
USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 199

Modeling and Emulation of Internet Paths

Pramod Sanaga Jonathon Duerig Robert Ricci Jay Lepreau

University of Utah, School of Computing

{pramod, duerig, ricci, lepreau}@cs.utah.edu

Abstract

Network emulation subjects real applications and pro-

tocols to controlled network conditions. Most existing

network emulators are fundamentally link emulators, not

path emulators: they concentrate on faithful emulation

of the transmission and queuing behavior of individual

network hops in isolation, rather than a path as a whole.

This presents an obstacle to constructing emulations of

observed Internet paths, for which detailed parameters

are difficult or impossible to obtain on a hop-by-hop ba-

sis. For many experiments, however, the experimenter’s

primary concern is the end-to-end behavior of paths, not

the details of queues in the interior of the network.

End-to-end measurements of many networks, includ-

ing the Internet, are readily available and potentially pro-

vide a good data source from which to construct realistic

emulations. Directly using such measurements to drive

a link emulator, however, exposes a fundamental dis-

connect: link emulators model the capacity of resources

such as link bandwidth and router queues, but when re-

producing Internet paths, we generally wish to emulate

the measured availability of these resources.

In this paper, we identify a set of four principles for

emulating entire paths. We use these principles to de-

sign and implement a path emulator. All parameters to

our model can be measured or derived from end-to-end

observations of the Internet. We demonstrate our emu-

lator’s ability to accurately recreate conditions observed

on Internet paths.

1 Introduction

In network emulation, a real application or protocol, run-

ning on real devices, is subjected to artificially induced

network conditions. This gives experimenters the oppor-

tunity to develop, debug, and evaluate networked sys-

tems in an environment that is more representative of the

Internet than a LAN, yet more controlled and predictable

than running live across deployed networks such as the

Internet. Due to these properties, network emulation has

become a popular tool in the networking and distributed

systems communities.

Network emulators work by forwarding packets from

an application under test through a set of queues that ap-

proximate the behavior of router queues. By adjusting

the parameters of these queues, an experimenter can con-

trol the emulated capacity of a link, delay packets, and in-

troduce packet loss. Popular network emulators include

Dummynet [22], ModelNet [27], NIST Net [7], and Em-

ulab (which uses Dummynet) [32]. These emulators fo-

cus on link emulation, meaning that they concentrate on

faithful emulation of individual links and queues.

In many cases, particularly in distributed systems, the

system under test runs on hosts at the edges of the net-

work. Experiments on these systems are concerned with

the end-to-end characteristics of the paths between hosts,

not with the behavior of individual queues in the net-

work. For such experiments, detailed modeling of in-

dividual queues is not a necessity, so long as end-to-end

properties are preserved. One way to create emulations

with realistic conditions is to use parameters from real

networks, such as the Internet, but it can be difficult or

impossible to obtain the necessary level of detail to recre-

ate real networks on a hop-by-hop basis. Thus, in order

to run experiments using conditions from real networks,

there is a clear need for a new type of emulator that mod-

els paths as a whole rather than individual queues.

In this paper, we identify a set of principles for path

emulation and present the design and implementation of

a new path emulator. This emulator uses an abstract and

straightforward model of path behavior. Rather than re-

quiring parameters for each hop in the path, it uses a

much smaller set of parameters to describe the entire

path. The parameters for our model can be estimated or

derived from end-to-end measurements of Internet paths.

In addition to the simplicity and efficiency benefits, this

end-to-end focus makes our emulator suitable for recre-

ating observed Internet paths inside a network testbed,

such as Emulab, where experiments are predictable, re-

peatable, and controlled.

1.1 Path Emulation Approaches

One approach to emulating paths is to use multiple in-

stances of a link emulator, creating a series of queues for

200 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the traffic under test to pass through, much like the series

of routers it would pass through on a real path. Model-

Net and Emulab in particular are designed for use in this

fashion. Building a path emulator in this way, however,

requires a router-level topology. While such topologies

can be generated from models or obtained for particu-

lar networks, obtaining detailed topologies for arbitrary

Internet paths is very difficult. Worse, to construct an ac-

curate emulation, capacity, queue size, and background

traffic for each link in the path must be known, making

reconstruction of Internet paths intractable.

Another alternative is to approximate a path as a single

link, using the desired end-to-end characteristics such as

available bandwidth, and observed round-trip time, to set

the parameters of a single link emulator. Because these

properties can be measured from the edges of the net-

work, this is an attractive approach. A recent survey of

the distributed systems literature [29] shows that many

distributed or network systems papers published in top

venues [4, 5, 8, 18, 19, 23, 26, 30]—nearly one third of

those surveyed—include a topology in which a single

hop is used to approximate a path.

On the surface, this seems like a reasonable approxi-

mation: distributed systems tend to be sensitive to high-

level network characteristics such as bandwidth, latency,

and packet loss rather than the fine-grained queuing be-

havior of every router along a path. However, as we dis-

cuss in Section 2 and demonstrate in Section 4, using a

single link emulator to model a measured path can of-

ten fail even simple tests of accuracy. This is due to a

fundamental mismatch between the fact that link emula-

tors model the capacity of links, and the fact that end-

to-end measurements reveal the availability of resources

on those links. This difference can result in flows being

unable to achieve the bandwidth set by the experimenter

or seeing unrealistic round-trip times, and these errors

can be quite large. This model also does not capture in-

teractions between paths, such as shared bottlenecks, or

within paths, such as the reactivity of background flows.

1.2 Path Emulation Principles

What is needed is a new approach to emulation that

models entire Internet paths rather than individual links

within those paths. We have identified four principles for

designing such an emulator:

• Model capacity and available bandwidth sepa-

rately. Existing link emulators model links with

limited capacity. We show why this is not always

sufficient to create a path emulation with a partic-

ular target available bandwidth. We provide the

mathematical basis for deciding how much capacity

and howmuch cross-traffic are necessary to produce

the desired effect.

• Pick appropriate queue sizes. Much work has

been done in choosing “good” values for queue

sizes in real routers, but the issues that apply to em-

ulation are somewhat different. We define concrete

upper and lower bounds for queue sizes in emula-

tion and simulation. These bounds are derived from

the delay and available bandwidth parameters of the

emulated paths to ensure that the configured band-

width is actually achievable.

• Use an abstracted model of the reactivity of

background flows. Real networks have cross-

traffic that reacts in complex ways to foreground

traffic. Available bandwidth can change in reaction

to foreground flows, and thus is a function of the

load offered by the system under test. Discovering

the characteristics of background traffic from the

edge of the network is very difficult—even the de-

gree of statistical multiplexing is obscured by TCP

unfairness in the presence of disparate RTTs [15].

We show that we can model reactivity by concen-

trating only on the effect that the reactivity of the

background flows has on foreground flows.

• Model shared bottlenecks. When modeling a set

of paths, it is likely that some of those paths share

bottlenecks, and that this will affect the properties

seen by foreground flows. Such bottleneck sharing

occurs naturally in router-level emulation, but must

be explicitly modeled in an abstracted emulation.

Note that any of these principles can, individually, be

applied to a link emulator; indeed, our path emulator

implementation, presented in Section 3, is based on the

Dummynet link emulator. Our contribution lies in iden-

tifying all four principles as being fundamental to path

emulation, and in implementing a path emulator based on

them so that they can be empirically evaluated. Although

our focus in this paper is on emulation, these principles

are also applicable to simulation.

2 Path Modeling

Our path model grows out of these four principles. It

takes as input a set of five parameters: base round-

trip time (RTT), available bandwidth (ABW), capacity,

shared bottlenecks, and functions describing the reactiv-

ity of background traffic. As shown in Section 3.3, it is

possible to measure each of these parameters from end

hosts on the Internet, making it feasible to build recon-

structions of real paths. We discuss the ways in which

these parameters are interrelated, and contrast our model

with the approach of using end-to-end measurements as

input to a single link emulator, showing the deficiencies

of such an approach and how our model corrects them.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 201

Our model focuses on accommodating foreground

TCP flows, leaving emulation for other types of fore-

ground flows as future work. We also concentrate on em-

ulating stationary conditions for paths; in principle, any

or all parameters to our model can be made time-varying

to capture more dynamic network behavior.

2.1 Base RTT

The round-trip time (RTT) of a path is the time it takes

for a packet to be transferred in one direction plus the

time for an acknowledgment to be transferred in the op-

posite direction. We model the RTT of a path by break-

ing it into two components: the “base RTT” [6] (RTTbase)

and the queuing delay of the bottleneck link.

The base RTT includes the propagation, transmission,

and processing delay for the entire path and the queuing

delay of all non-bottleneck links. When the queue on

the bottleneck link is empty, the RTT of the path is sim-

ply the base RTT. In practice, the minimum RTT seen

on a path is a good approximation of its base RTT. Be-

cause transmission and propagation delays are constant,

and processing delays for an individual flow tend to be

stable, a period of low RTT indicates a period of little or

no queuing delay.

The base RTT represents the portion of delay that is

relatively insensitive to network load offered by the fore-

ground flows. This means that we do not need to emulate

these network delays on a detailed hop-by-hop basis: a

fixed delay for each path is sufficient.

2.2 Capacity, Available Bandwidth, and
Queuing

The bottleneck link controls the bandwidth available on

the path, contributes queuing delay to the RTT, and

causes packet loss when its queue fills. Thus, three prop-

erties of this link are closely intertwined: link capacity,

available bandwidth, and queue size.

We make the common assumption that there is only

one bottleneck link on a path in a given direction [9] at a

given time, though we do not assume that the same link

is the bottleneck in both directions.

2.2.1 Capacity and Available Bandwidth

Existing link emulators fundamentally emulate limited

capacity on links. The link speed given to the emula-

tor is used to determine the rate at which packets drain

from the emulator’s bandwidth queue, in the same way

that a router’s queue empties at a rate governed by the

capacity of the outgoing link. The quantity that more di-

rectly affects distributed applications, however, is avail-

able bandwidth, which we consider to be the maximum

rate sustainable by a foreground TCP flow. This is the

rate at which the foreground flow’s packets empty from

the bottleneck queue. Assuming the existence of com-

peting traffic, this rate is lower than the link’s capacity.

It is not enough to emulate available bandwidth us-

ing a capacity mechanism. Suppose that we set the ca-

pacity of a link emulator using the available bandwidth

measured on some Internet path: inside of the emulator,

packets will drain more slowly than they do in the real

world. This difference in rate can result in vastly dif-

ferent queuing delays, which is not only disastrous for

latency-sensitive experiments, but as we will show, can

cause inaccurate bandwidth in the emulator as well.

Let qf and qr be the sizes of the bottleneck queues in

the forward and reverse directions, respectively, and let

Cf andCr be the capacities. The maximum time a packet

may spend in a queue is
q
C
, giving us a maximum RTT

that can be observed on the path:

RTTmax = RTTbase +
qf

Cf

+
qr

Cr

(1)

If we were to use ABWf and ABWr—the available

bandwidth measured from some real Internet path—to

setCf andCr, Equation 1 would yield much larger queu-

ing delays within the emulator than seen on the real path

(assuming the queues sizes on the path and in the emula-

tor are the same).

For instance, consider a real path with RTTbase =
50ms, a bottleneck of symmetric capacity Cf = Cr =
43Mbps (a T-3 link) and available bandwidth ABWf =
ABWr = 4.3Mbps. For a small qf and qr of 64KB (fil-

lable by a single TCP flow), the RTT on the path is

bounded at 74ms, since the forward and reverse direc-

tions each contribute at most 12ms of queuing delay.

However, if we set Cf = Cr = 4.3Mbps within an em-

ulator (keeping queue sizes the same), each direction of

the path can contribute up 120ms of queuing delay. The

total resulting RTT could reach as high as 290ms.

This unrealistically high RTT can lead to two prob-

lems. First, it fails to accurately emulate the RTT of the

real path, causing problems for latency-sensitive appli-

cations. Second, it can also affect the bandwidth avail-

able to TCP, a problem we discuss in more detail in

Section 2.2.2.

One approach reducing the maximum queuing delay

would be to simply reduce the qf and qr inside of the

emulator. This may result in queues that are simply too

small. In the example above, to reduce the queuing delay

within the path emulator to the same level as the Inter-

net path, we would we would have to reduce the queue

size by a factor of 10 to 6.4KB. A queue this small will

cause packet loss if a stream sends a small burst of traf-

fic, preventing TCP from achieving the requested avail-

able bandwidth. We also discuss minimum queue size in

more detail in Section 2.2.2.

202 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The solution to these queuing problems is to separate

the notions of capacity and available bandwidth in our

path emulation model: they are independent parameters

to each path. When we wish to emulate a path with com-

peting traffic at the bottleneck, we set C > ABW. To

model links with no background traffic, we can still set

C = ABW, as is done implicitly in a link emulator.

Of course, when C > ABW, we must fill the excess

capacity to limit foreground flows to the desired ABW.

A common solution to this problem has been to add

a number of background TCP flows to the bottleneck.

The problem with this technique is one of measurement.

When the emulation is constructed using end-to-end ob-

servations of a real path, discovering the precise behav-

ior or even the number of competing background flows is

not possible from the edges of the network. Adding reac-

tive background flows to our emulation would not mirror

the reactivity on the real network, and would result in an

inexact ABW in the emulator.

Since there is not enough information to replicate the

background traffic at the bottleneck, we separately em-

ulate its rate and its reactivity. We can precisely emu-

late a particular level of background traffic using non-

responsive, constant-bit-rate traffic. This mechanism al-

lows us to provide an independent mechanism for emu-

lating reactivity, described in Section 2.3. The reactivity

model can change the level of background traffic to em-

ulate responsiveness while providing a precise available

bandwidth to the application at every point in time.

2.2.2 Queue Size

Much work has been done in choosing appropriate val-

ues for queue sizes in real routers [1], but the set of con-

straints for emulation are somewhat different: we have a

relatively small set of foreground flows and a specific tar-

get ABW that we wish to achieve. Although queue sizes

can be provided directly as parameters to our model, we

typically calculate them from other parameters. We do

this for two reasons. First, it is difficult to measure the

bottleneck queue size from the endpoints of the network

due to interference from cross-traffic. Second, the bot-

tleneck queue size affects applications only through ad-

ditional latency or reduced bandwidth it might cause.

Because our primary concern is emulating application-

visible effects, we include a method for selecting a queue

size that enables accurate emulation of those effects.

We look at queue sizes in two ways: in terms of space

(their capacity in bytes or packets) and in terms of time

(the maximum queuing delay they may induce). This

leads to two constraints on queue size:

• The queue must be large enough in space that a TCP

stream is able to get the full desired ABW; it should

not drop bursts of packets.

• The queue must not be so large in time that the

queuing delay from a full queue causes excessive

RTTs, as seen in Equation 1.

Lower bound. Finding the lower bound is straight-

forward. Current best practices suggest that for a small

number of flows, a good lower bound on queue size is

the sum of the bandwidth-delay products of all flows

traversing that link [1]. Here, a “small number” of flows

is fewer than about 500. Because we are concerned

only with flows of a foreground application, the num-

ber of flows on a specific path will typically be much

smaller than this. For a TCP flow f , the window size

wf is roughly equal to its bandwidth-delay product, and

is capped by wmax, the maximum window size allowed

by the TCP implementation. Thus, for a given path in a

given direction, we sum over the set of flows F , giving

us a lower bound on q:

q≥ ∑
f∈F

min(wf ,wmax) (2)

This bound applies to the queues in both directions on

the path, q f and qr. Intuitively, the queue must be large

enough to hold at least one window’s worth of packets

for each flow traversing the queue.

Upper bound. The upper bound is more complex.

The maximum RTT tolerable for a given flow on a given

path, before it becomes window-limited, is given by

(using the empirically derived TCP performance model

demonstrated by Padhye et al. [16]):

RTTmax =
wmax

ABW
(3)

where ABW is the available bandwidth we wish the flow

to experience. If the RTT grows above this limit, the

bandwidth-delay product exceeds the maximum window

size wmax, and the flow’s bandwidth will be limited by

TCP itself, rather than the ABW we have set in the em-

ulator. Since our goal is to accurately emulate the given

ABW, this would result in an incorrect emulation.

It is important to note that a single flow along a path

cannot cause itself to become window-limited, as it will

either fill up the bottleneck queue before it reaches wmax,

or stabilize on an average queue occupancy no larger than

wmax. Two or more flows, however, can induce this be-

havior in each other by filling a queue to a greater depth

than can be sustained by either one. Even flows crossing

a bottleneck in opposite directions can cause excessive

RTTs, as each flow’s ACK packets must wait in a queue

with the other flow’s data packets. The value of wmax

may be defined by several factors, including limitations

of the TCP header and configuration options in the TCP

stack, but is essentially known and fixed for a given ex-

periment.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 203

Flows may travel in both directions along a path, and

while both will see the same RTT, they may have differ-

ent RTTmax values if the ABW on the path is not symmet-

ric. Without loss of generality, we define the “forward”

direction of the path to be the one with the higher ABW.

From Equation 3, flows in this direction have the smaller

RTTmax, and since we do not want either flow to become

window-limited, we use ABWf to find the upper bound.

Because most (Reno-derived) TCP stacks tend to

reach a steady state in which the bottleneck queue is

full [16], bottleneck queues tend to be nearly full, on av-

erage. Thus, we can expect flows to experience RTTs

near the maximum given by Equation 1 in steady-state

operation. For our emulation of ABW to be accurate,

then, Equation 1 (the maximum observable RTT) must

be less than or equal to Equation 3 (the maximum toler-

able RTT). If we set the two capacities to be equal and

solve for the queue sizes, this gives us:

qf +qr ≤C ·

�

wmax

ABWf

−RTTbase

�

(4)

Because all terms on the right side are either fixed or pa-

rameters of the path, we have a bound on the total queue

size for the path. (It is not necessary for the forward and

reverse capacities to be equal to solve the equation. We

do so here for simplicity and clarity.)

Setting the Queue Size. To select sizes for the queues

on a path, we must simply split the total upper bound in

Equation 4 between the two directions, in such a way that

neither violates Equation 2.

These two bounds have a very important property: it is

not necessarily possible to satisfy both when C = ABW.

When either bound is not met, the emulation will not pro-

vide the desired network characteristics. The capacity C

acts as a scaling factor on the upper bound. By adjust-

ing it while holding ABW constant, we can raise or lower

the maximum allowable queue size, making it possible

to satisfy both equations.

Figure 1 illustrates this principle by showing valid

queue sizes as a function of capacity. As capacity

changes, the upper bound increases while the lower

bound remains constant. When capacity is at or near

available bandwidth, the upper bound is below the lower

bound, which means that no viable queue size can be se-

lected. As capacity increases, these lines intersect and

yield an expanding region of queue sizes that fulfill both

constraints. This underscores the importance of emulat-

ing available bandwidth and capacity separately.

Asymmetry. Throughput artifacts due to violations

of Equation 3 are exacerbated when traffic on the path

is bidirectional and the available bandwidth is asymmet-

ric. In this case, the flows in each direction can tolerate

different maximum RTTs, with the flow in the forward

(higher ABW) direction having the smaller upper bound.

 0

 50

 100

 150

 200

 10 15 20 25 30 35 40 45 50

Q
u
e
u
e
 S

iz
e
 B

o
u
n
d
 (

K
B

)

Capacity (Mbps)

Viable Queue Sizes
Upper Bound
Lower Bound

Figure 1: The relationship between capacity and the bounds

on queue size for a path with ABWf = ABWr = 10Mbps,

RTTbase = 20ms, and wmax = 65KB. Low capacities prevent

any viable queue size.

This means that it is disproportionately affected by high

RTTs. Others have described this phenomenon [2], and

we demonstrate it empirically in Section 4.1.

To determine how common paths with asymmetric

ABW are in practice, we measured the available band-

width on 7,939 paths between PlanetLab [17] nodes. Of

those paths, 30% had greater ABW in one direction than

the other by a ratio of at least 2:1, and 8% had a ratio of

at least 10:1. Because links with asymmetric capacities

(e.g., DSL and cable modems) are most common as last-

mile links, and because PlanetLab has few nodes at such

sites, it is highly likely that most of this asymmetry is

a result of bottlenecks carrying asymmetric traffic. Our

experiments in Section 4 shows that on a path with an

available bandwidth asymmetry ratio as small as 1.5:1,

a simple link emulation model that does not separate ca-

pacity and ABW, and does not set queue sizes carefully,

can result in a 30% error in achieved throughput.

2.2.3 Putting It Together

Figure 2 shows an overview of our model as described

thus far. We model the bottleneck of a path with a queue

that drains at a fixed rate, and a constant bit-rate cross-

traffic source. The rate at which the queue drains is the

capacity, and the difference between the injection rate of

the cross-traffic and the capacity is the available band-

width. The remainder of the delay on the path is mod-

eled by delaying packets for a constant amount of time

governed by RTTbase. The two halves of the path are

modeled independently to allow for asymmetric paths.

204 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Modeling a single path, in both the forward and re-

verse directions.

2.3 Interactions Between Flows

In addition to emulating the behavior of the foreground

flows’ packets in the bottleneck queue, we must also em-

ulate two important interactions: the interaction of mul-

tiple foreground flows on different paths that share bot-

tlenecks, and the interaction of foreground flows with re-

sponsive background traffic.

Shared Bottlenecks. To properly emulate sets of

paths, we must take into account bottlenecks that are

shared by more than one path. Consider the simple case

in Figure 3. If we do not model the bottleneck BL2

(shared by the paths from source S to destinations D2

and D3), we will allow multiple paths to independently

use bandwidth that should be shared between them. Do-

ing so could result in the application getting significantly

more bandwidth within the emulator than it would on the

real paths [21].

We do not, however, need to know the full router-level

topology of a set of paths in order to know that they share

bottlenecks. Existing techniques [12] can detect the ex-

istence of such bottlenecks from the edges of the net-

work, by correlating the observed timings of simultane-

ous packet transmissions on the paths.

To model paths that share a bottleneck, we abstract

shared bottlenecks in a simple manner: instead of giv-

ing each path an independent bandwidth queue, we allow

multiple paths to share the same queue. Traffic leaving a

node is placed into the appropriate queue based on which

destinations, if any, share bottlenecks from that source.

This is illustrated in Figure 4: the two bottleneck links

in the original topology are represented as bottleneck

queues inside the path emulator. While paths sharing a

bottleneck link share a bottleneck queue, each still has

its own base RTT applied separately. Because base RTT

represents links in the path other than the bottleneck link,

links with a shared bottleneck do not necessarily have the

same RTT. With this model, it is also possible for a path

to pass through a different shared bottleneck in each di-

rection.

D2

D1

BL2

BL1

S

D3

Figure 3: A router-level topology, showing two bottleneck

links. One (BL2) is shared by two paths from source S: the

paths to destinations D2 and D3.

D1

S

BL1�queue

D3

......

BL2�queue

Emulator

... ...

D2

Figure 4: An abstracted view of Figure 3, with the bottleneck

links represented as bottleneck queues.

Reactivity of Background Traffic. Flows traversing

real Internet paths interact with cross-traffic, and this

cross-traffic typically has some reactivity to the fore-

ground flows. Thus, ABW on a path is not constant, even

under the assumption that the set of background flows

does not change. Simply setting a static ABW for a path

can miss important effects: if more than one flow is sent

along the path, the aggregate ABW available to all fore-

ground flows may be greater, as the background traffic

backs off further in reaction to the increased load. This

is particularly important when the bottleneck is shared

between two or more paths; the load on the bottleneck is

the sum of the load on all paths that pass through it.

While it is possible to create reactivity in the emula-

tion by sending real, reactive cross-traffic (such as com-

peting TCP flows) across the bottlenecks, doing so in a

way that faithfully reproduces conditions on an observed

link is problematic. The number, size, and RTT of these

background flows all affect their reactivity, and such de-

tail is not easily observed from endpoints. We turn to our

guiding principle of abstraction, and model the reactivity

of the background traffic to our foreground flows, rather

than the details of the background traffic itself.

We look at ABW as a function of offered load:

ABWd(Ld) gives the aggregate bandwidth available in

direction d (forward or reverse) of a given path, as a

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 205

Name Type Description

Cf , Cr fixed Capacity of the bottleneck in the forward and reverse directions. Fixed to value

sufficient to make satisfaction of queue bounds possible for most experiments.

ABWf (|Ff |),
ABWr(|Fr|)

measured Table giving available bandwidth for the forward and reverse directions, as a func-

tion of the number of flows traversing the path in that direction.

RTTbase measured Base RTT of the path, split evenly between the two directions.

Sp∈P measured A subset of paths p from the set of all paths P that share a common bottleneck.

Multiple instances of this parameter may be given.

qf ,qr derived The queue size for each bottleneck is derived from the measured values of ABW,

RTTbase, and the fixed capacity. If ABW is adjusted based on the reactivity table,

queue size is as well.

Table 1: The parameters to our path emulation. All parameters except Sp∈P are given on a per-path basis.

function of the offered load Ld in that direction on that

path. A set of such functions, one for each direction on

each path, is supplied as a parameter to the emulation.

Note that this offered load—and with it the available

bandwidth—will likely vary over time during the emu-

lated experiment. The ABW function can be created ana-

lytically based on a model or it can be measured directly

from a real path, by offering loads at different levels and

observing the resulting throughput. The emulation can

then provide—with high accuracy—exactly the desired

ABW. Once we have used the reactivity functions to de-

termine the aggregate bandwidth available on a path, we

can set both the capacity and queue sizes as described in

Section 2.2.2.

Because an ABW function is a parameter of a particu-

lar path, when multiple paths share a bottleneck, we must

combine their functions. There are multiple ways that the

ABW functions may be combined. Ideally, we would like

to account for every possible combination of flows using

every possible set of paths that share the bottleneck. The

combinatorial explosion this creates, however, quickly

makes this infeasible for even a modest number of paths.

Instead, the simple strategy that we currently employ is

to take the mean of the ABW values for each individual

path sharing the bottleneck, weighted by the number of

flows on each path. We are exploring the possibility that

more complicated approaches may yield more realistic

results.

3 Implementing a Path Emulator

Although the model we have discussed is applicable to

both simulation and emulation, we chose to do our ini-

tial implementation in an emulator. Our prototype path

emulator is implemented as a set of enhancements to the

Dummynet [22] link emulator. We constructed our pro-

totype within the Emulab network testbed [32], but it is

not fundamentally linked to that platform.

3.1 Basis: The Dummynet Link Emulator

Dummynet is a popular link emulator implemented in the

FreeBSD kernel. It intercepts packets coming through

an incoming network interface and places them in its in-

ternal objects—called pipes—to emulate the effects of

delay, limited bandwidth, and probabilistic random loss.

Each pipe has one or more queues associated with it.

Given the capacity or the delay of a pipe, Dummynet

schedules packets to be emptied from the corresponding

queues and places them on the outgoing interface.

Dummynet can be configured to send a packet through

multiple pipes on its path from an incoming interface to

an outgoing interface. One pipe may enforce the base

delay of the link, and a subsequent pipe may model the

capacity of the link being emulated. Dummynet uses the

IPFW packet filter to direct packets into pipes, and can

therefore use many different criteria to map packets to

pipes.

In network emulation testbeds, “shaping nodes” are in-

terposed on emulated links, each acting as a transparent

bridge between the endpoints. In Emulab, the shaping

nodes’ Dummynet is configured with one or more pipes

to handle traffic in each direction on the emulated link,

allowing for asymmetric link characteristics. Shaping

nodes can also be used in LAN topologies by placing a

shaping node between each node and switch implement-

ing the LAN. Thus traffic between any two nodes passes

through two shaping nodes: one between the source and

the LAN, and one between the LAN and the destination.

3.2 Enhancements for Path Emulation

To turn Dummynet into a path emulator, we made a num-

ber of enhancements to it. The parameters to the result-

ing path emulator are summarized in Table 1.

Capacity and Available Bandwidth. Dummynet im-

plements bandwidth shaping in terms of a bandwidth

pipe, which contains a bandwidth queue that is drained at

a specified rate, modeling some capacity C. To separate

206 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the emulation of capacity from available bandwidth, we

modified Dummynet to insert “placeholder” packets into

the bandwidth queues at regular, configurable intervals.

These placeholder packets are neither received from nor

sent to an actual network interface; their purpose is sim-

ply to adjust the rate at which foreground flows’ packets

move through the queue. The placeholders are sent at a

constant bit rate ofC−ABW, setting the bandwidth avail-

able to the experimenter’s foreground flows. ABW can

be set as a function of offered load, using the mechanism

described below.

Base Delay. We leave Dummynet’s mechanism for

emulating the constant base delay unchanged. Packets

pass through “delay” queues, where they remain for a

fixed amount of time.

Queue Size. We use Equation 4 to set the queue size

for the bandwidth queues in each direction of each path,

dividing the number of bytes equally between the for-

ward and reverse directions. Because the model assumes

that packets are dropped almost exclusively by the bottle-

neck router, modeled by the bandwidth queues, the size

of the delay queues is effectively infinite.

Background Traffic Reactivity. We implement the

ABWf and ABWr functions as a set of tables that are pa-

rameters to the emulator. Each path is associated with a

distinct table in each direction. We measure the offered

load on a path by counting the number of foreground

flows traversing that path. We do this for two reasons.

First, it makes the measurement problem more tractable,

allowing us to measure a relatively small, discrete set of

possible offered loads on the real path. Second, our goal

is to recreate inside the emulator the behavior that one

would see by sending the same flows on the real network.

The complex feedback system created by the interaction

of foreground flows with background flows is captured

most simply by measuring entire flows, as it is strongly

related to TCP dynamics. It does have a downside, how-

ever, in that it makes the assumption that the foreground

flows will be full-speed TCP flows. During an execution

of the emulator, a traffic monitor counts the number of

active foreground flows on each path, and informs the

emulator which table entry to use to set the aggregate

ABW for the path. This target ABW is achieved inside

the emulator by adjusting the rate at which placeholder

packets enter the bandwidth queue. Our implementation

also readjusts bottleneck queue sizes in reaction to these

changes in available bandwidth.

Shared Bottlenecks. We implement shared bottle-

necks by allowing a bandwidth pipe to shape traffic to

more than one destination simultaneously. For each end-

point host in the topology, the emulator takes as a pa-

rameter a set of “equivalence classes”: sets of destina-

tion hosts that share a common bottleneck, and thus a

common bandwidth pipe. Packets are directed into the

proper bandwidth pipe using IPFW rules. Our current

implementation only supports bottlenecks that share a

common source. We are in the process of extending our

prototype to implement other kinds of bottlenecks, such

as those that share a destination.

3.3 Gathering Data from the Real World

To create and run experiments with the path emulator, we

need a source of input data for the parameters shown in

Table 1. Although it is possible to synthesize values for

these parameters, we concentrate here on gathering them

from end-to-end measurements of the Internet.

We developed a system for gathering data for these

parameters using hosts in PlanetLab [17], which gives

us a large number of end-site vantage points around the

world. Each node in the emulation is paired with a

PlanetLab node; measurements taken from the Planet-

Lab node are used to configure the paths to and from the

emulated node.

To gather values for RTTbase, we use simple ping

packets, sent frequently over long periods of time [10].

The smallest RTT seen for a path is presumed to be an

event in which the probe packet encountered no signif-

icant queuing delay, and thus representative of the base

RTT.

To detect shared bottlenecks from a source to a set of

destinations, we make use of a wavelet-based conges-

tion detection tool [12]. This tool sends UDP probes

from a source node to all destination nodes of inter-

est and records the variations in one-way delays expe-

rienced by the probe packets. Random noise introduced

in the delays by non-bottleneck links is removed using

a wavelet-based noise-removal technique. The paths are

then grouped into different clusters, with all the paths

from the source to the set of destinations going through

the same shared bottleneck appearing in a single clus-

ter. The shared bottlenecks found by this procedure are

passed to the emulator as the Sp∈P sets.

Our goal is that a TCP flow through the emulator

should achieve the same throughput as a TCP flow sent

along the real path. So, we use a definition of ABW that

differs slightly from the standard one—we equate the

available bandwidth on a path to the throughput achieved

by a TCP flow. We also need to measure how this ABW

changes in response to differing levels of foreground traf-

fic. While we cannot observe the background traffic on

the bottleneck directly, we can observe how different

levels of foreground traffic result in different amounts

of bandwidth available to that foreground traffic. Al-

though packet-pair and packet-train [9, 13, 20] measure-

ment tools are efficient, they do not elicit reactions from

background traffic. For this reason, we use the follow-

ing methodology to concurrently estimate the ABW and

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 207

reactivity of background traffic on a particular path.

To measure the reactivity of Internet cross-traffic to the

foreground flows, we run a series of tests using iperf

between each pair of PlanetLab nodes, with the number

of concurrent flows ranging from one to ten. We use the

values obtained from these tests between all paths of in-

terest to build the reactivity tables for the path emulator.

However, running such a test takes time: only one test

can be active on each path at a time, and iperf must run

long enough to reach a steady state. Thus, our measure-

ments necessarily represent a large number of snapshots

taken at different times, rather than a consistent snapshot

taken at a single time. The cross-traffic on the bottleneck

may vary significantly during this time frame. So, the

reactivity numbers are an approximation of the behavior

of cross-traffic at the bottleneck link. This is a general

problem with measurements that must perturb the envi-

ronment to differing levels. The time required to gather

these measurements is also the main factor limiting the

scale of our emulations.

Another problem that arises is the proper ABW value

for shared bottlenecks. Because paths that share a bottle-

neck do not necessarily have the same RTTs, they may

evoke different levels of response from reactive back-

ground traffic. It is not feasible to measure every possible

combination of flows on different paths through the same

shared bottleneck. Thus, we use the approximation dis-

cussed in Section 2.3 to set ABW for shared bottlenecks.

Our current implementation does not measure the bot-

tleneck link capacitiesCf andCr on PlanetLab paths, due

to the difficulty of obtaining accurate packet timings on

heavily loaded PlanetLab nodes [25]. We set the capac-

ity of all bottleneck links to 100Mbps. In practice, we

find that for C ≫ ABW, the exact value of C makes little

difference on the emulation, and thus we typically set it

to a fixed value. We demonstrate this in Section 4.3.

4 Evaluation

The goal of our evaluation is to show that our path emu-

lator accurately reproduces measurements taken from In-

ternet paths. We demonstrate, using micro-benchmarks

and a real application, that our path emulator meets this

goal under conditions in which approximating the path

using a single link emulator fails to do so. In the ex-

periments described below, we concentrate on accurately

reproducing TCP throughput and observed RTT.

All of our experiments were run in Emulab on PCs

with 3GHz Pentium IV processors and 2GB of RAM.

The nodes running application traffic used the Fedora

Core Linux distribution with a 2.6.12 kernel, with its de-

fault BIC-TCP implementation. The link emulator was

Dummynet running in the FreeBSD 5.4 kernel, and our

path emulator is a set of modifications to it. All mea-

surements of Internet paths were taken using PlanetLab

hosts.

4.1 Effect on TCP Throughput

We begin by running a micro-benchmark, iperf, a bulk-

transfer tool that simply tries to achieve as much through-

put as possible using a single TCP flow.

We performed a series of experiments to compare the

behavior of iperf when run on real Internet paths, an

unmodified Dummynet link emulator, and our path em-

ulator. We used a range of ABW and RTT values, some

taken from measurements on PlanetLab and some syn-

thetic. The ABW values from PlanetLab were measured

using iperf, and thus the emulators’ accuracy can be

judged by how closely iperf’s performance in the em-

ulated environment matches the ABW parameter. In the

link emulator, we set the capacity to the desired ABW (as

there is only one bandwidth parameter), and in the path

emulator, we set capacity to 100Mbps. The link emu-

lator uses Dummynet’s default queue size of 73KB, and

the path emulator’s queue size was set using Equation 4.

Reactivity tables and shared bottlenecks were not used

for these experiments. We started two TCP flows simul-

taneously on the emulated path, one in each direction,

and report the mean of five 60-second runs.

The results of these experiments are shown in Table 2.

It is clear from the percent errors that the path emulation

achieves higher accuracy than the link emulator in many

scenarios. While both achieve within 10% of the speci-

fied throughput in the first test (a low-bandwidth, sym-

metric path), as path asymmetry and bandwidth-delay

product increase, the effects discussed in Section 2.2

cause errors in the link emulator. While our path em-

ulator remains within approximately 10% of the target

ABW, the link emulator diverges by as much as 66%.

The forward direction, with its higher throughput, tends

to suffer disproportionately higher error rates. Because

the measured values come from real Internet paths, they

do not represent unusual or extreme conditions.

The first two rows of synthetic results demonstrate

that, even in cases of symmetric bandwidth, the failure to

differentiate between capacity and available bandwidth

hurts the link emulator’s accuracy. The third demon-

strates divergence under highly asymmetric conditions.

To evaluate the importance of selecting proper queue

sizes, we reran two earlier experiments in our path em-

ulator, this time setting the queue sizes greater than the

upper limits allowed by Equation 4. These results are

shown in the bottommost section of Table 2 (labeled

“Bad Queue Size”). The RTT for each flow grows until

the flows reach their maximum window sizes, preventing

them from utilizing the full ABW of the emulated path

and resulting in large errors.

208 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Configured Configured Achieved ABW

ABW (Kbps) Base Delay Queue Tput (Kbps) Error (%)

Test Type Forward Reverse (ms) Emulator size (KB) Forward Reverse Forward Reverse

Measured

2,251 2,202 64
link 73 2,070 2,043 8.0 7.2

path 957 2,202 2,163 2.1 1.8

4,061 2,838 29
link 73 2,774 2,599 31.7 8.4

path 957 3,822 2,706 5.8 4.6

6,436 2,579 12
link 73 3,176 2,358 50.6 8.5

path 844 6,169 2,448 4.1 5.0

25,892 17,207 4
link 73 20,608 15,058 20.4 12.5

path 197 23,237 15,644 10.2 9.1

Synthetic

8,000 8,000 45
link 73 6,228 6,207 22.0 22.4

path 237 7,493 7,420 6.3 7.2

12,000 12,000 30
link 73 9,419 9,398 21.5 21.6

path 158 11,220 11,208 6.5 6.6

10,000 3,000 30
link 73 3,349 2,705 66.5 9.8

path 265 9,150 2,690 8.5 10.3

25,892 17,207 4
link — — — — —

Bad Queue path 390 21,012 15,916 18.8 7.5

Size
10,000 3,000 30

link — — — — —

path 488 7,641 2,768 23.6 7.7

Table 2: Throughput achieved by simultaneous TCP flows along both directions of a number of paths, using a link emulator and

using our path emulator.

 0

 20

 40

 60

 80

 100

 0 10 20 30

R
T

T
 (

m
s
)

Time (s)

(a) Harvard-WUSTL RTT

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30

R
T

T
 (

m
s
)

Time (s)

(b) Link Emulator RTT

 0

 20

 40

 60

 80

 100

 0 10 20 30

R
T

T
 (

m
s
)

Time (s)

(c) Path Emulator RTT

Figure 5: RTT over the lifetime of a 30-second TCP flow. Note that the range of the Y-axis in the center graph is seven times larger

than the other two graphs.

4.2 Effect on Round-Trip Time

In addition to TCP throughput, our path emulator also

has a significant effect on the RTT observed by a flow,

producing RTTs much more similar to those on real paths

than those seen in a simple link emulator. To evaluate this

difference, we measured the path between the PlanetLab

nodes at Harvard and those at Washington University in

St. Louis (WUSTL). The ABW was 409Kbps from Har-

vard to WUSTL, and 4,530Kbps from WUSTL to Har-

vard. The base RTT was 50ms. To isolate the effects of

distinguishing ABW and capacity from other differences

between the emulators, we set the queue size in both to

the same value (our Linux kernel’s maximum window

size of 32KB), and exercised only one direction of the

path.

Figure 5 shows the round-trip times seen during a 30-

second iperf run from Harvard to WUSTL, and the

round-trip times seen under both link and path emulation.

Both emulators achieved the target bandwidth, but dra-

matically differ in the round-trip times and packet-loss

characteristics of the flows. Figure 5(b) and Figure 5(c)

show the round-trip times observed on the link and path

emulators respectively. As TCP tends to keeps the bot-

tleneck queue full, it quickly plateaus at the length of the

queue in time. Because the link emulator’s queue drains

at the rate of ABW, rather than the much larger rate ofC,

packets spend much longer in the queue in the link emu-

lator. The average RTT for the link emulator was 629ms,

an order of magnitude higher than the average RTT of

53.1ms observed on the actual path (Figure 5(a)). Be-

cause the path emulator separates capacity and ABW, it

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 209

 5

 10

 15

 20

 25

 30

 35

 6 8 10 12 14 16 18

E
rr

o
r

(%
)

Capacity (Mbps)

Sensitivity of Capacity Parameter

Figure 6: Experiments on an emulated path with 6.5Mbps

available bandwidth in the forward direction. A constant queue

size is maintained while capacity is varied.

gives an average RTT of 53.2ms, which is within 1% of

the value on the real path. The standard deviation inside

of the path emulator is 3.0ms, somewhat lower than the

5.1ms seen on the real path.

To get comparable RTTs from the link emulator, its

queue would have to be much smaller, around 2.5KB,

which is not large enough to hold two full-size TCP

packets. We reran this experiment in the link emulator

using this smaller queue size, and a unidirectional TCP

flow was able to achieve close to the target 409Kbps

throughput. However, when we ran bidirectional flows,

the flow along the reverse direction was only able to

achieve a throughput of around 200Kbps, despite the fact

that the ABW in that direction was set to 4,530Kbps (the

value measured on the real path). This demonstrates that

adjusting queue size by itself is not sufficient to fix ex-

cessive RTTs, as it can cause significant errors in ABW

emulation.

4.3 Sensitivity Analysis of Capacity

As we saw in Figure 1, once the capacity has grown suf-

ficiently large, it is possible to satisfy both the upper and

lower bounds on queue size. Our next experiment tests

how sensitive the emulator is to capacity values larger

than this intersection point.

We ran several trials with a fixed available bandwidth

(6.5Mbps) but varying levels of capacity. All other pa-

rameters were left constant. Figure 6 shows the relative

error in achievable throughput as we vary the capacity.

While error peaks when capacity is very near available

bandwidth, outside of that range, changing the capacity

has very little effect on the emulation. This justifies the

decision in our implementation to use a fixed, large ca-

pacity, rather than measuring it for each path.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

D
o
w

n
lo

a
d
 D

u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Nodes

BitTorrent Download Times

Simple Link Emulator
Path Emulator

Figure 7: Time taken by participants in a BitTorrent swarm to

download a file. Download times are shown for each node for

both path and simple link emulation.

4.4 BitTorrent Application Results

We demonstrated in Section 4.1 that using path param-

eters in a simple link emulator causes artifacts in many

situations. We now show that these artifacts cause inac-

curacies when running real applications and are not just

revealed using measurement traffic. Though this experi-

ment uses multiple paths, to isolate the effects of capacity

and queue size, it does not model shared bottlenecks or

reactivity.

Figure 7 shows the download times of a group of Bit-

Torrent clients using simple link emulation and path em-

ulation with the same parameters, which were gathered

from PlanetLab paths. Each pair of bars shows the time

taken to download a fixed file on one of the twelve nodes.

The simple link emulator limits available bandwidth in-

accurately under some circumstances, which increases

the download duration on many of the nodes. As seen in

the figure, each node downloads an average of 6% slower

in the link emulator than it does when under path emu-

lator. The largest difference is 12%. This shows that the

artifacts we observe with micro-benchmarks also affect

the behavior of real applications.

4.5 Network Reactivity

Our next experiment examines the fidelity of our reactiv-

ity model. We ran reactivity tests on a set of thirty paths

between PlanetLab nodes. For each path, we measured

aggregate available bandwidth with a varying number of

foreground iperf flows, ranging from one to eight. We

used this data as input to our emulator, in the form of

reactivity tables, then repeated the experiments inside of

the emulator. In this experiment, the paths are tested in-

dependently at different times, so no shared bottlenecks

are exercised.

210 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f
T

ri
a
ls

% Error

CDF of Error for Reactivity Model

Figure 8: A CDF showing percentage of error over paths with

multiple foreground flows.

By comparing the throughputs achieved inside of the

emulator to those obtained on the real path, we can test

the accuracy of our reactivity model. Figure 8 shows the

results of this experiment. For each trial (a specific num-

ber of foreground flows over a specific path), we com-

puted the error as the percentage difference between the

aggregate bandwidth measured on PlanetLab and that

recreated inside the emulator. Our emulator was quite

accurate; 80% of paths were emulated to within 20% of

the target bandwidth.

There are some outliers, however, with significant er-

ror. These point to limitations of our implementation,

which currently sets capacities to 100Mbps and has a

1MB limit on the bottleneck queue size. Some paths in

this experiment had very high ABW: as high as 78Mbps

in aggregate for eight foreground flows. As we saw in

Figure 6, when ABW is close to capacity, significant er-

rors can result. With high bandwidths and multiple flows,

the lower bound on queue sizes (Equation 2) also be-

comes quite large, producing two sources of error. First,

if this bound becomes larger than our 1MB implemen-

tation limit, we are unable to provide sufficient queue

space for all flows to achieve full throughput. Second,

our limits on capacity limit the amount we can adjust the

upper bound on queue size, Equation 4, meaning that we

may end up in a situation where it is not possible to sat-

isfy both the upper and lower bounds.

It would be possible to raise these limits in our im-

plementation by improving bandwidth shaping efficiency

and allowing larger queue sizes. The underlying issues

are fundamental ones, however, and would reappear at

higher bandwidths: our emulator requires that capacity

be significantly larger than the available bandwidth to be

emulated, and providing emulation for large numbers of

flows with high ABW requires large queues.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f
P

a
th

s

Bandwidth (Mbps)

CDF of Bottleneck Bandwidths

Simple Link Emulator
Path Emulator

Figure 9: A CDF showing bandwidth achieved at shared bot-

tlenecks.

4.6 Shared Bottlenecks

Finally, we examine the effects of shared bottlenecks on

bandwidth. We again measured the paths between a set

of PlanetLab nodes, finding their bandwidth, reactivity,

and shared bottlenecks After characterizing the paths in

the real world, we configured two emulations. The first

is a simple link emulation, approximating each path with

an independent link emulator. The second uses our full

path emulator, including its modeling of shared bottle-

necks and reactivity. In order to stress and measure the

system, we simultaneously ran an instance of iperf in

both directions between every pair of nodes. This causes

competition on the shared bottlenecks and also ensures

that every path is being exercised in both directions at

the same time.

Figure 9 shows a CDF of the bandwidth achieved at

the bottlenecks in both the link emulator and our path

emulator, demonstrating that failure to model shared bot-

tlenecks results in higher bandwidth. To isolate the ef-

fects of shared bottlenecks and reactivity, only flows

passing through those bottlenecks are shown. In the link

emulator, each flow receives the full bandwidth mea-

sured for the path. In the path emulator, flows pass-

ing through shared bottlenecks are forced to compete

for this bandwidth, and as a result, each receives less

of it. Modeling of reactivity plays an important role

here: in the path emulator, each shared bottleneck is

being exercised by multiple flows, and thus the aggre-

gate bandwidth available is affected by the response of

the cross-traffic. The few cases in which the path em-

ulator achieves higher bandwidth than the link emulator

are caused by highly asymmetric paths, where the effects

demonstrated in Section 4.1 dominate.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 211

5 Related Work

There is a large body of work on measuring the Internet

and characterizing its paths. The focus of our work is not

to create novel measurement techniques, but to create ac-

curate emulations based on existing techniques. Our con-

tribution lies in the identification of principles that can be

used to accurately emulate paths, given these measure-

ments.

Our emulator builds on the Emulab [32] and Dum-

mynet [22] link emulators to reproduce measured end-

to-end path characteristics. ModelNet [27] also emulates

router-level topologies on a link-by-link basis. Capacity

and delay are set for each link on the path. To create

shared bottlenecks with a certain degree of reactivity, it

is up to the experimenter to carefully craft a router topol-

ogy and introduce cross-traffic on a particular link of the

path. ModelNet includes tools for simplifying router-

level topologies, but does not abstract them as heavily

as we do in this work. NIST Net [7], a Linux-based net-

work emulator, is an alternative to Dummynet. However,

it is also a link emulator and does not distinguish be-

tween capacity and available bandwidth. Our model ab-

stracts the important characteristics of the path, thereby

simplifying their specification and faithfully reproducing

those network conditions without the need for a detailed

router-level topology.

Appenzeller et al. [1] show that the queuing buffer re-

quirements for a router can be reduced provided that a

large number of TCP flows are passing through the router

and they are desynchronized. They also provide reason-

ing as to why setting the queue sizes to the bandwidth-

delay product works for a reasonably small number of

TCP flows. We use the bandwidth delay product as the

lower limit on the queue sizes of the paths being mod-

eled. We are also concerned about low capacity links

(asymmetric or otherwise) causing large queuing delays

that adversely affect the throughput of TCP. Our model

separates capacity from available bandwidth and deter-

mines queue sizes such that the TCP flows on the path

do not become window-size limited.

Researchers have investigated the effects of capac-

ity and available bandwidth asymmetry on TCP perfor-

mance [2, 3, 11, 14]. They proposed modifications to ei-

ther the bottleneck router forwarding mechanism, or the

end node TCP stack. We do not seek to minimize the

queue sizes at the router, but rather to calculate the right

queue size for a path to enable the foreground TCP flows

to fully utilize the ABW during emulation. We mod-

ify neither router forwarding nor the TCP stack and our

model is independent of the TCP implementation used

on the end nodes.

Harpoon [24], Swing [28], and Tmix [31] are frame-

works that characterize the traffic passing through a link

and then generate statistically similar traffic for emu-

lating that link or providing realistic workloads. Our

work, in contrast, does not seek to characterize or re-

create background traffic in great detail. We characterize

cross-traffic at a much higher level, solely in terms of

its reactivity to foreground flows. We are able to do this

characterization with end-to-end measurements, and do

not need to directly observe the packets comprising the

cross-traffic.

6 Conclusion and Future Work

We have presented and evaluated a new path emulator

that can accurately recreate the observed end-to-end con-

ditions of Internet paths. The path model within our

emulator is based on four principles that combine to

enable accurate emulation over a wide range of condi-

tions. We have compared our approach to two alterna-

tives that make use of simple link emulation. Unlike

router-level emulation of paths, our approach is suitable

for reconstructing real paths solely from measurements

taken from the edges of a network. As we have shown,

using a single link emulator to approximate a measured

multi-hop path can fail to produce accurate results. Our

path model corrects these problems, enabling recreations

of real paths in the repeatable, controlled environment of

an emulator.

Much of our future work will concentrate on improv-

ing the reactivity portion of our model. Our method of

measuring reactivity is currently the most intensive part

of our data gathering: it uses the most bandwidth, and

takes the most time. Improving it will allow our system

to run at larger scale. Viewing ABW as a function of

the number of full-speed foreground TCP flows limits us

both to TCP and to applications that are able to fill their

network paths. In future refinements of our design, we

hope to characterize ABW in terms of lower-level met-

rics that are not intrinsically linked to TCP’s congestion

control behavior. Finally, our averaging of ABW values

for paths that share a bottleneck could use more study

and validation.

Another future direction will be the expansion of our

work to the simulation domain. Simulators handle links

and paths in much the same way as do emulators, and the

model we describe in Section 2 can be directly applied to

them as well.

Acknowledgments

We thank our colleagues Eric Eide and Mike Hibler

for their comments and proofreading assistance. Eric

provided significant typesetting help as well. We also

thank the anonymous NSDI reviewers, whose comments

helped us to improve this paper greatly. This mate-

212 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rial is based upon work supported by the National Sci-

ence Foundation under Grant Nos. 0205702, 0335296,

0338785, and 0709427.

References

[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing

router buffers. In Proc. SIGCOMM, pages 281–292, Port-

land, OR, Aug.–Sept. 2004.

[2] H. Balakrishnan, V. Padmanabhan, G. Fairhurst, and

M. Sooriyabandara. TCP performance implications of

network path asymmetry. Internet RFC 3449, Dec. 2002.

[3] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz.

The effects of asymmetry on TCP performance. In Proc.

MobiCom, pages 77–89, Budapest, Hungary, 1997.

[4] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A dis-

tributed architecture for online multiplayer games. In

Proc. NSDI, pages 155–168, San Jose, CA, May 2006.

[5] J. M. Blanquer, A. Batchelli, K. Schauser, and R. Wolski.

Quorum: Flexible quality of service for Internet services.

In Proc. NSDI, pages 159–174, Boston, MA, May 2005.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP

Vegas: New techniques for congestion detection and

avoidance. In Proc. SIGCOMM, pages 24–35, London,

England, Aug. 1994.

[7] M. Carson and D. Santay. NIST Net: a Linux-based net-

work emulation tool. Comput. Commun. Rev., 33(3):111–

126, July 2003.

[8] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing

churn in distributed systems. In Proc. SIGCOMM, pages

147–158, Pisa, Italy, Sept. 2006.

[9] M. Jain and C. Dovrolis. End-to-end available band-

width: measurement methodology, dynamics, and rela-

tion with TCP throughput. IEEE/ACM Trans. Network-

ing, 11(4):537–549, Aug. 2003.

[10] D. Johnson, D. Gebhardt, and J. Lepreau. Towards a high

quality path-oriented network measurement and storage

system. In Proc. PAM, pages 102–111, Cleveland, OH,

Apr. 2008.

[11] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan.

Improving TCP throughput over two-way asymmetric

links: Analysis and solutions. In Proc. SIGMETRICS,

pages 78–89, Madison, WI, June 1998.

[12] M. S. Kim et al. A wavelet–based approach to detect

shared congestion. In Proc. SIGCOMM, pages 293–306,

Portland, OR, Aug.–Sept. 2004.

[13] K. Lai and M. Baker. Nettimer: a tool for measuring bot-

tleneck link, bandwidth. In Proc. USITS, San Francisco,

CA, Mar. 2001.

[14] T. V. Lakshman, U. Madhow, and B. Suter. Window-

based error recovery and flow control with a slow ac-

knowledgement channel: A study of TCP/IP perfor-

mance. In Proc. INFOCOM, pages 1199–1209, Kobe,

Japan, Apr. 1997.

[15] R. Morris. TCP behavior with many flows. In Proc.

ICNP, pages 205–211, Washington, DC, Oct. 1997.

[16] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling

TCP Reno Performance: A Simple Model and Its Empir-

ical Validation. IEEE/ACM Trans. Networking, 8(2):133–

145, Apr. 2000.

[17] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A

blueprint for introducing disruptive technology into the

Internet. In Proc. HotNets–I, Princeton, NJ, Oct. 2002.

[18] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploit-

ing similarity for multi-source downloads using file hand-

prints. In Proc. NSDI, pages 15–28, Cambridge, MA,

Apr. 2007.

[19] D. Qiu and R. Srikant. Modeling and performance analy-

sis of BitTorrent-like peer-to-peer networks. In Proc. SIG-

COMM, pages 367–378, Portland, OR, Aug.–Sept. 2004.

[20] V. Ribeiro et al. pathChirp: Efficient available bandwidth

estimation for network paths. In Proc. PAM, San Diego,

CA, 2003.

[21] R. Ricci et al. The Flexlab approach to realistic evaluation

of networked systems. In Proc. NSDI, pages 201–214,

Cambridge, MA, Apr. 2007.

[22] L. Rizzo. Dummynet: a simple approach to the evaluation

of network protocols. Comput. Commun. Rev., 27(1):31–

41, Jan. 1997.

[23] A. Shieh, A. C. Myers, and E. G. Sirer. Trickles: a state-

less network stack for improved scalability, resilience,

and flexibility. In Proc. NSDI, pages 175–188, Boston,

MA, May 2005.

[24] J. Sommer and P. Barford. Self-configuring network traf-

fic generation. In Proc. IMC, pages 68–81, Taormina,

Italy, Oct. 2004.

[25] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using

PlanetLab for network research: myths, realities, and best

practices. Oper. Syst. Rev., 40(1):17–24, 2006.

[26] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil.

An architecture for Internet data transfer. In Proc. NSDI,

pages 253–266, San Jose, CA, May 2006.

[27] A. Vahdat et al. Scalability and accuracy in a large-

scale network emulator. In Proc. OSDI, pages 271–284,

Boston, MA, Dec. 2002.

[28] K. V. Vishwanath and A. Vahdat. Realistic and responsive

network traffic generation. In Proc. SIGCOMM, pages

111–122, Pisa, Italy, Sept. 2006.

[29] K. V. Vishwanath and A. Vahdat. Evaluating distributed

systems: Does background traffic matter? In Proc.

USENIX, pages 227–240, Boston, MA, June 2008.

[30] M. Walfish et al. DDoS defense by offense. In Proc.

SIGCOMM, pages 303–314, Pisa, Italy, Sept. 2006.

[31] M. C. Weigle et al. Tmix: a tool for generating realistic

TCP application workloads in ns-2. Comput. Commun.

Rev., 36(3):65–76, July 2006.

[32] B. White et al. An integrated experimental environment

for distributed systems and networks. In Proc. OSDI,

pages 255–270, Boston, MA, Dec. 2002.

