
USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 335

Unraveling the Complexity of Network Management

Theophilus Benson, Aditya Akella
University of Wisconsin, Madison

David Maltz
Microsoft Research

Abstract

Operator interviews and anecdotal evidence suggest that
an operator’s ability to manage a network decreases as
the network becomes more complex. However, there is
currently no way to systematically quantify how com-
plex a network’s design is nor how complexity may im-
pact network management activities. In this paper, we
develop a suite of complexity models that describe the
routing design and configuration of a network in a suc-
cinct fashion, abstracting away details of the underlying
configuration languages. Our models, and the complex-
ity metrics arising from them, capture the difficulty of
configuring control and data plane behaviors on routers.
They also measure the inherent complexity of the reach-
ability constraints that a network implements via its rout-
ing design. Our models simplify network design and
management by facilitating comparison between alter-
native designs for a network. We tested our models
on seven networks, including four university networks
and three enterprise networks. We validated the results
through interviews with the operators of five of the net-
works, and we show that the metrics are predictive of the
issues operators face when reconfiguring their networks.

1 Introduction

Experience has shown that the high complexity underly-
ing the design and configuration of enterprise networks
generally leads to significant manual intervention when
managing networks. While hard data implicating com-
plexity in network outages is hard to come by, both anec-
dotal evidence and operator interviews suggest that more
complex networks are more prone to failures, and are dif-
ficult to upgrade and manage.

Today, there is no way to systematically quantify how
complex an enterprise configuration is, and to what ex-
tent complexity impacts key management tasks. Our
experiments show that simple measures of complexity,
such as the number of lines in the configuration files, are

not accurate and do not predict the number of steps man-
agement tasks require.

In this paper, we develop a family of complexity mod-
els and metrics that do describe the complexity of the de-
sign and configuration of an enterprise network in a suc-
cinct fashion, abstracting away all the details of the un-
derlying configuration language. We designed the mod-
els and metrics to have the following characteristics: (1)
They align with the complexity of the mental model
operators use when reasoning about their network—
networks with higher complexity scores are harder for
operators to manage, change or reason about correctly.
(2) They can be derived automatically from the config-
uration files that define a network’s design. This means
that automatic configuration tools can use the metrics to
choose between alternative designs when, as frequently
is the case, there are several ways of implementing any
given policy.

The models we present in this paper are targeted to-
ward the Layer-3 design and configuration of enterprise
networks. As past work has shown [19], enterprises em-
ploy diverse and intricate routing designs. Routing de-
sign is central both to enabling network-wide reacha-
bility and to limiting the extent of connectivity between
some parts of a network.

We focus on modeling three key aspects of routing de-
sign complexity: (1) the complexity behind configuring
network routers accurately, (2) the complexity arising
from identifying and defining distinct roles for routers
in implementing a network’s policy, and (3) the inherent
complexity of the policies themselves.

Referential Complexity. To model the complexity of
configuring routers correctly, we develop the referential
dependence graph. This models dependencies in the def-
initions of routing configuration components, some of
which may span multiple devices. We analyze the graph
to measure the average number of reference links per
router, as well as the number of atomic units of routing
policy in a network and the references needed to config-

336 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ure each unit. We argue that the number of steps opera-
tors take when modifying configuration increases mono-
tonically with these measures.

Router Roles. We identify the implicit roles played by
routers in implementing a network’s policies. We argue
that networks become more complex to manage, and up-
dating configurations becomes more challenging, as the
number of different roles increases or as routers simul-
taneously play multiple roles in the network. Our algo-
rithms automatically identify roles by finding routers that
share similar configurations.

Inherent Complexity. We quantify the impact of
the reachability and access control policies on the net-
work’s complexity. Networks that attempt to implement
sophisticated reachability policies, enabling access be-
tween some sets of hosts while denying it between oth-
ers, are more complex to engineer and manage than net-
works with more uniform reachability policies. How-
ever, a network’s policies cannot be directly read from
the network’s configuration and are rarely available in
any other machine-readable form. Our paper explains
how the complexity of the policies can be automatically
extracted by extending the concept of reachability sets
first introduced by Xie et al. [27]. Reachability sets iden-
tify the set of packets that a collection of network paths
will allow based on the packet filters, access control rules
and routing/forwarding configuration in routers on path.
We compute a measure of the inherent complexity of the
reachability policies by computing differences or vari-
ability between reachability sets along different paths in
the network. We develop algorithms based on firewall
rule-set optimization to compare reachability sets and to
efficiently perform set operations on them (such as inter-
section, union and cardinality).

We validated our metrics through interviews with the
operators and designers of six, four universities and two
commercial enterprises. The questionnaires used in these
interviews can be found online [4]. We also measured
one other network where we did not have access to oper-
ators. Through this empirical study of the complexity of
network designs we found we are able to categorize net-
works in terms of their complexity using the metrics that
we define. We also find that the metrics are predictive of
issues the operators face in running their networks. The
metrics gave us insights on the structure and function of
the networks that the operators corroborated. A surpris-
ing result of the study was uncovering the reasons why
operator chose the designs they did.

Given the frequency with which configuration errors
are responsible for major outages [22], we argue that
creating techniques to quantify systematically the com-
plexity of a network’s design is an important first step
to reducing that complexity. Developing such metrics is
difficult, as they must be automatically computable yet

still enable a direct comparison between networks that
may be very different in terms of their size and routing
design. In databases [14], software engineering [21], and
other fields, metrics and benchmarks have driven the di-
rection of the field by defining what is desirable and what
is to be avoided. In proposing these metrics, we hope to
start a similar conversation, and we have verified with
operators through both qualitative and quantitative mea-
sures that these metrics capture some of the trickiest parts
of network configuration.

2 Application to Network Management

Beyond aiding in an empirical understanding of network
complexity, we believe that our metrics can augment and
improve key management tasks. We illustrate a few ex-
amples that are motivated by our observations.

Understanding network structure: It is common for
external technical support staff to be brought in when
a network is experiencing problems or being upgraded.
These staff must first learn the structure and function of
the network before they can begin their work, a daunt-
ing task given the size of many networks and the lack
of accurate documentation. As we show in Section 7,
our techniques for measuring reachability have the side-
effect of identifying routers which play the same role in
a network’s design. This creates a summary of the net-
work, since understanding each role is sufficient to un-
derstand the purpose of all the similar routers.

Identify inconsistencies: Inconsistency in a network
generally indicates a bug. When most routers fit into a
small number of roles, but one router is different from
the others, it probably indicates a configuration or design
error (especially as routers are often deployed in pairs
for reasons of redundancy). As we show in Section 6.3,
when our inherent complexity metric found the reacha-
bility set to one router to be very different from the set to
other routers, it pointed out a routing design error.

What-if analysis: Since our metrics are computed
from configuration files, and not from a running network,
proposed changes to the configuration files can be an-
alyzed before deployment. Should any of the metrics
change substantially, it is an excellent indication that the
proposed changes might have unintended consequences
that should be examined before deployment.

Guiding and automating network design: Networks
are constantly evolving as they merge, split, or grow. To-
day, these changes must be designed by humans using
their best intuition and design taste. In future work, we
intend to examine how our complexity metrics can be
used to direct these design tasks towards simpler designs
that still meet the objectives of the designer.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 337

Type # rtrs # hosts Interviewed?
Univ-1 12 29,000 Y
Univ-2 19 9,000 N
Univ-3 24 8,000 Y
Univ-4 36 26,000 Y
Enet-1 8 6,000 Y
Enet-2 83 N/A N
Enet-3 19 5,000 Y

Table 1: Studied networks.

3 Methodology and Background

Our project began with a review of formal training ma-
terials for network engineers (e.g., [25, 24]) and inter-
views with the operators of several networks to under-
stand the tools and processes they use to manage their
networks. From these sources, we extracted the “best
common practices” used to manage the networks. On
the hypothesis that the use of these practices should be
discernible in the configuration files of networks that use
them, we developed models and techniques that tie these
practices to patterns that can be automatically detected
and measured in the configurations.

The remainder of this section describes the networks
we studied, the best common practices we extracted, and
a tutorial summary of network configuration in enterprise
networks. The next sections precisely define our metrics,
the means for computing them, and their validation.

3.1 Studied Networks

We studied a total of seven networks: four university net-
works and three enterprise networks, as these were the
networks for which we could obtain configuration files.
For four of the university networks and two enterprises,
we were also able to interview the operators of the net-
work to review some of the results of our analysis and
validate our techniques. Table 1 shows the key proper-
ties of the networks.

Figure 1(a) plots the distribution of configuration file
sizes for the networks. The networks cluster into three
groups: Univ-2 and the enterprises consist of relatively
small files, with 50% of their files being under 500 lines,
while 90% of the files in Univ-1 and Univ-3 are over
1,000 lines and Univ-4 has a mix of small and large files.
As we will see, configuration file size is not a good pre-
dictor of network complexity, as Univ-2 (small files) is
among the most complicated networks and Univ-3 (large
files) among the simplest.

Figure 1(b) breaks down the lines of configuration by
type. The networks differ significantly in the fraction
of their configurations devoted to Packet filters, widely
known as ACLs, and routing stanzas. Univ-1 and the
enterprises spend as many configuration lines on routing
stanzas as on ACLs, while Univ-2, -3 and -4 define pro-
portionately more ACLs than routing stanzas. Interface
definitions, routing stanzas, and ACL definitions (the key

(a)
0 500 1000 1500 20000

0.2

0.4

0.6

0.8

1

File Sizes (in Lines)

Univ−1
Univ−2
Univ−3
Univ−4
Enet−1
Enet−2
Enet−3

(b)

Figure 1: (a) Distribution of configuration file size across
networks. (b) Fraction of configuration dedicated to con-
figuring each aspect of router functionality.

building blocks for defining layer-3 reachability) account
for over 60% of the configuration in all networks.

All the networks used some form of tools to maintain
their configurations [16, 1]. Most tools are home-grown,
although some commercial products are in use. Most
had at least spreadsheets used to track inventory, such as
IP addresses, VLANs, and interfaces. Some used tem-
plate tools to generate portions of the configuration files
by instantiating templates using information from the in-
ventory database. In the sections that follow, we point
out where tools helped (and sometimes hurt) operators.

3.2 Network Design and Configuration

Based on our discussions with operators and training ma-
terials, we extract the best common practices that oper-
ators follow to make it easier to manage their networks.
Our complexity metrics quantify how well a network ad-
heres to these strategies, or equivalently, to what extent a
network deviates from them.

Uniformity. To the extent possible, operators attempt
to make their networks as homogeneous as possible. Spe-
cial cases not only require more thought and effort to
construct in the first place, but often require special han-
dling during all future network upgrades. To limit the
number of special cases operators must cope with, they
often define a number of archetypal configurations which
they then reuse any time that special case arises. We call
these archetypes roles.

Tiered Structure. Operators often organize their net-
work devices into tiers to control the complexity of their

338 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: A sample configuration file.

design. For example, defining some routers to be border
routers that connect with other networks, some routers
to be core routers that are densely connected, and the re-
maining routers as edge routers that connect hosts.

Short Dependency Chains. Routers cannot be con-
figured in isolation, as frequently one part of the config-
uration will not behave correctly unless other parts of the
configuration, sometimes on other routers, are consistent
with it. We define this to be a dependency between those
configuration lines. Operators attempt to minimize the
number of dependencies in their networks. This is be-
cause making a change to one configuration file but not
updating all the other dependent configurations will in-
troduce a bug. Since the configurations do not explicitly
declare all their dependencies, operators’ best strategy is
to minimize the number of dependencies.

3.3 Overview of a Configuration File

All our complexity metrics are computed on the basis of
router configuration files. Before defining the metrics,
we describe the layout of the configuration file for a net-
work router and provide an overview of the mechanisms
(e.g., routing, ACLs and VLANs) used when designing
enterprise networks.

The configuration file for a Cisco device consists of
several types of stanzas (devices from other vendors have
similar stanza-oriented configurations). A stanza is de-
fined as the largest continguous block of commands that
encapsulate a piece of the router’s functionality.

In Figure 2, we show a simple configuration file con-
sisting of the three most relevant classes of stanzas: inter-
face in lines 1-3, routing protocol in lines 5-11, and ACL
in lines 13-15. The behavior exhibited by a router can be
explained by the interactions between various instances
of the identified stanzas.

Egress filtering, i.e., preventing local hosts from send-
ing traffic with IP addresses that does not belong to them,
has become a popular way to combat IP-address hijack-
ing. Networks implement egress filtering by defining a
packet filter for each interface and creating a reference to
the appropriate ACL from the interfaces. For example,
line 3 exemplifies the commands an operator would use

to setup the appropriate references.
The purpose of most layer-3 devices is to provide

network-wide reachability by leveraging layer-3 rout-
ing protocols. Network-wide reachability can be imple-
mented by adding a routing stanza and making references
between that stanza and the appropriate interfaces. Lines
5-11 declare a simple routing stanza with line 8 making
a reference between this routing protocol and the inter-
face defined earlier. Even in this simple case, the peer
routing protocol stanza on neighboring devices must be
configured consistent with this stanza before routes can
propagate between the devices and through the network.

More complex reachability constraints can be imposed
by controlling route distribution using ACLs. Line 15 is
a filter used to control the announcements received from
the peer routing process on neighboring routers.

VLANs are widely used to provide fine grain control
of connectivity, but they can complicate configuration by
providing an alternate means for packets to travel be-
tween hosts that is independent of the layer-3 configu-
ration. In a typical usage scenario, each port on a switch
is configured as layer-2 or layer-3. For each layer-3 port
there is an interface stanza describing its properties. Each
layer-2 port is associated with a VLAN V . The switches
use trunking and spanning tree protocols to ensure that
packets received on a layer-2 port belonging to VLAN
V can be received by every host connected to a port on
VLAN V on any switch.

Layer-2 VLANs interact with layer-3 mechanisms via
virtual layer-3 interfaces — an interface stanza not as-
sociated with any physical port but bound to a specific
VLAN (lines 1–3 in Figure 2). Packets “sent” out the
virtual interface are sent out the physical ports belonging
to the VLAN and packets received by the virtual inter-
face are handled using the layer-3 routing configuration.

4 Reference Chains

As the above description indicates, enabling the intended
level of reachability between different parts of a network
requires establishing reference links in the configuration
files of devices. Reference links can be of two types:
those between stanzas in a configuration file (intra-file
references) and those across stanzas in different config-
uration files (inter-file). Intra-file references are explic-
itly stated in the file, e.g. the links in line 8 (Figure 2)
from a routing stanza to an interface, and in line 10 from
a routing stanza to an ACL — these must be internally
consistent to ensure router-local policies (e.g. ingress fil-
ters and locally attached networks) are correctly imple-
mented. Inter-file references are created when multiple
routers refer to the same network object (e.g., a VLAN or
subnet); these are central to configuring many network-
wide functions, and crucially, routing and reachability.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 339

Unlike their intra-file counterparts, not all inter-file ref-
erences can be explicitly declared. For example, line 2
refers to a subnet which is an example of an entity that
cannot be explicitly declared.

As our interviews with operators indicate (§4.3), in
some networks the reference links must be manually es-
tablished. In other networks, some of the reference links
within a device are set using automated tools, but many
of the inter-file references such as trunking a VLAN on
multiple routers and setting routing protocol adjacencies
must be managed manually.

To quantify the complexity of reference links, we first
construct a referential dependency graph based on device
configuration files. We compute a set of first-order com-
plexity metrics which quantify the worst case complexity
of configuring reference links in the network. Because
reference links often play a role in implementing some
network-wide functionality, we also define second order
metrics that estimate the overall complexity of configur-
ing such functionality. We focus on routing in this dis-
cussion, as operators report it is a significant concern.

4.1 Referential Dependence Graph

We use a two-step approach to parse configuration files
and create a dependency graph.

1. Symbol Table Creation. Router vendor documenta-
tion typically lists the commands that can appear within
each configuration stanza and the syntax for the com-
mands. Based on this, we first create a grammar for con-
figuration lines in router configuration files. We build a
simple parser that, using the grammar, identifies “tokens”
in the configuration file. It records these tokens in a sym-
bol table along with the stanza in which they were found
and whether the stanza defined the token or referred to
it. For example, the access-list definitions in lines 13-
14 of Figure 2 define the token ACL 9 and line 3 adds a
reference to ACL 9.

2. Creating Links. In the linking stage, we create refer-
ence edges between stanzas within a single file or across
files based on the entries in the symbol table. We create
unidirectional links from the stanzas referencing the to-
kens to the stanza declaring the tokens. Because every
stanza mentioning a subnet or VLAN is both declaring
the existence of the subnet or VLAN and referencing the
subnet/VLAN, we create a separate node in the reference
graph to represent each subnet/VLAN and create bidirec-
tional links to it from stanzas that mention it.

We also derive maximal sub-graphs relating to
Layer-3 control plane functionality, called “routing in-
stances” [19]. A routing instance is the collection of
routing processes of the same type on different devices
in a network (e.g. OSPF processes) that are in the transi-
tive closure of the “adjacent-to” relationship. We derive

these adjacencies by tracing relationships between rout-
ing processes across subnets that are referenced in com-
mon by neighboring routers. Taken together, the routing
instances implement control plane functionality in a net-
work. In many cases, enterprise networks use multiple
routing instances to achieve better control over route dis-
tribution, and to achieve other administrative goals [19].
For example, some enterprises will place routes to dif-
ferent departments into different instances — allowing
designers to control reachability by controlling the in-
stances in which a router participates. Thus, it is impor-
tant to understand the complexity of configuring refer-
ence links that create routing instances.

4.2 Complexity Metrics

We start by capturing the baseline difficulty of creating
and tracking reference links in the entire network. The
first metric we propose is the average configuration com-
plexity, defined as the total number of reference links in
the dependency graph divided by the number of routers.
This provides a holistic view of the network.

We also develop three second-order metrics of the
complexity of configuring the Layer-3 control plane of
a network. First, we identify the number of interacting
routing policy units within the network that the operator
must track globally. To do this, we count the number of
distinct routing instances in the entire network. Second,
we capture the average difficulty of correctly setting each
routing instance by calculating the average number of
reference links per instance. Finally, we count the num-
ber of routing instances each router participates in. In
all three cases, it follows from the definition of the met-
rics that higher numbers imply greater complexity for a
network.

4.3 Insights From Operator Interviews

We derived referential complexity metrics for all seven
networks. Our observations are summarized in Table 2.
Interestingly, we note that the referential metrics are dif-
ferent across networks – e.g. very low in the cases of
Enet-1 and much higher for Univ-1. For five of the seven
networks, we discussed our findings regarding referential
dependencies with network operators.

We present the insights we derived focusing on 3 key
issues: (1) validation: are the referential dependencies
we inferred correct and relevant in practice (meaning that
these are links that must be created and maintained for
consistency and/or correctness)? (2) complexity: are our
complexity metrics indicative of the amount of difficulty
operators face in configuring their networks? (3) causes:
what caused the high referential complexity in the net-
works (where applicable)?

340 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Network Avg ref Layer-3 functionality Int?
complexity Num routing Complexity Instances
per router instances per instance per router

Univ-1 41.75 14 35.8 2.5 Y
Univ-2 8.3 3 58.3 1.1 N
Univ-3 4.1 1 99 1 Y
Univ-4 75 2 902 1 Y
Enet-1 1.6 1 16 0.7 Y
Enet-2 7.5 10 62 1.2 N
Enet-3 22 8 52 1.4 Y

Table 2: Complexity due to referential dependence. Net-
works where we validated results are marked with a “Y.”

Validation. We showed each network’s referential de-
pendence graph to the network operators, along with sub-
graphs corresponding to the routing protocol configura-
tion in their network. All operators confirmed that the
classes of links we derived (e.g. between stanzas of spe-
cific kinds, link within stanzas and across routers) were
relevant. We also gave operators tasks involving changes
to device configurations (specifically, add or remove a
specific subnet, apply a new filter to a collection of in-
terfaces). We verified that our reference links tracked the
action they took. These two tests, while largely subjec-
tive, validated our referential dependency derivation.

As an aside, the dependency graph seems to have sig-
nificant practical value: Univ-1 and Enet-1 operators felt
the graph was useful to visualize their networks’ struc-
ture and identify anomalous configurations.

Do the metrics reflect complexity? Our second goal
was to test if the metrics tracked the difficulty of main-
taining referential links in the network. To evaluate this,
we gave the operators a baseline task: add a new subnet
at a randomly chosen router. We measured the number of
steps required and the number of changes made to rout-
ing configuration. This is summarized below.

Network Num steps Num changes to routing
Univ-1 4-5 1-2
Univ-3 4 0
Enet-1 1 0

In networks where the metrics are high (Table 2), op-
erators needed more steps to set up reference links and to
modify more routing stanzas. Thus, the metrics appear to
capture the difficulty faced by operator in ensuring con-
sistent device-level and routing-level configuration. We
elaborate on these findings below.

In Univ-1, the operators used a home-grown auto-
mated tool that generates configuration templates for
adding a new subnet. Thus, although there are many ref-
erences to set, automation does help mitigate some as-
pects of this complexity.

Adding the subnet required Univ-1’s operator to mod-
ify routing instances in his network. Just as our second
order complexity metrics predicted, this took multiple
steps of manual effort. The operator’s automation tool
actually made it harder to maintain references needed

for Layer-3 protocols. Note from Table 2 that an aver-
age Univ-1 router has two routing instances present on
it. These are: a “global” OSPF instance present on all
core routers and a smaller per-router RIP instance. The
RIP instance runs between a router and switches directly
attached to the router, and is used to distribute subnets
attached to the switches into OSPF. On the other hand,
OSPF is used to enable global reachability between sub-
nets and redistribute subnets that are directly attached
to the router. When a new subnet is added to Univ-1,
the operator’s tool automatically generates a network
command and incorporates it directly into the OSPF in-
stance. When the subnet needs to be attached to a Layer-
2 switch, however, the network statement needs to be
incorporated into RIP (and not OSPF). Thus, the operator
must manually undo the change to OSPF and update the
RIP instance. Unlike the OSPF instance, the network
statements in RIP require parameters that are specialized
to a switch’s location in the network.

Univ-3 presents a contrast to Univ-1. The operator
in Univ-3 required 4 steps to add the subnet and this is
clearly shown by the first order complexity metric for
Univ-3. In contrast to Univ-1, however, almost all of
the steps were manual. In another stark difference from
Univ-1, the operator had no changes to make to the rout-
ing configuration. This is because the network used ex-
actly one routing instance that was setup to redistribute
the entire IP space. This simplicity is reflected in the very
low second order metrics for Univ-3.

The operator in Enet-1 had the simplest job overall. He
had to perform 1 simple step: create an interface stanza
(this was done manually). Again, the routing configura-
tion required little perturbation.

In general, we found that the metrics are not directly
proportional to the number of steps required to complete
a management task like adding a subnet, but the number
of steps required is monotonically increasing with refer-
ential complexity. For example, Univ-1 with a reference
metric of 41.75 required 4-5 steps to add a subnet. Univ-
2, with a metric of 4.1 needed 4 steps and Enet-1 with a
metric of 1.6 needed just one step.

Causes for high complexity. The most interesting
part of our interviews was understanding what caused
the high referential complexity in some networks. The
reasons varied across networks, but our study highlights
some of the key underlying factors.

The first cause we established was the impact of a net-
work’s evolution over time on complexity. In Univ-1, ap-
proximately 70% of reference links arose due to “no pas-
sive interface” statements that attempt to create routing
adjacencies between neighboring devices. Upon closer
inspection, we found that a large number of these links
were actually dangling references, with no correspond-
ing statement defined at the neighboring router; hence,

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 341

they played no role in the network’s routing functionality.
When questioned, the operator stated that the commands
were used at one point in time. As the network evolved
and devices were moved, however, the commands be-
came irrelevant but were never cleaned up.

The high second order complexity in Univ-1 results
from an interesting cause - optimizing for monetary cost
rather than reducing complexity. Univ-1’s operator could
have used a much smaller number of routing instances
(e.g. a single network-wide OSPF) with lower referen-
tial counts to achieve the goal of spreading reachability
information throughout the network. However, accord-
ing to the operator, using OSPF on a small number of
routers, and RIP between switches and routers, was sig-
nificantly cheaper as OSPF-licensed switches cost more.
Hence this routing design was adopted although it was
more complex.

Sometimes, the policies being implemented may re-
quire high referential complexity. For instance, Univ-3
imposes global checks for address spoofing, and there-
fore applies egress filters on all network interfaces.
These ACLs accounted for approximately 90% of the
links in the dependency graph. Similarly, Univ-4 uses
ACLs extensively, resulting in high referential complex-
ity. Despite similar underlying cause, Univ-4 has a
higher complexity value than Univ-3 because it employs
significantly more interfaces and devices.

5 Router Roles

When creating a network, operators typically start by
defining a base set of behaviors that will be present
across all routers and interfaces in the network. They
then specialize the role of routers and interfaces as
needed to achieve the objectives for that part of the net-
work, for example, adding rate shaping to dorm subnets,
and additional filters to protect administrative subnets.

Designers often implement these roles using configu-
ration templates [6]. They create one template for each
role, and the template specifies the configuration lines
needed to make the router provide the desired role. Since
the configuration might need to be varied for each of the
routers, template systems typically allow the templates to
contain parameters and fill in the parameters with appro-
priate values each time the template is used. For exam-
ple, the template for an egress filter might be as shown in
Figure 3, where the ACL restricts packets sent by inter-
face III to those originating from the subnet configured
to the interface. The designer creates specific configu-
ration stanzas for a router by concatenating together the
lines output by the template generator for each behavior
the router is supposed to implement.

From a complexity stand-point, the more base behav-
iors defined within the network, the more work an oper-

Figure 3: Example of a configuration template.

ator will have to do to ensure that the behaviors are all
defined and configured correctly and consistently. Fur-
ther, the greater the degree of specialization required by
routers to implement a template role, the more complex
it becomes to configure the role.

We show how to work backwards from configurations
to retrieve the original base behaviors that created them.
By doing so, we can measure two key aspects of the dif-
ficulty of configuring roles on different routers in a net-
work: (1) how many distinct roles are defined in the net-
work? (2) How many routers implement each role?

5.1 Copy-Paste Detection

We identify roles that are “shared” by multiple routers
using a copy-paste detection technique. This technique
looks for similar stanzas on different routers.

We build the copy-paste detection technique using
CCFinder [17], a tool that has traditionally been used
to identify cheating among students by looking for text
or code that has been cut and paste between their as-
signments. We found that CCFinder by itself does not
identify templates of the sort used in router configuration
(e.g., Figure 3). To discover templates, we automatically
preprocess every file with generalization. Generaliza-
tion replaces the command arguments that may vary with
wild card entries – for example, IP addresses are replaced
by the string “IPADDRESS”. Our implementation uses
the grammar of the configuration language (Section 4) to
identify what parameters to replace.

5.2 Complexity Metrics

Our first metric is the number of base behaviors defined
within the network. We define a base behavior as a maxi-
mal collection of shared-template stanzas that appear to-
gether on a set of two or more routers. As the number of
base behaviors increases, the basic complexity of config-
uring multiple roles across network routers increases.

To compute the number of base behaviors, we first
identify the shared-template device set of each template
— this is the set of devices on which the configuration
template is present. Next, we coalesce identical sets. To
elaborate, we write the device set for a shared-template
stanza as STi = {Di

1, D
i
2, . . . , D

i
ki
} where the Di

j rep-
resents a router that contains a configuration stanza gen-
erated from shared template i. We scan the shared-
template device sets to identify identical sets: If two

342 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

N/w # Rtrs Shared template behaviors Int?
Device set size

Median Mean
Univ-1 12 7 2 4.43 Y
Univ-2 19 19 2 5.75 N
Univ-3 24 10 2 8.3 Y
Univ-4 24 28 3.5 4.3 Y
Enet-1 10 1 2 2 Y
Enet-2 83 5 3 34.2 N
Enet-3 19 6 7.5 8.8 Y

Table 3: Roles extracted from ACLs.

shared-template stanzas are present on the same set of
routers, then the stanzas can be considered to have arisen
from a single, larger template; the stanzas are merged and
one of the sets discarded. The final number of distinct
device sets that remain is the number of base behaviors.

As a second order metric, we quantify the uniformity
among devices in terms of the behaviors defined on them.
If all devices in the network exhibit the same set of be-
haviors (i.e., they all have the same shared-template),
then once an operator understands how one router be-
haves, it will be easier for him to understand how the
rest of the routers function. Also, updating the roles is
simple, as all routers will need the same update.

To measure uniformity, we compute the median and
mean numbers of devices in the device sets. We evalu-
ated other information-theoretic metrics such as entropy.
However, as our empirical study will show, these simple
metrics, together with the number of base behaviors, suf-
fice to characterize the behaviors defined in a network.

5.3 Insights from Operator Interviews

Like the referential metrics, we validated our role metrics
through interviews with five operators. For this discus-
sion, we focus on the use of ACLs, and Table 3 shows the
role metrics for each network. We also evaluated roles
across the entire configuration file, and the results are
consistent with those for ACLs.

Validation. When shown the shared templates ex-
tracted by our system, each of the operators immediately
recognized them as general roles used in their networks
and stated that no roles were missed by our technique.
For example, Univ-1 operators reported seven roles for
ACLs in their network: one role for a SNMP-related
ACL, one role for an ACL that limits redistribution of
routes between OSPF and RIP (these first two roles are
present on most routers) and five ACLs that filter any
bogus routes that might be advertised by departmental
networks connected to the university network, one for
each of the five departments (these are found only on the
routers where the relevant networks connect).

Enet-3 has separate templates for sub-networks that
permit multicast and those that do not, as well as tem-
plates encoding special restrictions applied to several
labs and project sub-networks. Enet-1, the network with

the fewest shared-templates, has a pair of core routers
that share the same set of ACLs. The remaining ACLs in
the network are specific to the special projects subnets
that are configured on other routers. Univ-4, the net-
work with the most shared-templates, has so many roles
as it uses multiple different types of egress filters, each of
which is applied to subset of the routers. There are also
several special case requests from various departments,
each represented as an ACL applied to 2-3 routers.

Do the metrics reflect complexity? The relationship
between number of roles and the complexity of the net-
work is indicated by type of tools and work process used
by the operators.

Operators of the network with the fewest roles, Enet-1,
modify all the ACLs in their network manually — they
are able to manage without tools due to the uniformity
of their network. Operators at Univ-1 have tools to gen-
erate ACLs, but not track relationships between ACLs,
so they push all ACLs to all routers (even those that do
not use the ACL) in an effort to reduce the complexity
of managing their network by increasing the consistency
across the configuration files (our shared template system
was programmed to ignore ACLs that are not used by the
router: this explains why the mean device set size is not
larger for Univ-1). The environment at Univ-3 is similar
to Univ-1, with roughly the same number of ACL roles
and similar tools that can create ACLs from templates,
but not track relationships between them. The Univ-3
operators took the opposite approach to Univ-1, pushing
each ACL only to the routers that use it, but using man-
ual process steps to enforce a discipline that each ACL
contain a comment line listing all the routers where an
instance of that ACL is found. Operators then rely on
this meta-data to help them find the other files that need
to be updated when the ACL is changed.

Causes for high complexity. In general, the number
of shared-templates we found in a network directly cor-
relates with the complexity of the policies the operators
are trying to realize. For example, for Univ-1’s goal of
filtering bogus route announcements from departmental
networks requires applying a control plane filter at each
peering point. Similarly, Univ-4 has policies defining
many different classes of subnets that can be attached to
the network, each one needing its own type of ACL (e.g.,
egress filtering with broadcast storm control and filtering
that permits DHCP). There is no way around this type of
complexity.

Interestingly, the number of roles found in a network
appears to be largely independent of the size of the net-
work. For example, Enet-2 and Enet-3 have the same
number of roles even though they differ greatly in size.
Rather, the number of roles seems to stem directly from
the choices the operators made in designing their net-
works, and how uniform they chose to make them.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 343

6 Inherent Complexity

A network’s configuration files can be viewed as the
“tools” used by network operators to realize a set of
network-wide reachability policies. These policies deter-
mine whether a network’s users can communicate with
different resources in the network (e.g other users or ser-
vices). The policies that apply to a user could depend on
the user’s “group,” her location, and other attributes.

The reachability policies fundamentally bound an op-
erator’s ability to employ simple configurations network-
wide. Consider a network with a “simple” reachability
policy, such as an all-open network that allows any pairs
of users to have unfettered communication, or at the op-
posite end of the spectrum, a network where all commu-
nication except those to a specific set of servers is shut
off. Such policies can be realized using fairly simple
network configurations. On the other hand, for networks
where the reachability policies are complex, i.e., where
subtle differences exist between the constraints that ap-
ply to different sets of users, implementing the policies
will require complex configuration.

We develop a framework for quantifying the complex-
ity of a network’s reachability policies. We refer to this
as the network’s inherent complexity. We use feedback
from operators to both validate our metrics and under-
stand the factors behind the inherent complexity (where
applicable). Ultimately, we wish to tie inherent complex-
ity back to the configuration complexity and examine the
relationship between the two. We discuss this in §6.3.

To derive inherent complexity, we first derive the static
reachability between network devices, which is the set of
packets that can be exchanged between the devices. We
also refer to this as the reachability set for the device pair.
Our inherent complexity metrics essentially quantify the
level of uniformity (or the lack of it) in the reachability
sets for various paths in a network.

6.1 Reachability Sets

For simplicity, we assume that network routers have IP
subnets attached to them, and that each IP address in
a subnet corresponds to a single host. The reachability
set for two routers A and C in a network, denoted by
R(A, C), is the set of all IP packets that can originate
from hosts attached to A (if any), traverse the A → C

path, and be delivered to hosts attached at C (if any).
The composition of the reachability sets reflects how

a network’s policy limits the hosts at a certain net-
work location from being reachable from hosts at an-
other network location. At Layer-3, these policies gen-
erally apply to 5 fields in the packet’s IP header – the
source/destination addresses, ports and protocol. When
first sent, the source and destination addresses on the

Figure 4: A toy network with 8 subnets and 5 routers.
The different constituent sets that play a role in the reach-
ability set for the A→C path are shown.

packets could take any of the possible 232 values (the
same with ports and the protocol field). Control and data
plane mechanisms on the path might then drop some of
the packets, either because a router on the path lacks a
forwarding entry to that destination or due to packet fil-
ters. R(A, C) identifies the packets that are eventually
delivered to hosts attached to C. Note that the maximum
size of R(A, C) is 232×|C|×216 ×216×28, where |C|
is the total number of hosts attached to C.

6.1.1 Reachability Set Computation

To compute the reachability sets for a network we con-
sider three separate yet interacting mechanisms: control-
plane mechanisms (i.e., routing protocols), data-plane
mechanisms (i.e. packet filters), and Layer-2 mecha-
nisms (such as VLANs).

We compute the reachability sets using the following
three steps: (1) we first compute valid forwarding paths
between network devices by simulating routing protocols
(In the interest of space, we omit the details of routing
simulation; the details are in [5]); (2) we calculate the
“per-interface” reachability set on each path – this is the
set of all packets that can enter or leave an interface based
both on forwarding entries as well as packet filters; and
(3) we compute reachability sets for end-to-end paths by
intersecting the reachability sets for interfaces along each
path. The last two steps are illustrated for a simple toy
network in Figure 4, and explained in detail below.

We note that our reachability calculation is similar to
Xie et al.’s approach for static reachability analysis of IP
networks [27]. However, our approach differs both in the
eventual goal and the greater flexibility it provides. Xie
et al. derive all possible forwarding states for a network
to study the impact of failures, rerouting, etc. on reacha-
bility. Because we are interested in examining the inher-
ent complexity of reachability policies, we focus on the
computationally simpler problem of computing a single
valid forwarding state for the network, assuming there
are no failures. Also, our approach takes into account the

344 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

impact of VLANs on reachability within a network (as
described in [5]), which Xie et al. does not. The pres-
ence of VLANs means that routing is effectively a two
step process: first routing to the VLAN interface, and
then routing through the VLAN to the destination. Our
calculation tracks which routers trunk which VLANs to
enable this second step of the routing computation.

Single interface. The reachability set for interfaces
on a path is defined as the set of packets that can enter
or leave an on-path interface (see figure 4 for examples).
For interfaces that receive packets, this is composed just
of the set of packets allowed by inbound data plane fil-
ters. For interfaces which forward packets further along
a path, this is the union of packets which are permitted
by outbound filters and packets whose destination IPs are
reachable from the interface (this depends on the router’s
forwarding state).

Path. To compute R(A, C), we first compute the fol-
lowing supersets: (1) For A, we compute the Entry set
which is the union of the inbound interface sets for in-
terfaces on A — as mentioned above, each set is shaped
by the inbound filters on the corresponding interface. (2)
For C, we compute the Exit set which is union of the
outbound interface sets for interfaces on C. (3) For in-
termediate routers, we compute the intersection of the in-
bound interface set for the interface that receives packets
from A and the outbound interface set for the interface
that forwards to C. Then, R(A, C) is simply the inter-
section of Entry, Exit and the intermediate sets.

Some optimizations for efficiency. The above com-
putation requires us to perform set operations on the in-
terface and intermediate reachability sets (i.e. set unions
and intersections). These operations could be very time-
consuming (and potentially intractable) because we are
dealing with 5-dimensional reachability sets that could
have arbitrary overlap with each other.

To perform these operations efficiently, we convert
each set into a “normalized” form based on ACL opti-
mization. Specifically, we represent each reachability set
as a linear series of rules like those used to define an ACL
in a router’s configuration, i.e., a sequence of permit and
deny rules that specify attributes of a packet and whether
packets having those attributes should be allowed or for-
bidden, where the first matching rule determines the out-
come. Next, we optimize this ACL representation of the
sets using techniques that have traditionally been em-
ployed in firewall rule-set optimization [2, 11]. In the fi-
nal ACL representation of a reachability set, no two rules
that make up a set overlap with each other, and we are
guaranteed to be using the minimal number of such rules
possible to represent the set. Set operations are easy to
perform over the normalized ACL representations. For
instance, to compute the union of two reachability sets
we merge the rules in the corresponding optimized ACLs

Figure 5: Computing the first and second order metrics
for inherent complexity.

to create one ACL, and then we optimize the resulting
ACL. Intersection can be computed in a similar fashion.

6.2 Complexity Metrics

As stated before, our metrics for inherent complexity
quantify the similarity, or equivalently, the uniformity, in
the reachability sets for various end-to-end paths. If the
sets are uniformly restrictive (reflecting a “default deny”
network) or uniformly permissive (an all open network),
then we consider the network to be inherently simple.
We consider dissimilarities in the reachability sets to be
indicative of greater inherent complexity.

First order metric: variations in reachability. To
measure how uniform reachability is across a network,
we first compute the reachability set between all pairs of
routers. We then compute the entropy of the resulting
distribution of reachability sets and use this value, the
reachability entropy, as a measure of uniformity.

Figure 5 summarizes the computation of reachability
entropy. To compute the distribution of reachability sets
over which we will compute the entropy, we must count
how many pairs of routers have the same reachability.
Intuitively, if there are N routers this involves comparing
N2 reachability sets for equality. To simplify this task,
we compute the reachability set for a pair of routers, turn
it into optimized ACL form, and then compute a hash
of the text that represents the optimized set. Identical
reachability sets have identical hashes, so computing the
distribution is easy.

Using the standard information-theoretic definition of
entropy, the reachability entropy for a network with N

routers varies from log(N) in a very simple network
(where the reachability sets between all pairs of routers
are identical) and log(N2) in a network where the reach-
ability set between each pair of routers is different. We
interpret larger values of entropy as indicating the net-
work’s policies are inherently complex.

Second order metric: Extent of variations. The en-

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 345

tropy simply tracks whether the reachability sets for net-
work paths differ, but it does not tell us the extent of the
differences. If the reachability sets had even minute dif-
ferences (not necessarily an indication of great complex-
ity), the entropy could be very high. Thus, entropy alone
may over-estimate the network’s inherent complexity.

To quantify more precisely the variability between the
reachability sets, we examine the similarity between sets
using the approach outlined in Figure 5. Unlike the en-
tropy calculation, where we examined the N2 reachabil-
ity sets between pairs of routers, we examine differences
from the view point of a single destination router (say C).
For each pair of source routers, say A and B, we compute
the similarity metric, Sim(C, A, B) = |R(A,C)∩R(B,C)|

|R(A,C)∪R(B,C)| .
We use the set union and intersection algorithms de-

scribed in Section 6.1.1 to compute the two terms in the
above fraction. To compute the sizes of the two sets,
we first optimize the corresponding ACLs. In an opti-
mized ACL the rules are non-overlapping, so the number
of packets permitted by an ACL is the sum of the number
of packets allowed by the ACL’s permit rules. Since each
rule defines a hypercube in packet space, the number of
packets permitted by a rule is found by multiplying out
the number of values the rule allows on each dimension
(e.g., address, port).

After computing the similarities in this manner, we
cluster source routers that have very similar reachabil-
ity sets (we use an inconsistency cutoff of 0.9) [20, p.
1-61]. Finally, we sum the number of clusters found
over all destination routers to compute the number of per-
destination clusters as our second order metric for inher-
ent complexity. Ideally, this should be N ; large values
indicate specialization and imply greater complexity.

6.3 Insights from Operator Interviews

Our study of the configuration complexity in Sections 4
and 5 showed that some of the networks we studied had
complex configurations. In this section, we examine
the inherent complexity of these networks. We validate
our observations using operator feedback. We also use
the feedback to understand what caused the complexity.
(Were the policies truly complex? Was there a bug?)

Our observations regarding the inherent complexity
for the networks we studied are shown in Table 4. In-
terestingly, we see that a majority of the networks ac-
tually had reasonably uniform reachability policies (i.e.
observed entropy ≈ ideal entropy of log(N)). In other
words, most networks seem to apply inherently simple
policies at Layer-3 and below.

To validate this observation, we verify with the op-
erators if the networks were special cases that our ap-
proach somehow missed. We discussed our observations
with the operators of 4 of the 7 networks. The opera-

18 19 1 17 9 8 6 7 2 3 4 11 13 16 15 12 14 5 10
0

0.2

0.4

CoreA (a)

18 19 1 17 9 7 8 6 2 3 4 5 10 11 12 13 16 15 14
0

0.2

0.4

CoreB (b)

18 19 1 15 3 4 5 6 7 8 9 10 11 12 16 2 13 14 17
0

0.2
0.4
0.6
0.8

Aggregation Router (c)

Figure 6: This figure shows the clusters of routers in
Univ-2 that have similar reachability to the given des-
tination router. The X axis is the source router ID. The Y
axis is distance between the centers of the clusters.

tor for Enet-1 essentially confirmed that the network did
not impose any constraints at Layer-3 or below and sim-
ply provided universal reachability. All constraints were
imposed by higher-layer mechanisms using middleboxes
such as firewalls.

We turn our attention next to the networks where the
reachability entropy was slightly higher than ideal (Univ-
1 and Univ-3). This could arise due to two reasons: either
the network’s policies make minor distinctions between
some groups of users creating a handful of special cases
(this would mean that the the policy is actually quite sim-
ple), or there is an anomaly that the operator has missed.

In the case of Univ-3, our interaction with the operator
pointed to the former reason. A single core router was the
cause of the deviation in the entropy values. During dis-
cussions with the operator, we found out that the router
was home to two unique subnets with restricted access.

Interestingly, in the case of Univ-1 the slight change
in entropy was introduced by a configuration bug. Upon
discussing with the operator, we found that one of the
routers was not redistributing one of its connected sub-
nets because a network statement was missing from
a routing stanza on the device. The bug has now been
fixed. This exercise shows how our first and second or-
der inherent complexity metrics can detect inconsisten-
cies between an operator’s intent and the implementation
within a network. In networks where the configuration
is complex – Univ-1 is an example with high referential
counts and many router roles – such inconsistencies are
very hard to detect. However, our complexity metrics
were able to unearth this subtle inconsistency. We finally
discuss networks where the entropy is much higher than
ideal. Of these networks, we were able to speak to the
operator of Univ-2, where both the first and the second
order metrics are very high. In such networks, one can
safely conclude that the policies themselves are complex.
Indeed, Figure 6 examines how similar or different is the
reachabilty from each of the routers in Univ-2 to three
key routers: CoreA (Figure 6(a)), CoreB (Figure 6(b)),

346 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Network Entropy (ideal) Num Clusters (Num routers) Int?
Univ-1 3.61(3.58) 12(12) Y
Univ-2 6.14(4.52) 36(19) Y
Univ-3 4.63(4.58) 26(24) Y
Univ-4 5.70(4.58) 85(24) N
Enet-1 2.8(2.8) 8(8) Y
Enet-2 6.69(6.47) 92(83) N
Enet-3 5.34(4.25) 40(19) N

Table 4: Inherent complexity measures.

Aggregation (Figure 6(c)). For each router C, the reach-
ability set from every other router to that router is com-
puted, and the distance between the reachability sets
from routers A and B is computed as 1−Sim(C, A, B).
A distance of 0 means the sets are identical, and a dis-
tance 1 means the sets do not overlap. The dendrogram
shows a horizontal line between clusters of routers at the
distance between the centroids of the clusters.

Interpreting Figure 6, there are 3-5 clusters of routers
that have essentially the same reachability to both coreA
and coreB (the only significant difference is that 4, 5, 10
have identical reachability to coreB, while 4 has slightly
different reachability to coreA than 5 and 10 do). The
presence of multiple clusters implies that traffic is be-
ing controlled by fine grain policies. That the clusters
of reachability to the Aggregation Router are so different
than those to the core implies that not only are policies
fine grain, they differ in different places in the network.
We argue this means the policies are inherently complex,
and that any network implementing them will have a de-
gree of unavoidable complexity. The operator for Univ-2
agreed with our conclusions.

Applying this analysis to all the networks we stud-
ied, Table 4 shows the number of per-destination clus-
ters, that is, the total number of clusters found summing
across all the routers in the network (second order met-
ric). This complexity metric confirms that Univ-1 and
Enet-1 have inherently simple reachability policies.

However, this metric’s value stems from the informa-
tion it provides about networks like Univ-2, -4 and Enet-
3. Enet-3 and Univ-4 both have an entropy value roughly
1.0 higher than ideal. However, Univ-4 has on aver-
age four different clusters of reachability for each router
(85/24), while Enet-3 has two clusters per router (40/19).
This indicates that Enet-3 has reachability sets that are
not identical, but are so similar to each other they clus-
ter together, while Univ-4 truly has wide disparity in the
reachability between routers. Similarly, Univ-2 has an
entropy metric 1.6 above ideal yet less than two different
clusters per router, indicating that even when reachability
sets are not identical, they are very similar.

Summary of our study. Through interviews with the
operators we have verified the correctness of our tech-
niques. We show that our metrics capture the difficulty
of adding new functionality such as interfaces, of updat-
ing existing functionality such as ACLs, and of achieving

(a) Univ-1
0 20 40 60 80 100 120 140 160 1800

0.5

1

Network Paths (Grouped by Destination Router)

Fo
rw

ar
di

ng
 R

at
io

GROUP 1
GROUP 2

(b) Univ-2
0 50 100 150 200 250 300 350 4000

0.5

1

Network Paths (Grouped by Destination Router)

Fo
rw

ar
di

ng
 R

at
io GROUP 1 GROUP 2

GROUP 3 GROUP 4

Figure 7: Sink profiles for Univs 1, 2. Network paths for
each device are grouped by the destination router.

high-level policies such as restricting user access. In ad-
dition to this, we find that other factors, largely ignored
by previous work (e.g. cost and design) play a larger role
in affecting a network’s complexity than expected.

7 An Application: Extracting Hierarchy

In addition to creating a framework for reasoning about
the complexity of different network designs, complex-
ity metrics have several practical uses including helping
operators visualize and understand networks. In this sec-
tion, we show how our models can discover a network’s
heirarchy, information that proves invaluable to operators
making changes to the network.

Many networks are organized into a hierarchy, with
tiers of routers leading from a core out towards the edges.
The ability to automatically detect this tiering and clas-
sify routers to it would be helpful to outside technical
experts that must quickly understand a network before
they can render assistance.

We found that computing the sink ratio for each router
rapidly identifies the tiering structure of a network. The
sink ratio is based on the reachability analysis done on
each path, and measures the fraction of packets that a
router sinks (delivers locally) versus the number it for-
wards on. Formally, the sink ratio for a path A → B is
|RSink(A,B)|

|R(A,B)| . If the ratio is 1, then B does not forward
traffic from A any further. If not, then B plays a role in
forwarding A’s packets to the rest of the network.

Figure 7 shows the sink ratio for each path in net-
works Univ-1 and Univ-2. Univ-2 contains roughly
4 classes of devices: the edge (Group 2), the
core (Group 1), intermediate-core (Group 4), and
intermediate-edge(Group 3). Univ-1 consists of a two-
layer architecture with three core routers and nine edge
routers, respectively labeled Group 1 and Group 2. Enet-
2 (not shown) has low forwarding ratios overall: the
maximum forwarding ratio itself is just 0.4 and the min-
imum is 0.15. Thus, we can deduce that all routers in
Enet-2 play roughly identical forwarding roles and there
is no distinction of core versus edge routers.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 347

8 Discussion

We now discuss procedural limitations in our approach to
quantifying complexity as well as some notions of com-
plexity that we are currently unable to capture.

Limitations and extensions. Our approach uses
the static configuration state of the network. Relying
on static configurations means that operators can use
our techniques to do “what-if analysis” of configuration
changes. The downside is that we ignore the effect of
dynamic events such as link/router failures and load bal-
ancing, the mechanisms in place to deal with these, and
the complexity arising from them. It is unclear if our
approach can be extended easily to account for these.

Our current work ignores the impact of packet trans-
formations due to NATs and other middleboxes on com-
plexity. Packet transformations could alter reachability
sets in interesting ways, and might not be easy to con-
figure. Fortunately, transformations were not employed
in any of the networks we studied. We do believe, how-
ever, it is possible to extend our techniques to account for
on-path changes to IP headers.

Of course, our approaches do not account for tech-
niques employed above Layer-3 or at very low levels. In
particular, we currently do not have an easy way to quan-
tify the complexity of mechanisms which use higher-
layer handles (e.g. usernames and services) or lower-
layer identifiers such as MAC addresses. One potential
approach could be to leverage dynamic mappings from
the high/low level identifiers to IP addresses (e.g. from
DNS bindings and ARP tables) and then apply the tech-
niques we used this in paper.

Absolute vs relative configuration complexity. We
note that our metrics for referential complexity and roles
capture complexity that is apparent from the current con-
figuration; hence they are absolute in nature. An increase
in these metrics indicates growing complexity of im-
plementation, meaning that configuration-related tasks
could be harder to conduct. However, the metrics them-
selves do not reflect how much of the existing configu-
ration is superfluous, or equivalently, what level of con-
figuration complexity is actually necessary. For this, we
would need a relative complexity metric that compares
the complexity of the existing configuration against the
simplest configuration necessary to implement the oper-
ators goals (including reachability, cost, and other con-
traints). However, determining the simplest configura-
tion that satisfies these requirements is a hard problem
and a subject for future research.

9 Related Work

The work most closely related to ours is [18], which cre-
ates a model of route redistribution between routing in-

stances and tries to quantify the complexity involved in
configuring the redistribution logic in a network. Glue
Logic and our complexity metrics are similar in that both
create abstract models of the configuration files and cal-
culate complexity based on that information. However,
while [18] limits itself to the configuration complexity of
route redistribution (the “glue logic”), we examine both
configuration and inherent complexity, and the relation-
ship between the two. Our approach also accounts for
complexity arising from the routing, VLANs and filter-
ing commands in a configuration file.

Our study is motivated by [19, 13], which studied op-
erational networks and observed that the configuration of
enterprise networks are quite intricate. In [19, 13], mod-
els were developed to capture the interaction between
routing stanzas in devices. However, to make inferences
about the complexity of the networks studied, the authors
had to manually inspect the models of each network. Our
work automates the process of quantifying complexity.

As mentioned in Section 4, we borrow from [19]
the idea of a routing instance and use it as a way to
group routing protocols. Also, our referential depen-
dence graph is similar to the abstractions used in [6, 9].
Unlike [6, 9] our abstraction spans beyond the bound-
aries of a single device, which allows us to define the
complexity of network-wide configuration.

Several past studies such as [12, 10, 28, 26, 27] have
considered how network objectives and operational pat-
terns can be mined from configuration files. Of these,
some studies [28, 26, 27] calculate the reachability sets
and argue for their usage in verifying policy compliance.
In contrast, the group of complexity metrics we provide
allow operators to not only verify policy compliance, but
they also quantify the impact of policy decisions on the
ability to achieve a simple network-wide configuration.
Complementary to [10], which proposes high-level con-
straints that if met ensure the correctness of routing, we
start with the assumption that the network is correct and
then derive its properties.

Contrary to the “bottom-up” approach we take, several
studies [8, 15, 3] have considered how to make network
management simpler by building inherent support for the
creation and management of network policies. We pre-
sume that our study of configuration and inherent com-
plexity can inform such ideas on clean slate alternatives.
Finally, our metrics could be easily integrated into exist-
ing configuration management tools such as AANTS [1]
and OpenView [16], and can aid operators in making in-
formed changes to their network configurations.

The notion of “complexity” has been explored in do-
mains such as System Operations [7]. In [7], complex-
ity is defined as the number of steps taken to perform
a task, similar to our metrics. Recently, Ratnasamy has
proposed that protocol complexity be used in addition

348 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to efficiency to compare network protocols [23]. Just as
Ratnasamy’s metrics help choose the right protocol, our
metrics help pick the right network design.

10 Conclusions

Configuration errors are responsible for a large fraction
of network outages, and we argue that as networks be-
come more complex the risk of configuration error in-
creases. This paper takes the first step towards quantify-
ing the types of complexity that lead operators to make
configuration mistakes. Creating such metrics is difficult
as they must abstract away all non-essential aspects of
network configuration to enable the meaningful compar-
ison of networks with very different sizes and designs.

In this paper, we define three metrics that measure the
complexity of a network by automatic analysis of its con-
figuration files. We validate the metrics’ accuracy and
utility through interviews with the network operators.
For example, we show networks with higher complex-
ity scores require more steps to carry out common man-
agement tasks and require more tools or more process
discipline to maintain. Our study also generated insights
on the causes of complexity in enterprise networks, such
as the impact of the cost of network devices on routing
design choices and the effect of defining multiple classes
of subnets and multiple device roles.

We believe our metrics are useful in their own right,
and we show how they can aid with finding configuration
errors and understanding a network’s design. However,
our hope is that these metrics start a larger discussion
on quantifying the factors that affect network complexity
and management errors. The definition of good metrics
can drive the field forward toward management systems
and routing designs that are less complex and less likely
to lead human operators into making errors.

Acknowledgements. We would like to thank our
shepherd, Kobus van der Merwe, and the reviewers for
their useful feedback. We would also like to thank Dale
Carder, Perry Brunelli, and the other operators for their
network configuration files. This work was supported in
part by an NSF CAREER Award (CNS-0746531) and an
NSF NeTS FIND Award (CNS-0626889).

References
[1] Authorized Agent Network Tool Suite (AANTS).

http://www.doit.wisc.edu/network/upgrade/faq/aants.asp.

[2] ACHARYA, S., WANG, J., GE, Z., ZNATI, T., AND GREEN-
BERG, A. Simulation study of firewalls to aid improved perfor-
mance. In ANSS ’06.

[3] BALLANI, H., AND FRANCIS, P. CONMan: A Step towards
Network Manageability. In Proc. of ACM SIGCOMM (2007).

[4] BENSON, T., AKELLA, A., AND MALTZ, D. A. Operator ques-
tionnaire. http://pages.cs.wisc.edu/ tbenson/questionnaire.html.

[5] BENSON, T., AKELLA, A., AND MALTZ, D. A. A case for
complexity models in network design and management. Tech.
Rep. 1643, UW Madison, August 2008.

[6] CALDWELL, D., GILBERT, A., GOTTLIEB, J., GREENBERG,
A., HJALMTYSSON, G., AND REXFORD, J. The cutting EDGE
of IP router configuration. In HotNets (2003).

[7] CANDEA, G. Toward quantifying system manageability. In Hot-
Dep (2008), USENIX Association.

[8] CASADO, M., FRIEDMAN, M., PETTITT, J., MCKEOWN, N.,
AND SHENKER, S. Ethane: Taking Control of the Enterprise. In
SIGCOMM ’07.

[9] CHEN, X., MAO, Z. M., AND VAN DER MERWE, J. Towards
automated network management: network operations using dy-
namic views. In INM ’07.

[10] FEAMSTER, N. Rethinking routing configuration: Beyond
stimulus-response reasoning. In WIRED (Oct ’03).

[11] FELDMANN, A., AND MUTHUKRISHNAN, S. Tradeoffs for
packet classification. In INFOCOM 2000.

[12] FELDMANN, A., AND REXFORD, J. IP network configuration
for intradomain traffic engineering. Network, IEEE 15 (Sep ’01).

[13] GARIMELLA, P., SUNG, Y.-W. E., ZHANG, N., AND RAO, S.
Characterizing VLAN usage in an operational network. In INM
’07.

[14] GRAY, J., Ed. The Benchmark Handbook for Database and
Transaction Processing Systems. Morgan Kaufmann, 1991.

[15] GREENBERG, A., HJALMTYSSON, G., MALTZ, D. A., MYERS,
A., REXFORD, J., XIE, G., YAN, H., ZHAN, J., AND ZHANG,
H. A Clean Slate 4D Approach to Network Control and Manage-
ment. ACM Sigcomm CCR (2005).

[16] HEWLETT-PACKARD. Enterprise Management Software: HP
OpenView. http://h20229.www2.hp.com/.

[17] KAMIYA, T., KUSUMOTO, S., AND INOUE, K. Ccfinder: a
multilinguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng. 28, 7 (2002).

[18] LE, F., XIE, G. G., PEI, D., WANG, J., AND ZHANG, H. Shed-
ding light on the glue logic of the Internet routing architecture. In
SIGCOMM (2008).

[19] MALTZ, D. A., ZHAN, J., XIE, G., HJALMTYSSON, G.,
GREENBERG, A., AND ZHANG, H. Routing Design in Opera-
tional Networks: A Look from the Inside. In SIGCOMM (2004).

[20] MATHWORKS. Statistics Toolbox for Use with MATLAB, 1999.

[21] MCCABE, T., AND BUTLER, C. Design Complexity Measure-
ment and Testing. Communications of the ACM 32, 12 (1989).

[22] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A.
Why do Internet services fail, and what can be done about it? In
USITS (2003).

[23] RATNASAMY, S. Capturing Complexity in Networked Systems
Design: The Case for Improved Metrics. In HotNets (2006).

[24] RYBACZYK, P. Network Design Solutions for Small-Medium
Businesses. Cisco, 2004.

[25] THOMAS, T., AND KHAN, A. Network Design and Case Studies
(CCIE Fundamentals). Cisco, 1999.

[26] WONG, E. W. W. Validating network security policies via static
analysis of router ACL configuration. Master’s thesis, Naval Post-
graduate School (U.S.), 2006.

[27] XIE, G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREENBERG,
A., HJALMTYSSON, G., AND REXFORD, J. On static reachabil-
ity analysis of IP networks. In Proc. IEEE INFOCOM (2005).

[28] ZHANG, B., NG, T. S. E., AND WANG, G. Reachability mon-
itoring and verification in enterprise networks. In SIGCOMM
Poster (Nov. 2008).

