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• Gothic, CO deployment August 2007 
• Voxnet Platform 

•  2x PXA255, 64MB RAM, 8GB Flash, 
802.11B, Mica2 supervisor, Li+ battery, 
Charge controller 
•  Sensors: 4x48KHz audio, 3-axis 
accel, GPS, Internal temp 

Example Application: Locating Marmots 2 

with Lewis Girod & UCLA Blumstein Lab  
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Animal localization 

We target sensing applications   3 

Pothole detection 

Computer  
Vision Pipeline 

leak detection 

EEG Seizure detection Speaker identification 



+ Heterogeneous Platforms 4 

Low power sensors 
weak cpu/radio 

Smartphones 
medium cpu,  
strong radio 

Router 
weak cpu,  
strong radio  

Linux 
microserver 

JavaME 
Symbian 

Brew 

iPhone SDK 

Android 

TinyOS 

Java C++ 
Python 

Contiki 

Mix and 
Match! 



+ Contributions 5 

Results 

Sensor 
source(s) 

Network  
Boundary 



+ Contributions 6 

Sensor 
source(s) 

Results 



+ Contributions 7 

Sensor 
source(s) 

Results 

Compile & Load 

Compile & Load 

Contributions 

• First broadly portable 
sensenet programming 

• Partitioning algorithm 

• Optimize CPU/radio 
tradeoff even if  

app doesn’t “fit” 



+ Architecture 8 

Dataflow graph: 
operators containing  
code in portable  
intermediate language  

Partitioner


ANSI C 
NesC/TinyOS JavaME 

Backend 
CodeGen


Wishbone 

Sample data  
(for profiling) 
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Targeting TinyOS 
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(          ,          ) 
Execute! 

tstart
 tend
time


WaveScope: TinyOS: 

iterate x in S {	
  f();	
  for(i=…) {	

	  …	
  }	
  g();	
}	

•  16 bit microcontroller 
•  10K RAM 
•  No mem. protection 
•  No threads 

Task granularity, messaging model 

f()	 for () {…}	 g()	

Profile-directed 
Cooperative  
Multitasking: 

msg1 msg2 msg3 

Tasks 

Same goal as 
Protothreads 
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Profiling Streams and Operators 

 Every sensor source is 
paired with sample data 

 Includes timing info 

 Measure rates,  
execution times 

 Separately: profile 
network channel in 
deployment environment  

  per-node send rate 

audioStream = 
IFPROF(readFile(“foo8kHz”,   
       readSensor()))	
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3 ms 
20 Kbps 27 Kbps 
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State, Replication, and Pinning 

11 

Pinning Constraints 

• All stateless ops:  
unpinned 

• Stateful replicated ops:  
unpinned 

• Stateful global ops: 
pinned to server –  

don’t distribute!    
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Problem Scenario 
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Embedded Node Server / Base Station 

Problem Inputs 
•  profile data: net, cpu 
•  network channel capacity  

Network Boundary 

3 
19 

4 

11 

12 

23 
Network: 

CPU: 
7 

NP-Hard 



+
Partitioning Algorithm: 
Integer linear program formulation 

 Introduce variables                          where 0=server, 1=sensor 

 Introduce variables                           where 1 = cut edge 

 Enforce resource bounds 

                             where  

                             where   

 Minimize objective function 
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� 

fu � {0,1}

� 

guv � {0,1}

� 

cpu < C

� 

cpu = fu(computeu)
u

�

� 

net < N

� 

net = guv (datauv )
uv � Edges
�

� 

min(� ◊cpu + net)

3 Parameters 
C, N,α 

Proxy for  
Energy 

Tricky bit (see paper): 

Relating f and g while 
staying linear 



+ Evaluation: Two Applications 

EEG-based seizure  
onset detection 

Human speech  
detection/identification 

1400 operators 
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cepstrals 

hamming 

FFT 

filtbank 

logs 

prefilt 

preemph 
source 



+ Observation: 
Relative cost varies by platform 
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Wishbone’s profiling visualizations  
(via graphviz) for four platforms 



+ Visualizing Profile Data: 
Bandwidth vs. Compute 
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Operators: 

Reasonable 
cutpoints 

Processing reduces  
data quantity 
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Optimal partitions across platforms 

EEG Application (1 of 22 channels) 
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+ Speaker Detection: CPU performance 
across partitions/platforms 

Speaker Detection Application 
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Putting the pieces together: 

•  Cpu & net bounds   
optimal partition (if exists) 

•  Partition  est. throughput 

•  Binary search over rates  
(aka cpu bounds)   

max possible throughput 

example: picks cutpoint after 
filtBank for speaker detection 



+ Groundtruth:  
Testbed deployment, 20 motes 
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Best empirical  
cutpoint 
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Related Work 

 Graph partitioning for scientific codes 
 balanced, heuristic – e.g. Zoltan 

 Task scheduling, commonly list scheduling  

 Dynamic: Map-reduce, Condor, etc. 

 Sensor network context: Tenet and Vango  
 Linear pipeline of operators 
 Manual partition 
 Run TinyOS code on both server and sensor 

20 



+
CONCLUSION 
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Partitioning: Algorithm Runtime 

 Graph Preprocessing step 
 Merge vertices until all edge-weights are 

monotonically decreasing. 
 Eliminates the majority of edges 

 Even without preprocessing, 
 8000 runs, 
 partitioning the 1400-node EEG dataflow graph, 
 with different CPU budget, 
 took under 10 seconds 95% of the time. 
 But there is a long tail… luckily ILP solvers 

produce approximate solutions as well! 

 0.1  1  10  100  1000

Seconds

Time to discover optimal
Time to prove optimal
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Motivating Example 
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Unstable optimal partition. 
Flips between horizontal and vertical partition. 
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