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Abstract
We propose to construct routing overlay networks us-

ing the following principle: that overlay edges should be
based on mutual advantage between pairs of hosts. Upon
this principle, we design, implement, and evaluate Peer-
Wise, a latency-reducing overlay network. To show the
feasibility of PeerWise, we must show first that mutual
advantage exists in the Internet: perhaps contrary to ex-
pectation, that there are not only “haves” and “have nots”
of low-latency connectivity. Second, we must provide a
scalable means of finding promising edges and overlay
routes; we seek embedding error in network coordinates
to expose both shorter-than-default “detour” routes and
longer-than-expected default routes.
We evaluate the cost of limiting PeerWise to mutu-

ally advantageous links, then build the intelligent com-
ponents that put PeerWise into practice. We design and
evaluate “virtual” network coordinates for destinations
not participating in the overlay, neighbor selection algo-
rithms to find promising relays, and relay selection algo-
rithms to choose the neighbor to traverse for a good de-
tour. Finally, we show that PeerWise is practical through
a wide-area deployment and evaluation.

1 Introduction
We propose mutual advantage as a principle for the con-
struction of routing overlay networks: overlay edges
should exist only between hosts that benefit from each
other’s resources or position in the network. Hosts nego-
tiate connections based strictly on mutual advantage, and
overlay paths follow only these connections.
Several distributed protocols and applications use mu-

tual advantage as part of their design. BitTorrent [5]
peers that download the same file trade blocks the other
is missing. In backup systems [7], nodes store replicas
of files for each other. Autonomous systems in the In-
ternet negotiate peer-to-peer agreements to provide low-
cost connectivity to each other’s customers [9].
Bringing mutual advantage into the design of routing

overlays has several benefits. First, mutual advantage
induces better cooperation among nodes. Incentives to
participate become simpler, and long-lived, fair connec-
tions appear. Building systems grounded in incentives
for cooperation makes them robust to misbehavior and
selfishness [23, 29]. Second, users could freely discrim-

inate among the connections that they allow and would
have the ability to explicitly say how much service they
want to contribute. Finally, mutual advantage avoids the
tragedy of the commons in routing overlays, when only
a few, well-connected nodes provide transit. It keeps
the trades of connectivity fair, in contrast to file-sharing
where universities are net providers of content [27].
In this paper, we present the design, implementation,

and evaluation of PeerWise, a latency-reducing routing
overlay based on mutual advantage. PeerWise scalably
discovers detour routes: “indirect” one-hop paths that
have lower round trip latency than the “direct” path.
In a previous paper [17], we presented ideas that sup-

port a mutually advantageous latency-reducing overlay:
that mutual advantage is common in the context of Inter-
net latencies and that embedding error in network coor-
dinate systems, such as Vivaldi [8] or GNP [20], could be
used to scalably discover detours. However, we did not
evaluate the potential and limitations of mutual advan-
tage, nor did we design or implement a system to take
advantage of the existing detour routes. In this work,
we show that a mutually advantageous latency-reducing
overlay is feasible and efficient, and that detours toward
popular destinations are available. We design, imple-
ment, and evaluate a system that finds these detours.
We describe our contributions next.
First, we use a measurement-driven simulation to

show the potential of PeerWise (§4). We collect two
latency data sets to find what fraction of detours exist
subject to the mutual advantage requirement and, inde-
pendently, can be found by embedding error. The mu-
tual advantage requirement reduces the number of desti-
nations reachable via detour by approximately half, yet
even popular websites, using content distribution ser-
vices such as Akamai, are reachable by PeerWise-found
detours. Only 5% of potential detours are missed by em-
bedding error.
We next describe the design of PeerWise in two main

parts: mechanism (§5) and policies (§6). We implement a
virtual network coordinate approach to find coordinates
for the destinations that do not participate directly in the
overlay. Neighbor tracking determines the set of nodes
that are more likely to offer detours by remembering
those neighbors with high embedding error in the coordi-
nate space. Pairwise negotiation establishes connections
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promising mutual benefit while the maintenance compo-
nent ensures that each node receives approximately as
much benefit as it provides.
The second part of the design focuses on the decisions

that each PeerWise node makes. We evaluate neighbor
selection and relay selection algorithms. We show that
coordinates can be used to choose among detours. Our
environment is quite different from previous work on
latency prediction using coordinates. Instead of focus-
ing on source-to-destination, we must choose a source-
to-relay-to-destination path based on a relay coordinate
known to have high embedding error and a destination
coordinate that may be stale or inaccurate.
Finally, we describe the implementation of PeerWise

and its evaluation on PlanetLab (§7). We show that
PeerWise nodes find detours to popular destinations, that
these detours are stable, and that they offer significant la-
tency reductions. Most detours last for a long time and
are obtained using only one mutually advantageous peer-
ing. We then show how PeerWise detours translate into
real life and whether user applications can benefit.

2 Related Work
Routing overlays, such as RON [2], Detour [28],
SOSR [11], and OverQoS [31], promise to provide more-
reliable or faster paths through the Internet. They for-
ward packets along links in self-constructed meshes and
make routing decisions without support from routers or
ASes. RON [2] builds a fully connected mesh and mon-
itors all edges. When the direct path between two nodes
fails or has performance problems, communication is
established through the other overlay nodes. Nakao et
al. [19, 18] use static AS-level topology and geographi-
cal distance information to eliminate redundant overlay
edges and improve scalability. Gummadi et al. show that
all-to-all measurements are not necessary to find reliable
paths: routing through a randomly chosen intermediary
node is enough [11]. Similarly, we show that faster-than-
default paths can be discovered with limited information:
network coordinates and latencies to a few other nodes
are sufficient.
Various file-swarming systems [5, 15, 30] apply tit-

for-tat-like schemes to induce cooperation among peers.
Tit-for-tat applies when there is a mutual interest among
peers, which is common in file swarming; for any pair
of peers, one may have blocks the other does not. We
show that, perhaps surprisingly, mutual interest is com-
mon in low-latency routing in the Internet as well, and
that locating nodes of mutual interest can be done in a
decentralized fashion.
The requirements imposed by PeerWise on who can

connect to whom are reminiscent of the bilateral connec-
tion game (BCG) [6], a special case of network forma-
tion game. In BCG, a link between two nodes is estab-

direct paths

detours
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Figure 1: Obtaining faster paths with PeerWise: A dis-
covers a detour to D through B; B also finds that it can
reach C faster if it traverses A; A and B create a mu-
tually advantageous peering that they both use to reach
their destinations more quickly.

lished only with the consent of both nodes, similarly to
PeerWise. However, nodes construct links that minimize
the cost of reaching other participating nodes, whereas
in PeerWise, nodes create peerings that offer detours to
destinations that do not necessarily participate.

3 PeerWise Philosophy
In this section, we present an overview of PeerWise. We
outline the two properties on which PeerWise is based:
that mutual advantage is common in the Internet latency
space and that network coordinate systems can help indi-
cate detour routes. A previous paper [17] describes these
properties in more detail. We then argue that it has the
potential to be applied to a wide range of applications.

3.1 Overview
The key idea of PeerWise is that two nodes can cooper-
ate to obtain faster end-to-end paths without either be-
ing compelled to offer more service than they receive.
Peers negotiate and establish pairwise connections to
each other based strictly on mutual advantage. Figure 1
shows an example. The default Internet path between
two nodes is the direct path. A shorter, alternate path
having one intermediate hop is a detour, using terminol-
ogy from Detour [28]. Node A discovers a faster path to
D via B. However, B will not help A unless A provides
a detour in exchange. Since there is a shorter path from
B to C going through A, A and B can help each other
communicate faster with their intended destinations.
Mutual Advantage Each participant in overlay net-
works contributes resources in exchange for the re-
sources of others. Unfortunately, free access and unre-
stricted demandmay lead to over-utilization of certain re-
sources, especially those of well-provisioned nodes. This
tragedy of the commons occurs because the benefits of
using common resources accrue to individuals, while the
costs of exploitation are shared by the resource providers.
Pairwise peerings based on mutual benefit offer users

an effective way to resolve the tragedy of the commons,
as they can freely discriminate among the connections
they allow. However, such decentralized policy may be
costly: if nodes accept only peerings that are mutually
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Figure 2: Embedding three points that form a TIV into
a metric space introduces inaccuracies. The numbers in
parentheses represent embedding errors.

advantageous, but mutual advantage is rare, the benefit
of the overlay is lost. In Section 4, we show that mutual
benefit is common and that a majority of nodes are in a
position to both provide and receive service.

Network Coordinates Embedding Error Measuring
and distributing the all-pairs latencies required to find
detours would limit the scalability of a latency-reducing
overlay. Instead, PeerWise detects triangle inequality vi-
olations (TIVs) and uses them to predict good detours.
Three nodes in the Internet form a TIV when the RTT

between two of them (the long side of the TIV) is greater
than the sum of the RTTs to the third node (the short
sides of the TIV). The left side of Figure 2 shows an ex-
ample TIV. Pairs of nodes that are long sides in TIVs
may benefit from detours; pairs that are short sides may
be part of detours.
To find TIVs scalably, PeerWise uses network coor-

dinates. A network coordinate system associates nodes
with points in a metric space such that the distance
between the points estimates the real latency between
nodes. Since TIVs are not allowed in metric spaces by
definition, this embedding may result in high errors on
the edges of the triangle (see Figure 2). The error for the
long side of the TIV will be very negative, or the error
for the sum of short sides of the TIV will be very pos-
itive. Thus, a pair of nodes with a negative estimation
error has a higher chance of benefiting from a shorter
path; conversely, when the nodes have a large estimation
error between them, they are more likely to be part of a
shorter path for another node.

3.2 Where does PeerWise apply?
We expect PeerWise has the most utility for latency-
sensitive traffic such as HTTP HEAD requests that check
for updates to a cached file before rendering, XML-
RPC requests for rapid updates of existing content such
as train status or sports scores, voice traffic relayed to
bypass firewalls, and online games such as first-person
shooters, whose playability hinges on low-latency up-
dates among players [3]. Existing overlay networks
could benefit from using PeerWise as a latency-reducing
substrate by guiding PeerWise’s neighbor- and relay-
selection algorithms to better suit the application’s needs.

Because PeerWise focuses on reducing latency, it can
find and use the low-latency paths that may not sup-
port high-bandwidth use—that is, the low-latency paths
that the default routing, likely tuned for high-bandwidth,
misses. Going through a peer is likely to traverse an-
other access link that might have low bandwidth. This
means that bandwidth-intensive applications, such as
video streaming, are unlikely to benefit from latency re-
duction with PeerWise.

4 Limitations of Mutual Advantage
We assess the potential performance of a mutually ad-
vantageous latency-reducing overlay. Because we re-
strict detour paths to mutually advantageous peerings, we
would not expect PeerWise to find the shortest detours or
find detours to all destinations. We simulate using two la-
tency data sets to show that nodes can find shorter paths
to the majority of destinations for which a shorter detour
exists, despite the requirement of mutual advantage. We
find that mutually advantageous detours exist even for
popular destinations hosted on many prefixes.

4.1 Collected Data Sets
We collected two real-world latency data sets and com-
puted all one-hop detours between each pair of nodes.
PW-King Data Set The first data set, PW-King, con-
tains RTTs between 1,953 DNS servers of hosts in the
Gnutella network. The list of hosts was gathered by
Dabek et al. for the Vivaldi [8] project. We use King [10]
to measure all-to-all latencies between the servers. King
uses recursive DNS queries to estimate the propagation
delay between two hosts as the delay between their au-
thoritative name servers. The 1,953 servers were chosen
for being in the same subnet as their hosts so that better-
connected DNS servers would not influence the estimates
of inter-client latencies. For each pair of nodes, we kept
the median of all latencies measured at random intervals
for a week in February 2008. Of the 1,953 servers, we
removed 238 that appeared to experience high load dur-
ing the measurement, as described by Dabek et al. [8].
A heavily-loaded DNS server can cause King to under-
estimate latencies to other nodes, which can lead to false
triangle inequality violations.
Popular Destinations Data Set The second data set,
PL-Dest, contains RTTs from 389 PlanetLab nodes to
500 popular web servers, measured in January 2008. We
selected the servers based on a ranking by the Alexa In-
ternet Company [1] using expected and measured client
access. For faster content delivery, many of the web-
sites have multiple IP addresses; users in different geo-
graphic regions see different IPs for the same server. To
gather the IP addresses associated with a website, as visi-
ble from PlanetLab, we performed DNS lookups on each
of the 500 names from the 389 PlanetLab nodes. We ob-
tained 2932 distinct IP addresses in 796 /24 prefixes. We
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Figure 4: Distribution of the fraction of destinations reachable through mutu-
ally advantageous peerings for PL-Dest data set (left), and PW-King data set
(right). In PL-Dest, few destinations can be reached by detour at all, some
sources need no detours, and approximately half of the detours that could
be used are lost by the mutual advantage restriction. In PW-King, all nodes
have many detours available, and mutual advantage is less costly. In both,
embedding error finds nearly all detours.

probed each prefix and each PlanetLab node from every
PlanetLab node at random times over a week. We used
the median RTT values to represent the link.
The latency collection process can produce incorrect

data that may bias our results. We removed 52 servers
from the final data set because we could not measure any
RTT to them. Further, several PlanetLab nodes had very
low latencies (< 1 ms) to most destinations. These laten-
cies are likely caused by connection-tracking firewalls or
“transparent” proxies near the PlanetLab nodes that gen-
erate spoofed responses as if from the destination. We
removed those nodes from the data set since they would
artificially overstate the potential of PeerWise. Our final
latency matrix contains RTT values from 325 PlanetLab
nodes to 718 prefixes corresponding to 448 websites.
The PW-King and PL-Dest data sets illustrate two sce-

narios in which PeerWise can be useful. Latency reduc-
tion on PW-King shows the potential benefit to applica-
tions a set of peers may run, such as a distributed multi-
player network game or VoIP application. On PL-Dest,
reduced latency shows benefit for users accessing popu-
lar servers that would not participate in PeerWise.

4.2 Methodology
We built a simulation prototype of PeerWise to study
how well it finds detours with mutual advantage and em-
bedding error. To find network coordinates for nodes,
we use Vivaldi [8]. We allow each node to communicate
with all other nodes, to better study mutual advantage in
isolation. When requesting detours for its destinations, a
node starts with the neighbor that has the highest embed-
ding error [17]. We evaluate alternative relay selection
methods in Section 6.2.
For each pair of nodes in our data sets, we find all one-

hop detours. We define a good detour as a detour that
provides at least 10 ms and 10% latency reduction over

the direct path. We consider only good detours. This
cutoff helps avoid impractical or dubious detours due to
measurement error. In the PL-Dest data set, we may find
detours by server name: The detour path may end at a
different IP address associated with the same name.

4.3 Mutual Advantage
How much mutual advantage exists in our data sets? We
define a potential peering to exist between two nodes that
can provide a detour to each other, for at least one des-
tination, as between A and B in Figure 1. The number
of potential peerings for a node represents the number
of neighbors with which the node can construct mutu-
ally advantageous peerings. In Figure 3, we show a cu-
mulative distribution of the fraction of nodes for which
a potential peering exists. Each point represents a node,
and its placement on the x-axis what fraction of the other
nodes it shares a potential peering with. At least 50% of
the nodes in either data set have have potential peerings
with at least 50% of the rest of the nodes. The figure
also shows that there is more mutual advantage in the
PW-King data set than in PL-Dest.
Next, we show that mutual advantage sacrifices few

detours. We study the fraction of destinations that each
node can reach more quickly via mutually advantageous
peerings in Figure 4. Each graph considers four cases
to isolate the two main potential performance sacrifices:
the requirement of mutual advantage (that could make
detours unavailable) and relay choice by positive embed-
ding error (that might not find them despite being possi-
ble). The solid line represents an unconstrained detour
overlay. Considering mutual advantage eliminates over
half of the potential destinations for many nodes. For
some, mutual advantage eliminates all detours; trivially,
these are the nodes that cannot provide service to oth-
ers. Choosing among either set (constrained to mutual
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Figure 5: PL-Dest: When a detour exists, density plot
of detour path RTT versus the direct path RTT (top, the
color of each point represents the number of TIVs with
the corresponding direct and detour RTTs), and PDF of
direct path RTTs (bottom).

advantage or not) via embedding error between source
and relay sacrifices very few detours (the corresponding
lines are almost indistinguishable from each other in Fig-
ure 4). Mutual advantage does not impact the latency re-
duction to the destinations that are still reachable: only
at most 12% of the median latency reduction is lost due
to the requirement of mutual advantage.

4.4 Detours to Nearby Destinations
The destinations in PL-Dest include both regionally and
globally popular websites. We expect that a regional
website serves its pages from within the region of inter-
est, so the direct path latencies to the destination from
PeerWise nodes in that region should be small. Since
the PlanetLab nodes are globally diverse, some “detours”
may be for destinations unpopular in that node’s region.
For example, detours to popular websites in China may
be less useful for nodes in Europe or North America. In
Figure 5, we show that latency reduction is not limited to
distant destinations. Because our rule to define a “good”
detour requires at least 10 ms of reduction, few very short
paths are featured. However, mutually-advantageous de-
tours are found for direct paths too short to cross the At-
lantic or Pacific oceans (< 100 ms).

4.5 Multiple-IP Websites
For faster content delivery, around 20% of the popular
websites in the PL-Dest data set are served from geo-
graphically distributed locations. User requests are trans-
parently directed to the geographically (or administra-
tively) nearest IP address.
Using the PL-Dest data set, we compute how many

nodes can find detours to each of the 448 websites and
plot it against the total number of /24 prefixes of each

website. Figure 6 presents the results. Each point in the
plot is associated with one server name. Most websites
with IP addresses in at least two prefixes can be reached
faster from at least one PlanetLab node. We divide the
plot into six regions and describe each in the accompa-
nying table.
Figure 6 shows that PeerWise has the potential to be

effective in reducing latency to most popular websites,
even when they employ other latency-reducing tech-
niques such as mirroring or DNS redirection.

4.6 Simulation Limitations
First, our pairwise peerings are established expecting that
each destination will be accessed as often as any other.
Clearly, not all destinations are equally popular, but we
cannot estimate how often peers will use the peering.
Our evaluation might favor VoIP applications where the
endpoints are well distributed and no endpoint is orders
of magnitude more popular than the others. In Section 7,
we experiment with different access patterns, including
random and zipf, to try to apply likely relative popularity
models to traffic.
Second, the latencies between DNS servers or Planet-

Lab nodes may underestimate the latencies between end-
hosts in the Internet. Although the latency matrix be-
tween DNS servers and PlanetLab hosts may represent
the locations of hosts in the coordinate space, these data
sets may not represent the latencies seen by such hosts.
Third, using PlanetLab nodes to reach popular destina-

tions may raise questions about the validity of our eval-
uation. Connecting to a commercial site via a PlanetLab
relay may reveal detours that would not be discovered
had the relay been on the commercial network. How-
ever, Abilene and NLR, research networks that are part
of Internet2, use wavelengths on fiber leased from other
providers along rights-of-way shared with commercial
networks. We believe that this sharing prevents research
networks from providing an unfair advantage in latency
reduction. We have even observed detours between Pla-
netLab nodes—routing within the academic network is
not so latency-optimal as to prevent detours.
Finally, we do not model the bandwidth of the con-

nection. Even though mutual latency reductions lead to a
pairwise peering, limited bandwidth may prevent it from
helping. As described in Section 3, we expect to use
PeerWise only with latency-sensitive applications that do
not require high bandwidth.

5 Design, Part I: Mechanisms
We present next the design of the PeerWise routing over-
lay network. In this section, we focus on the key fea-
tures of PeerWise: detour detection using network co-
ordinates for scalability, neighbor tracking for improv-
ing efficiency, and pairwise negotiations for fairness. In
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Figure 6: Detours to mirrored websites: The figure presents number of nodes that find detours (c) versus number of
prefixes for each website (p). The table describes the six regions in the figure.

Section 6, we describe and evaluate the policies of each
PeerWise node. We present the implementation and eval-
uation details in Section 7.

5.1 Virtual Network Coordinates
Every PeerWise node must compute its own network co-
ordinate before searching for detours. We use Vivaldi [8]
for network coordinates. Every node maintains a set of
neighbors that it probes periodically. It uses the round
trip time and the network coordinate of these neighbors
to update its own coordinate. After each probe, the node
computes the coordinate that minimizes the squared es-
timation error to all of its neighbors. To help the system
converge quickly, nodes with uncertain coordinates can
move farther with each measurement. Figure 7(a) shows
the coordinate computation process.
A node in PeerWise must learn the coordinates of des-

tinations to discover long or short sides of a TIV. How-
ever, if a destination is not participating in the overlay, it
will not provide its own network coordinate. We there-
fore extend Vivaldi to allow a node to compute a virtual
network coordinate for any non-participating host. We
refer to non-participating Internet nodes as hosts and to
PeerWise participants simply as nodes.
To generate virtual network coordinates for non-

participating hosts in Vivaldi, a participating node
chooses to become temporarily responsible for that host.
The node runs Vivaldi on behalf of the host with one
minor adjustment. Since the host is not participating in
the system, it cannot manage its own neighbor set or ac-
tively gather the round trip times needed to compute the
coordinate. Instead, the participating node uses its own
neighbor set as the neighbor set for the host, and requests
that those neighbors measure the latency to the host, as
shown in Figure 7(b). Our extensions are similar to those
recently described by Ledlie et al. [13].
Requiring all nodes to compute virtual coordinates for

all non-participating destinations would limit the scal-
ability of PeerWise. We include a gossip mechanism
to disseminate the calculated coordinates throughout the

D
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Figure 7: (a) Computing network coordinates for a Peer-
Wise node: A measures RTT to its neighbors and asks
for their coordinates (1); after it receives the replies (2) it
computes the coordinate that minimizes the squared esti-
mation error (3); (b) Computing network coordinates for
a non-PeerWise node D: A asks each of its neighbors (4)
to measure RTTs to D (5,6); after it receives the replies
from the neighbors (7), A runs the network coordinate
algorithm on behalf of D (8).

system. At fixed intervals (10s in our experiments), each
node picks one of its neighbors at random, then selects
a random destination and sends to the neighbor the IP
address, name and virtual coordinate of the destination.
A node decides to take responsibility for a destination

to which it wants to find a detour when the destination’s
coordinate does not yet exist, becomes too old (1 day in
our experiments), or becomes unstable (where stability
depends on the embedding error to other nodes). Any
node can generate coordinates independently; this de-
centralization may allow simultaneous, redundant work.
Rather than try to enforce a single consistent view of the
coordinate, we allow any of these coordinates to be con-
sidered valid estimates. When a node receives a new vir-
tual coordinate through the gossip protocol, it uses that
new coordinate only if it is more stable and it was up-
dated by the node responsible for it.
Virtual network coordinates are useful if a host is pop-

ular. If the host is not popular, a node trying to discover
a detour to that host will need to compute its virtual co-
ordinate. Since this requires that the node’s neighbors
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measure the round trip time to the host, the node would
know all three sides of the triangle, so it would trivially
discover TIVs. However, if the node knows the virtual
coordinate of a host already (because the host is pop-
ular and its coordinate has been gossiped), it will only
know the two adjacent sides of the triangle, and it will be
able to make predictions about the third side between the
neighbor and the destination. We evaluate these predic-
tions in Section 6.3.

5.2 Neighbor Tracking
The success of our protocol depends on the ability of
nodes to find other nodes to establish pairwise peerings.
There are many possible relays for a node, any of which
may have high embedding error with respect to the node.
Recall that high embedding error for a pair of nodes indi-
cates a higher probability that the pair is part of a detour.
We use neighbor tracking to find the nodes that are more
likely to offer detours. With neighbor tracking, a Peer-
Wise node remembers extra neighbors and learns about
good potential relays from its neighbors or from nearby
(in latency) nodes. The neighbors in this section are not
relays; they are only candidates for becoming so.
When joining PeerWise, a node bootstraps its potential

neighbor set from a known PeerWise node and uses it
to compute its network coordinate. Once the network
coordinate is stable, the node asks its neighbors about
their own neighbors, remembering those nodes with high
embedding error. For example, in Figure 8, A asks for
the neighbor set of B, formed of B1, B2 and B3. Node A
then computes the embedding error from itself to each of
B1, B2 and B3 and adds those nodes to which the error
is most positive to its neighbor list. These nodes are the
most likely to form a short side of a TIV with A.
For scalability, we limit the number of neighbors of

each node. Neighbors with higher potential to offer the
best detours replace less-efficient neighbors. We con-
sider and evaluate different methods for ranking poten-
tial neighbors in Section 6.1. Because PeerWise allows
a node to exchange information about neighbors with
neighbors, we expect each node to have ample choices.

5.3 Pairwise Negotiation
PeerWise nodes negotiate with their neighbors to request
or advertise alternate routes. As discussed in Section 3,
a detour to a destination is likely to exist if the estimated
distance to the destination is much smaller than the mea-
sured latency. In this case, a node asks its neighbors with
high embedding errors whether they can offer a faster
path (Figure 9(c)). Nodes are not limited to this simple
strategy. In Section 6.2, we evaluate different policies for
choosing relays and deciding whether to request detours
for a destination.
Actively requesting detours may be inefficient, espe-

cially if the connection to the destination is short-lived.

B1

B2

B3

(a) (b) (c)

A

B

A

B

A

B

Figure 8: Neighbor Tracking. (a) A chooses the neigh-
bor to which it has the highest embedding error and re-
quests its neighbor set; (b) A measures RTTs to each of
the nodes received from B; (c) A adds to its neighbor set
those nodes to which it has a positive embedding error.

In addition, the time to find a detour may dominate the
latency reduction achieved. To encourage fast detour dis-
covery, PeerWise nodes also proactively advertise paths
to popular destinations. For example, in Figure 9(d),
node A observes that the link to node D, which may or
may not be running PeerWise, has a high estimation er-
ror. This means that AD may be a short side in a TIV. A
advertises D on all other potential short sides (i.e., to all
neighbors to which it has a high estimation error).
Finding detours is not enough: PeerWise is based on

mutual agreements between nodes. A sender node can
use a detour only if the relay that offers it also finds value
in the sender. When requesting a detour from a neighbor,
a PeerWise node includes a list of possible destinations to
which it has high embedding error. The path to these des-
tinations is more likely to be part of a detour for another
node, as described in Section 3. Requests for detours are
accepted only when both the sender and the receiver find
mutual advantage in forwarding each other’s traffic.

5.4 Maintenance
Each PeerWise node maintains two tables: a peering ta-
ble and a negotiation table. The peering table tracks es-
tablished, mutually advantageous peering relationships.
The negotiation table is an antechamber for the peering
table and tracks the nodes with which no peering has
been established, but which are candidates for mutually
beneficial peerings. Once a peering is established, the
peer moves from the negotiation table to the peering ta-
ble. An entry in either table is associated with a node i
in the system and contains i’s IP address, network coor-
dinate, and a history of round trip times to i. The peering
table adds the SLA and the utilization of the peering.
The SLA specifies the benefit that each node is ex-

pected to receive and offer through the peering. We allow
different measures for the mutual benefit of a connection
as long as the peering nodes both agree upon them. Two
nodes can form a peering and agree that each of them
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Figure 9: Detour Requests and Advertisements. (a) A wants to connect to destination D; (b) A discovers the network
coordinate of D using Vivaldi or Virtual Vivaldi; (c) A requests a detour to D from the neighbor to which it has the
highest embedding error; (d) A advertises its path to D to all neighbors that have positive embedding error to A.

uses the other for the same number of detours. Alter-
natively, they may decide that their benefit is measured
in the average latency reduction obtained through each
other. For example, in Figure 1, nodes A and B may es-
tablish an SLA that promises an average latency reduc-
tion of 30 ms from A to D and from B to C. In addition,
two peers may establish an imbalanced peering, in which
one peer benefits more than the other, if both consider the
agreement to be fair.
Peerings may become imbalanced in time. This hap-

pens because latencies change due to failures or conges-
tion, because peers do not respect the agreement, or be-
cause they have different connection rates to their desti-
nations. PeerWise nodes renegotiate existing peerings to
account for latency changes and to find the best detours
available, as we describe in Section 7. However, we do
not monitor the byte-level usage of a peering. Our fo-
cus is on finding and taking advantage of mutual latency
reductions. In a previous paper [14], we describe a moni-
toring and accounting mechanism that ensures long-lived
and mutually advantageous peerings, even when nodes
are selfish or traffic demands differ.

6 Design, Part II: Policies
PeerWise is designed to be a scalable overlay for find-
ing low-latency detours. For scalability, each node
must choose which neighbors to maintain peerings with,
choose among neighbors to find a relay, and predict
whether to seek a relay for a destination.
PeerWise nodes must learn. Nodes compute coordi-

nates for new destinations to help other nodes predict
detours. Newly used relay paths can be instrumented
so that they can be dropped if the prediction of their
utility was incorrect or preserved if their utility is clear.
Finally, nodes must remember a recent destinations so
that a neighbor set can be customized to the likely traf-
fic stream. Learned behavior will depend on practical
deployment: for example, how frequently nodes return
to the same latency-sensitive destination. In fact, as a
destination is contacted again and again, PeerWise might

lower its standards for a “good” detour to provide im-
proved application performance, or try reaching the des-
tination via relays that are not obvious candidates. In
this section, we make no assumptions about the utility of
learned information, and instead focus on establishing a
broad base of PeerWise connections for reaching all des-
tinations.
To study neighbor and relay selection algorithms, we

collected latency measurements and coordinates for 262
PlanetLab nodes and the 448 popular web servers. We
considered only the PlanetLab nodes responsive at the
time of the measurement. To gather this PL-Dest-Pyxida
data set, we used Pyxida [24], an implementation of the
Vivaldi coordinate system. To compute coordinates for
the web servers, we extended Pyxida with our virtual co-
ordinate algorithm. Every 30 seconds, for 18 hours on
January 14, 2008, we took a snapshot containing RTT
measurements and coordinates (virtual and non-virtual).
We use only a subset of this data: median latency over
the past 10 measurements, and network coordinates, all
observed after Pyxida ran for two hours (to converge).

6.1 Choosing Neighbors
Each PeerWise node must be able to decide whether a
new node would offer better detours than existing neigh-
bors. A new neighbor may provide relays toward a region
of coordinate space or directly to known destinations.
Deciding upon future mutual advantage is a prediction of
future accesses and future performance. In this section,
we evaluate the ability of a PeerWise node to predict,
from coordinates and measurement, whether a neighbor
will contribute.
If nodes were to contact only a few, known destina-

tions, choosing neighbors would be simple: replace a
neighbor if the new one provides a better path to an in-
teresting destination. However, we do not expect access
patterns to be nearly so predictable. Instead, we wish
to determine, when a new neighbor arrives, whether it is
likely to provide a shortcut to a useful region in coordi-
nate space.
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Figure 10: (left) Neighbor selection algorithms. As the number of legitimate neighbors is restricted, coverage, prox-
imity and embedding error (for 32 or more neighbors) algorithms preserve the most detours. (right) Relay selection
algorithms. Best detours are found through relays selected using the direct and conservative algorithms.

We consider a few traffic-independent neighbor selec-
tion policies, expecting that a combination of schemes
would perform best. We separate them into two classes:
value schemes are likely to provide the best detours, but
may overlap; diversity schemes prefer relays that are dif-
ferent from those already chosen.
Value schemes include embedding error and proxim-

ity. Embedding error prefers neighbors with the largest
positive error in the embedding of the source to poten-
tial neighbor edge: these nodes are likely to traverse the
most coordinate distance with the lowest latency. Prox-
imity prefers neighbors with the smallest absolute latency
between the source and a potential neighbor.
By choosing the best neighbors exclusively, a node

may miss diversity. Coverage uses the relay’s coordinate
and latency to determine the region in coordinate space
that that relay covers. We split the space with a 24-tree
structure (for scalability) and prefer neighbors that mini-
mize the expected detour latency to every point in space.
Angle prefers neighbors in different directions in the co-
ordinate space. For all pairs of potential neighbors, a
node computes the angle between the line segments from
itself to the neighbors, and selects the neighbors with the
largest angles. Random chooses neighbors at random to
provide a point of comparison.
In Figure 10(left), we compare these neighbor selec-

tion algorithms. We vary how many neighbors a node
can have from 1 to 200. At each step, we add a new
neighbor based on one of the five schemes. Proximity
and coverage perform the best, but embedding error also
performs well with 32 or more neighbors. We choose
proximity as our primary neighbor selection metric be-
cause it performs similarly to coverage and is easier to
use.

6.2 Choosing Relays
Neighbor selection determines the set of neighbors that
may provide a detour path. With relay selection, a node

attempts to discover quickly the neighbor that offers
the best detour to a specific destination. Like server-
selection problems solved by network coordinates, re-
lay selection seeks the shortest combination of the di-
rect path to the relay and the predicted path between re-
lay and destination. Over time, this performance can be
measured, but to minimize latency, detour performance
should be predicted. At the very least, we hope to reduce
the number of relays that we need to simultaneously con-
tact to find a good detour when contacting a destination
for the first time.
We consider the following policies for choosing re-

lays for a destination. Direct prediction adds the mea-
sured source-to-relay latency to the estimated relay-to-
destination distance in coordinate space, then chooses
the relay with the lowest sum. Because latency measure-
ments may be more reliable than coordinates, we evalu-
ated a conservative prediction, which adds the source-to-
relay latency measurement again to increase its influence
in the prediction. This is based on the expectation that
coordinates are inaccurate and seeks greater likelihood
of a good detour in preference to the best detour at the
top of the list. A high-risk scheme chooses the neigh-
bor with the highest embedding error. Finally, random
provides a baseline.
We select 32 neighbors for each node using the

proximity-based algorithm and evaluate the four relay-
selection algorithms. In Figure 10(right), we show the
quality of predictions made using these algorithms in
terms of relative performance lost compared to the best
choice. The conservative approach performs best: ap-
proximately 80% of the detours chosen are only 20%
longer than the best detour between the same pair of
nodes.

6.3 Deciding Whether to Relay
Deciding whether to use a detour depends on a predic-
tion of whether it will improve application performance.
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Figure 11: As the latency to a destination increases, so
does the probability that there is a detour.

This has two components: whether the traffic is sensi-
tive to latency and whether a known neighbor is likely to
provide a detour path. We evaluate the latter. Whether
traffic is latency sensitive can be crudely inferred by
ports, by commercial packet scheduling products, or by
application-based proxies that can differentiate classes of
traffic. In this section, we assume that the traffic is la-
tency sensitive and attempt to predict whether to relay.
The decision of whether to relay depends first on

whether virtual coordinates for the relay are available and
recent. If there are no coordinates available for the des-
tination, a node may choose to seek a relay by probing.
If there are coordinates for the new destination, it may
speculatively use a predicted relay, collect more infor-
mation, or go directly to the destination without probing.
6.3.1 If the destination has no coordinates
If the destination lacks coordinates, the node should for-
ward the packet directly, and if the destination is some-
what distant, i.e., latency is long enough that a good de-
tour is possible, the node may trigger latency probing
from neighbors. The latency measurements by neighbors
will, first, allow coordinates to be estimated and, second,
provide direct latency measurements of the potential de-
tour paths. Conveniently, if a detour path is available,
the node may learn about it before the end of the second
round trip (by starting the latency probing as soon as 10
ms have elapsed in the first contact).
The distance to the destination may be an indicator

of whether the destination has a detour. In Figure 11,
we show how often a destination has a relay within the
neighbor set, given that the latency to the destination is
above some value. For 95% of the edges, as the latency
increases, so does the probability of a detour for the edge.
The plot suggests that, after sending a probe to the desti-
nation, the longer a node waits to receive a response, the
more likely it is that a detour exists for that destination.
For 15% of destinations (between 236 ms and 1054 ms
of latency), there is more than a 50% chance that a detour
exists. We expect that actual node behavior, in terms of
when to seek out a detour, will be application dependent.

Correct decision Incorrect decision
w/o with w/o with

probing probing probing probing
Detour 7.3% 11.1% 16.6% 12.8%exists
Detour 55.8% 57.3% 20.3% 18.8%absent
Total 63.1% 68.4% 36.9% 31.6%

Table 1: Using coordinates alone or coordinates with
a latency probe to the destination, nodes can predict
whether to use PeerWise. Probing the destination slightly
increases the probability of making a correct decision.

For instance, a node may always try to find a detour for
frequently contacted destinations.
6.3.2 If the destination has coordinates
If the destination has known coordinates that have been
gossiped, a node can decide before sending the first
packet: is there likely to be a detour among its neigh-
bors? Assuming that all coordinates are accurate, except
for the measured latencies to neighbors, the node can find
a shortcut without direct contact to the destination.
For certain uses of PeerWise, getting the relay right

before contacting a destination is useful. If the desti-
nation will be reached with a TCP connection, the first
choice can stick: the source address on the SYN packet
is fixed, and the connection cannot be easily migrated
to a relay. For interactive applications over long TCP
connections—shell, game, chat, perhaps voice—this de-
cision may be important.
We show that, most of the time, when the coordinates

of the destination are known, a node makes the correct
decision on whether to use PeerWise. We define a correct
decision as finding a good relay (within 25% of the best
latency reduction) when a detour exists, or not attempt-
ing to find one when a detour does not exist. All other
decisions of a node (i.e., attempting to find a relay when
a detour does not exist or finding a bad relay) are con-
sidered incorrect. We summarize all possible situations
in Table 1. We used the proximity policy for neighbor
selection and the conservative policy for relay selection.
Using coordinates alone, nodes make a correct decision
63.1% of the time. The prediction accuracy improves to
68.4% if the latency to the destination is known. We con-
sider the frequency of correct and incorrect decisions to
be acceptable; a more ambitious node might try to dis-
cover detours more often at the expense of making more
mistakes.

7 Implementation and Evaluation
We implement PeerWise and run it under real network
conditions on PlanetLab. In this section, we briefly de-
scribe our implementation, then show that this imple-
mentation can quickly find mutually advantageous de-
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Figure 12: Fraction of the popular destinations reachable
through mutually advantageous detours from PlanetLab.

tours that offer significant and continuous latency reduc-
tion. We then confirm that PeerWise detours can speed
short web transfers in practice.

7.1 Implementation
We divide the functionality of PeerWise into two parts:
the network coordinate system and a stand-alone dae-
mon that includes all other components described in Sec-
tion 5. We use Pyxida [24] for computing coordinates,
since it is the only network coordinate system imple-
mentation we are aware of that is tested extensively un-
der realistic network conditions [12]. Pyxida is written
in Java and uses the Vivaldi algorithm [8] to compute
coordinates for nodes. Each Pyxida node maintains a
variable number of neighbors, updated constantly, and
probes them at regular intervals. We augmented Pyxida
to compute virtual coordinates for hosts that do not par-
ticipate as described in Section 5.1.
We wrote the PeerWise daemon in approximately

3,000 lines of Ruby. The daemon listens for connections
from other PeerWise nodes, and negotiates, establishes,
and maintains mutually advantageous peerings. It com-
municates with Pyxida regularly, using RPC over TCP,
to update the measured latencies and coordinates of the
current set of neighbors as well as of the destinations that
are currently served. By relying on the latency measure-
ment and coordinate computation performed by Pyxida,
we minimize the communication overhead. On the av-
erage, every node consumes less than 1KB/s (including
Pyxida traffic).

7.2 Finding Detours
We ran PeerWise on 189 PlanetLab nodes, chosen for
their stability, in September 2008. We focus on what de-
tours PeerWise can find, where a detour is determined
by the pings not by actual transfers. We express mutual
advantage between two nodes as the number of detours
that each offers the other. We experimented with three
scenarios:

• All-dest: Each node tries to find detours to all 500
popular websites (described in Section 4) to which
it can measure an RTT.

• Rand-dest: Each node tries to find detours to a ran-
dom subset of the 500 websites.

• Zipf-dest: The popularity of destinations follows a
Zipf distribution.

Our discussion focuses on the All-dest experiment, but
we summarize the results from Rand-dest and Zipf-dest
in Table 2. Recall that the destinations are already very
popular servers, many of which use content distribution.
Therefore, All-dest is not a best case scenario.
We describe the behavior of each node next. Nodes

start looking for detours, after their network coordinates
have stabilized, by successively sending detour requests
to their neighbors. We limit the number of neighbors of
each node to 32 for scalability and use the proximity pol-
icy for selecting neighbors. We make sure that no two
detour requests are simultaneous: a new request is sent
only when a reply (either positive or negative) has ar-
rived for a previous one or a timeout has occurred. Each
request tries to find detours to as many destinations as
possible. Requests are sent continuously, even to the
nodes with which peerings have been established or to
the nodes that, in the past, could not offer detours. In this
way, we are constantly renegotiating the peerings and are
always ready to adapt to changes in latency.
PeerWise relies on the latency measurements and co-

ordinate computations performed by Pyxida. We update
both every 10 minutes. To avoid instability due to vary-
ing latencies, the updated values for latencies represent
moving medians across the last 10 samples collected.
We present results for the first 36 hours of the experi-

ment, counting from the time when nodes start request-
ing detours. For ease of exposition and to study startup
behavior, all nodes start requesting detours simultane-
ously. We show that most nodes find mutually advan-
tageous detours and that these detours lead to significant
and stable latency reductions.
7.2.1 PeerWise finds detours
For each node, we count the destinations that can be
reached using a mutually advantageous detour for the du-
ration of the experiment. Figure 12 shows the distribu-
tion of the fraction of reachable destinations. Focus only
on the line labeled “max” for now. Each point corre-
sponds to a node, and its projection on the horizontal axis
represents the fraction of destinations for which the node
finds detours. Around 25% of the nodes cannot find any
detours, while most nodes find detours to at least 10% of
the popular destinations. Our results are consistent with
those of the evaluation in Section 4 (see Figure 4). For
Rand-dest and Zipf-dest, fewer nodes (around 50%) are
able to find detours at all. This is because the number of
destinations is much smaller than in All-dest.
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Latency reduction (§ 7.2.3) Longevity (§ 7.2.4) Variability (§ 7.2.4)
relative (absolute) % of (src,dest) pairs % of (src,dst) pairs

median 10 percentile 90 percentile ≥0.9 0.5-0.9 <0.5 1 2-10 >10
All-dest 26% (29ms) 12% (12ms) 63% (131ms) 54% 18% 28% 67% 2% 31%

Rand-dest 25% (33ms) 12% (13ms) 60% (115ms) 36% 19% 45% 51% 23% 26%
Zipf-dest 24% (27ms) 12% (13ms) 59% (76ms) 31% 31% 38% 48% 23% 29%

Table 2: Characteristics of PeerWise detours: latency reduction, longevity and variability.

7.2.2 PeerWise finds detours quickly
How quickly are the detours discovered? We compute
the fraction of destinations to which a detour is discov-
ered by PeerWise within the first 10 minutes, 1 hour and
5 hours. Figure 12 shows the results as cumulative dis-
tributions. Many detours are discovered within the first
10 minutes of the experiment and the majority after less
than an hour. Fewer and fewer detours are discovered
afterward. These are mostly the detours that appear due
to varying latencies—they are discovered because Peer-
Wise constantly adapts to new latencies and coordinates.
7.2.3 PeerWise offers significant latency reduction
The detours discovered by PeerWise would not be very
useful if they offered minimal latency reductions com-
pared to the direct paths. We show that this is not the
case. Recall that we have set a threshold: we consider
only those detours that offer reduction of more than 10
ms and 10% of the direct-path latency. Here we focus on
the latency reductions negotiated by PeerWise. In Sec-
tion 7.3, we show how these reductions hold when user
traffic traverses the detour path.
We compute all latency reductions for each (source,

destination) pair for which a detour exists, both as ab-
solute (milliseconds) and relative (fraction of the direct
path latency) values. We show the median, 10th and 90th
percentiles in Table 2. The median latency reduction is
29 ms or 26% of the latency of the direct path. 10% of
the pairs have a reduction of more than 131 ms. This
is caused by unusually high direct-path latencies, possi-
bly due to traffic shaping. By circumventing these slow
links, PeerWise can offer significant latency reduction.
7.2.4 Longevity and variability
PeerWise nodes may offer continuous latency reduction
to a destination using several peerings. For each (source,
destination) pair, we evaluate how long PeerWise offers
reduction and with how many different relays. Ideally,
every destination will be reached continuously through
the same peering. Long-lived reductions through the
same peering offer nodes more choices in when to use
the mutually advantageous connection.
We consider two metrics: longevity and variability.

Longevity captures how PeerWise nodes maintain la-
tency reduction once a detour is discovered. We define
the longevity of a destination D from a node S as the
fraction of time that PeerWise offers S a detour to D, af-
ter PeerWise first learns about a shorter path from S to

D. A longevity of 1 for the pair (S, D) means that, af-
ter PeerWise discovers the first detour between S and D,
it will always offer some detour between S and D. Vari-
ability represents the number of different relays that S
uses to obtain continuous reduction to D. The lower the
variability, the easier it is to maintain latency reduction.
Table 2 summarizes longevity and variability for all

(source, destination) pairs for which PeerWise offers la-
tency reduction. ForAll-Dest, more than half of the pairs
have a longevity higher than 0.9. 67% of the pairs use
only one relay. When fewer destinations are selected at
random or using a Zipf distribution, the number of de-
tours, their longevity, and variability are reduced. How-
ever, about half of the (source, destination) pairs still
have longevity higher than 0.5 and variability of 1.

7.3 Using Detours
We show how the detours discovered by PeerWise trans-
late in real life. Can user-level applications benefit from
the network-level detours of PeerWise? From each Pla-
netLab node running PeerWise, we download the front
page of each of the 500 popular websites to which a
mutually-advantageous detour exists. We use wget to
perform two transfers every time it is called: one using
the direct path and one using the PeerWise detour. To
make the web request follow the detour path, we install
the tinyproxy HTTP proxy on every PlanetLab node that
can be used as a relay. We run each transfer 100 times, al-
ternating whether detour or direct comes first, and record
the individual completion times.
We verify whether the detours promised by PeerWise

are seen by the web transfers. For each (source, desti-
nation) pair with a detour in PeerWise, we compute the
wget reduction ratio—the ratio between the median relay
transfer time and the median direct transfer time—and
plot it against the PeerWise reduction ratio—the latency
reduction ratio promised by PeerWise. Figure 13(left)
presents the results. For 58% of the pairs, thewget reduc-
tion is less than 1; web transfers take less time through
the relay than through the direct path, as predicted by
PeerWise. However, many PeerWise detours do not ma-
terialize for the wget transfers.
We explain the dissonance between the PeerWise view

and the application view next. PeerWise detours are de-
termined by network-level pings. On the other hand, the
wget end-to-end latency includes server and proxy wait
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Figure 13: (left) Wget latency reduction versus PeerWise latency reduction: 58% of all PeerWise detours achieve
latency reduction in real life. (right) Distributions of average server wait times, relay times, and difference between
wget and PeerWise RTTs for all detour transfers. Relay times inflate application latencies the most.

times and thus may be larger than network latency. Fur-
ther, PeerWise detours are based on medians of latencies
gathered over long periods of time. Due to potential la-
tency variations, these medians may differ from the RTTs
at the time of the transfer.
To quantify the factors that inflate the application la-

tency, we instrument our experiment as follows. During
the web transfers, we run tcpdump on every relay node
and log all proxy traffic. Using the packet timestamps,
we compute, for each detour transfer, the network latency
(from the TCP connection setup), the time spent at the re-
lay and the time waiting for the server. Figure 13(right)
shows the distributions of average server time, relay time
and of the difference between network latency at transfer
time and latency promised by PeerWise. The time spent
at the relay and at the server accounts for most of the in-
flation in application latency: half of the relays induce
an additional average latency of at least 50 ms. PeerWise
predicts the network part of the wget transfer time well.
All relays are PlanetLab nodes; PlanetLab does not al-

ways reflect the realities of the Internet. We believe that
the slowness of PlanetLab is the main factor that con-
tributes to the unusually high relay time for our transfers.
To confirm, we set up tinyproxy on a computer with min-
imal load, located at University of Maryland and run web
transfers through it. The average relay time for all trans-
fers through the UMD proxy is 5ms, less than 95% of
all PlanetLab relays. If we consider the hypothetical sit-
uation in which all PlanetLab relay times were replaced
by the average UMD relay time—effectively minimizing
the time spent by a transfer at the relay node—then 78%
of our web transfers would see the detours promised by
PeerWise. We conclude that PeerWise has the potential
to improve application performance.

8 Discussion
We discuss some of the implications that wide adoption
of PeerWise would have for both ISPs and users.

8.1 Implications for ISPs
Overlay networks violate routing polices. How then
would inter-domain routing policy and traffic engineer-
ing practices coexist with widespread PeerWise deploy-
ment? Routing overlay networks enable rule violations:
customers and peers provide transit, and selfish rout-
ing [25] can subvert traffic engineering decisions. We
discuss each in turn.
Customers provide transit, which is forbidden in inter-

domain routing [9]. Even when a detour AS path pre-
cisely matches the direct (because an overlay node lies
within the address space of one of the autonomous sys-
tems of the path), the overlay node is still a customer and
a customer still provides transit. Whether that customer
has an autonomous system or instead pays a monthly fee
for a residential connection hardly matters.
Overlay networks bypass traffic engineering deci-

sions. It is unclear to what extent the excessively long
latency paths are deliberately chosen by network admin-
istrators. One might worry that a successful deploy-
ment of PeerWise would hamper ISP efforts to shape
traffic toward slower, but less utilized, links. Peer-
Wise is not intended for high-bandwidth transfers. Its
structure discourages bandwidth consumption: we in-
tend to shave packet transmission latency and, because
each pair of nodes must strive to maintain the fair-
ness of the application-level SLA that connects them,
they may not consume unnecessarily. Downloading a
large file through PeerWise may not reduce the down-
load time significantly, considering the many other bot-
tlenecks in the network (loss, client-side queuing, server
load, etc.) [21, 4, 22].

8.2 Implications for Users
Forwarding traffic through and on behalf of others raises
issues of privacy and liability for PeerWise users. Al-
though unencrypted traffic is “public” regardless of the
path it takes, it is reasonable to assume that users would
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be more reluctant to forward their traffic through other
users than directly through the “faceless” ISPs. Another
concern is being held liable for forwarding potentially il-
licit traffic on behalf of another user. While some such
traffic may be straightforward to filter (and negotiate in
a PeerWise SLA), say by mechanisms similar to parental
controls, such an approach requires knowing “question-
able” destinations ahead of time, and leads to both false
negatives and positives. A more general mechanism for
non-repudiation—a means of verifiably proving to au-
thorities the source of forwarded traffic—may be more
appropriate, but is beyond the scope of this paper.
A potential extension of PeerWise would be to limit

one’s neighbors to a set of trusted users, determined for
example via friend-of-friend links in an online social net-
work, similar to the f2f file store [16]. While such an
extension may obviate the concerns of non-repudiation,
it may exacerbate privacy concerns; users may be less
inclined to forward private traffic through their friends.
Interestingly, PeerWise can assist in securing an end-

user’s traffic. Reis et al. demonstrated that some ISPs
modify users’ web pages in transit [26]. PeerWise could
assist in routing around such ISPs, or perhaps in lending
greater credence to a page’s authenticity.

9 Conclusions
PeerWise is based on building overlay networks from
mutually advantageous peerings; we show that such a
simple, locally enforced mechanism is sufficient to pro-
vide detour routes in the Internet. Surprisingly, pairs of
nodes can help each other: few nodes are so well po-
sitioned that they need no help, and few are so poorly
positioned that they can help no one. Our evaluation
of PeerWise on two sets of real world latencies and on
PlanetLab shows that most nodes can find good detours,
reducing latency by at least 10 ms and 10%. PeerWise
finds detours to both regionally and globally popular des-
tinations, as well as to websites that use other latency-
reduction techniques such as mirroring or DNS redirec-
tion. Most detours are long-lived and stable and reflect
well the performance of applications using them.

Acknowledgments
We are grateful to our shepherd, Venugopalan Ramasubrama-
nian, and to the NSDI reviewers for their help in improving
this paper. We also thank Peter Druschel, Bo Han, Jay Lorch,
Harsha Madhyastha, Justin McCann, Larry Michele, Alan Mis-
love, Vivek Pai, and Angie Wu for their comments. This work
was supported by NSF grants CNS-0435065, CNS-0643443
and CNS-0626629, and by a Microsoft Live Labs fellowship.

References
[1] Alexa. http://www.alexa.com/.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and

R. Morris. Resilient overlay networks. In SOSP, 2001.

[3] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang. Donnybrook: En-
abling large-scale, high-speed, peer-to-peer games. In
SIGCOMM, 2008.

[4] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
latency. In IEEE Infocom, 2000.

[5] B. Cohen. Incentives build robustness in BitTorrent. In
P2PEcon, 2003.

[6] J. Corbo and D. Parkes. The price of selfish behavior in
bilateral network formation. In PODC, 2005.

[7] L. Cox and B. Noble. Samsara: Honor among thieves in
peer-to-peer storage. In SOSP, 2003.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. In SIGCOMM,
2004.

[9] L. Gao. On inferring autonomous system relationships
in the Internet. IEEE/ACM Transactions on Networking,
9(6):733–745, 2001.

[10] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimat-
ing latency between arbitrary Internet end hosts. In IMW,
2002.

[11] K. P. Gummadi, H. Madhyastha, S. D. Gribble, H. M.
Levy, and D. J. Wetherall. Improving the reliability of in-
ternet paths with one-hop source routing. In OSDI, 2004.

[12] J. Ledlie, P. Gardner, andM. Seltzer. Network coordinates
in the wild. In NSDI, 2007.

[13] J. Ledlie, M. Seltzer, and P. Pietzuch. Proxy network co-
ordinates. Tech. rep., Imperial College London, 2008.

[14] D. Levin, R. Baden, C. Lumezanu, N. Spring, and
B. Bhattacharjee. Motivating participation in Internet
routing overlays. In NetEcon, 2008.

[15] D. Levin, R. Sherwood, and B. Bhattacharjee. Fair file
swarming with FOX. In IPTPS, 2006.

[16] J. Li and F. Dabek. F2F: reliable storage in open net-
works. In IPTPS, 2006.

[17] C. Lumezanu, D. Levin, and N. Spring. PeerWise discov-
ery and negotiation of faster paths. In HotNets, 2007.

[18] A. Nakao and L. Peterson. Scalable routing overlay net-
works. In ACM SIGOPS Operating Systems Review,
2006.

[19] A. Nakao, L. Peterson, and A. Bavier. A routing underlay
for overlay networks. In SIGCOMM, 2003.

[20] T. S. E. Ng and H. Zhang. Predicting Internet network dis-
tance with coordinates-based approaches. In INFOCOM,
2002.

[21] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Mod-
eling TCP throughput: A simple model and its empirical
validation. In SIGCOMM, 1998.

[22] J. Padhye and S. Floyd. Identifying the TCP behavior of
web servers. In SIGCOMM, 2001.

[23] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in Bit-
Torrent? In NSDI, 2007.

[24] Pyxida. http://pyxida.sourceforge.net/.
[25] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On self-

ish routing in Internet-like environments. In SIGCOMM,
2003.

[26] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting in-flight page changes with web tripwires. In
NSDI, 2008.

[27] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of Internet content delivery sys-
tems. In OSDI, 2002.

[28] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: A case for informed
Internet routing and transport. IEEE Micro, 19(1):50–59,
1999.

[29] S. Savage, N. Cardwell, D. Wetherall, and T. Ander-
son. TCP congestion control with a misbehaving receiver.
ACM CCR, 29(5):71–78, 1999.

[30] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dande-
lion: Cooperative content distribution with robust incen-
tives. In USENIX, 2007.

[31] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: An overlay based architecture for enhancing
Internet QoS. In NSDI, 2004.


