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Abstract
In this paper we present Botlab, a platform that con-

tinually monitors and analyzes the behavior of spam-
oriented botnets. Botlab gathers multiple real-time
streams of information about botnets taken from distinct
perspectives. By combining and analyzing these streams,
Botlab can produce accurate, timely, and comprehensive
data about spam botnet behavior. Our prototype system
integrates information about spam arriving at the Univer-
sity of Washington, outgoing spam generated by captive
botnet nodes, and information gleaned from DNS about
URLs found within these spam messages.
We describe the design and implementation of Botlab,

including the challenges we had to overcome, such as
preventing captive nodes from causing harm or thwart-
ing virtual machine detection. Next, we present the re-
sults of a detailed measurement study of the behavior of
the most active spam botnets. We find that six botnets
are responsible for 79% of spam messages arriving at the
UW campus. Finally, we present defensive tools that take
advantage of the Botlab platform to improve spam filter-
ing and protect users from harmful web sites advertised
within botnet-generated spam.

1 Introduction
Spamming botnets are a blight on the Internet. By some
estimates, they transmit approximately 85% of the 100+
billion spam messages sent per day [14, 21]. Botnet-
generated spam is a nuisance to users, but worse, it can
cause significant harm when used to propagate phishing
campaigns that steal identities, or to distribute malware
to compromise more hosts.
These concerns have prompted academia and industry

to analyze spam and spamming botnets. Previous stud-
ies have examined spam received by sinkholes and pop-
ular web-based mail services to derive spam signatures,
determine properties of spam campaigns, and character-
ize scam hosting infrastructure [1, 39, 40]. This analysis
of “incoming” spam feeds provides valuable information
on aggregate botnet behavior, but it does not separate ac-
tivities of individual botnets or provide information on
the spammers’ latest techniques. Other efforts reverse
engineered and infiltrated individual spamming botnets,
including Storm [20] and Rustock [5]. However, these
techniques are specific to these botnets and their com-
munication methods, and their analysis only considers
characteristics of the “outgoing” spam these botnets gen-

erate. Passive honeynets [13, 27, 41] are becoming less
applicable to this problem over time, as botnets are in-
creasingly propagating via social engineering and web-
based drive-by download attacks that honeynets will not
observe. Overall, there is still opportunity to design de-
fensive tools to filter botnet spam, identify and block
botnet-hosted malicious sites, and pinpoint which hosts
are currently participating in a spamming botnet.
In this paper we turn the tables on spam botnets by us-

ing the vast quantities of spam that they generate to mon-
itor and analyze their behavior. To do this, we designed
and implemented Botlab, a continuously operating bot-
net monitoring platform that provides real-time informa-
tion regarding botnet activity. Botlab consumes a feed of
all incoming spam arriving at the University of Washing-
ton, allowing it to find fresh botnet binaries propagated
through spam links. It then executes multiple captive,
sandboxed nodes from various botnets, allowing it to ob-
serve the precise outgoing spam feeds from these nodes.
It scours the spam feeds for URLs, gathers information
on scams, and identifies exploit links. Finally, it corre-
lates the incoming and outgoing spam feeds to identify
the most active botnets and the set of compromised hosts
comprising each botnet.
A key insight behind Botlab is that the combination of

both incoming and outgoing spam sources is essential for
enabling a comprehensive, accurate, and timely analysis
of botnet behavior. Incoming spam bootstraps the pro-
cess of identifying spamming bots, outgoing spam en-
ables us to track the ebbs and flows of botnets’ ongoing
spam campaigns and establish the ground truth regard-
ing spam templates, and correlation of the two feeds can
classify incoming spam according to botnet that is sourc-
ing it, determine the number of hosts active within each
botnet, and identify many of these botnet-infected hosts.

1.1 Contributions
Our work offers four novel contributions. First, we tackle
many of the challenges involved in building a real-time
botnet monitoring platform, including identifying and
incorporating new bot variants, and preventing Botlab
hosts from being blacklisted by botnet operators.
Second, we have designed network sandboxing mech-

anisms that prevent captive bot nodes from causing harm,
while still enabling our research to be effective. As well,
we discuss the long-term tension between effectiveness
and safety in botnet research given botnets’ trends, and
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we present thought experiments that suggest that a de-
termined adversary could make it extremely difficult to
conduct future botnet research in a safe manner.
Third, we present interesting behavioral character-

istics of spamming botnets derived from our multi-
perspective analysis. For example, we show that just
a handful of botnets are responsible for most spam re-
ceived by UW, and attribute incoming spam to specific
botnets. As well, we show that the bots we analyze use
simple methods for locating their command and control
(C&C) servers; if these servers were efficiently located
and shut down, much of today’s spam flow would be dis-
rupted. As another example, in contrast to earlier find-
ings [40], we observe that some spam campaigns utilize
multiple botnets.
Fourth, we have implemented several prototype de-

fensive tools that take advantage of the real-time in-
formation provided by the Botlab platform. We have
constructed a Firefox plugin that protects users from
scam and phishing web sites propagated by spam bot-
nets. The plug-in blocked 40,270 malicious links em-
anating from one botnet monitored by Botlab; in con-
trast, two blacklist-based defenses failed to detect any of
these links. As well, we have designed and implemented
a Thunderbird plugin that filters botnet-generated spam.
For one user, the plugin reduced the amount of spam that
bypassed his SpamAssassin filters by 76%.
The rest of this paper is organized as follows. Sec-

tion 2 provides background material on the botnet threat.
Section 3 discusses the design and implementation of
Botlab. We evaluate Botlab in Section 4 and describe ap-
plications we have built using it in Section 5. We discuss
our thoughts on the long-term viability of safe botnet re-
search in Section 6. We present related work in Section 7
and conclude in Section 8.

2 Background on the Botnet Threat
A botnet is a large-scale, coordinated network of comput-
ers, each of which executes specific bot software. Botnet
operators recruit new nodes by commandeering victim
hosts and surreptitiously installing bot code onto them;
the resulting army of “zombie” computers is typically
controlled by one or more command-and-control (C&C)
servers. Botnet operators employ their botnets to send
spam, scan for new victims, steal confidential informa-
tion from users, perform DDoS attacks, host web servers
and phishing content, and propagate updates to the bot-
net software itself.
Botnets originated as simple extensions to existing In-

ternet Relay Chat (IRC) softbots. Efforts to combat bot-
nets have grown, but so has the demand for their services.
In response, botnets have become more sophisticated and
complex in how they recruit new victims and mask their
presence from detection systems:

Propagation: Malware authors are increasingly relying
on social engineering to find and compromise victims,
such as by spamming users with personal greeting card
ads or false upgrade notices that entice them to install
malware. As propagation techniques move up the proto-
col stacks, the weakest link in the botnet defense chain
becomes the human user. As well, systems such as pas-
sive honeynets become less effective at detecting new
botnet software, instead requiring active steps to gather
and classify potential malware.

Customized C&C protocols: While many of the older
botnet designs used IRC to communicate with C&C
servers, newer botnets use encrypted and customized
protocols for disseminating commands and directing
bots [7, 9, 33, 36]. For example, some botnets communi-
cate via HTTP requests and responses carrying encrypted
C&C data. Manual reverse-engineering of bot behavior
has thus become time-consuming if not impossible.

Rapid evolution: To evade detection from trackers
and anti-malware software, some newer botnets morph
rapidly. For instance, most malware binaries are often
packed using polymorphic packers that generate differ-
ent looking binaries even though the underlying code
base has not changed [29]. Also, botnet operators are
moving away from relying on a single web server to host
their scams, and instead are using fast flux DNS [12].
In this scheme, attackers rapidly rebind the server DNS
name to different botnet IP addresses, in order to defend
against IP blacklisting or manual server take-down. Fi-
nally, botnets also make updates to their C&C protocols,
by incorporating new forms of encryption and command
distribution.
Moving forward, analysis and defense systems must

contend with the increasing sophistication of botnets.
Monitoring systems must be pro-active in collecting and
executing botnet samples, as botnets and their behavior
change rapidly. As well, botnet analysis systems will in-
creasingly have to rely on external observations of botnet
behavior, rather than necessarily being able to crack and
reverse engineer botnet control traffic.

3 The Botlab Monitoring Platform
The Botlab platform produces fresh information about
spam-oriented botnets, including their current cam-
paigns, constituent bots, and C&C servers. Botlab par-
tially automates many aspects of botnet monitoring, re-
ducing but not eliminating the manual effort required of
a human operator to analyze new bot binaries and incor-
porate them into Botlab platform.
Botlab’s design was motivated by four requirements:

1. Attribution: Botlab must identify the spam botnets
that are responsible for campaigns and the hosts that
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Figure 1: Botlab Architecture. Botlab coordinates and monitors multiple source of data about spam botnets, including incoming
spam from the University of Washington, and outgoing spam generated by captive bot nodes.

belong to those botnets.

2. Adaptation: Botlab must track changes in the bot-
nets’ behavior over time.

3. Immediacy: Because the value of information about
botnet behavior degrades quickly, Botlab must pro-
duce information on-the-fly.

4. Safety: Botlab must not cause harm.

There is a key tension in our work between safety and
effectiveness, similar to tradeoff between safety and fi-
delity identified in the Potemkin honeyfarm [34]. In Sec-
tion 6, we discuss this tension in more detail and com-
ment on the long-term viability of safe botnet research.
Figure 1 shows the Botlab architecture. We now de-

scribe Botlab’s main components and techniques.

3.1 Incoming Spam
Botlab monitors a live feed of spam received by approx-
imately 200,000 University of Washington e-mail ad-
dresses. On average, UW receives 2.5 million e-mail
messages each day, over 90% of which is classified as
spam. We use this spam feed to collect new malware
binaries, described next, and within Botlab’s correlation
engine, described in Section 3.5.

3.2 Malware Collection
Running captive bot nodes requires up-to-date bot bi-
naries. Botlab obtains these in two ways. First, many
botnets spread by emailing malicious links to victims;

accordingly, Botlab crawls URLs found in its incom-
ing spam feed. We typically find approximately 100,000
unique URLs per day in our spam feed, 1% of which
point to malicious executables or drive-by downloads.
Second, Botlab periodically crawls binaries or URLs
contained in public malware repositories [3, 25] or col-
lected by the MWCollect Alliance honeypots [22].

Given these binaries, a human operator then uses Bot-
lab’s automated tools for malware analysis and finger-
printing to find bot binaries that actively send spam, as
discussed next in Section 3.3. Our experience to date
has yielded two interesting observations. First, though
the honeypots produced about 2,000 unique binaries over
a two month period, none of these binaries were spam-
ming bots. A significant fraction of the honeypot binaries
were traditional IRC-based bots, whereas the spamming
binaries we identified from other sources all used non-
IRC protocols. This suggests that spamming bots prop-
agate through social engineering techniques, rather than
the automated compromise of remote hosts.

Second, many of the malicious URLs seen in spam
point to legitimate web servers that have been hacked
to provide malware hosting. Since malicious pages are
typically not linked from the legitimate pages on these
web servers, an ordinary web crawl will not find them.
This undermines the effectiveness of identifying mali-
cious pages using exhaustive crawls, an hypothesis that
is supported by our measurements in Section 5.
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3.3 Identifying Spamming Bots
Botlab executes spamming bots within sandboxes to
monitor botnet behavior. However, we must first prune
the binaries obtained by Botlab to identify those that cor-
respond to spamming bots and to discard any duplicate
binaries already being monitored by Botlab.
Simple hashing is insufficient to find all duplicates,

as malware authors frequently repack binaries or release
slightly modified versions to circumvent signature-based
security tools. Relying on anti-virus software is also im-
practical, as these tools do not detect many new malware
variants.
To obtain a more reliable behavioral signature, Bot-

lab produces a network fingerprint for each binary it
considers. A network fingerprint captures informa-
tion about the network connections initiated by a bi-
nary. To obtain it, we execute each binary in a safe
sandbox and log all outbound network connection at-
tempts. A network fingerprint will then consist of
a set of flow records of the form <protocol, IP
address, DNS address, port>. Note that the
DNS address field might be blank if a bot communicates
with an IP directly, instead of doing a DNS lookup.
Once network activity is logged, we extract the flow

records. We execute each binary two times and take the
network fingerprint to be the set of flow records which
are common across both executions. This eliminates
any random connections which do not constitute stable
behavioral attributes. For example, some binaries har-
vest e-mail addresses and spam subjects by searching
google.com for random search terms, and following
links to the highest-ranked search results; repeated ex-
ecution identifies and discards these essentially random
connection attempts.
Given the network fingerprints N1 and N2, of two bi-

naries B1 and B2 respectively, we define the similarity
coefficient of the binaries, S(B1, B2), to be:

S(B1, B2) =
|N1 ∩ N2|
|N1 ∪ N2|

If the similarity coefficient of two binaries is sufficiently
high (we use 0.5 as the threshold), we consider the bina-
ries to be behavioral duplicates. As well, binaries which
attempt to send e-mail are classified as spamming bots.
We took a step to validate our duplicate elimination

procedure. Unfortunately, given a pair of arbitrary bi-
naries, determining that they are behavioral duplicates is
undecidable, so we must rely on an approximation. For
this, we used five commercial anti-virus tools and a set
of 500 malicious binaries which made network connec-
tions. All five anti-virus tools had signatures for only 192
of the 500 binaries, and we used only these 192 binaries
in our validation. We considered a pair of binaries to be

duplicates if their anti-virus tags matched in the majority
of five tools. Note that we do not expect the tags to be
identical across different anti-virus tools. Network fin-
gerprinting matched this tag-based classification 98% of
the time, giving us reasonable confidence in its ability
to detect duplicates. Also, we observed a false-positive
rate of 0.62%, where the anti-virus tags did not match,
but network fingerprinting labeled the files as duplicates.
Note again that anti-virus tools lack signatures for many
new binaries our crawler analyzes, making them unfit to
use as our main duplicate suppression method.

3.3.1 Safely generating fingerprints

The tension between safety and effectiveness is particu-
larly evident when constructing signatures of newly gath-
ered binaries. A safe approach would log emitted net-
work packets, but drop them instead of transmitting them
externally; unfortunately, this approach is ineffective,
since many binaries must first communicate with a C&C
server or successfully transmit probe email messages be-
fore fully activating. An effective approach would al-
low a binary unfettered access to the Internet; unfortu-
nately, this would be unsafe, as malicious binaries may
perform DoS attacks, probe or exploit remote vulnerabil-
ities, transmit spam, or relay botnet control traffic.
Botlab attempts to walk the tightrope between safety

and effectiveness. We provide a human operator with
tools that act as a safety net: traffic destined to privileged
ports, or ports associated with known vulnerabilities, is
automatically dropped, and limits are enforced on con-
nections rates, data transmission, and the total window of
time in which we allow a binary to execute. As well, Bot-
lab provides operators with the ability to redirect outgo-
ing SMTP traffic to spamhole, an emulated SMTP server
that traps messages while fooling the sender into believ-
ing the message was sent successfully.
We are confident that our research to date has been

safe. However, the transmission of any network traffic
poses some degree of risk of causing harm to the receiver,
particularly when the traffic originates from an untrusted
binary downloaded from the Internet. In Section 6, we
present our thoughts on the long-term viability of safely
conducting this research.

3.3.2 Experience classifying bots

We have found that certain bots detect when they are be-
ing run in a virtual machine and disable themselves. To
identify VMM detection, Botlab generates two network
fingerprints for each binary: we execute the binary in a
VMware virtual machine and also on a bare-metal ma-
chine containing a fresh Windows installation. By com-
paring the resulting two network fingerprints, we can in-
fer whether the binary is performing any VM detection.
Some of the spamming binaries we analyzed made ini-
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tial SMTP connections, but subsequently refused to send
spam. For example, one spam bot connected to spam-
hole, but never sent any spam messages after receiving
the initial greeting string from the SMTP server. We de-
duced that this bot was checking that the greeting string
included the domain name to which the bot was connect-
ing, and we modified spamhole to return appropriate do-
main names in the string.
We also observed that some spam bots perform more

sophisticated SMTP verification before they send spam.
For example, when the MegaD bot begins executing, it
transmits a test e-mail to a special MegaD mail server,
verifying each header it receives during the SMTP hand-
shake. MegaD’s mail server returns a message ID string
after sending the message, which the bot then sends to
its C&C server. The C&C server verifies that the mes-
sage with this ID was actually delivered to the MegaD
mail server before giving any further instructions to the
bot. Accordingly, to generate a signature for MegaD, and
later, to continuously execute a captured MegaD node,
the human operator had to indicate to Botlab to deflect
SMTP messages destined for MegaD’s mail server from
the spamhole to the live Internet.
Some bots do not send spam through SMTP, but in-

stead use HTTP-based web services. For example, a Ru-
stock variant rotates through valid hotmail.com ac-
counts to transmit spam. To safely intercept this spam,
we had to construct infrastructure that spoofs Hotmail’s
login and mail transmission process, including using fake
SSL certificates during login. Fortunately, this variant
does not check the SSL certificates for validity. How-
ever, if the variant evolves and validates the certificate,
we would not be able to safely analyze it.

3.4 Execution Engine
Botlab executes spamming bot binaries within its execu-
tion engine. The engine runs each bot within a VM or on
a dedicated bare-metal box, depending on whether the
bot binary performs VMM detection. In either case, Bot-
lab sandboxes network traffic to prevent harm to external
hosts. We re-use the network safeguards described in the
previous section in the execution engine sandbox: our
sandbox redirects outgoing e-mail to spamhole, permits
only traffic patterns previously identified as safe by a hu-
man operator to be transmitted to the Internet, and drops
all other packets. Traffic permitted on the Internet is also
subject to the same rate limiting policies we previously
described.
Though we have analyzed thousands of malware bi-

naries to date, only a surprisingly small fraction corre-
spond to unique spamming botnets. In fact, we have
so far found just seven spamming bots: Grum, Kraken,
MegaD, Pushdo, Rustock, Srizbi, and Storm. (Botnet
names are derived according to tags with which anti-

virus tools classify the corresponding binaries.) We be-
lieve these are the most prominent spam botnets existing
today, and our results suggest that they are responsible
for sending most of the world’s spam. Thus, it appears
the spam botnet landscape consists of just a handful of
key players.

3.4.1 Avoiding blacklisting

If the botnet owners learn about Botlab’s existence, they
might attempt to blacklist IP addresses belonging to the
University of Washington. The C&C servers would then
refuse connections to Botlab’s captive bots, rendering
Botlab ineffective. To prevent this, Botlab routes any bot
traffic permitted onto the Internet, including C&C traffic,
through the anonymizing Tor network [6]. Our malware
crawler is also routed through Tor. While Tor provides
a certain degree of anonymity, a long-term solution to
avoid blacklisting would be to install monitoring agents
at geographically diverse and secret locations, with the
hosting provided by organizations that desire to combat
the botnet threat.

Some bots track and report the percentage of e-mail
messages successfully sent and e-mail addresses for
which sending failed. These lists can be used by bot-
net owners to filter out invalid or outdated addresses. To
avoid detection, we had to ensure that our bots did not re-
port 100% delivery rates, as these are unlikely to happen
in the real world. Doing so was easy; our bots experience
many send errors because of failed DNS lookups for mail
servers. Thus, we simply rely on DNS to provide us with
a source of randomness in bot-reported statistics. Should
bot masters begin to perform a more complicated statis-
tics analysis, more controlled techniques for introducing
random failures in spamhole might become necessary.

3.4.2 Multiple C&C servers

Some botnets partition their bots across several C&C
servers. For example, in Srizbi, different C&C servers
are responsible for sending different classes of spam.
These spam classes differ in subject line, content, em-
bedded URLs, and even languages. If we were to run
only a single Srizbi bot binary, it would connect to one
C&C server, and therefore we would only have a partial
view of the overall botnet activity.

To rectify this, we take advantage of a C&C redun-
dancy mechanism built into many bots, including Srizbi:
if the primary C&C server goes down, an alternate C&C
server is selected either via hardcoded IP addresses or
programmatic DNS lookups. Botlab can thus block the
primary C&C server(s) and learn additional C&C ad-
dresses. Botlab can then run multiple instances of the
same bot, each routed to a different C&C server.
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3.5 Correlating incoming and outgoing
spam

Botlab’s correlation analyzer combines our different
sources of botnet information to provide a more complete
view into overall botnet activity. For example, armed
with a real-time outgoing spam feed, we can classify
spam received by our incoming spam feed according to
the botnet that is responsible for sending it. We will de-
scribe how we derived our classification algorithm and
evaluate its accuracy in Section 4.3.1.
For spam that cannot be attributed to a particular bot-

net using our correlation analysis, we use clustering anal-
ysis to identify sets of relays used in the same spam cam-
paign. In Section 4.2, we evaluate various ways in which
this clustering can be performed. If there is a significant
overlap between a campaign’s relay cluster and known
members of a particular botnet (where botnet member-
ship information is derived from the earlier correlation
analysis), then we can merge the two sets of relays to
derive a more complete view of botnet membership.

3.6 Summary
We have outlined an architecture for Botlab, a real-time
spam botnet monitoring system. Some elements of Bot-
lab have been proposed elsewhere; our principal contri-
bution is to assemble these ideas into an end-to-end sys-
tem that can safely identify malicious binaries, remove
duplicates, and execute them without being blacklisted.
By correlating the activity of captured bots with the ag-
gregate incoming spam feed, the system has the potential
to provide more comprehensive information on spam-
ming botnets and also enable effective defenses against
them. We discuss these issues in the remainder of the
paper.

4 Analysis
We now present an analysis of botnets that is enabled
by our monitoring infrastructure. First, we examine the
actions of the bots being run in Botlab, characterize
their behavior, and analyze the properties of the outgo-
ing spam feed they produce. Second, we analyze our
incoming spam feed to extract coarse-grained, aggregate
information regarding the perpetrators of malicious ac-
tivity. Finally, we present analysis that is made possi-
ble by studying both the outgoing and incoming spam
feeds. Our study reveals several interesting aspects of
spamming botnets.

4.1 The Spam Botnets
In our analysis, we focus on seven spam botnets: Grum,
Kraken, MegaD, Pushdo, Rustock, Srizbi, and Storm.
Although our malware crawler analyzed thousands of
potential executables, after network fingerprinting and
pruning described earlier, we found that only variants of

these seven bots actively send spam. Next, we summa-
rize various characteristics of these botnets and our ex-
perience running them.

4.1.1 Behavioral Characteristics

Table 1 summarizes various characteristics of our bot-
nets, which we have monitored during the past six
months. The second column depicts the number of days
on which we have observed a botnet actively sending
spam. We found that keeping all botnets active simul-
taneously is difficult. First, locating a working binary for
each botnet required vastly different amounts of time, de-
pending on the timings of botnet propagation campaigns.
For example, we have only recently discovered Grum, a
new spamming botnet which has only been active for 8
days, whereas Rustock has been running for more than
5 months. Second, many bots frequently go offline for
several days, as C&C servers are taken down by law en-
forcement, forcing the bot herders to re-establish new
C&C servers. Sometimes this breaks the bot binary,
causing a period of inactivity until a newer, working ver-
sion is found.
The amount of outgoing spam an individual bot can

generate is vastly different across botnets. MegaD and
Srizbi bots are the most egregious: they can send out
more than 1,500 messages per minute, using as many as
80 parallel connections at a time, and appear to be lim-
ited only by the client’s bandwidth. On the other hand,
Rustock and Storm are “polite” to the victim – they send
messages at a slow and constant rate and are unlikely to
saturate the victim’s network connection. Big variabil-
ity in send rates suggests these rates might be useful in
fingerprinting and distinguishing various botnets.
Bots use various methods to locate and communicate

with their C&C servers. We found that many botnets use
very simple schemes. Rustock, Srizbi, and Pushdo sim-
ply hardcode the C&C’s IP address in the bot binary, and
MegaD hardcodes a DNS name. Kraken uses a propri-
etary algorithm to generate a sequence of dynamic DNS
names, which it then attempts to resolve until it finds a
working name. An attacker registers the C&C server at
one of these names and can freely move the C&C to an-
other name in the event of a compromise. In all of these
cases, Botlab can efficiently pinpoint the IP addresses of
the active botnet C&C servers; if these servers could be
efficiently located and shut down, the amount of world-
wide spam generated would be substantially reduced.
Although recent analysis suggests that botnet control

is shifting to complicated decentralized protocols as ex-
emplified by Storm [20, 33], we found the majority of
our other spam bots use HTTP to communicate with their
C&C server. Using HTTP is simple but effective, since
bot traffic is difficult to filter from legitimate web traffic.
HTTP also yields a simple pull-based model for botnet
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Botnet # days active 
in trace 

total spam 
messages

spam send rate 
(messages/min) C&C protocol 

C&C servers 
contacted over 

lifetime
C&C discovery 

Grum 8 days 864,316 344 encrypted HTTP, port 80 1 static IP 
(206.51.231.192)

Kraken 25 days 5,046,803 331 encrypted HTTP, port 80 41 algorithmic DNS 
lookups

Pushdo 59 days 4,932,340 289 encrypted HTTP, port 80 96 set of static IPs 

Rustock 164 days 7,174,084 33 encrypted HTTP, port 80 1 static IP 
(208.72.169.54)

MegaD 113 days 198,799,848 1638 encrypted custom 
protocol, ports 80 and 443 21 static DNS name 

(majzufaiuq.info)

Srizbi 51 days 86,003,889 1848 unencrypted HTTP, 
 port 4099 20 set of static IPs 

Storm 50 days 961,086 20 compressed TCP  N/A p2p (Overnet) 

Table 1: The botnets monitored in Botlab. Table gives characteristics of representative bots participating in the seven botnets.
Some bots use all available bandwidth to send more than a thousand messages per minute, while others are rate-limited. Most
botnets use HTTP for C&C communication. Some do not ever change the C&C server address yet stay functional for a long time.

operators: a new bot makes an HTTP request for work
and receives an HTTP response that defines the next task.
Upon completing the task, the bot makes another request
to relay statistics, such as valid and invalid destination
addresses, to the bot master. All of our HTTP bots fol-
low this pattern, which is easier to use and appears just
as sustainable as a decentralized C&C protocol such as
Storm’s protocol.

We checked whether botnets frequently change their
C&C server to evade detection or reestablish a com-
promised server. The column “C&C servers contacted”
of Table 1 shows how many times a C&C server used
by a bot was changed. Surprisingly, many bots change
C&C servers very infrequently; for example, the various
copies of Rustock and Srizbi bots have used the same
C&C IP address for 164 and 51 days, respectively, and
experienced no downtime during these periods. Some
bots are distributed as a set of binaries, each with differ-
ent hardcoded C&C information. For example, we found
20 variants of Srizbi, each using one hardcoded C&C IP
address. The C&C changes are often confined to a par-
ticular subnet; the 10 most active /16 subnets contributed
103 (57%) of all C&C botnet servers we’ve seen. As
well, although none of the botnets shared a C&C server,
we found multiple overlaps in the corresponding subnets;
one subnet (208.72.*.*) provided C&C servers for Srizbi,
Rustock, Pushdo, and MegaD, suggesting infrastructural
ties across different botnets.

As it turns out, these botnets had many of their C&C
servers hosted by McColo, a US based hosting provider.
On November 11, McColo was taken offline by its ISPs,
and as a result, the amount of spam reaching the Univer-
sity of Washington dropped by almost 60%. As of Febru-
ary 2009, the amount of spam reaching us has steadily
increased to around 80% of the pre-shutdown levels as

some of the botnet operators have been able to redirect
their bots to new C&C servers, and in addition, new bot-
nets have sprung up to replace the old ones.

4.1.2 Outgoing Spam Feeds

The spam generated by our botnets is a rich source of in-
formation regarding their malicious activities. The con-
tent of the spam emails can be used to identify the scams
perpetrated by the botnets (as discussed in Section 4.3)
and help develop application-level defenses for end-hosts
(see Section 5). In this section, we analyze the character-
istics of the spam mailing lists, discuss the reach of var-
ious botnets, and examine whether spam subjects could
be used as fingerprints for the botnets.

Size of mailing lists: We first use the outgoing spam
feeds to estimate the size of the botnets’ recipient lists.
We assume the following model of botnet behavior:

• A bot periodically obtains a new chunk of recipients
from the master and sends spam to this recipient list.
Let c be the chunk size.

• On each such request, the chunk of recipients is se-
lected uniformly at random from the spam list.

• The chunk of recipients received by a bot is much
smaller than the spam list size N .

Assuming these are true, the probability of a particular
email address from the spamlist appearing in k chunks of
recipients obtained by a bot is 1 − (1 − c/N)k. As the
second term decays with k, the spam feed will expose the
entire recipient list in an asymptotic manner, and eventu-
ally most newly-picked addresses will be duplicates of
previous picks. Further, if we recorded the firstm recipi-
ent addresses from a spam trace, the expected number of
repetitions of these addresses within the next k chunks is
m[1 − (1 − c/N)k].
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We have observed that MegaD, Rustock, Kraken, and
Storm follow this model. We fit the rates at which they
see duplicates in their recipient lists into the model above
to obtain their approximate spam list sizes. We present
the size estimates at a confidence level of 95%. We esti-
mate MegaD’s spam list size to be 850 million addresses
(±0.2%), Rustock’s to be 1.2 billion (±3%), Kraken’s
to be 350 million (±0.3%), and Storm’s 110 million
(±6%).
Srizbi and Pushdo partition their spam lists in a way

that precludes the above analysis. We have not yet col-
lected enough data for Grum to reliably estimate its spam
list size – our bot has not sent enough emails to see du-
plicate recipient email addresses.

 MegaD Kraken Rustock 

Kraken 28% N/A 7% 
MegaD N/A 8% 9% 
Pushdo 0% 0% 0% 
Rustock 15% 6% N/A 
Srizbi 21% 10% 8% 
Storm 24% 11% 7% 

Table 2: Overlap between recipient spam lists. The table
shows the fraction of each botnet’s recipient list that is shared
with MegaD, Kraken, and Rustock’s recipient lists. For exam-
ple, Kraken shares 28% of its recipient list with MegaD.

Overlap in mailing lists: We also examined whether
botnets systematically share parts of their spam lists. To
do this, we have measured address overlap in outgoing
spam feeds collected thus far and combined it with mod-
eling similar to that in the previous section (more details
are available in [16]). We found that overlaps are sur-
prisingly small: the highest overlap is between Kraken
and MegaD, which share 28% of their mailing lists. It
appears different botnets cover different partitions of the
global email list. Thus, spammers can benefit from using
multiple botnets to get wider reach, a behavior that we in
fact observe and discuss in Section 4.3.

Spam subjects: Botnets carefully design and hand-tune
custom spam subjects to defeat spam filters and attract at-
tention. We have found that between any two spam bot-
nets, there is no overlap in subjects sent within a given
day, and an average overlap of 0.3% during the length
of our study. This suggests that subjects are useful for
classifying spam messages as being sent by a particular
botnet. To apply subject-based classification, we remove
any overlapping subjects, leaving, on average, 489 sub-
jects per botnet on a given day. As well, a small number
of subjects include usernames or random message IDs.
We remove these elements and replace them with reg-
exps using an algorithm similar to AutoRE [39]. We will
evaluate and validate this classification scheme using our

Figure 2: Number of distinct relay IPs and the /24s contain-
ing them.

Figure 3: Fraction of spam that is captured by using IP-
based blacklists. We find that using relays seen locally so far
works as well as a commercial blacklist, and can block almost
60% of the spam.

incoming spam in Section 4.3.1.

4.2 Analysis of Incoming Spam
We analyze 46 million spam messages obtained from a
50-day trace of spam from University of Washington and
use it to characterize the hosts sending the spam, the
scam campaigns propagated using spam, and the web
hosting infrastructure for the scams. To do this, each
spam message is analyzed to extract the set of relays
through which the purported sender forwarded the email,
the subject, the recipient address, other SMTP headers
present in the email, and the various URLs embedded
inside the spam body.
We found that on average, 89.2% of the incoming mail

at UW is classified as spam by UW’s filtering systems.
Around 0.5% of spam contain viruses as attachments.
Around 95% of the spam messages contain HTTP links,
and 1% contain links to executables.

4.2.1 Spam sources

Figure 2 plots the total number of distinct last-hop relays
seen in spam messages over time. We consider only the
IP of the last relay used before a message reaches UW’s
mail servers, as senders can spoof other relays. The num-
ber of distinct relay IPs increases steadily over time and
reaches 9.5 million after 7 weeks worth of spam mes-
sages. Two factors could be responsible for keeping this
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Figure 4: Number of messages sourced by distinct relay IPs,
over a single day and the entire trace.

growth linear. One is a constant balance between the in-
flux of newly-infected bots and the disappearance of dis-
infected hosts. Another is the use of dynamic IP (DHCP)
leases for end hosts, which causes the same physical ma-
chine to manifest itself under different IPs. To place a
lower bound on the number of distinct spam hosts given
the DHCP effect, Figure 2 also shows the number of dis-
tinct /24’s corresponding to spam relays, assuming that
the IPs assigned by DHCP to a particular host stay in the
/24 range.
The constantly changing list of IPs relaying spam

does suggest that simple IP-based blacklists, such as the
Spamhaus blacklist [31], will not be very effective at
identifying spam. To understand the extent to which
this churn impacts the effectiveness of IP-based black-
lists, we analyze four strategies for generating blacklists
and measure their ability to filter spam. First, we con-
sider a blacklist comprising of the IP addresses of the
relays which sent us spam a week ago. Next, we have a
blacklist that is made up of the IP addresses of the relays
which sent us spam the previous day. Third, we consider
a blacklist that contains the IP addresses of the relays
which sent us spam at any point in the past. Finally, we
look at a commonly used blacklist such as the Composite
Blocking List (CBL) [4]. Figure 3 shows the compari-
son. The first line shows how quickly the effectiveness
of a blacklist drops with time, with a week-old blacklist
blocking only 20% of the spam. Using the relay IPs from
the previous day blocks around 40% of the spam, and us-
ing the entire week’s relay IPs can decrease the volume
of spam by 50 − 60%. Finally, we see that a commer-
cial blacklist performs roughly as well as the local black-
list which uses a weeks’ worth of information. We view
these as preliminary results since a rigorous evaluation
of the effectiveness of blacklists is possible only if we
can also quantify the false positive rates. We defer such
analysis to future work.
We next analyze the distribution of the number of mes-

sages sent by each spam relay. Figure 4 graphs the num-
ber of messages each distinct relay has sent during our
trace. We also show the number of messages sent by
each relay on a particular day, where DHCP effects are

Figure 5: Number of distinct hostnames in URLs conveyed
by spam. Spammers constantly register new DNS names.

Figure 6: Clustering spam messages by the IP of URLs con-
tained within them. Links in 80% of spam point to only 15
distinct IP clusters.

less likely to be manifested. On any given day, only a
few tens of relays send more than 1,000 spam messages,
with the bulk of the spam conveyed by the long tail. In
fact, the relays that sent over 100 messages account for
only 10% of the spam, and the median number of spam
messages per relay is 6. One could classify the heavy
hitters as either well-known open mail relays or heav-
ily provisioned spam pumps operated by miscreants. We
conjecture that most of the long tail corresponds to com-
promised machines running various kinds of bots.

4.2.2 Spam campaigns and Web hosting

We next examine whether we can identify and charac-
terize individual spam campaigns based on our incoming
spam. Ideally, we would cluster messages based on sim-
ilar content; however, this is difficult as spammers use
sophisticated content obfuscation to evade spam detec-
tion. Fortunately, more than 95% of spam in our feed
contains links. We thus cluster spam based on the fol-
lowing attributes: 1) the domain names appearing in the
URLs found in spam, 2) the content of Web pages linked
to by the URLs, and 3) the resolved IP addresses of the
machines hosting this content. We find that the second
attribute is the most useful for characterizing campaigns.
Clustering with URL domain names revealed that for

any particular day, 10% of the observed domain names
account for 90% of the spam. By plotting the num-
ber of distinct domain names observed in our spam feed
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over time (shown in Figure 5), we found that the number
of distinct hostnames is large and increases steadily, as
spammers typically use newly-registered domains. (In
fact, on average, domain names appearing in our spam
are only two weeks old based on whois data.) Conse-
quently, domain-based clustering is too fine-grained to
reveal the true extent of botnet infections.
Our content clustering is performed by fetching the

Web page content of all links seen in our incoming spam.
We found that nearly 80% of spam pointed to just 11 dis-
tinct Web pages, and the content of these pages did not
change during our study. We conclude that while spam-
mers try to obfuscate the content of messages they send
out, the Web pages being advertised are static. Although
this clustering can identify distinct campaigns, it cannot
accurately attribute them to specific botnets. We revisit
this clustering method in Section 4.3.2, where we add
information about our botnets’ outgoing spam.
For IP-based clustering, we analyzed spam messages

collected during the last week of our trace. We ex-
tracted hostnames from all spam URLs and performed
DNS lookups on them. We then collected sets of re-
solved IPs from each lookup, merging any sets sharing
a common IP. Finally, we grouped spam messages based
on these IP clusters; Figure 6 shows the result. We found
that 80% of the spam corresponds to the top 15 IP clus-
ters (containing a total of 57 IPs). In some cases, the
same Web server varied content based on the domain
name that was used to access it. For example, a single
server in Korea hosted 20 different portals, with demul-
tiplexing performed using the domain name. We conjec-
ture that such Web hosting services are simultaneously
supporting a number of different spam campaigns. As a
consequence, web-server-based clustering is too coarse-
grained to disambiguate individual botnets.

4.3 Correlation Analyses
We now bring together two of our data sources, our out-
going and incoming spam feeds, and perform various
kinds of correlation analyses, including: 1) classifying
spam according to which botnet sourced it, 2) identify-
ing spam campaigns and analyzing botnet partitioning,
3) classifying and analyzing spam used for recruiting
new victims, and 4) estimating botnet sizes and produc-
ing botnet membership lists. Note that we exclude Grum
from these analyses, because we have not yet monitored
this recently discovered bot for a sufficiently long time.

4.3.1 Spam classification

To classify each spam message received by University
of Washington as coming from a particular botnet, we
use subject-based signatures we derived in Section 4.1.2.
Each signature is dynamic — it changes whenever bot-
nets change their outgoing spam. We have applied these

Figure 7: Average contributions of each botnet to incoming
spam received at University of Washington. 79% of spam
comes from six spam botnets, and 35% comes from just one
botnet, Srizbi.
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Figure 8: Breakdown of spam e-mails by botnet over time.
Most botnets contribute approximately the same fraction of
spam to our feed over our study period, with Srizbi, Rustock,
and MegaD being the top contributors. Kraken shows gaps in
activity on days 28-32 and 52. Day 1 corresponds to March 13,
2008.

signatures to a 50-day trace of incoming spam messages
received at University of Washington in March and April
2008. Figure 7 shows how much each botnet contributed
to UW spam on average, and Figure 8 shows how the
breakdown behaves over time. We find that on average,
our six botnets were responsible for 79% of UW’s in-
coming spam. This is a key observation: it appears that
for spam botnets, only a handful of major botnets pro-
duce most of today’s spam. In fact, 35% of all spam is
produced by just one botnet, Srizbi. This result might
seem to contradict the lower bound provided by Xie et
al. [39], who estimated that 16 − 18% of the spam in
their dataset came from botnets. However, their dataset
excludes spam sent from blacklisted IPs, and a large frac-
tion of botnet IPs are present in various blacklists (as
shown in Sections 4.2 and [28]).
We took a few steps to verify our correlation. First,

we devised an alternate classification based on certain
unique characteristics of the “Message ID” SMTP header
for Srizbi and MegaD bots, and verified that the classifi-
cation does not change using that scheme. Second, we
extracted last-hop relays from each classified message
and checked overlaps between sets of botnet relays. The
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Canadian Healthcare 0% 0% 0.01% 22% 3% 0% 
Canadian Pharmacy 16% 28% 10% 0% 9% 6% 
Diamond Watches 22% 0.1% 0% 0% 13% 0% 
Downloadable Software 0% 0% 25% 0% 0% 0% 
Freedom From Debt Forever! 19% 0% 0% 0% 0% 1% 
Golden Gate Casino 0% 32% 0% 0% 0% 0% 
KING REPLICA 0% 4% 3% 0% 15% 0% 
LNHSolutions 0% 6% 0% 0% 0% 0% 
MaxGain+ ... No.1 for PE 0% 0% 3% 78% 0% 0% 
Prestige Replicas 7% 0% 0.3% 0% 31% 0% 
VPXL - PE Made Easy 20% 8% 6% 0% 24% 55% 
Unavailable 3% 22% 38% 0% 0% 24% 
Other 13% 0.1% 15% 0% 5% 14% 

Table 3: Clustering incoming spam by the title of the web
page pointed to by spam URLs. The columns show how fre-
quently each botnet was sending each campaign on April 30,
2008. Many botnets carry out multiple campaigns simultane-
ously.

overlaps are small; it is never the case that many of the re-
lays belonging to botnet X are also in the set of relays for
botnet Y. The biggest overlap was 3.3% between Kraken
and MegaD, which we interpret as 3.3% of Kraken’s re-
lays also being infected with the MegaD bot.

4.3.2 Spam campaigns

To gain insight into kinds of information spammers dis-
seminate, we classified our incoming spam according to
spam campaigns. We differentiate each campaign by the
contents of the web pages pointed to by links in spam
messages. Using data from Section 4.3.1, we classify
our incoming spam according to botnets, and then break
down each botnet’s messages into campaign topics, de-
fined by titles of campaign web pages. Table 3 shows
these results for a single day of our trace. For exam-
ple, Rustock participated in two campaigns – 22% of its
messages advertised “Canadian Healthcare”, while 78%
advertised “MaxGain+”. We could not fetch some links
because of failed DNS resolution or inaccessible web
servers; we marked these as “Unavailable”. The table
only shows the most prevalent campaigns; a group of less
common campaigns is shown in row marked “Other”.
All of our botnets simultaneously participate in mul-

tiple campaigns. For example, Kraken and Pushdo par-
ticipate in at least 5 and 7, respectively. The percent-
ages give insight into how the botnet divides its bots
across various campaigns. For example, Kraken might
have four customers who each pay to use approximately
20% of the botnet to send spam for “Canadian Phar-
macy”, “Diamond Watches”, “Freedom from Debt”, and
“VPXL”. Multiple botnets often simultaneously partic-
ipate in a single campaign, contrary to an assumption
made by prior research [40]. For example, “Canadian

Kraken MegaD Pushdo Rustock Srizbi Storm

Kraken N/A 32% 16% 10% 13% 28%

MegaD 32% N/A 20% 8% 21% 40%

Pushdo 16% 20% N/A 3% 14% 19%

Rustock 10% 8% 3% N/A 7% 6%

Srizbi 13% 21% 14% 7% N/A 15%

Storm 28% 40% 19% 6% 15% N/A

Table 4: Overlap in hosting infrastructure of the web pages
pointed to by spam URLs. The table shows what fraction of
spam sent by different botnets on April 30, 2008 contain URLs
pointing to the same webservers.

Figure 9: Propagation campaigns. The graph shows the num-
ber of e-mails with links that infected victims with either Srizbi,
Storm, or Pushdo.

Pharmacy” is distributed by Kraken, MegaD, Pushdo,
Srizbi, and Storm. This suggests the most prominent
spammers utilize the services of multiple botnets.

Botnets use different methods to assign their bots to
campaigns. For example, Botlab monitors 20 variants
of Srizbi, each using a distinct C&C server. Each C&C
server manages a set of campaigns, but these sets often
differ across C&C servers. For example, bots using C&C
server X and Y might send out “Canadian Pharmacy”
(with messages in different languages), whereas server Z
divides bots across “Prestige Replicas” and “Diamond
Watches”. Thus, Srizbi bots are partitioned statically
across 20 C&C servers, and then dynamically within
each server. In contrast, all of our variants of Rustock
contact the same C&C server, which dynamically sched-
ules bots to cover each Rustock campaign with a certain
fraction of the botnet’s overall processing power, behav-
ing much like a lottery scheduler [35].

In Section 4.2.2, we saw that most of the Web servers
support multiple spam campaigns. Now, we examine
whether the Web hosting is tied to particular botnets, i.e.,
whether all the spam campaigns hosted on a server are
sent by the same botnet. In Table 4, we see that this is
not the case – every pair of botnets shares some hosting
infrastructure. This suggests that scam hosting is more
of a 3rd party service that is used by multiple (potentially
competing) botnets.
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Botnet Kraken MegaD Pushdo Rustock Srizbi Storm 
# unique 

relays seen 20,275 57,402 27,266 83,836 119,604 7,814 

Table 5: The number of unique relays belonging to each bot-
net. These numbers provide a lower bound on the size of each
botnet, as seen on September 3, 2008. More accurate estimates
are possible by accounting for relays not seen in our spam feed.

4.3.3 Recruiting campaigns

Using our correlation tools, we were able to identify in-
coming spam messages containing links to executables
infecting victims with the Storm, Pushdo, or Srizbi bot.
Figure 9 shows this activity over our incoming spam
trace. The peaks represent campaigns launched by bot-
nets to recruit new victims. We have observed two such
campaigns for Storm – one for March 13-16 and another
centered on April 1, corresponding to Storm launching
an April Fool’s day campaign, which received wide cov-
erage in the news [23]. Srizbi appears to have a steady
ongoing recruiting campaign, with peaks around April
15-20, 2008. Pushdo infects its victims in bursts, with
a new set of recruiting messages being sent out once a
week.
We expected the spikes to translate to an increase in

number of messages sent by either Srizbi, Storm, or
Pushdo, but surprisingly this was not the case, as seen
by matching Figures 9 and 8. This suggests that bot
operators do not assign all available bots to send spam
at maximum possible rates, but rather limit the overall
spam volume sent out by the whole botnet.

4.3.4 Botnet membership lists and sizes

A botnet’s power and prowess is frequently measured by
the botnet’s size, which we define as the number of ac-
tive hosts under the botnet’s control. A list of individual
nodes comprising a botnet is also useful for notifying and
disinfecting the victims. We next show how Botlab can
be used to obtain information on both botnet size and
membership.
As before, we classify our incoming spam into sourc-

ing botnets and extract the last-hop relays from all suc-
cessfully classified messages. After removing dupli-
cates, these relay lists identify hosts belonging to each
botnet. Table 5 shows the number of unique, classified
relays for a particular day of our trace. Since botnet
membership is highly dynamic, we perform our calcu-
lations for a single day, where churn can be assumed to
be negligible. As well, we assume DHCP does not affect
the set of unique relays on a timescale of just a single
day. These numbers of relays for each botnet are effec-
tively the lower bound on the botnet sizes. The actual
botnet sizes are higher, since there are relays that did not
send spam to University of Washington, and thus were

not seen in our trace. We next estimate the percentage of
total relays that we do see, and use it to better estimate
botnet sizes.

Let us assume again that a bot sends spam to email ad-
dresses chosen at random. Further, let p be the probabil-
ity with which a spam message with a randomly chosen
email address is received by our spam monitoring sys-
tem at University of Washington. If n is the number of
messages that a bot sends out per day, then the probabil-
ity that at least one of the messages generated by the bot
is received by our spam monitors is [1 − (1 − p)n]. For
large values of n, such as when n ∼ 1/p, the probability
of seeing one of the bot’s messages can be expressed as
[1 − e−np].

We derive p using the number of spam messages re-
ceived by our spam monitor and an estimate of the global
number of spam messages. With our current setup,
the former is approximately 2.4 million daily messages,
while various sources estimate the latter at 100-120 bil-
lion messages (we use 110 billion) [14, 21, 32]. This
gives p = 2400000/110 billion = 2.2 · 10−5.

For the next step, we will describe the logic using one
of the botnets, Rustock, and later generalize to other bot-
nets. From Section 4.1, we know that Rustock sends
spam messages at a constant rate of 47.5K messages per
day and that this rate is independent of the access link ca-
pacity of the host. Note that Rustock’s sending rate trans-
lates to a modest rate of 1 spammessage per two seconds,
or about 0.35 KB/s given that the average Rustock mes-
sage size is 700 bytes – a rate that can be supported by
almost all end-hosts [15]. The probability that we see the
IP of a Rustock spamming bot node in our spam moni-
tors on a given day is [1− e−47500·2.2·10−5

] = 0.65. This
implies that the 83,836 Rustock IPs we saw on Septem-
ber 3rd represent about 65% of all Rustock’s relays; thus,
the total number of active Rustock bots on that day was
about 83, 836/0.65 = 128, 978. Similarly, we estimate
the active botnet size of Storm to be 16,750. We would
like to point that these estimates conservatively assume
a bot stays active 24 hours per day. Because some bots
are powered off during the night, these botnet sizes are
likely to be higher.

These estimates rely on the fact that both Rustock and
Storm send messages at a slow, constant rate that is un-
likely to saturate most clients’ bandwidth. Our other bots
send spam at higher rates, with the bot adapting to the
host’s available bandwidth. Although this makes it more
likely that a spamming relay is detected in our incoming
spam, it is also more difficult to estimate the number of
messages a given bot sends. In future work, we plan to
study the rate adaptation behavior of these bots and com-
bine it with known bandwidth profiles [15]. Meanwhile,
Table 5 gives conservative size estimates.
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5 Applications enabled by Botlab

Botlab provides various kinds of real-time botnet infor-
mation, which can be used by end hosts wishing for pro-
tection against botnets, or by ISPs and activists for law
enforcement. Next, we discuss applications enabled by
our monitoring infrastructure.

5.1 Safer web browsing

Spam botnets propagate many harmful links, such as
links to phishing sites or to web pages installing mal-
ware. For example, on September 24, 2008, we observed
the Srizbi botnet distribute 40,270 distinct links to pages
exploiting Flash to install the Srizbi bot. Although the
current spam filtering tools are expected to filter out spam
messages containing these links, we found that this is
often not the case. For example, we have forwarded a
representative sample of each of Srizbi’s outgoing spam
campaigns to a newly-created Gmail account controlled
by us, where we have used Gmail’s default spam filter-
ing rules, and found that 79% of spam was not filtered
out. Worse, Gmail filters are not “improving” quickly
enough, as forwarding the same e-mails two days later
resulted in only a 5% improvement in detection. Users
are thus exposed to many messages containing danger-
ous links and social engineering traps enticing users to
click on them.

Botlab can protect users from such attacks using its
real-time database of malicious links seen in outgoing,
botnet-generated spam. For example, we have developed
a Firefox extension, which checks the links a user visits
against this database before navigating to them. In this
way, the extension easily prevented users from browsing
to any of the malicious links Srizbi sent on September
24.

Some existing defenses use blacklisting to prevent
browsers from following malicious links. We have
checked two such blacklists, the Google Safe Browser
API and the Malware Domain List, six days after the
links were sent out, and found that none of the 40,270
links appeared on either list. These lists suffer from the
same problem: they are reactive, as they rely on crawl-
ing and user reports to find malicious links after they are
disseminated. These methods fail to quickly and exhaus-
tively find “zero-day” botnet links, which point to mal-
ware hosted on recently compromised web servers, as
well as malware hosted on individual bots via fast-flux
DNS and a continuous flow of freshly-registered domain
names. In contrast, Botlab can keep up with spam bot-
nets because it uses real-time blacklists, which are up-
dated with links at the instant they are disseminated by
botnets.

5.2 Spam Filtering
Spam continuously pollutes email inboxes of many mil-
lions of Internet users. Most email users use spam fil-
tering software such as SpamAssassin [30], which uses
heuristics-based filters to determine whether a given
message is spam. The filters usually have a threshold
that a user varies to catch most spam while minimizing
the number of false positives — legitimate email mes-
sages misclassified as spam. Often, this still leaves some
spam sneaking through.
Botlab’s real-time information can be used to build

better spam filters. Specifically, using Botlab, we can
determine whether a message is spam by checking it
against the outgoing spam feeds for the botnets we mon-
itor. This is a powerful mechanism: we simply rely on
botnets themselves to tell us which messages are spam.
We implemented this idea in an extension for the

Thunderbird email client. The extension checks mes-
sages arriving to the user’s inbox against Botlab’s live
feeds using a simple, proof-of-concept correlation algo-
rithm: an incoming message comes from a botnet if 1)
there is an exact match on the set of URLs contained
in the message body, or 2) if the message headers are
in a format specific to that used by a particular botnet.
For example, all of Srizbi’s messages follow the same
unique message ID and date format, distinct from all
other legitimate and spam email. Although the second
check is prone to future circumvention, this algorithm
gives us an opportunity to pre-evaluate the potential of
this technique. Recent work has proposed more robust
algorithms, such as automatic regular-expression gener-
ation for spammed URLs in AutoRE [39], and we envi-
sion adopting these algorithms to use Botlab data to filter
spam more effectively in real-time settings.
Although we have not yet thoroughly evaluated our ex-

tension, we performed a short experiment to estimate its
effectiveness. One author used the extension for a week,
and found that it reduced the amount of spam bypassing
his departmental SpamAssassin filters by 156 messages,
or 76%, while having a 0% false positive rate. Thus, we
believe that Botlab can indeed significantly improve to-
day’s spam filtering tools.

5.3 Availability of Botlab Data
To make Botlab’s data publicly available, we have set up
a web page, http://botlab.cs.washington.edu/,
which publishes data and statistics we obtained from
Botlab. The information we provide currently includes
activity reports for each spam botnet we monitor, ongo-
ing scams, and a database of rogue links disseminated in
spam. We also publish lists of current C&C addresses
and members of individual botnets. We hope this infor-
mation will further aid security researchers and activists
in the continuing fight against the botnet threat.
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6 Safety
We have implemented safeguards to ensure that Botlab
never harms remote hosts, networks, or users. In this
section, we discuss the impact of these safeguards on the
effectiveness of Botlab, and our concerns over the long-
term viability of safely conducting bot research.

6.1 Impact on effectiveness
Initially, we hoped to construct a fully automatic plat-
form that required no manual analysis on the part of an
operator to find and analyze new botnet binaries. We
quickly concluded this would be infeasible to do safely,
as human judgment and analysis is needed to deter-
mine whether previously uncharacterized traffic is safe
to transmit.
Even with a human in the loop, safety concerns caused

us to make choices that limit the effectiveness of our re-
search. Our network sandbox mechanisms likely pre-
vented some binaries from successfully communicating
with C&C servers and activating, causing us to fail to
recognize some binaries as spambots, and therefore to
underestimate the diversity and extent of spamming bot-
nets. Similarly, it is possible that some of our captive
bot nodes periodically perform an end-to-end check of e-
mail reachability, and that our spamhole blocking mech-
anism causes these nodes to disable themselves or behave
differently than they would in the wild.

6.2 The long-term viability of safe botnet
research

The only provably safe way for Botlab to execute un-
trusted code is to block all network traffic, but this would
render Botlab ineffective. To date, our safeguards have
let us analyze bot binaries while being confident that
we have not caused harm. However, botnet trends and
thought experiments have diminished our confidence that
we can continue to conduct our research safely.
Botnets are trending towards the use of proprietary

encrypted protocols to defeat analysis, polymorphism
to evade detection, and automatically upgrading to new
variants to incorporate new mechanisms. It is hard to un-
derstand the impact of allowing an encrypted packet to be
transmitted, or to ensure that traffic patterns that were be-
nign do not become harmful after a binary evolves. Ac-
cordingly, the risk of letting any network traffic out of a
captured bot node seems to be growing.
Simple thought experiments show that it is possible for

an adversary to construct a bot binary for which there is
no safe and effective Botlab sandboxing policy. As an
extreme example, consider a hypothetical botnet whose
C&C protocol consists of different attack packets. If a
message is sent to an existing member of the botnet, the
message will be intercepted and interpreted by the bot.
However, if a message is sent to a non-botnet host, the

message could exploit a vulnerability on that host. If
such a protocol were adopted, Botlab could not trans-
mit any messages safely, since Botlab would not know
whether a destination IP address is an existing bot node.
Other adversarial strategies are possible, such as embed-
ding a time bomb within a bot node, or causing a bot
node to send benign traffic that, when aggregated across
thousands of nodes, results in a DDoS attack. Moreover,
even transmitting a “benign” C&C message could cause
other, non-Botlab bot nodes to transmit harmful traffic.
Given these concerns, we have disabled the crawling

and network fingerprinting aspects of Botlab, and there-
fore are no longer analyzing or incorporating new bina-
ries. As well, the only network traffic we are letting out
of our existing botnet binaries are packets destined for
the current, single C&C server IP address associated with
each binary. Since Storm communicates with many peers
over random ports, we have stopped analyzing Storm.
Furthermore, once the C&C servers for the other botnets
move, we will no longer allow outgoing network packets
from their bot binaries. Consequently, the Botlab web
site will no longer be updated with bots that we have to
disable. It will, however, still provide access to all the
data we have collected so far.
Our future research must therefore focus on deriving

analysis techniques that do not require bot nodes to inter-
act with Internet hosts, and determining if it is possible
to construct additional safeguards that will sufficiently
increase our confidence in the safety of transmitting spe-
cific packets. Unfortunately, our instinct is that a moti-
vated adversary can make it impossible to conduct effec-
tive botnet research in a safe manner.

7 Related Work
Most related work can be classified into four categories:
malware collection, malware analysis, botnet tracking
systems, and spam measurement studies. We now
discuss how our work relates to representative efforts in
each of these categories.

Malware collection: Honeypots (such as Honeynet [13]
and Potemkin [34]) have been a rich source of new
malware samples. However, we found them less relevant
for our work, as they failed to find any spam bots. The
likely cause is that spam botnets have shifted to social-
engineering-based propagation, relying less on service
exploits and self-propagating worms. Other projects,
such as HoneyMonkey [38], have used automated web
crawling to discover and analyze malware; automated
web patrol is now part of Google’s infrastructure [24].
However, our results show that Google’s database did
not contain many malicious links seen in our outgoing
spam feed, indicating that a blind crawl will not find
malware from spam-distributed links.
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Malware analysis: Botlab does not perform any
static analyses of malware binaries. Instead, it generates
network fingerprints by executing the binaries and
observing network accesses. [2] and [37] perform
similar dynamic analysis of binaries by executing them
in virtual environments and tracking changes in the
system, such as the creation of files, processes, registry
entries, etc. [2] uses this information to group malware
into broad categories, and [37] generates a detailed
report of the malware’s actions. Since these techniques
require running the binary in an instrumented setting
(such as a debugger), they would not be able to analyze
malware which performs VMM or debugger detection.
More similar to our approach is [27], which generates
network fingerprints and uses them to detect IRC bots.

Botnet tracking: Closely related to our work is
the use of virtualized execution environments to track
IRC botnets [27, 41]. By executing a large number
of IRC bot samples, these efforts first identify the
IRC servers and then infiltrate the corresponding IRC
channels to snoop on the botnets. In our experience,
botnets move away from plaintext IRC protocols to
encrypted HTTP-based or p2p protocols, requiring more
elaborate mechanisms as well as human involvement
for a successful infiltration – a point of view that is
increasingly voiced in the research community [18].For
example, Ramachandran et al. [28] infiltrated the
Bobax botnet by hijacking the authoritative DNS for the
domain running the C&C server for the botnet. They
were then able to obtain packet traces from the bots
which attempted to connect to their C&C server. More
recently, Kanich et al. [17] infiltrated the command and
control infrastructure of the Storm botnet, and modified
the spam being sent in order to measure the conversion
rates.

Less related to our work is the research on developing
generic tools that can be deployed at the network layer to
automatically detect the presence of bots [19]. Rishi [8]
is a tool that detects the use of IRC commands and un-
common server ports in order to identify compromised
hosts. BotSniffer [11] and BotHunter [10] are other
network-based anomaly detection tools that work by
simply sniffing on the network. Our work provides a
different perspective on bot detection: a single large
institution, such as University of Washington, can detect
most of the spamming bots operating at a given point in
time by simply examining its incoming spam feed and
correlating it with the outgoing spam of known bots.

Spam measurement studies: Recently, a number
of studies have examined incoming spam feeds to
understand botnet behavior and the scam hosting in-

frastructure [1, 40, 39]. In [26], the authors use a novel
approach to collecting spam – by advertising open mail
forwarding relays, and then collecting the spam that is
sent through them. Botlab differs from these efforts in
its use of both incoming and outgoing spam feeds. In
addition to enabling application-level defenses that are
proactive as opposed to reactive, our approach yields
a more comprehensive view of spamming botnets that
contradicts some assumptions and observations from
prior work. For instance, a recent study [40] analyzes
about 5 million messages and proposes novel clustering
techniques to identify spam messages sent by the same
botnet, but this is done under the assumption that
each spam campaign is sourced by a single botnet; we
observe the contrary to be true. Also, analysis of only
the incoming spam feed might result in too fine-grained
a view (at the level of short-term spam campaigns as
in [39]) and cannot track the longitudinal behavior of
botnets. Our work enables such analysis due to its
use of live bots, and in that respect, we share some
commonality with the recent study of live Storm bots
and their spamming behavior [20].

8 Conclusion
In this work, we have described Botlab, a real-time bot-
net monitoring system. Botlab’s key aspect is a multi-
perspective design that combines a feed of incoming
spam from the University of Washington with a feed of
outgoing spam collected by running live bot binaries. By
correlating these feeds, Botlab can perform a more com-
prehensive, accurate, and timely analysis of spam bot-
nets.
We have used Botlab to discover and analyze today’s

most prominent spam botnets. We found that just six
botnets are responsible for 79% of our university’s spam.
While domain names associated with the scams change
frequently, the locations of C&C servers, web hosts, and
even the content of web pages pointed to by scams re-
main static for long periods of time. A spam botnet typ-
ically engages in multiple spam campaigns simultane-
ously, and the same campaign is often purveyed by mul-
tiple botnets. We have also prototyped tools that use Bot-
lab’s real-time information to enable safer browsing and
better spam filtering. Overall, we feel Botlab advances
our understanding of botnets and enables promising re-
search in anti-botnet defenses.
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