iPlane Nano: Path Prediction for Peer-to-Peer Applications

Harsha V. Madhyastha, Ethan Katz-Bassett, Thomas Anderson, Arvind Krishnamurthy, and Arun Venkataramani

University of California, San Diego, University of Washington, and University of Massachusetts, Amherst

Motivation

- Example application: P2P CDN
 - Content replicated across geographically distributed set of end-hosts
 - RedSwoosh (Akamai)
 - Kontiki (BBC's iPlayer)
 - Every client needs to be redirected to replica that provides best performance
- Problem (also for BitTorrent, Skype, ...):
 - Internet performance neither constant nor queriable

Need for Performance Prediction

Current Best Practice:

- Each application measures the Internet independently

• Desired Solution:

- Ability for end-hosts to predict performance
- Infrastructure shared across applications

Need for iPlane Nano

	Predicted Information	Cost to Scale
Network Coordinates	 Limited to latency 	+ Lightweight distr. system

iPlane Nano: Overview

- Server-side: Use iPlane's measurements but store and process differently
 - Key idea: Replace atlas of paths with atlas of links \rightarrow from O(n²) to O(n) representation

Size of Atlas = *O*(#Vantage points **x** #Destinations **x** Avg. Path Length)

iPlane Nano: Overview

- Server-side: Use iPlane's measurements but store and process differently
 - Key idea: Replace atlas of paths with atlas of links \rightarrow from O(n²) to O(n) representation
- Client-side: Application library
 - Download atlas and help disseminate atlas
 - Service queries locally with prediction engine

- Routing policy information encoded in routes is lost
- Need to extract routing policy from measured routes and represent compactly

Routing Policy: Strawman Approach

- Common aspects of Internet routing applied
 Shortest AS path + valley-free + early-exit
- Poor AS path prediction accuracy obtained
 - Too many valley-free shortest AS paths

1. Inferring AS Filters

- Every path is not necessarily a route

 ASes filter propagation of route received from one neighbor to other neighbors
- Filters inferred from measured routes
 - Record every tuple of three successive ASes observed in any measured route
 - Store (AS₁, AS₂, AS₃) to imply AS₂ forwards routes received from AS₃ on to AS₁

- AS filters help discard paths not policy-compliant
- Still have multiple policy-compliant paths

2. Inferring AS Preferences

- For every measured route, alternate paths are determined in link-based atlas
- Divergence of paths indicates preference
 - AS₁ \rightarrow AS2 \rightarrow AS3 ... on measured route
 - Alternate paths imply AS_1 prefers AS_2 over AS_5 and AS_2 prefers AS_3 over AS_6

- Undirected edges used to compute route (S → D)
 Assuming symmetric routing
- But, more than half of Internet routes asymmetric

3. Handling Routing Asymmetry

- Client library includes measurement toolkit
 - Traceroutes to random prefixes at low rate
 - Uploads to central server
- Each client's measurements assimilated into atlas distributed to all clients
- Directed path computed for route prediction
 - Fall back to undirected path if not found

Improved Path Predictions

AS path prediction accuracy with iPlane
 Nano almost as good as with iPlane

From Routes to Properties

- To estimate end-to-end path properties between arbitrary S and D
 - Use atlas to predict route
 - Combine properties of links on predicted route

Latency>	Sum of link latencies
Loss-rate>	Probability of loss on any link

Ongoing challenge: Measuring link properties

Improving P2P Applications

- Used *iPlane Nano* to improve three apps
 P2P CDN
 - Choose replica with best performance
 - VoIP
 - Choose detour node to bridge hosts behind NATs
 - Detour routing for reliability
 - Choose detour nodes with disjoint routes to route around failure
- Refer to paper for VoIP and detour routing experiments

Improving P2P CDN

- Clients: 199 PlanetLab nodes
- Replicas: 10 random Akamai nodes per client
- 1MB file downloaded from "best" replica

Conclusions

- Implemented iPlane Nano
 - Practical solution for scalably providing predictions of Internet path performance to P2P applications
 - Compact representation of routing policy to predict route and path properties between arbitrary endhosts
- Demonstrated utility in improving performance of P2P applications
- Step towards determining minimum information required to capture Internet performance

Thank You!

 iPlane Nano's atlas and traces gathered by iPlane updated daily at

http://iplane.cs.washington.edu

 Send me email if you want to use iPlane Nano's or iPlane's predictions