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Abstract: ISPs are increasingly reluctant to collect
and store raw network traces because they can be used
to compromise their customers’ privacy. Anonymization
techniques mitigate this concern by protecting sensitive
information. Trace anonymization can be performed of-
fline (at a later time) or online (at collection time). Of-
fline anonymization suffers from privacy problems be-
cause raw traces must be stored on disk – until the traces
are deleted, there is the potential for accidental leaks or
exposure by subpoenas. Online anonymization drasti-
cally reduces privacy risks but complicates software en-
gineering efforts because trace processing and anony-
mization must be performed at line speed. This paper
presents Bunker, a network tracing system that combines
the software development benefits of offline anonymiz-
ation with the privacy benefits of online anonymization.
Bunker uses virtualization, encryption, and restricted I/O
interfaces to protect the raw network traces and the trac-
ing software, exporting only an anonymized trace. We
present the design and implementation of Bunker, eval-
uate its security properties, and show its ease of use for
developing a complex network tracing application.

1 Introduction

Network tracing is an indispensable tool for many
network management tasks. Operators need network
traces to perform routine network management opera-
tions, such as traffic engineering [19], capacity plan-
ning [38], and customer accounting [15]. Several re-
search projects have proposed using traces for even more
sophisticated network management tasks, such as diag-
nosing faults and anomalies [27], recovering from se-
curity attacks [45], or identifying unwanted traffic [9].
Tracing is also vital to networking researchers. As net-
works and applications grow increasingly complex, un-
derstanding the behavior of such systems is harder than
ever. Gathering network traces helps researchers guide
the design of future networks and applications [42, 49].

Customer privacy is a paramount concern for all on-
line businesses, including ISPs, search engines, and e-
commerce sites. Many ISPs view possessing raw net-
work traces as a liability: such traces sometimes end up
compromising their customers’ privacy through leaks or
subpoenas. These concerns are real: the RIAA has sub-
poenaed ISPs to reveal customer identities when pursu-
ing cases of copyright infringement [16]. Privacy con-
cerns go beyond subpoenas, however. Oversights or er-
rors in preparing and managing network trace and server
log files can seriously compromise users’ privacy by dis-

closing social security numbers, names, addresses, or
telephone numbers [5, 54].

Trace anonymization is the most common technique
for addressing these privacy concerns. A typical imple-
mentation uses a keyed one-way secure hash function to
obfuscate sensitive information contained in the trace.
This could be as simple as transforming a few fields in
the IP headers, or as complex as performing TCP connec-
tion reconstruction and then obfuscating data (e.g., email
addresses) deep within the payload. There are two cur-
rent approaches to anonymizing network traces: offline
and online. Offline anonymization collects and stores
the entire raw trace and then performs anonymization
as a post-processing step. Online anoymization is done
on-the-fly by extracting and anonymizing sensitive infor-
mation before it ever reaches the disk. In practice, both
methods have serious shortcomings that make network
trace collection increasingly difficult for network opera-
tors and researchers.

Offline anonymization poses risks to customer privacy
because of how raw network traces are stored. These
risks are growing more severe because of the need to look
“deeper” into packet payloads, revealing more sensitive
information. Current privacy trends make it unlikely that
ISPs will continue to accept the risks associated with of-
fline anonymization. We have first-hand experience with
tracing Web, P2P, and e-mail traffic at two universities.
In both cases the universities deemed the privacy risks as-
sociated with offline anonymization to be unacceptable.

While online anonymization offers much stronger pri-
vacy benefits, it is very difficult to deploy in practice be-
cause it creates significant software engineering issues.
Any portion of the trace analysis that requires access to
sensitive data must be performed on-the-fly and at a rate
that can handle the network’s peak throughput. This is
practical for simple tracing applications that analyze only
IP and TCP headers; however, it is much more difficult
for tracing applications that require deep packet inspec-
tion. Developing complex online tracing software there-
fore poses a significant challenge. Developers are limited
in their selection of software: adopting garbage-collected
(e.g., Java, C#) and dynamic scripting (e.g., Python, Perl)
languages can be difficult; reusing existing libraries (e.g.,
HTML parsers or regexp engines) may also be hard if
their implementation choices are incompatible with per-
formance requirements. A network tracing experiment
illustrates the performance challenges of online tracing.
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Our goal was to run hundreds of regular expressions to
identify phishing Web forms. However, an Intel 3.6GHz
processor running just one of these regular expressions
(using the off-the-shelf “libpcre” regexp library) could
only handle less than 50 Mbps of incoming traffic.

This paper presents Bunker, a network tracing sys-
tem built and deployed at the University of Toronto.
Bunker offers the software development benefits of of-
fline anonymization and the privacy benefits of online
anonymization. Our key insight is that we can use the
buffer-on-disk approach of offline anonymization if we
can “lock down” the trace files and trace analysis soft-
ware. This approach lets Bunker avoid all the software
engineering downsides of online trace analysis. To im-
plement Bunker, we use virtual machines, encryption,
and restriction of I/O device configuration to construct a
closed-box environment; Bunker requires no specialized
hardware (e.g., a Trusted Platform Module (TPM) or a
secure co-processor) to provide its security guarantees.
The trace analysis and anonymization software is pre-
loaded into a closed-box VM before any raw trace data
is gathered. Bunker makes it difficult for network opera-
tors to interact with the tracing system or to access its in-
ternal state once it starts running and thereby protects the
anonymization key, the tracing software, and the raw net-
work trace files inside the closed-box environment. The
closed-box environment produces an anonymized trace
as its only output.

To protect against physical attacks (e.g., hardware
tampering), we design Bunker to be safe-on-reboot:
upon a reboot, all sensitive data gathered by the system
is effectively destroyed. This property makes physical
attacks more difficult because the attacker must tamper
with Bunker’s hardware without causing a reboot. While
a small class of physical attacks remains feasible (e.g.,
cold boot attacks [21]), in our experience ISPs find the
privacy benefits offered by a closed-box environment that
is safe-on-reboot a significant step forward. Although the
system cannot stop ISPs from being subject to wiretaps,
Bunker helps protect ISPs against the privacy risks inher-
ent in collecting and storing network traces.

Bunker’s privacy properties come at a cost. Bunker
requires the network operator to pre-plan what data to
collect and how to anonymize it before starting to trace
the network. Bunker prevents anyone from changing the
configuration while tracing; it can be reconfigured only
through a reboot that will erase all sensitive data.

The remainder of this paper describes Bunker’s threat
model (Section 2), design goals and architecture (Sec-
tion 3), as well as the benefits of Bunker’s architecture
(Section 4). It then analyzes Bunker’s security proper-
ties when confronted with a variety of attacks (Section
5), describes operational issues (Section 6), and evalu-
ates Bunker’s software engineering benefits by examin-

ing a tracing application (phishing analysis) built by one
student in two months that leverages off-the-shelf com-
ponents and scripting languages (Section 7). The paper’s
final sections review legal issues posed by Bunker’s ar-
chitecture (Section 8) and related work (Section 9).

2 Threat Model

This section outlines the threat model for network
tracing systems. We present five classes of attacks and
discuss how Bunker addresses each.

2.1 Subpoenas For Network Traces

ISPs are discovering that traces gathered for diagnos-
tic and research purposes can be used in court proceed-
ings against their customers. As a result, they may view
the benefits of collecting network traces as being out-
weighed by the liability of possessing such information.
Once a subpoena has been issued, an ISP must cooperate
and reveal the requested information (e.g., traces or en-
cryption keys) as long as the cooperation does not pose
an undue burden. Consequently, a raw trace is protected
against a subpoena only if no one has access to it or to
the encryption and anonymization keys used to protect it.

Our architecture was designed to collect traces while
preserving user privacy even if a court permits a third
party to have full access to the system. Once a Bunker
trace has been initiated, all sensitive information is pro-
tected from the system administrator in the same way it is
protected from any adversary. Thus, our solution makes
it a hardship for the ISP to surrender sensitive infor-
mation. We eliminate potential downsides to collecting
traces for legitimate purposes but do not prevent those
with legal wiretap authorization from installing their own
trace collection system.

2.2 Accidental Disclosure

ISPs face another risk, that of accidental disclosure of
sensitive information from a network trace. History has
shown that whenever people handle sensitive data, the
danger of accidental disclosure is substantial. For exam-
ple, the British Prime Minister recently had to publicly
apologize when a government agency accidentally lost
25 million child benefit records containing names and
bank details because the agency did not follow the cor-
rect procedure for sending these records by courier [5].
Bunker vastly reduces the risk that sensitive data will be
accidentally released or stolen because no human can ac-
cess the unanonymized trace.

2.3 Remote Attacks Over The Internet

Remote theft of data collected by a tracing machine
presents another threat to network tracing systems. There
are many possible ways to break into a system over the
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network, yet there is one simple solution that eliminates
this entire class of attacks. To collect traces, Bunker uses
a specialized network capture card that is incapable of
sending outgoing data. It also uses firewall rules to limit
access to the tracing machine from the internal private
network. Section 5.3 examines in-depth Bunker’s secu-
rity measures against such attacks.

2.4 Operational Attacks

Attacks that traverse the network link being moni-
tored, such as denial-of-service (DoS) attacks, may also
incidentally affect the tracing system. This is a problem
when tracing networks with direct connections to the In-
ternet: Internet hosts routinely receive attack traffic such
as vulnerability probes, denial-of-service (DoS) attacks,
and back-scatter from attacks occurring elsewhere on the
Internet [36]. Methods exist to reduce the impact of DoS
attacks [31] and adversarial traffic [13]. However, these
methods may have limited effectiveness against a large
enough attack. Both Bunker and offline anonymization
systems are more resilient to such attacks because they
need not process the traffic in real time.

Because many network studies collect traces for rel-
atively long time periods, an attacker with physical ac-
cess could tamper with the monitoring system after it
has started tracing, creating the appearance that the orig-
inal system is still running. For example, the attacker
might reboot the system and then set up a new closed-
box environment that uses anonymization keys known to
the attacker. Section 6 describes a simple modification to
Bunker that addresses this type of attack.

2.5 Attacks On Anonymization

Packet injection attacks attempt to partially learn the
anonymization mapping by injecting traffic and then ana-
lyzing the anonymized trace. To perform such attacks, an
adversary transmits traffic over the network being traced
and later identifies this traffic in the anonymized trace.
These attacks are possible when non-sensitive trace in-
formation (e.g., times or request sizes) is used to cor-
relate entries in the anonymized trace with the specific
traffic being generated by the adversary. Packet injec-
tion attacks do not completely break the anonymization
mapping because they do not let the adversary deduce
the anonymization key. Even without packet injection,
recent work has shown that private information can still
be recovered from data anonymized with state-of-the-art
techniques [10, 34]. These attacks typically make use
of public information and attempt to correlate it with the
obfuscated data. Our tracing system is susceptible to at-
tacks on the anonymization scheme. The best way to de-
fend against this class of attacks is to avoid public release
of anonymized trace data [10].
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Figure 1. Logical view of Bunker: Raw data enters the
closed-box perimeter and only anonymized data leaves
this perimeter.

Another problem involves ensuring that the anony-
mization policy is specified correctly, and that the
implementation correctly implements the specification.
Bunker does not explicitly address these issues. We rec-
ommend code reviews of the trace analysis and anony-
mization software. However, even a manual audit of this
software can miss certain properties and anomalies that
could be exploited by a determined adversary [34]. Al-
though there is no simple checklist to follow that ensures
a trace does not leak private data, there are tools that can
aid in the design and implementation of sound anony-
mization policies [35].

2.6 Summary

Bunker’s design raises the bar for mounting any of
these attacks successfully. At a high level, our threat
model assumes that: (1) the attacker has physical access
to the tracing infrastructure but no specialized hardware,
such as a bus monitoring tool; (2) the attacker did not
participate in implementing the trace analysis software.
While Bunker’s security design is motivated by the threat
of subpoenas, it also addresses the other four classes of
attacks described in this section. We examine security
attacks against Bunker in Section 5 and we discuss legal
issues in Section 8.

3 The Bunker Architecture
Our main insight when designing Bunker is that a

tracing infrastructure can maintain large caches of sen-
sitive data without compromising user privacy as long
as none of that data leaves the host. Figure 1 illustrates
Bunker’s high-level design, which takes raw traffic as in-
put and generates an anonymized trace.

3.1 Design Goals

1. Privacy. While the system may store sensitive data
such as unanonymized packets, it must not permit an out-
side agent to extract anything other than analysis output.

2. Ease of development. The system should place as
few constraints as possible on implementing the analysis
software. For example, protocol reconstruction and pars-
ing should not have real-time performance requirements.
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3. Robustness. Common bugs found in handling
corner cases in parsing and analysis code should lead to
small errors in the trace rather than crashing the system
or completely corrupting its output.

4. Performance. The proposed system must per-
form as well as today’s network tracers when running on
equivalent hardware. In particular, it should be possible
to trace a high-capacity link with inexpensive hardware.

5. Use commodity hardware and software. The
proposed system should not require specialized hard-
ware, such as a Trusted Platform Module (TPM).

3.2 Privacy Properties

To meet our privacy design goal, we must protect all
gathered trace data even from an attacker who has phys-
ical access to the network tracing platform. To achieve
this high-level of protection, we designed Bunker to have
the following two properties:

1. Closed-box. The tracing infrastructure runs all
software that has direct access to the captured trace data
inside a closed-box environment. Administrators, oper-
ators, and users cannot interact with the tracing system
or access its internal state once it starts running. Input
to the closed-box environment is raw traffic; output is an
anonymized trace.

2. Safe-on-reboot. Upon a reboot, all gathered sensi-
tive data is effectively destroyed. This means that all un-
encrypted data is actually destroyed; the encryption key
is destroyed for all encrypted data placed in stable stor-
age. Bunker uses ECC RAM modules that are zeroed
out by the BIOS before booting [21]. Thus, it is safe-on-
reboot for reboots caused by pressing the RESET button
or by powering off the machine.

The closed-box property prevents an attacker from
gaining access to the data or to the tracing code while
it is running. However, this property is not sufficient.
An attacker could restart the system and boot a different
software image to access data stored on the tracing sys-
tem, or an attacker could tamper with the tracing hard-
ware (e.g., remove a hard drive and plug it in to another
system). To protect sensitive data against such physical
attacks, we use the safe-on-reboot property to erase all
sensitive data upon a reboot. Together, these two proper-
ties prevent an attacker from gaining access to sensitive
data via system tampering.

3.3 The Closed-Box Property

Bunker uses virtual machines to provide the closed-
box property. We now describe the rationale for our de-
sign and implementation.

3.3.1 Design Approach

In debating whether to use virtual or physical ma-
chines (e.g., a sealed appliance) to design our closed-box
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Figure 2. Overview of Bunker’s implementation. The
closed-box VM runs a carefully configured Linux kernel.
The shaded area represents the Trusted Computing Base
(TCB) of our system.

environment, we chose the virtual machine option pri-
marily for flexibility and ease of development. We an-
ticipated that our design would undergo small modifica-
tions to accommodate unforeseen problems and worried
that making small changes to a sealed appliance would
be too difficult after the initial system was implemented
and deployed. With VMs, Bunker’s software can be eas-
ily retrofitted to trace different types of traffic. For exam-
ple, we used Bunker to gather a trace of Hotmail e-mails
and to gather flow-level statistics about TCP traffic.

Virtual machine monitors (VMMs) have been used in
the past for building closed-box VMs [20, 11]. Using
virtual machines to provide isolation is especially ben-
eficial for tasks that require little interaction [6], such
as network tracing. Bunker runs all software that pro-
cesses captured data inside a highly trusted closed-box
VM. Users, administrators, and software in other VMs
cannot interact with the closed-box or access any of its
internal state once it starts running.

3.3.2 Implementation Details

We used the Xen 3.1 VMM to implement Bunker’s
closed-box environment. Xen, an open-source VMM,
provides para-virtualized x86 virtual machines [4]. The
VMM executes at the highest privilege level on the pro-
cessor. Above the VMM are the virtual machines, which
Xen calls domains. Each domain executes a guest oper-
ating system, such as Linux, which runs at a lower privi-
lege level than the VMM.

In Xen, Domain0 has a special role: it uses a con-
trol interface provided by the VMM to perform man-
agement functions outside of the VMM, such as creating
other domains and providing access to physical devices
(including the network interfaces). Both its online trace
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Figure 3. iptables firewall rules: An abbreviated list of
the rules that creates a one-way-initiation interface be-
tween the closed-box VM and the open-box VM. These
rules allow connections only if they are initiated by the
closed-box VM. Note that the ESTABLISHED state above
refers to a connection state used by iptables and not to
the ESTABLISHED state in the TCP stack.

collection and offline trace analysis components are im-
plemented as a collection of processes that execute on a
“crippled” Linux kernel that runs in the Domain0 VM,
as shown in Figure 2.

We carefully configured the Linux kernel running in
Domain0 to run as a closed-box VM. To do this, we
severely limited the closed-box VM’s I/O capabilities
and disabled all the kernel functionality (i.e., kernel sub-
systems and modules) not needed to support tracing. We
disabled all drivers (including the monitor, mouse and
keyboard) inside the kernel except for: 1) the network
capture card driver; 2) the hard disk driver; 3) the vir-
tual interface driver, used for closed-box VM to open-
box VM communication, and 4) the standard NIC driver
used to enable networking in the open-box VM. We also
disabled the login functionality; nobody, ourselves in-
cluded, can login to the closed-box VM. Once the kernel
boots, the kernel init process runs a script that launches
the tracer. We provide a publicly downloadable copy of
the kernel configuration file1 used to compile the Do-
main0 kernel so that anyone can audit it.

The closed-box VM sends anonymized data and non-
sensitive diagnostic data to the open-box VM via a one-
way-initiation interface, as follows. We setup a layer-
3 firewall (e.g., iptables) that allows only those connec-
tions initiated by the closed-box VM; this firewall drops
any unsolicited traffic from the open-box VM. Figure 3
presents an abbreviated list of the firewall rules used to
configure this interface.

We deliberately crippled the kernel to restrict all other
I/O except that from the four remaining drivers. We con-
figured and examined each driver to eliminate any possi-
bility of an adversary taking advantage of these channels
to attack Bunker. Section 5 describes Bunker’s system
security in greater detail.

3.4 The Safe-on-Reboot Property

To implement the safe-on-reboot property, we need to
ensure that all sensitive data and the anonymization key
are stored in volatile memory only. However, tracing ex-
periments frequently generate more sensitive data than

1http://www.slup.cs.toronto.edu/utmtrace/
config-2.6.18-xen0-noscreen

can fit into memory. For example, a researcher might
need to capture a very large raw packet trace before run-
ning a trace analysis program that makes multiple passes
through the trace. VMMs alone cannot protect data writ-
ten to disk, because an adversary could simply move the
drive to another system to extract the data.

3.4.1 Design Approach

On boot-up, the closed-box VM selects a random key
that will be used to encrypt any data written to the hard
disk. This key (along with the anonymization key) is
stored only in the closed box VM’s volatile memory, en-
suring that it is both inaccessible to other VMs and lost
on reboot. Because data stored on the disk can be read
only with the encryption key, this approach effectively
destroys the data after a reboot. The use of encryption to
make disk storage effectively volatile is not novel; swap
file encryption is used on some systems to ensure that
fragments of an application’s memory space do not per-
sist once the application has terminated or the system has
restarted [39].

3.4.2 Implementation Details

To implement the safe-on-reboot property, we need to
ensure that all sensitive information is either stored only
in volatile memory or on disk using encryption where the
encryption key is stored only in volatile memory. To im-
plement the encrypted store, we use the dm-crypt [41]
device-mapper module from the Linux 2.6.18 kernel.
This module provides a simple abstraction: it adds an
encrypted device on top of any ordinary block device.
As a result, it works with any file system. The dm-crypt
module supports several encryption schemes; we used
the optimized implementation of AES. To ensure that
data in RAM does not accidentally end up on disk, we
disabled the swap partition. If swapping is needed in the
future, we could enable dm-crypt on the swap partition.
The root file system partition that contains the closed-
box operating system is initially mounted read only. Be-
cause most Linux configurations expect the root parti-
tion to be writable, we enable a read-write overlay for
the root partition that is protected by dm-crypt. This also
ensures that the trace analysis software does not acciden-
tally write any sensitive data to disk without encryption.

3.5 Trace Analysis Architecture

Bunker’s tracing software consists of two major
pieces: 1) the online component, independent of the par-
ticular network tracing experiment, and 2) the offline
component, which in our case is a phishing analysis trac-
ing application. Figure 4 shows Bunker’s entire pipeline,
including the online and offline components.

Bunker uses tcpdump version 3.9.5 to collect packet
traces. We fine-tuned tcpdump to increase the size of its



34 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

   




 



  






 

 

Figure 4. Flow of trace data through Bunker’s modules. The online part of Bunker consists of tcpdump and the bfr
buffering module. The offline part of Bunker consists of bfr, libNids, HTTP parser, Hotmail parser, SpamAssassin, and
an anonymizer module. Also, tcpdump, bfr, and libNids are generic components to Bunker, wherease HTTP parser,
Hotmail parser, SpamAssassin, and the anonymized module are specific to our current application: collecting traces
of phishing e-mail.

receive buffers. All output from tcpdump is sent directly
to bfr, a Linux non-blocking pipe buffer that buffers data
between Bunker’s offline and online components. We
use multiple memory mapped files residing on the en-
crypted disks as the bfr buffer and we allocate 380 GB of
disk space to it, sufficient to buffer over 8 hours of HTTP
traffic for our network. Figure 5 shows how bfr’s buffer
size varies over time.

Our Bunker deployment at the University of Toronto
is able to trace continuously, even with an unoptimized
offline component. This is because of the cyclical na-
ture of network traffic (e.g., previous studies showed that
university traffic is 1.5 to 2 times lower on a weekend
day than on a week day [42, 50]). This allows the offline
component to catch up with the online component dur-
ing periods of low load, such as nights and weekends. In
general, Bunker can only trace continuously if the buffer
drains completely at least once during the week. If the
peak buffer size during a week day is p and Bunker’s of-
fline component leaves ∆ unprocessed at the end of a
week day (see Figure 5), Bunker is able to trace continu-
ously if the following two conditions hold:

1. Bunker’s buffer size is larger than 4×∆+p, or the
amount of unprocessed data after four consecutive week
days plus the peak traffic on the fifth week day;

2. During the weekend, Bunker’s offline component
can catch up to the online component by at least 5 × ∆

of the unprocessed data in the buffer.
The tracing application we built using Bunker gath-

ers traces of phishing e-mails received by Hotmail users
at the University of Toronto. The offline trace analysis
component performs five tasks: 1) reassembling pack-
ets into TCP streams; 2) parsing HTTP; 3) parsing Hot-
mail; 4) running SpamAssassin over the Hotmail e-mails,
and 5) anonymizing output. To implement each of these
tasks, we wrote simple Python and Perl scripts that made
extensive use of existing libraries and tools.

For TCP/IP reconstruction, we used libNids [48], a C
library that runs the TCP/IP stack from the Linux 2.0 ker-
nel in user-space. libNids supports reassembly of both

IP fragments and TCP streams. Both the HTTP and the
Hotmail parsers are written in Python version 2.5. We
used a wrapper for libNids in Python to interface with our
HTTP parsing code. Whenever a TCP stream is assem-
bled, libNids calls a Python function that passes on the
content to the HTTP and Hotmail parsers. The Hotmail
parser passes the bodies of the e-mail messages to Spa-
mAssassin (written in Perl) to utilize its spam and phish-
ing detection algorithms. The output of SpamAssassin
is parsed and then added to an internal object that repre-
sents the Hotmail message. This object is then serialized
as a Python “pickled” object before it is transferred to
the anonymization engine. We used an HTTP anonymiz-
ation policy similar to the one described in [35]. We took
two additional steps towards ensuring that the anonymiz-
ation policy is correctly specified and implemented: (1)
we performed a code review of the policy and its im-
plementation, and (2) we made the policy and the code
available to the University of Toronto’s network opera-
tors encouraging them to inspect it.

3.6 Debugging

Debugging a closed-box environment is challenging
because an attacker could use the debugging interface to
extract sensitive internal state from the system. Despite
this restriction, we found the development of Bunker’s
analysis software to be relatively easy. Our experience
found the off-the-shelf analysis code we used in Bunker
to be well tested and debugged. We used two addi-
tional techniques for helping to debug Bunker’s analysis
code. First, we tested our software extensively in the lab
against synthetic traffic sources that do not pose any pri-
vacy risks. To do this, we booted Bunker into a special
diagnostic mode that left I/O devices (such as the key-
board and monitor) enabled. This configuration allowed
us to easily debug the system and patch the analysis soft-
ware without rebooting.

Second, we ensured that every component of our anal-
ysis software produced diagnostic logs. These logs were
sent from the closed-box VM to the open-box VM using
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Figure 5. The size of bfr’s buffer over time. While the
queue size increases during the day, it decreases during
night when there is less traffic. At the end of this partic-
ular day, Bunker’s offline component still had 50GB of
unprocessed raw trace left in the buffer.

the same interface as the anonymized trace. They proved
helpful in shedding light on the “health” of the processes
inside the closed-box VM. We were careful to ensure that
no sensitive data could be written to the log files in order
to preserve trace data privacy.

4 The Benefits of Bunker

This section presents the benefits offered by Bunker’s
architecture.

4.1 Privacy Benefits

Unlike offline anonymization, our approach does not
allow network administrators or researchers to work
directly with sensitive data at any time. Because
unanonymized trace data cannot be directly accessed, it
cannot be produced under a subpoena. Our approach
also greatly reduces the chance that unanonymized data
will be stolen or accidentally released because individu-
als cannot easily extract such data from the system.

The privacy guarantees provided by our tracing sys-
tem are more powerful than those offered by online
anonymization. Bunker’s anonymization key is stored
within the closed-box VM, which prevents anyone from
accessing it. While online anonymization tracing sys-
tems are typically careful to avoid writing unanonymized
data to stable storage, they generally do not protect the
anonymization key against theft by an adversary with the
ability to login to the machine.

4.2 Software Engineering Benefits

When an encrypted disk is used to store the raw net-
work trace for later processing, the trace analysis code is
free to run offline at slower than line speeds. Bunker sup-
ports two models for tracing. In continuous tracing, the
disk acts as a large buffer, smoothing the traffic’s bursts
and its daily cycles. To trace network traffic continu-
ously, Bunker’s offline analysis code needs to run fast
enough for the average traffic rate, but it need not keep

up with the peak traffic rate. Bunker also supports de-
ferred trace analysis, where the length of the tracing pe-
riod is limited by the amount of disk storage, but there
are no constraints on the performance of the offline trace
analysis code. In contrast, online anonymization tracing
systems process data as it arrives and therefore must han-
dle peak traffic in real-time.

Bunker’s flexible performance requirements let the
developer use managed languages and sophisticated li-
braries when creating trace analysis software. As a re-
sult, its code is both easier to write and less likely to
contain bugs. The phishing analysis application using
Bunker was built by one graduate student in less than two
months, including the time spent configuring the closed-
box environment (a one-time cost with Bunker). This
development effort contrasts sharply with our experience
developing tracing systems with online anonymization.
To improve performance, these systems required devel-
opers to write carefully optimized code in low-level lan-
guages using sophisticated data structures. Bunker lets
us use Python scripts to parse HTTP, a TCP/IP reassem-
bly library, and Perl scripts running SpamAssassin.

4.3 Fault Handling Benefits

One serious drawback of most online trace analysis
techniques is their inability to cope gracefully with bugs
in the analysis software. Often, these are “corner-case”
bugs that arise in abnormal traffic patterns. In many cases
researchers and network operators would prefer to ig-
nore these abnormal flows and continue the data gath-
ering process; however, if the tracing software crashes,
all data would be lost until the system can be restarted.
This could result in the loss of megabytes of data even
if the restart process is entirely automated. Worse, this
process introduces systematic bias in the data collection
because crashes are more likely to affect long-lived than
short-lived flows.

Bunker can better cope with bugs because its online
and offline components are fully decoupled. This pro-
vides a number of benefits. First, Bunker’s online trace
collection software is simple because it only captures
packets and loads them in RAM (encryption is handled
automatically at the file system layer). Its simplicity and
size make it easy to test extensively. Second, the on-
line software need not change even when the type of
trace analysis being performed changes. Third, the of-
fline trace analysis software also becomes much simpler
because it need not be heavily optimized to run at line
speed. Unoptimized software tends to have a simpler
program structure and therefore fewer bugs. Simpler
program structure also makes it easier to recover from
bugs when they do arise. Finally, a decoupled architec-
ture makes it possible to identify the flow that caused the
error in the trace analyzer, filter out that flow from the
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buffered raw trace, and restart the trace analyzer so that
it never sees that flow as input and thereby avoids the bug
entirely. Section 7 quantifies the effect of this improved
fault handling on the number of flows that are dropped
due to a parsing bug.

5 Security Attacks

Bunker’s design is inspired by Terra, a VM-based
platform for trusted computing [20]. Both Terra and
Bunker protect sensitive data by encapsulating it in a
closed-box VM with deliberately restricted I/O inter-
faces. The security of such architectures does not rest
on the size of the trusted computing base (TCB) but on
whether an attacker can exploit a vulnerability through
the system’s narrow interfaces. Even if there is a vulner-
ability in the OS running in the closed-box VM, Bunker
remains secure as long as attackers cannot exploit the
vulnerability through the restricted channels. In our ex-
perience, ISPs have found Bunker’s security properties a
significant step forward in protecting users privacy when
tracing.

Attacks on Bunker can be categorized into three
classes. The first are those that attempt to subvert the
narrow interfaces of the closed-box VM. A successful
attack on these interfaces exposes the closed-box VM’s
internals. The second class are physical attacks, in which
the attacker tampers with Bunker’s hardware. The third
possibility are attacks whereby Bunker deliberately al-
lows network traffic into the closed-box VM: an attacker
could try to exploit a vulnerability in the trace analysis
software by injecting traffic in the network being moni-
tored. We now examine each attack type in greater detail.

5.1 Attacking the Restricted Interfaces of the
Closed-Box VM

There are three ways to attack the restricted interfaces
of the closed-box VM: 1) subverting the isolation pro-
vided by the VMM to access the memory contents of the
closed-box VM; 2) exploiting a security vulnerability in
one of the system’s drivers; and 3) attacking the closed-
box VM directly using the one-way-initiation interface
between the closed and open-box VMs.

5.1.1 Attacking the VMM

We use a VMM to enforce isolation between soft-
ware components that need access to sensitive data and
those that do not. Bunker’s security rests on the assump-
tion that VMM-based isolation is hard to attack, an as-
sumption made by many in industry [23, 47] and the re-
search community [20, 11, 6, 43]. There are other ap-
proaches we could have used to confine sensitive data
strictly to the pre-loaded analysis software. For exam-
ple, we could have used separate physical machines to

host the closed and open box systems. Alternatively, we
could have relied on a kernel and its associated isola-
tion mechanisms, such as processes and file access con-
trols. However, VM-based isolation is generally thought
to provide stronger security than process-based isolation
because VMMs are small enough to be rigorously ver-
ified and export only a very narrow interface to their
VMs [6, 7, 29]. In contrast, kernels are complex pieces
of software that expose a rich interface to their processes.

5.1.2 Attacking the Drivers

Drivers are among the buggiest components of an
OS [8]. Security vulnerabilities in drivers let attackers
bypass all access restrictions imposed by the OS. Sys-
tems without an IOMMU are especially susceptible to
buggy drivers because they cannot prevent DMA-capable
hardware from accessing arbitrary memory addresses.
Many filesystem drivers can be exploited by carefully
crafted filesystems [53]. Thus, if Bunker were to auto-
mount inserted media, an attacker could compromise the
system by inserting a CDROM or USB memory device
with a carefully crafted filesystem image.

Bunker addresses such threats by disabling all drivers
(including the monitor, mouse, and keyboard) except
these four: 1) the network capture card driver, 2) the
hard disk driver, 3) the driver for the standard NIC used
to enable networking in the open-box VM, and 4) the
driver for the virtual interfaces used between the closed-
box and open-box VMs. In particular, we were careful
to disable external storage device support (i.e. CDROM,
USB mass storage) and USB support.

We examined each of these drivers and believe that
none can be exploited to gain access to the closed-box.
First, the network capture card loads incoming network
traffic via one of the drivers left enabled in Domain0.
This capture card, a special network monitoring card
made by Endace (DAG 4.3GE) [17], cannot be used for
two-way communication. Thus, an attacker cannot gain
remote access to the closed-box solely through this net-
work interface. The second open communication chan-
nel is the SCSI controller driver for our hard disks. This
is a generic Linux driver, and we checked the Linux ker-
nel mailing lists to ensure that it had no known bugs. The
third open communication channel, the NIC used by the
open-box VM, remains in the closed-box VM because
Xen’s design places all hardware drivers in Domain0. We
considered mapping this driver directly into DomainU,
but doing so would create challenging security issues re-
lated to DMA transfers that are best addressed with spe-
cialized hardware support (SecVisor [43] discusses these
issues in detail). Instead, we use firewall rules to ensure
that all outbound communication on this NIC originates
from the open-box VM. As with the SCSI driver, this is
a generic Linux gigabit NIC driver, and we verified that
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it had no known bugs. The final open communication
channel is constructed by installing a virtual NIC in both
the closed-box and open-box VMs and then building a
virtual network between them. Typical for most Xen
environments, this configuration permits communication
across different Domains. As with the SCSI driver, we
checked that it had no known security vulnerabilities.

5.1.3 Attacking the One-Way-Initiation Interface

Upon startup, Bunker firewalls the interface between
the open-box VM and the closed-box VM using ipta-
bles. The rules used to configure iptables dictate that no
connections are allowed unless they originate from the
closed-box VM (see Figure 3). We re-used a set of rules
from an iptables configuration for firewalling home envi-
ronments found on the Internet.

5.2 Attacking Hardware

Bunker protects the closed-box VM from hardware at-
tacks by making it safe-on-reboot. If an attacker turns off
the machine to tamper with the hardware (e.g. by remov-
ing existing hardware or installing new hardware), the
sensitive data contained in the closed-box VM is effec-
tively destroyed. This is because the encryption keys and
any unencrypted data are only stored in volatile memory
(RAM). Therefore, hardware attacks must be mounted
while the system is running. Section 5.1.2 discusses how
we eliminated all unnecessary drivers from Bunker; this
protects Bunker against attacks relying on adding new
system devices, such as USB devices.

Another class of hardware attacks is one in which the
attacker attempts to extract sensitive data (e.g., the en-
cryption keys) from RAM. Such attacks can be mounted
in many ways. A recent project demonstrated that the
contents of today’s RAM modules may remain readable
even minutes after the system has been powered off [21].
Bunker is vulnerable to such attacks: an attacker could
try to extract the encryption keys from memory by re-
moving the RAM modules from the tracing machine and
placing them into one configured to run key-searching
software over memory on bootup [21]. Another approach
is to attach a bus monitor to observe traffic on the mem-
ory bus. Preventing RAM-based attacks requires special-
ized hardware, which we discuss below. Yet another way
is to attach a specialized device, such as certain Firewire
devices, that can initiate DMA transfers without any sup-
port from software running on the host [37, 14]. Prevent-
ing this attack requires either 1) disabling the Firewire
controller or 2) support from an IOMMU to limit which
memory regions can be accessed by Firewire devices.

Secure Co-processors Can Prevent Hardware At-
tacks: A secure co-processor contains a CPU pack-
aged with a moderate amount of non-volatile memory
enclosed in a tamper-resistant casing [44]. A secure

co-processor would let Bunker store the encryption and
anonymization keys, the unencrypted trace data and the
code in a secure environment. It also allows the code to
be executed within the secure environment.

Trusted Platform Modules (TPMs) Cannot Pre-
vent Hardware Attacks: Unfortunately, the use of
TPMs would not significantly help Bunker survive hard-
ware attacks. The limited storage and execution capa-
bilities of a TPM cannot fully protect encryption keys
and other sensitive data from an adversary with physical
access [21]. This is because symmetric encryption and
decryption are not performed directly by the TPM; these
operations are still handled by the system’s CPU. There-
fore, the encryption keys must be exposed to the OS and
stored in RAM, making them subject to the attack types
mentioned above.

5.3 Attacking the Trace Analysis Software
An attacker could inject carefully crafted network

traffic to exploit a vulnerability in the trace analysis soft-
ware, such as a buffer overflow. Because this software
does not run as root, such attacks cannot disable the nar-
row interfaces of the closed-box; the attacker needs root
privileges to alter the OS drivers or the iptable’s firewall
rules. Nevertheless, such an attack could obtain access
to sensitive data, skip the anonymization step, and send
captured data directly to the open-box VM through the
one-way-initiation interface.

While possible, such attacks are challenging to mount
in practice for two reasons. First, Bunker’s trace anal-
ysis software combines C (e.g., tcpdump plus a TCP/IP
reconstruction library, which is a Linux 2.0 networking
stack running in user-space), Python, and Perl. The C
code is well-known and well-tested, making it less likely
to have bugs that can be remotely exploited by injecting
network traffic. Bunker’s application-level parsing code
is written in Python and Perl, two languages that are re-
sistant to buffer overflows. In contrast, online anonymiz-
ers write all their parsing code in unmanaged languages
(e.g., C or C++) in which it is much harder to handle code
errors and bugs.

Second, a successful attack would send sensitive data
to the open-box VM. The attacker must then find a way
to extract the data from the open-box VM. To mitigate
this possibility, we firewall the open-box’s NIC to re-
ject any traffic unless it originates from our own private
network. Thus, to be successful, an attacker must not
only find an exploitable bug in the trace analysis code
but must also compromise the open-box VM through an
attack that originates from our private network.

6 Operational Issues
At boot time, Bunker’s bootloader asks the user to

choose between two configurations: an ordinary one and
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a restricted one. The ordinary configuration loads a typ-
ical Xen environment with all drivers enabled. We use
this environment only to prepare a tracing experiment
and to configure Bunker; we never gather traces in it
because it offers no privacy benefits. To initiate a trac-
ing experiment, we boot into the restricted environment.
When booting into this environment, Bunker’s display
and keyboard freeze because no drivers are being loaded.
In this configuration, we use the open NIC to log in to
the open-box VM where we can monitor the anonymized
traces received through the one-way-initiation interface.
These traces also contain meta-data about the health of
the closed-box VM, including a variety of counters (such
as packets received, packets lost, usage of memory, and
amount of free space on the encrypted disk).

Network studies often need traces that span weeks,
months, or even years. The closed-box nature of Bunker
and its long-term use raise the possibility of the following
operational attack: an intruder gains physical access to
Bunker, reboots it, and sets it up with a fake restricted en-
vironment that behaves like Bunker’s restricted environ-
ment but uses encryption and anonymization keys known
to the intruder. This attack could remain undetected by
network operators. From the outside, Bunker seems to
have gathered network traces continuously.

To prevent this attack, Bunker could generate a pub-
lic/private key-pair upon starting the closed-box VM.
The public key would be shared with the network op-
erator who saves an offline copy, while the private key
would never be released from the closed-box VM. To
verify that Bunker’s code has not been replaced, the
closed-box VM would periodically send a heartbeat mes-
sage through the one-way-initiation interface to the open-
box. The heartbeat message would contain the experi-
ment’s start time, the current time, and additional coun-
ters, all signed with the private key to let network opera-
tors verify that Bunker’s original closed-box remains the
one currently running. This prevention mechanism is not
currently implemented.

7 Evaluation

This section presents a three-pronged evaluation of
Bunker. First, we measure the performance overhead in-
troduced by virtualization and encryption. Second, we
evaluate Bunker’s software engineering benefits when
compared to online tracing tools. Third, we conduct an
experiment to show Bunker’s fault handling benefits.

7.1 Performance Overhead

To evaluate the performance overhead of virtualiza-
tion and encryption, we ran tcpdump (i.e., Bunker’s on-
line component) to capture all traffic traversing a gigabit
link and store it to disk. We measured the highest rate of
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Figure 6. Performance overhead of virtualization and
encryption: We measured the rate of traffic that tcpdump
can capture on our machine with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted file system, and running
on top of an encrypted file system in a Xen VM. All output
captured by tcpdump was written to the disk.

traffic tcpdump can capture with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted disk with dm-crypt [41],
and running on top of an encrypted disk in a Xen VM.

Our tracing host is a dual Intel Xeon 3.0GHz with
4 GB of RAM, six 150 GB SCSI hard-disk drives, and
a DAG 4.3GE capture card. We ran Linux Debian 4.0
(etch), kernel version 2.6.18-4 and attached the tracer to
a dedicated Dell PowerConnect 2724 gigabit switch with
two other commodity PCs attached. One PC sent con-
stant bit-rate (CBR) traffic at a configurable rate to the
other; the switch was configured to mirror all traffic to
our tracing host. We verified that no packets were being
dropped by the switch.

Figure 6 shows the results of this experiment. The
first bar shows that we capture 925 Mbps when running
tcpdump on the bare machine with no isolation. The lim-
iting factor in this case is the rate at which our commod-
ity PCs can exchange CBR traffic; even after fine tuning,
they can exchange no more than 925 Mbps on our gi-
gabit link. The second bar shows that running tcpdump
inside the closed-box VM has no measurable effect on
the capture rate because the limiting factor remains our
traffic injection rate. When we use the Linux dm-crypt
module for encryption, however, the capture rate drops
to 817 Mbps even when running on the bare hardware:
the CPU becomes the bottleneck when running the en-
cryption module. Combining both virtualization and en-
cryption shows a further drop in the capture rate, to 618
Mbps. Once the CPU is fully utilized by the encryp-
tion module, the additional virtualization costs become
apparent.

Our implementation of Bunker can trace network traf-
fic of up to 618 Mbps with no packet loss. This is suf-
ficiently fast for the tracing scenario that our university
requires. While the costs of encryption and virtualiza-
tion are not negligible, we believe that these overheads
will decrease over time as Linux and Xen incorporate
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a restricted one. The ordinary configuration loads a typ-
ical Xen environment with all drivers enabled. We use
this environment only to prepare a tracing experiment
and to configure Bunker; we never gather traces in it
because it offers no privacy benefits. To initiate a trac-
ing experiment, we boot into the restricted environment.
When booting into this environment, Bunker’s display
and keyboard freeze because no drivers are being loaded.
In this configuration, we use the open NIC to log in to
the open-box VM where we can monitor the anonymized
traces received through the one-way-initiation interface.
These traces also contain meta-data about the health of
the closed-box VM, including a variety of counters (such
as packets received, packets lost, usage of memory, and
amount of free space on the encrypted disk).

Network studies often need traces that span weeks,
months, or even years. The closed-box nature of Bunker
and its long-term use raise the possibility of the following
operational attack: an intruder gains physical access to
Bunker, reboots it, and sets it up with a fake restricted en-
vironment that behaves like Bunker’s restricted environ-
ment but uses encryption and anonymization keys known
to the intruder. This attack could remain undetected by
network operators. From the outside, Bunker seems to
have gathered network traces continuously.

To prevent this attack, Bunker could generate a pub-
lic/private key-pair upon starting the closed-box VM.
The public key would be shared with the network op-
erator who saves an offline copy, while the private key
would never be released from the closed-box VM. To
verify that Bunker’s code has not been replaced, the
closed-box VM would periodically send a heartbeat mes-
sage through the one-way-initiation interface to the open-
box. The heartbeat message would contain the experi-
ment’s start time, the current time, and additional coun-
ters, all signed with the private key to let network opera-
tors verify that Bunker’s original closed-box remains the
one currently running. This prevention mechanism is not
currently implemented.

7 Evaluation

This section presents a three-pronged evaluation of
Bunker. First, we measure the performance overhead in-
troduced by virtualization and encryption. Second, we
evaluate Bunker’s software engineering benefits when
compared to online tracing tools. Third, we conduct an
experiment to show Bunker’s fault handling benefits.

7.1 Performance Overhead

To evaluate the performance overhead of virtualiza-
tion and encryption, we ran tcpdump (i.e., Bunker’s on-
line component) to capture all traffic traversing a gigabit
link and store it to disk. We measured the highest rate of
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Figure 6. Performance overhead of virtualization and
encryption: We measured the rate of traffic that tcpdump
can capture on our machine with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted file system, and running
on top of an encrypted file system in a Xen VM. All output
captured by tcpdump was written to the disk.

traffic tcpdump can capture with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted disk with dm-crypt [41],
and running on top of an encrypted disk in a Xen VM.

Our tracing host is a dual Intel Xeon 3.0GHz with
4 GB of RAM, six 150 GB SCSI hard-disk drives, and
a DAG 4.3GE capture card. We ran Linux Debian 4.0
(etch), kernel version 2.6.18-4 and attached the tracer to
a dedicated Dell PowerConnect 2724 gigabit switch with
two other commodity PCs attached. One PC sent con-
stant bit-rate (CBR) traffic at a configurable rate to the
other; the switch was configured to mirror all traffic to
our tracing host. We verified that no packets were being
dropped by the switch.

Figure 6 shows the results of this experiment. The
first bar shows that we capture 925 Mbps when running
tcpdump on the bare machine with no isolation. The lim-
iting factor in this case is the rate at which our commod-
ity PCs can exchange CBR traffic; even after fine tuning,
they can exchange no more than 925 Mbps on our gi-
gabit link. The second bar shows that running tcpdump
inside the closed-box VM has no measurable effect on
the capture rate because the limiting factor remains our
traffic injection rate. When we use the Linux dm-crypt
module for encryption, however, the capture rate drops
to 817 Mbps even when running on the bare hardware:
the CPU becomes the bottleneck when running the en-
cryption module. Combining both virtualization and en-
cryption shows a further drop in the capture rate, to 618
Mbps. Once the CPU is fully utilized by the encryp-
tion module, the additional virtualization costs become
apparent.

Our implementation of Bunker can trace network traf-
fic of up to 618 Mbps with no packet loss. This is suf-
ficiently fast for the tracing scenario that our university
requires. While the costs of encryption and virtualiza-
tion are not negligible, we believe that these overheads
will decrease over time as Linux and Xen incorporate

further optimizations to their block-level encryption and
virtualization software. At the same time, CPU manu-
facturers have started to incorporate hardware accelera-
tion for AES encryption (i.e., similar to what dm-crypt
uses) [46].

7.2 Software Engineering Benefits

As previously discussed, Bunker offers significant
software engineering benefits over online network trac-
ing systems. Figure 7 shows the number of lines of code
for three network tracing systems that perform HTTP
parsing, all developed by this paper’s authors. The first
two systems trace HTTP traffic at line speeds. The first
system was developed from scratch by two graduate stu-
dents over the course of one year. The second system
was developed by one graduate student in nine months;
this system was built on top of CoMo, a packet-level trac-
ing system developed by Intel Research [22]. Bunker is
the third system; it was developed by one student in two
months. As Figure 7 shows, Bunker’s codebase is an or-
der of magnitude smaller than the others. Moreover, we
wrote only about one fifth of Bunker’s code; the remain-
der was re-used from libraries.

Bunker’s smaller and simpler codebase comes at a
cost in terms of its offline component’s performance.
Figure 8 shows the time elapsed for Bunker’s online
and offline components to process a 5 minute trace of
HTTP traffic. The trace contains 4.5 million requests,
or about 15,000 requests per second, that we generated
using httpperf. In practice, very few traces contain that
many HTTP requests per second. While the online com-
ponent runs only tcpdump storing data to the disk, the of-
fline component performs TCP/IP reconstruction, parses
HTTP, and records the HTTP headers before copying the
trace to the open-box VM. The offline component spends
20 minutes and 28 seconds processing this trace. Clearly,
Bunker’s ease of development comes at the cost of per-
formance, as we did not optimize the HTTP parser at all.
The privacy guarantees of our isolated environment grant
us the luxury of re-using existing software components
even though they do not meet the performance demands
of online tracing.

7.3 Fault Handling Evaluation

In addition to supporting fast development of differ-
ent tracing experiments, Bunker handles bugs in the trac-
ing software robustly. Upon encountering a bug, Bunker
marks the offending flow as “erroneous” and continues
processing traffic without having to restart. To illus-
trate the benefits of this fault handling approach, we per-
formed the following experiment. We used Bunker on
a Saturday to gather a 20 hour trace of the HTTP traf-
fic our university exchanges with the Internet. This trace
contained over 5.2 million HTTP flows. We artificially
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Figure 7. Lines of Code in three systems for gather-
ing HTTP traces: The first system was developed from
scratch by two graduate students in one year. The sec-
ond system, an extension of CoMo [22], was developed
by one graduate student in nine months; we included
CoMo’s codebase when counting the size of this system’s
codebase. The third system, Bunker, was developed by
one student in two months.

injected a parsing bug in one packet out of 100,000 (cor-
responding to a parsing error rate of 0.001%). Upon en-
countering this bug, Bunker stops parsing the erroneous
HTTP flow and continues with the remaining flows. We
compare Bunker to an online tracer that would crash
upon encountering a bug and immediately restart. This
would result in the online tracer dropping all concurrent
flows (we refer to this as “collateral damage”). This ex-
periment assumes an idealized version of an online tracer
that restarts instantly; in practice, it takes tens of sec-
onds to restart an online tracer’s environment losing even
more ongoing flows. Figure 9 illustrates the difference in
the fraction of flows affected. While our bug is encoun-
tered in only 0.08% of the flows, it affects an additional
31.72% of the flows for an online tracing system. Not
one of these additional flows is affected by the bug when
Bunker performs the tracing.

8 Legal Background

This section presents legal background concerning the
issuing of subpoenas for network traces in the U.S. and
Canada and discusses legal issues inherent in designing
and deploying data-hiding tracing platforms2.

8.1 Issuing Subpoenas for Data Traces

U.S. law has two sets of requirements for obtaining
a data trace that depend on when the data was gathered.
For data traces gathered in the past 180 days, the govern-
ment needs a mere subpoena. Such subpoenas are ob-
tained from a federal or state court with jurisdiction over
the offense under investigation. Based on our conver-
sations with legal experts, obtaining a subpoena is rel-
atively simple in the context of a lawsuit. A defendant

2Any mistakes in our characterization of the U.S. or Canadian legal
systems are the sole responsibility of the authors and not the lawyers
we consulted during this research project.
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Figure 8. Online vs. Offline processing speed: The time
spent processing a five minute HTTP trace by Bunker’s
online and offline components, respectively.

(e.g., the ISP) could try to quash the subpoena if compli-
ance would be unreasonable or oppressive.

For data gathered more than 180 days earlier, a gov-
ernment entity needs a warrant under Title 18 United
States Code 2703(d) from a federal or state court with ap-
propriate jurisdiction. The government needs to present
“specific and articulable facts showing that there are rea-
sonable grounds to believe that the contents of a wire
or electronic communication, or the records or other in-
formation sought, are relevant and material to an ongo-
ing criminal investigation.” The defendant can quash the
subpoena if the information requested is “unusually vo-
luminous in nature” or compliance would cause undue
burden. Based on our discussions with legal experts, the
court would issue such a warrant if it determines that
the data is relevant and not duplicative of information
already held by the government entity.

In Canada, a subpoena is sufficient to obtain a data
trace regardless of the data’s age. In 2000, the Cana-
dian government passed the Personal Information Pro-
tection and Electronic Documents Act (PIPEDA) [33],
which enhances the users’ rights to privacy for their data
held by private companies such as ISPs. However, Sec-
tion 7(3)(c.1) of PIPEDA indicates that ISPs must dis-
close personal information (including data traces) if they
are served with a subpoena or even an “order made by
a court, person or body with jurisdiction to compel pro-
duction of information”. In a recent case, a major Cana-
dian ISP released personal information to the local police
based on a letter that stated that “the request was done
under the authority of PIPEDA” [32]. A judge subse-
quently found that prior authorization for this informa-
tion should have been obtained, and the ISP should not
have disclosed this information. This case illustrates the
complexity of the legal issues ISPs face when they store
personal information (e.g., raw network traces).

8.2 Developing Data-Hiding Technology

In our discussions with legal experts, we investigated
whether it is legal to develop and deploy a data-hiding
network tracing infrastructure (such as Bunker). While
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Figure 9. Fraction of flows affected by a bug in an on-
line tracer versus in Bunker: A bug crashing an online
tracer affects all flows running concurrent with the crash.
Instead, Bunker handles bugs using exceptions affecting
only the flows that triggered the bug.

there is no clear answer to this question without legal
precedent, we learned that the way to evaluate this ques-
tion is to consider the purpose and potential uses for the
technology in question. In general, it is legal to deploy
a technology that has many legitimate uses but could
also enable certain illegitimate uses. Clearly, technolo-
gies whose primary use is to enable or encourage users
to evade the law are not legal. A useful example to il-
lustrate this distinction is encryption technology. While
encryption can certainly be used to enable illegal activi-
ties, its many legitimate uses make development and de-
ployment of encryption technologies legal. In the con-
text of network tracing, protecting users’ privacy against
accidental loss or mismanagement of the trace data is a
legitimate purpose.

9 Related Work
Bunker draws on previous work in network tracing

systems, data anonymizing techniques, and virtual ma-
chine usage for securing systems. We summarize this
previous work and then we describe two systems built to
protect access to sensitive data, such as network traces.

9.1 Network Tracing Systems

One of the earliest network tracing systems was Http-
dump [51], a tcpdump extension that constructs a log
of HTTP requests and responses. Windmill [30] devel-
oped a custom packet filter that facilitates the building
of specific network analysis applications; it delivers cap-
tured packets to multiple filters using dynamic code gen-
eration. BLT [18], a network tracing system developed
specifically to study HTTP traffic, supports continuous
online network monitoring. BLT does not use online
anonymization; instead, it records raw packets directly to
disk. More recently, CoMo [22] was designed to allow
independent parties to run multiple ongoing trace anal-
ysis modules by isolating them from each other. With
CoMo, anonymization, whether online or offline, must
be implemented by each module’s owner. Unlike these
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systems, Bunker’s design was motivated by the need to
protect the privacy of network users.

9.2 Anonymization Techniques

Xu et al. [52] implemented a prefix-preserving anony-
mization scheme for IP addresses, i.e., addresses with
the same IP prefix share the same prefix after anonymiz-
ation. Pang et al. [35] designed a high-level language for
specifying anonymization policies, allowing researchers
to write short policy scripts to express trace transforma-
tions. Recent work has shown that traces can still leak
private information even after they are anonymized [34],
prompting the research community to propose a set
of guidelines and etiquette for sharing data traces [1].
Bunker’s goal is to create a tracing system that makes
it easy to develop trace analysis software while ensuring
that no raw data can be exposed from the closed-box VM.
Bunker does not protect against faulty anonymization
policies, nor does it ensure that anonymized data cannot
be subject to the types of attacks described in [34].

9.3 Using VMs for Making Systems Secure

An active research area is designing virtual ma-
chine architectures that are secure in the face of at-
tacks. Several solutions have been proposed, includ-
ing: using tamper-resistant hardware [28, 20]; design-
ing VMMs that are small enough for formal verifica-
tion [25, 40]; using programming language techniques
to provide memory safety and control-flow integrity in
commodity OS’es [26, 12]; and using hardware memory
protection to provide code integrity [43]. While these
systems attempt to secure a general purpose commod-
ity OS, Bunker was designed only to secure tracing soft-
ware. As a result, its interfaces are simple and narrow.

9.4 Protecting Access to Sensitive Data

Packet Vault [3] is a network tracing system that cap-
tures packets, encrypts them, and writes them to a CD.
A newer system design tailored for writing the encrypted
traces to tape appears in [2]. Packet Vault creates a per-
manent record of all network traffic traversing a link. Its
threat model differs from Bunker’s in that there is no at-
tempt to secure the system against physical attacks.

Armored Data Vault [24] is a system that implements
access control to previously collected network traces, by
using a secure co-processor to enforce security in the face
of malicious attackers. Like Bunker, network traces are
encrypted before being stored. The encryption key and
any raw data are stored inside the secure co-processor.
Bunker’s design differs from Armored Data Vault’s in
three important ways. First, Bunker’s goal is limited to
trace anonymization only and not to implementing ac-
cess control policies; this lets us use simple, off-the-shelf

anonymization code to minimize the likelihood of bugs
present in the system. Second, Bunker destroys the raw
data as soon as it is anonymized; the Armored Data Vault
stores its raw traces permanently while enforcing the data
access policy. Finally, Bunker uses commodity hard-
ware that can run unmodified off-the-shelf software. In-
stead, the authors of the Armored Data Vault had to port
their code to accommodate the specifics of the secure co-
processor, a process that required effort and affected the
system’s performance [24].

10 Conclusions

This paper presents Bunker, a network tracing archi-
tecture that combines the performance and software en-
gineering benefits of offline anonymization with the pri-
vacy offered by online anonymization. Bunker uses a
closed-box and safe-on-reboot architecture to protect raw
trace data against a large class of security attacks, includ-
ing physical attacks to the system. In addition to its secu-
rity benefits, our architecture improves ease of develop-
ment: using Bunker, one graduate student implemented a
network tracing system for gathering anonymized traces
of Hotmail e-mail in less than two months.

Our evaluation shows that Bunker has adequate per-
formance. We show that Bunker’s codebase is an order
of magnitude smaller than previous network tracing sys-
tems that perform online anonymization. Because most
of its data processing is performed offline, Bunker also
handles faults more gracefully than previous systems.
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