

 5

source hamming FFT filtBank logs cepstral

D
e

te
ct

io
n

s
p

e
r

se
co

n
d

Cutpoint

1 TMote + Basestation
20 TMote Network How many detections can we

actually get out of the network?

 0

 20

 40

 60

 80

 100

source hamming FFT filtBank logs cepstral

P
e
rc

e
n
t

Cutpoint

percent input events received
percent network msgs successful

goodput (product)

Compute/Bandwidth
Tension
(1 mote + basestation)

19

Best empirical
cutpoint

+
Related Work

 Graph partitioning for scientific codes
 balanced, heuristic – e.g. Zoltan

 Task scheduling, commonly list scheduling

 Dynamic: Map-reduce, Condor, etc.

 Sensor network context: Tenet and Vango
 Linear pipeline of operators
 Manual partition
 Run TinyOS code on both server and sensor

20

+
CONCLUSION

21

+
Partitioning: Algorithm Runtime

 Graph Preprocessing step
 Merge vertices until all edge-weights are

monotonically decreasing.
 Eliminates the majority of edges

 Even without preprocessing,
 8000 runs,
 partitioning the 1400-node EEG dataflow graph,
 with different CPU budget,
 took under 10 seconds 95% of the time.
 But there is a long tail… luckily ILP solvers

produce approximate solutions as well!

 0.1 1 10 100 1000

Seconds

Time to discover optimal
Time to prove optimal

22

+
Motivating Example

1

2

5

4

1

1

2

5

4

1

1

2

5

4

1

1

2

5

4

1

1

2

5

4

1

1

2

5

4

1

budget = 2 budget = 3 budget = 4

bandwidth = 8 bandwidth = 6 bandwidth = 5

Unstable optimal partition.
Flips between horizontal and vertical partition.

23

