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Abstract
Making the internet’s edge easily extensible fosters col-
laboration and innovation on web-based applications, but
also raises the problem of how to secure the execution
platform. This paper presents Na Kika, an edge-side
computing network, that addresses this tension between
extensibility and security; it safely opens the internet’s
edge to all content producers and consumers. First, Na
Kika expresses services as scripts, which are selected
through predicates on HTTP messages and composed
with each other into a pipeline of content processing
steps. Second, Na Kika isolates individual scripts from
each other and, instead of enforcing inflexible a-priori
quotas, limits resource consumption based on overall
system congestion. Third, Na Kika expresses security
policies through the same predicates as regular applica-
tion functionality, with the result that policies are as eas-
ily extensible as hosted code and that enforcement is an
integral aspect of content processing. Additionally, Na
Kika leverages a structured overlay network to support
cooperative caching and incremental deployment with
low administrative overhead.

1 Introduction
Web-based applications increasingly rely on the dynamic
creation and transformation of content [5]. Scaling such
applications to large and often global audiences requires
placing them close to clients, at the edge of the inter-
net. Edge-side content management provides the CPU
power and network bandwidth necessary to meet the
needs of local clients. As a result, it reduces load on ori-
gin servers, bandwidth consumption across the internet,
and latency for clients. It also absorbs load spikes, e.g.,
the Slashdot effect, for underprovisioned servers. Based
on similar observations, commercial content distribution
networks (CDNs) already offer edge-side hosting ser-
vices. For example, Akamai hosts customer-supplied
J2EE components on edge-side application servers [1].
Furthermore, many ISPs provide value-added services,
such as “web accelerators”, by dynamically transforming
web content on the edge. However, commercial CDNs
and ISPs have limited reach. To manage the trust nec-
essary for exposing their hosting infrastructure to other
people’s code, they rely on traditional, contract-based
business relationships. As a result, commercial CDNs

and ISPs are ill-suited to collaborative and community-
based development efforts; they best serve as amplifiers
of (large) organizations’ web servers.

At the same time, many community-based efforts are
exploring the use of web-based collaboration to address
large-scale societal and educational problems. For in-
stance, researchers at several medical schools, including
New York University’s, are moving towards web-based
education [10, 43, 45] to address nationally recognized
problems in medical education [28, 49]. The basic idea
is to organize content along narrative lines to re-establish
context missing in clinical practice, complement textual
presentation with movies and animations to better illus-
trate medical conditions and procedures, and leverage
electronic annotations (post-it notes) and discussions for
building a community of students and practitioners. Fur-
thermore, such web-based educational environments dy-
namically adapt content to meet students’ learning needs
and transcode it to enable ubiquitous access, independent
of devices and networks. A crucial challenge for these
efforts is how to combine the content and services cre-
ated by several groups and organizations into a seamless
learning environment and then scale that environment to
not only the 67,000 medical students in the U.S., but also
the 850,000 physicians in the field as well as to medical
personnel in other countries facing similar problems.

Taking a cue from peer-to-peer CDNs for static con-
tent, such as CoDeeN [47, 48] and Coral [13], Na Kika1

targets cooperative efforts that do not (necessarily) have
the organizational structure or financial resources to con-
tract with a commercial CDN or cluster operator and
seeks to provide an edge-side computing network that is
fully open: Anyone can contribute nodes and bandwidth
to Na Kika, host their applications on it, and access con-
tent through it. In other words, by opening up the in-
ternet’s edge, Na Kika seeks to provide the technological
basis for improved collaboration and innovation on large-
scale web-based applications. In this paper, we explore
how Na Kika addresses the central challenge raised by
such an open architecture: how to secure our execution
platform while also making it easily extensible.

Na Kika, similar to other CDNs, mediates all HTTP in-

1Our system is named after the octopus god of the Gilbert Islands,
who put his many arms to good use during the great earth construction
project.



teractions between clients and servers through edge-side
proxies. Also similar to other CDNs, individual edge-
side nodes coordinate with each other to cache content,
through a structured overlay in our case. Na Kika’s key
technical difference—and our primary contribution—is
that both hosted applications and security policies are
expressed as scripted event handlers, which are selected
through predicates on HTTP messages and composed
into a pipeline of content processing stages. Our archi-
tecture builds on the fact that HTTP messages contain
considerable information about clients, servers, and con-
tent to expose the same high-level language for express-
ing functionality and policies alike—with the result that
policies are as easily extensible as hosted code and that
enforcement is an integral aspect of content processing.
A second difference and contribution is that Na Kika’s
resource controls do not rely on a-priori quotas, which
are too inflexible for an open system hosting arbitrary
services with varying resource requirements. Instead
Na Kika limits resource consumption based on conges-
tion: If a node’s resources are overutilized, our archi-
tecture first throttles requests proportionally to their re-
source consumption and eventually terminates the largest
resource consumers.

Our use of scripting and overlay networks provides
several important benefits. First, scripting provides a uni-
form and flexible mechanism for expressing application
logic and security policies alike. Second, scripting sim-
plifies the task of securing our edge-side computing net-
work, as we can more easily control a small execution
engine and a small number of carefully selected plat-
form libraries than restricting a general-purpose comput-
ing platform [20, 41]. Third, scripting facilitates an API
with low cognitive complexity: Na Kika’s event-based
API is not only easy to use but, more importantly, al-
ready familiar to programmers versed in web develop-
ment. Fourth, the overlay ensures that Na Kika is in-
crementally scalable and deployable. In particular, the
overlay supports the addition of nodes with minimal ad-
ministrative overhead. It also helps with absorbing load
spikes for individual sites, since one cached copy (of ei-
ther static content or service code) is sufficient for avoid-
ing origin server accesses.

At the same time, Na Kika does have limitations. No-
tably, it is unsuitable for applications that need to process
large databases, as the databases need to be moved to
the internet’s edge as well. Furthermore, since Na Kika
exposes all functionality as scripts, applications whose
code needs to be secret cannot utilize it (though obfus-
cation can help). Next, by utilizing Na Kika, content
producers gain capacity but also give up control over
their sites’ performance. We expect that any deployment
of our edge-side computing network is regularly mon-
itored to identify persistent overload conditions and to

rectify them by adding more nodes. Finally, while Na
Kika protects against untrusted application code, it does
trust edge-side nodes to correctly cache data and execute
scripts. As a result, it is currently limited to deployments
across organizations that can be trusted to properly ad-
minister local Na Kika nodes. We return to this issue in
Section 6.

2 Related Work
Due to its palpable benefits, several projects have been
exploring edge-side content management. A major-
ity of these efforts, such as ACDN [33], ColTrES [8],
Tuxedo [38], vMatrix [2], and IBM’s WebSphere Edge
Server [17] (which is used by Akamai), explore how to
structure the edge-side hosting environment. Since they
are targeted at closed and trusted deployments, they do
not provide an extension model, nor do they include the
security and resource controls necessary for hosting un-
trusted code. In contrast, the OPES architecture for edge-
side services recognizes the need for extensibility and
service composition [4, 23]. While it does not specify
how composition should be achieved, OPES does define
potential security threats [3]. Their scope and magnitude
is illustrated by experiences with the CoDeeN open con-
tent distribution network [48].

Next, Active Cache [9] and SDT [19] enable content
processing in proxy caches. While they do not provide
an extension mechanism, they do provide precise con-
trol over edge-side processing through server-specified
HTTP headers. Furthermore, while SDT enforces only
coarse-grained resource controls for Perl and none for
Java, Active Cache executes Java code with resource lim-
its proportional to the size of the content being processed.
Unlike these systems, Pai et al.’s proxy API [31] pro-
vides fine-grained extensibility for web proxies through
an event-based API akin to ours. At the same time, their
work focuses on enabling high-performance extensions
in trusted deployments, while our work focuses on con-
taining arbitrary extensions in untrusted deployments.
Finally, Active Names [46] are explicitly designed for
extensibility and service composition, chaining process-
ing steps in a manner comparable to Na Kika’s scripting
pipeline. In fact, by introducing a new naming interface,
Active Names offer more flexibility for content process-
ing than our work. However, they also require a new
service infrastructure, while Na Kika integrates with the
existing web.

While cooperative caching has its limitations [50],
coordination between edge-side nodes is still impor-
tant for scaling a system, in particular to balance load
and absorb load spikes. To this end, CoDeeN [47],
ColTrES [8], and Tuxedo [38] are exploring the use of
domain-specific topologies and algorithms. In contrast,
Na Kika leverages previous work on structured overlay
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networks [13, 16, 35, 42, 52] for coordinating between
local caches. We believe that structured overlays provide
a robust and scalable alternative to domain-specific co-
ordination strategies. Additionally, structured overlays
have already been used successfully for caching static
content [13, 18].

In most edge-side systems, nodes cannot be entrusted
with the sole copies of application data, and hard state
requiring stronger consistency than the web’s expiration-
based guarantees (or lack thereof) must remain on ori-
gin servers. In contrast, ACDN [33] reduces access la-
tency for such data by replicating it across edge nodes
and by providing full serializability through a primary
replica. Gao et al. [14] explore alternative replication
strategies by exposing a set of distributed objects that
make different trade-offs between consistency, perfor-
mance, and availability. Alternatively, the continuous
consistency model provides a framework for express-
ing such trade-offs through a uniform interface to hard
state [51]. Na Kika’s support for application state builds
on Gao et al.’s approach, with the primary difference that
replicated state is subject to Na Kika’s security and re-
source controls.

Web content processing is (obviously) not limited to
edge nodes and can be performed on servers and clients
as well. For example, Na Kika has several similarities
with the cluster-based TACC architecture [12]. Both Na
Kika and TACC rely on a pipeline of programs that pro-
cess web content, and both build on the expiration-based
consistency model of the web to cache both original and
processed content. Na Kika differs in that it targets prox-
ies distributed across the wide area and and thus needs to
carefully contain hosted code. Comparable to Na Kika,
DotSlash [53] helps absorb load spikes by moving script
execution to other servers in a “mutual-aid community”.
Unlike Na Kika, it has no extension model and does not
provide security and resource controls. At the other end,
client side includes [34] (CSI) move the assembly of dy-
namic content to the client, which can improve latency
for clients relying on low bandwidth links. However, due
to their focus on assembling content fragments, CSI are
not suitable for content processing in general. The un-
derlying edge side includes [29, 44] (ESI) can easily be
supported within Na Kika.

Finally, based on the realization that system security
can clearly benefit from a dedicated and concise spec-
ification of policies, a considerable number of efforts
have explored policy specification languages. For ex-
ample, domain and type enforcement [7], XACML [22],
and trust management systems such as PolicyMaker,
KeyNote, and SPKI [6, 11] include languages for ex-
pressing and enforcing policies. All these systems re-
quire explicitly programmed calls to the respective ref-
erence monitor. In contrast, previous work on security
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Figure 1: Illustration Na Kika’s architecture. Edge-side
proxies mediate all HTTP interactions between clients
and servers by executing scripts; proxies also coordinate
with each other through an overlay network.

for extensible systems advocates the separation of poli-
cies, enforcement, and functionality and relies on binary
interposition to inject access control operations into ex-
ecuting code [15, 39]. The WebGuard policy language
relies on a similar approach for securing web-based ap-
plications [40]. Since Na Kika’s programming model
is already based on interposition, we leverage the same
predicate selection mechanism for application logic and
policies, thus eliminating the need for a separate policy
specification language.

3 Architecture

Like other extensions to the basic web infrastructure
and as illustrated in Figure 1, Na Kika relies on prox-
ies that mediate HTTP interactions between clients and
servers. To utilize these proxies, content producers and
consumers need to change existing web practices along
two lines. First, content producers need to publish the
necessary edge-side processing scripts on their web sites.
Content producers need not provide scripts for an en-
tire site at once. Rather, they can transition to Na Kika
piecemeal, starting with content whose creation or trans-
formation exerts the highest resource demands on their
servers. Second, links need to be changed by append-
ing “.nakika.net” to a URL’s hostname, so that Na
Kika’s name servers can redirect clients to (nearby) edge
nodes. As described in [13], URLs can be modified by
content publishers, third parties linking to other sites, as
well as by users. Furthermore, URLs can be rewritten
through a service in our architecture. While Na Kika also
supports static proxy configuration in browsers, we pre-
fer URL rewriting as it allows for more fine-grained load
balancing between edge nodes and presents a uniform,
location-independent interface for using our architecture.
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3.1 Programming Model
The functionality of hosted services and applications is
specified through two event handlers, which are writ-
ten in JavaScript. Our architecture does not depend on
the choice of scripting language and could support sev-
eral languages. We chose JavaScript because it already
is widely used by web developers. Additionally, we
found its C-like syntax and prototype-based object model
helpful in writing scripts quickly and with little code;
though we had to add support for byte arrays to avoid un-
necessarily copying data. The onRequest event han-
dler accepts an HTTP request and returns either a re-
quest for continued processing or a response represent-
ing the corresponding content or error condition. The
onResponse event handler accepts an HTTP response
and always returns a response. A pair of onRequest
and onResponse event handlers mimics the high-level
organization of any HTTP proxy and represents the unit
of composition in Na Kika: a scripting pipeline stage.

In providing two interposition points for HTTP pro-
cessing, Na Kika differs from other systems, such as
Active Cache [9], SDT [19], and TACC [12], which
only interpose on HTTP responses. Interposition on re-
quests is necessary for HTTP redirection and, more im-
portantly, as a first-line defense for enforcing access con-
trols. It also is more efficient if responses are created
from scratch, as it avoids accessing a resource before
edge-side processing. To facilitate the secure composi-
tion of untrusted services, Na Kika relies on fewer event
handlers than Pai et al.’s proxy API [31]; though it does
provide similar expressivity, notably, to control the proxy
cache, through its platform libraries.

Similar to ASP.NET and JSP, requests and responses
are not passed as explicit arguments and return values,
but are represented as global JavaScript objects. Us-
ing global objects provides a uniform model for access-
ing functionality and data, since native-code libraries,
which we call vocabularies, also expose their functional-
ity through global JavaScript objects. Na Kika provides
vocabularies for managing HTTP messages and state and
for performing common content processing steps. In
particular, it provides support for accessing URL com-
ponents, cookies, and the proxy cache, fetching other
web resources, managing hard state, processing regu-
lar expressions, parsing and transforming XML docu-
ments, and transcoding images. We expect to add vo-
cabularies for performing cryptographic operations and
transcoding movies as well. Figure 2 illustrates an ex-
ample onResponse event handler.

For HTTP responses, the body always represents the
entire instance [25] of the HTTP resource, so that the re-
source can be correctly transcoded [19]. If the response
represents an unmodified or partial resource, it is instan-
tiated, for example, by retrieving it from the cache, when

onResponse = function() {
var buff = null, body = new ByteArray();
while (buff = Response.read()) {
body.append(buff);

}

var type = ImageTransformer.
type(Response.contentType);

var dim = ImageTransformer.
dimensions(body, type);

if (dim.x > 176 || dim.y > 208) {
var img;
if (dim.x/176 > dim.y/208) {
img = ImageTransformer.transform(body,

type, "jpeg", 176, dim.y/dim.x*208);
} else {
img = ImageTransformer.transform(body,

type, "jpeg", dim.x/dim.y*176, 208);
}
Response.setHeader("Content-Type",
"image/jpeg");

Response.setHeader("Content-Length",
img.length);

Response.write(img);
}

}

Figure 2: An example onResponse event handler,
which transcodes images to fit onto the 176 by 208 pixel
screen of a Nokia cell phone. It relies on the image trans-
former vocabulary to do the actual transcoding. The re-
sponse body is accessed in chunks to enable cut-through
routing; though the transformer vocabulary does not yet
support it, with the script buffering the entire body.

a script accesses the body.

Event Handler Selection
To provide script modularity and make individual
pipeline stages easily modifiable, stages do not consist of
a fixed pair of event handlers; rather, the particular event
handlers to be executed for each stage are selected from
a collection of event handlers. To facilitate this selec-
tion process, pairs of onRequest and onResponse
event handlers are associated with predicates on HTTP
requests, including, for example, the client’s IP address
or the resource’s URL. Conceptually, Na Kika first eval-
uates all of a stage’s predicates and then selects the pair
with the closest valid match for execution.

The association between event handlers and predi-
cates is expressed in JavaScript by instantiating pol-
icy objects. As illustrated in Figure 3, each policy
object has several properties that contain a list of al-
lowable values for the corresponding HTTP message
fields. Each policy object also has two properties for
the onRequest and onResponse event handlers and
an optional nextStages property for scheduling ad-
ditional stages as discussed below. Lists of allowable
values support prefixes for URLs, CIDR notation for IP
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p = new Policy();
p.url = [ "med.nyu.edu",

"medschool.pitt.edu" ];
p.client = [ "nyu.edu",

"pitt.edu" ];
p.onResponse = function() { ... }
p.register();

Figure 3: An example policy object. The policy applies
the onResponse event handler to all content on servers
at NYU’s or University of Pittsburgh’s medical schools
accessed from within the two universities. The call to
register() activates the policy.

addresses, and regular expressions for arbitrary HTTP
headers. When determining the closest valid match, dif-
ferent values in a property’s list are treated as a disjunc-
tion, different properties in a policy object are treated as
a conjunction, and null properties are treated as truth val-
ues. Furthermore, precedence is given to resource URLs,
followed by client addresses, then HTTP methods, and fi-
nally arbitrary headers. Null event handlers are treated as
no-ops for event handler execution, thus making it possi-
ble to process only requests or responses or to use a stage
solely for scheduling other stages.

Selecting event handlers by declaring predicates on
HTTP messages avoids long sequences of if-else state-
ments in a single, top-level event handler, thus resulting
in more modular event processing code. When compared
to the additional HTTP headers used by Active Cache
and SDT for selecting edge-side code, predicate-based
script selection also enables the interposition of code
not specified by the origin server, an essential require-
ment for both composing services and enforcing security.
While designing Na Kika, we did consider a domain-
specific language (DSL) for associating predicates with
event handlers instead of using JavaScript-based policy
objects. While a DSL can be more expressive (for exam-
ple, by allowing disjunction between properties), we re-
jected this option because it adds too much complexity—
both for web developers targeting Na Kika and for imple-
mentors of our architecture—while providing little addi-
tional benefits. We also considered performing predicate
selection on HTTP responses, but believe that pairing
event handlers results in a simpler programming model,
with little loss of expressivity. Also matching responses
requires a very simple change to our implementation.

Scripting Pipeline Composition
By default, each scripting pipeline has three stages. The
first stage provides administrative control over clients’
access to our edge-side computing network. It can, for
example, perform rate limiting, redirect requests, or re-
ject them altogether. The second stage performs site-
specific processing, which typically serves as a surrogate

procedure EXECUTE-PIPELINE(request)
forward ← EMPTY
backward ← EMPTY
. Start with administrative control and site-specific stages
PUSH(forward , “http://nakika.net/serverwall.js”)
PUSH(forward , SITE(request .url) + “/nakika.js”)
PUSH(forward , “http://nakika.net/clientwall.js”)
repeat . Schedule stages and execute onRequest

script ← FETCH-AND-EXECUTE(POP(forward))
policy ← FIND-CLOSEST-MATCH(script , request)
PUSH(backward , policy)
if policy.onRequest 6= NIL then

response ← RUN(policy.onRequest , request)
. If handler creates response, reverse direction
if response 6= NIL then exit repeat end if

end if
if policy.nextStages 6= NIL then . Add new stages

PREPEND(forward , policy.nextStages)
end if

until forward = EMPTY
if response = NIL then . Fetch original resource

response ← FETCH(request)
end if
repeat . Execute onResponse

policy ← POP(backward)
if policy.onResponse 6= NIL then

RUN(policy.onResponse, response)
end if

until backward = EMPTY
return response

end procedure

Figure 4: Algorithm for executing a pipeline. The algo-
rithm interleaves computing a pipeline’s schedule with
onRequest event handler execution, so that matching
can take into an account when an event handler modifies
the request, notably to redirect it.

for the origin server and actually creates dynamic con-
tent. For example, this stage adapts medical content in a
web-based educational environment to a students’ learn-
ing needs. The third stage provides administrative con-
trol over hosted scripts’ access to web resources. Similar
to the first stage, it can redirect or reject requests.

To perform additional processing, each pipeline stage
can dynamically schedule further stages by listing the
corresponding scripts in a policy object’s nextStages
property. As shown in Figure 4, the dynamically sched-
uled stages are placed directly after the scheduling stage
but before other, already scheduled stages. A site-
specific script can thus delay content creation until a
later, dynamically scheduled stage, while also schedul-
ing additional processing before that stage. Examples
for such intermediate services include providing anno-
tations (electronic post-it notes) for textual content and
transcoding movies for access from mobile devices. To
put it differently, each site can configure its own pipeline
and thus has full control over how its content is cre-
ated and transformed—within the bounds of Na Kika’s
administrative control. At the same time, new services,
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such as visualization of the spread of diseases, can eas-
ily be layered on top of existing services, such as geo-
graphical mapping, even when the services are provided
by different sites: the new service simply adjusts the re-
quest, including the URL, and then schedules the original
service after itself. Both services are executed within a
single pipeline on the same Na Kika node.

The scripts for each stage are named through regu-
lar URLs, accessed through regular HTTP, and subject
to regular HTTP caching. As shown in Figure 4, the
administrative control scripts are accessed from well-
known locations; though administrators of Na Kika
nodes may override these defaults to enforce their own,
location-specific security controls. Site-specific scripts
are accessed relative to the server’s domain, in a file
named nakika.js, which is comparable to the use of
robots.txt and favicon.ico for controlling web
spiders and browser icons, respectively. All other ser-
vices, that is, dynamically scheduled pipeline stages, can
be hosted at any web location and are accessed through
their respective URLs.

In combining content creation with content transfor-
mation, our architecture’s scripting pipeline is reminis-
cent of the Apache web server and Java servlets. At
the same time, both Apache and Java servlets have a
more complicated structure. They first process a re-
quest through a chain of input filters, then create a re-
sponse in a dedicated module (the content handler for
Apache and the actual servlet for Java servlets), and fi-
nally process the response through a chain of output fil-
ters. In mirroring an HTTP proxy’s high-level organi-
zation, Na Kika’s scripting pipeline stages have a sim-
pler interface—requiring only two event handlers—and
are also more flexible, as any onRequest event han-
dler can generate a response. Furthermore, the content
processing pipelines for Apache and Java servlets can
only be configured by code outside the pipelines, while
each stage in Na Kika’s scripting pipelines can locally
schedule additional stages—with the overall result that
Na Kika is more flexible and more easily extensible, even
in the presence of untrusted code.

Na Kika Pages

While our architecture’s event-based programming
model is simple and flexible, a large portion of dynamic
content on the web is created by markup-based content
management systems, such as PHP, JSP, and ASP.NET.
To support web developers versed in these technologies,
Na Kika includes an alternative programming model for
site-specific content. Under this model, HTTP resources
with the nkp extension or text/nkp MIME type are
subject to edge-side processing: all text between the
<?nkp start and ?> end tags is treated as JavaScript
and replaced by the output of running that code. These

bmj = "bmj.bmjjournals.com/cgi/reprint";
nejm = "content.nejm.org/cgi/reprint";
p = new Policy();
p.url = [ bmj, nejm ];

p.onRequest = function() {
if (! System.isLocal(Request.clientIP)) {
Request.terminate(401);

}
}
p.register();

Figure 5: An example policy that prevents access to the
digital libraries of the BMJ (British Medical Journal) and
the New England Journal of Medicine from clients out-
side a Na Kika node’s hosting organization. The 401
HTTP error code indicates an unauthorized access.

so-called Na Kika Pages are implemented on top of Na
Kika’s event-based programming model through a sim-
ple, 60 line script. We expect to utilize a similar tech-
nique to also support edge side includes [29, 44] (ESI)
within the Na Kika architecture.

3.2 Security and Resource Controls
Na Kika’s security and resource controls need to pro-
tect (1) the proxies in our edge-side computing network
against client-initiated exploits, such as those encoun-
tered by CoDeeN [48], (2) the proxies against exploits
launched by hosted code, and (3) other web servers
against exploits carried through our architecture. We
address these three classes of threats through admission
control by the client-side administrative control stage, re-
source controls for hosted code, and emission control by
the server-side administrative control stage, respectively.
Of course, it is desirable to drop requests early, before
resources have been expended [26], and, consequently,
requests that are known to cause violations of Na Kika’s
security and resource controls should always be rejected
at the client-side administrative control stage.

Because the two administrative control stages mediate
all HTTP requests and responses entering and leaving the
system, they can perform access control based on client
and server names as well as rate limiting based on request
rates and response sizes. The corresponding policies are
specified as regular scripts and can thus leverage the full
expressivity of Na Kika’s predicate matching. For in-
stance, Figure 5 shows a policy object rejecting unau-
thorized accesses to digital libraries, which is one type
of exploit encountered by CoDeeN. For more flexibility,
security policies can also leverage dynamically sched-
uled stages. For example, the two administrative control
stages can delegate content blocking to separate stages
whose code, in turn, is dynamically created by a script
based on a blacklist.

To enforce resource controls, a resource manager
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procedure CONTROL(resource)
priorityq ← EMPTY
if IS-CONGESTED(resource) then . Track usage and throttle

for site in ACTIVE-SITES() do
UPDATE(site.usage, resource)
ENQUEUE(priorityq, site)
THROTTLE(site, resource)

end for
else if ¬ IS-RENEWABLE(resource) then . Track usage

for site in ACTIVE-SITES() do
UPDATE(site.usage, resource)

end for
end if
WAIT(TIMEOUT) . Let throttling take effect
if IS-CONGESTED(resource) then

TERMINATE(DEQUEUE(priorityq)) . Kill top offender
else

UNTHROTTLE(resource) . Restore normal operation
end if

end procedure

Figure 6: Algorithm for congestion control. The CON-
TROL procedure is periodically executed for each tracked
resource. Note that our implementation does not block
but rather polls to detect timeouts.

tracks CPU, memory, and bandwidth consumption as
well as running time and total bytes transferred for each
site’s pipelines. It also tracks overall consumption for
the entire node. As shown in Figure 6, if any of these re-
sources is overutilized, the resource manager starts throt-
tling requests proportionally to a site’s contribution to
congestion and, if congestion persists, terminates the
pipelines of the largest contributors. A site’s contribu-
tion to congestion captures the portion of resources con-
sumed by its pipelines. For renewable resources, i.e.,
CPU, memory, and bandwidth, only consumption under
overutilization is included. For nonrenewable resources,
i.e., running time and total bytes transferred, all con-
sumption is included. In either case, the actual value is
the weighted average of past and present consumption
and is exposed to scripts—thus allowing scripts to adapt
to system congestion and recover from past penalization.

To complete resource controls, all pipelines are fully
sandboxed. They are isolated from each other, running,
for example, with their own heaps, and can only access
select platform functionality. In particular, all regular op-
erating system services, such as processes, files, or sock-
ets, are inaccessible. The only resources besides comput-
ing power and memory accessible by scripts are the ser-
vices provided by Na Kika’s vocabularies (that is, native-
code libraries).

We believe that Na Kika’s congestion-based resource
management model is more appropriate for open sys-
tems than more conventional quota-based resource con-
trols for two reasons. First, open systems such as Na
Kika have a different usage model than more conven-

tional hosting platforms: they are open to all content
producers and consumers, with hosting organizations ef-
fectively donating their resources to the public. In other
words, services and applications should be able to con-
sume as many resources as they require—as long as they
do not interfere with other services, i.e., cause conges-
tion. Second, quota-based resource controls require an
administrative decision as to what resource utilization is
legitimate. However, even when quotas are set relative to
content size [9], it is hard to determine appropriate con-
stants, as the resource requirements may vary widely. We
did consider setting fine-grained quotas through predi-
cates on HTTP messages, comparable to how our archi-
tecture selects event handlers. However, while predicate-
based policy selection is flexible, it also amplifies the ad-
ministrative problem of which constants to choose for
which code.

Our architecture’s utilization of scripting has two ad-
vantages for security and resource control when com-
pared to other edge-side systems. First, administrative
control scripts simplify the development and deployment
of security policy updates. Once a fix to a newly discov-
ered exploit or abuse has been implemented, the updated
scripts are simply published on the Na Kika web site
and automatically installed across all nodes when cached
copies of the old scripts expire. In contrast, CoDeeN and
other edge-side systems that hard code security policies
require redistribution of the system binaries across all
nodes. Though Na Kika still requires binary redistribu-
tion to fix security holes in native code. Second, provid-
ing assurance that hosted services and applications are
effectively secured is simpler for scripts than for Java or
native code. Our starting point is a bare scripting en-
gine to which we selectively add functionality, through
vocabularies, rather than trying to restrict a general pur-
pose platform after the fact.

3.3 Hard State
The web’s expiration-based consistency model for
cached state is sufficient to support a range of edge-side
applications, including content assembly (through, for
example, edge-side includes [29, 44]) or the transcod-
ing of multi-media content. However, a complete plat-
form for edge-side content management also requires
support for managing hard state such as edge-side access
logs and replicated application state. Edge-side logging
provides accurate usage statistics to content producers,
while edge-side replication avoids accessing the origin
server for every data item.

Na Kika performs access logging on a per-site basis.
Logging is triggered through a site’s script, which speci-
fies the URL for posting log updates. Periodically, each
Na Kika node scans its log, collects all entries for each
specific site, and posts those portions of the log to the
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specified URLs.
Na Kika’s support for edge-side replication builds on

Gao et al.’s use of distributed objects, which, internally,
rely on domain-specific replication strategies to synchro-
nize state updates and support both pessimistic and op-
timistic replication [14]. Like Gao et al., Na Kika’s
hard state replication relies on a database for local stor-
age and a reliable messaging service for propagating up-
dates, which are exposed through vocabularies. Unlike
Gao et al., Na Kika’s hard state replication is imple-
mented by regular scripts. Updates are accepted by a
script, written to local storage, and then propagated to
other nodes through the messaging layer. Upon receipt
of a message on another node, a regular script processes
the message and applies the update to that node’s local
storage. As a result, Na Kika provides content produc-
ers with considerable flexibility in implementing their
domain-specific replication strategies. For example, the
script accepting updates can propagate them only to the
origin server to ensure serializability or to all nodes to
maximize availability. Furthermore, the script accepting
messages can easily implement domain-specific conflict
resolution strategies. To secure replicated state, Na Kika
partitions hard state amongst sites and enforces resource
constraints on persistent storage. Since update process-
ing is performed by regular scripts, it already is subject
to Na Kika’s security and resource controls.

3.4 Overlay Network
The Na Kika architecture relies on a structured over-
lay network for coordinating local caches and for en-
abling incremental deployment with low administrative
overhead. From an architectural viewpoint, the overlay
is treated largely as a black box, to be provided by an
existing DHT [13, 16, 35, 42, 52]. This reflects a con-
scious design decision on our end and provides us with
a test case for whether DHTs can, in fact, serve as ro-
bust and scalable building blocks for a global-scale dis-
tributed system. Our prototype implementation builds on
Coral [13], which is well-suited to the needs of our archi-
tecture, as Coral explicitly targets soft state and includes
optional support for DNS redirection to local nodes. As
we deploy Na Kika, we expect to revisit the functional-
ity provided by the DHT. Notably, load balancing, which
is currently provided at the DNS level, can likely benefit
from application-specific knowledge, such as the num-
ber of concurrent HTTP exchanges being processed by a
node’s scripting pipelines.

3.5 Summary
The Na Kika architecture leverages scripting and overlay
networks to provide an open edge-side computing net-
work. First, Na Kika exposes a programming model al-
ready familiar to web developers by organizing hosted

services and applications into a pipeline of scripted event
handlers that process HTTP requests and responses. Sec-
ond, it provides a secure execution platform by medi-
ating all HTTP processing under administrative control,
by isolating scripts from each other, and by limiting re-
source utilization based on overall system congestion.
Third, it provides extensibility by dynamically schedul-
ing event handlers within a pipeline stage as well as ad-
ditional pipeline stages through predicate matching. Fi-
nally, it provides scalability by organizing all nodes into
an automatically configured overlay network, which sup-
ports the redirection of clients to (nearby) edge nodes and
the addition of new nodes with low administrative over-
head.

At the same time, web integration is not entirely com-
plete, as URLs need to be rewritten for Na Kika access.
As already discussed, URLs can be automatically rewrit-
ten by web browsers, hosted code, as well as servers
and, consequently, the need for manual rewriting will
decrease over time. Furthermore, while our architec-
ture protects against client- and script-initiated exploits,
it does not currently protect against misbehaving edge-
side nodes. In particular, nodes can arbitrarily modify
cached content, which is especially problematic for ad-
ministrative control scripts. We return to the issue of con-
tent integrity in Section 6.

4 Implementation
Our prototype implementation of Na Kika builds on three
open source packages: the Apache 2.0 web server, the
Mozilla project’s SpiderMonkey JavaScript engine [27],
and the Coral distributed hashtable [13]. We chose
Apache for HTTP processing because it represents a ma-
ture and cross-platform web server. Similarly, Spider-
Monkey is a mature and cross-platform implementation
of JavaScript and used across the Mozilla project’s web
browsers. Additionally, our prototype includes a prelim-
inary implementation of hard state replication, which re-
lies on the Java-based JORAM messaging service [30]
and exposes a vocabulary for managing user registra-
tions, as required by the SPECweb99 benchmark. Our
implementation adds approximately 23,000 lines of C
code to the 263,000 lines of code in Apache, the 123,000
lines in SpiderMonkey, and the 60,000 lines in Coral.
The majority of changes is to Apache and mostly con-
tained in Apache modules. Our modified Apache binary,
including dynamically loaded libraries, is 10.6 MByte
large and the Coral DHT server is 13 MByte.

As already mentioned in Section 3.1, Apache struc-
tures HTTP processing into a chain of input filters that
operate on requests, followed by a content handler that
generates responses, followed by a chain of output fil-
ters that operate on responses. Our prototype imple-
ments the scripting pipeline by breaking each stage
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into a pair of input and output filters, which execute
the onRequest and onResponse event handlers, re-
spectively, and by dynamically inserting the pair into
Apache’s filter chain. The content handler is a modi-
fied version of Apache’s mod proxy, which implements
the proxy cache and, in our version, also interfaces with
the DHT. If an onRequest event handler generates an
HTTP response, our implementation sets a flag that pre-
vents the execution of scripts in later pipeline stages and
of the proxy caching code, while still conforming with
Apache’s sequencing of input filters, content handler,
and output filters.

To provide isolation, our implementation executes
each pipeline in its own process and each script, in turn,
in its own user-level thread and with its own scripting
context, including heap. Scripting contexts are reused to
amortize the overhead of context creation across several
event handler executions; this is safe because JavaScript
programs cannot forge pointers and the heap is automat-
ically garbage collected. A separate monitoring process
tracks each pipeline’s CPU, memory, and network con-
sumption and periodically executes the congestion con-
trol algorithm in Figure 6. To throttle a site’s pipelines,
the monitoring process sets a flag in shared memory,
which causes the regular Apache processes to reject re-
quests for that site’s content with a server busy error. To
terminate a site’s pipelines, the monitoring process kills
the corresponding Apache processes, thus putting an im-
mediate stop to processing even if a pipeline is executing
a vocabulary’s native code.

Employing per-script user-level threads also helps in-
tegrate script execution with Apache, while still exposing
a simple programming model. In particular, Apache’s se-
quence of input filters, content handler, and output filters
is not necessarily invoked on complete HTTP requests
and responses. Rather, each filter is invoked on chunks of
data, the so-called bucket brigades, as that data becomes
available. As a result, Apache may interleave the exe-
cution of several onRequest and onResponse event
handlers. Per-script user-level threads hide this piece-
meal HTTP processing from script developers, provid-
ing the illusion of scripts running to completion before
invoking the next stage. To avoid copying data between
Apache and the scripting engine, our implementation
adds byte arrays as a new core data type to SpiderMon-
key. Whenever possible, these byte arrays directly refer-
ence the corresponding bucket brigade buffers.

The policy matching code trades off space for dynamic
predicate evaluation performance. While loading a script
and registering policy objects, the matcher builds a deci-
sion tree for that pipeline stage, with nodes in the tree
representing choices. Starting from the root of the tree,
the nodes represent the components of a resource URL’s
server name, the port, the components of the path, the

Name Description
Proxy A regular Apache proxy.
DHT The proxy with an integrated DHT.
Admin A Na Kika node evaluating one matching pred-

icate and executing empty event handlers for
each of the two administrative control stages.

Pred-n The Admin configuration plus another stage
evaluating predicates for n policy objects, with
no matches.

Match-1 The Admin configuration plus another stage
evaluating one matching predicate and execut-
ing the corresponding, empty event handlers.

Table 1: The different micro-benchmark configurations.

components of the client address, the HTTP methods,
and, finally, individual headers. If a property of a pol-
icy object does not contain any values, the corresponding
nodes are skipped. Furthermore, if a property contains
multiple values, nodes are added along multiple paths.
When all properties have been added to the decision tree,
the event handlers are added to the current nodes, once
for each path. With the decision tree in place, dynamic
predicate evaluation simply is a depth-first search across
the tree for the node closest to the leaves that also ref-
erences an appropriate event handler. Decision trees are
cached in a dedicated in-memory cache. The implemen-
tation also caches the fact that a site does not publish
a policy script, thus avoiding repeated checks for the
nakika.js resource.

5 Evaluation
To evaluate Na Kika, we performed a set of local micro-
benchmarks and a set of end-to-end experiments, which
include wide area experiments on the PlanetLab dis-
tributed testbed [32]. The micro-benchmarks charac-
terize (1) the overhead introduced by Na Kika’s DHT
and scripting pipeline and (2) the effectiveness of our
congestion-based resource controls. The end-to-end ex-
periments characterize the performance and scalability of
a real-world application and of a modified SPECweb99
benchmark. We also implemented three new services
to characterize the extensibility of our edge-side com-
puting network. In summary, our experimental results
show that, even though the scripting pipeline introduces
noticeable overheads, Na Kika is an effective substrate
both for scaling web-based applications and for extend-
ing them with new functionality.

5.1 Micro-Benchmarks
To characterize the overheads introduced by Na Kika’s
DHT and scripting pipeline, we compare the perfor-
mance of a Na Kika node with a regular Apache proxy
cache for accessing a single, static 2,096 byte doc-
ument representing Google’s home page (without in-
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Configuration Cold Cache Warm Cache
Proxy 3 1
DHT 5 1
Admin 16 2
Pred-0 19 2
Pred-1 20 2
Match-1 21 2
Pred-10 22 2
Pred-50 30 2
Pred-100 41 2

Table 2: Latency in milliseconds for accessing a static
page under the different configurations.

line images). Since static resources are already well-
served by existing proxy caches and CDNs, these micro-
benchmarks represent a worst-case usage scenario for Na
Kika. After all, any time spent in the DHT or in the
scripting pipeline adds unnecessary overhead. For all
experiments, we measured the total time of a client ac-
cessing the static web page through a proxy—with client,
proxy, and server being located on the same, switched
100 Mbit ethernet. The proxy runs on a Linux PC with a
2.8 GHz Intel Pentium 4 and 1 GB of RAM.

We performed 18 experiments, representing 9 differ-
ent configurations under both a cold and a warm proxy
cache. The different configurations are summarized in
Table 1 and determine the overhead of DHT integration,
baseline administrative control, predicate matching, and
event handler invocation, respectively. For the cold cache
case of the Admin, Pred-n, and Match-1 configurations,
the administrative control and site-specific scripts are
fetched from the local server and evaluated to produce
the corresponding decision tree. For the warm cache
case, the cached decision tree is used. Resource control
is disabled for these experiments.

Table 2 shows the latency in milliseconds for the 18
different experiments. Each number is the average of 10
individual measurements. Overall, the results clearly il-
lustrate the basic cost of utilizing Na Kika: its script-
ing pipeline. For the Pred-n and Match-1 configura-
tions under a cold cache, loading the actual page takes
2.9 ms and loading the script takes between 2.5 ms and
5.6 ms, depending on size. Additionally, the creation
of a scripting context takes 1.5 ms. Finally, parsing
and executing the script file takes between 0.08 ms and
17.8 ms, again, depending on size. However, the results
also illustrate that our implementation’s use of caching—
for resources, scripting contexts, and decision trees—is
effective. Retrieving a resource from Apache’s cache
takes 1.1 ms and retrieving a decision tree from the in-
memory cache takes 4 µs. Re-using a scripting con-
text takes 3 µs. Finally, predicate evaluation takes less
than 38 µs for all configurations. However, these op-
erations also result in a higher CPU load: the Na Kika

node reaches capacity with 30 load-generating clients
at 294 requests/second (rps) under Match-1, while the
plain Apache proxy reaches capacity with 90 clients at
603 rps on the same hardware. Since both resources and
scripts only need to be accessed when reaching their ex-
piration times, we expect that real world performance is
closer to warm cache than cold cache results. Further-
more, most web resources are considerably larger than
Google’s home page, so that network transfer times will
dominate scripting pipeline latency.

Resource Controls
To characterize the effectiveness of Na Kika’s
congestion-based resource management, we com-
pare the performance of a Na Kika node with and
without resource controls under high load, such as that
caused by a flash crowd. For these experiments, the Na
Kika proxy runs on the same Linux PC as before. Load is
generated by accessing the same 2,096 byte page under
the Match-1 configuration in a tight loop. With 30 load
generators (i.e., at the proxy’s capacity), we measure
294 rps without and 396 rps with resource controls. With
90 load generators (i.e., under overload), we measure
229 rps without and 356 rps with resource controls. If
we also add one instance of a misbehaving script, which
consumes all available memory by repeatedly doubling
a string, the throughput with 30 load generators drops to
47 rps without but only 382 rps with resource controls.
For all experiments, the runs with resource controls
reject less than 0.55% of all offered requests due to
throttling and drop less than 0.08% due to termination,
including the one triggering the misbehaving script.
These results illustrate the benefits of Na Kika’s resource
controls. Even though resource management is reactive,
throttling is effective at ensuring that admitted requests
have sufficient resources to run to completion, and
termination is effective at isolating the regular load from
the misbehaving one.

5.2 Web-based Medical Education
To evaluate a real-world application running on Na Kika,
we compare the Surgical Interactive Multimedia Mod-
ules [43] (SIMMs) in their original single-server con-
figuration with an initial port to our edge-side comput-
ing network. The SIMMs are a web-based educational
environment that is being developed by NYU’s medi-
cal school. Each SIMM focuses on a particular medi-
cal condition and covers the complete workup of a pa-
tient from presentation to treatment to follow-up. It con-
sists of rich-media enhanced lectures, annotated imaging
studies, pathology data, and animated and real-life sur-
gical footage—comprising around 1 GB of multimedia
content per module. The five existing SIMMs already
are an integral part of the curriculum at NYU’s medical
school and are also used at four other medical schools in
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Figure 7: Cumulative distribution function (CDF) for la-
tency to access HTML content in the SIMMs’ single-
server and Na Kika cold and warm cache configurations.

the U.S. and Australia, with more institutions to follow.
The SIMMs rely heavily on personalized and multimedia
content but do not contain any real patient data (with its
correspondent privacy requirements), thus making them
good candidates for deployment on Na Kika.

The SIMMs are implemented on top of Apache Tom-
cat 5.0 and MySQL 4.1. They utilize JSP and Java
servlets to customize content for each student as well
as to track her progress through the material and the re-
sults of sectional assessments. To facilitate future in-
terface changes as well as different user interfaces, cus-
tomized content is represented as XML and, before be-
ing returned to the client, rendered as HTML by an XSL
stylesheet (which is the same for all students)2. The ini-
tial Na Kika port off-loads the distribution of multimedia
content, since it is large, and the (generic) rendering of
XML to HTML, since it is processor intensive, to our
edge-side computing network. Content personalization
is still performed by the central server; we expect that fu-
ture versions will also move personalization to the edge.

The port was performed by one of the main developers
of the SIMMs and took two days. The developer spent
four hours on the actual port—which entailed changing
URLs to utilize Na Kika, making XML and XSL con-
tent accessible over the web, and switching from cookies
to URL-based session identifiers as well as from HTTP
POSTs to GETs—and the rest of the two days debug-
ging the port. In fact, the main impediment to a faster
port was the relative lack of debugging tools for our pro-
totype implementation. The port adds 65 lines of code to
the existing code base of 1,900 lines, changes 25 lines,
and removes 40 lines. The new nakika.js policy con-
sists of 100 lines of JavaScript code.

To evaluate end-to-end performance, we compare the

2An earlier version relied on a custom-built Macromedia Director
client for rendering XML. It was abandoned in favor of regular web
browsers due to the extra effort of maintaining a dedicated client.

single-server version with the Na Kika port accessed
through a single, local proxy—which lets us compare
baseline performance—and with the Na Kika port run-
ning on proxies distributed across the wide area—which
lets us compare scalability. For all experiments, we mea-
sure the total time to access HTML content—which rep-
resents client-perceived latency—and the average band-
width when accessing multimedia files—which deter-
mines whether playback is uninterrupted. Load is gen-
erated by replaying access logs for the SIMMs collected
by NYU’s medical school; log replay is accelerated 4×
to produce noticeable activity. For the local experiments,
we rely on four load-generating nodes. For the wide-
area experiments, 12 load-generating PlanetLab nodes
are distributed across the U.S. East Coast, West Coast,
and Asia—thus simulating a geographically diverse stu-
dent population—and, for Na Kika, matched with nearby
proxy nodes. For Na Kika, we direct clients to randomly
chosen, but close-by proxies from a preconfigured list
of node locations. For the local experiments, the origin
server is the same PC as used in Section 5.1; for the wide-
area experiments, it is a PlanetLab node in New York.

The local experiments show that, under a cold cache
and heavy load, the performance of the single Na Kika
proxy trails that of the single server. Notably, for 160
clients (i.e., 40 instances of the log replay program run-
ning on each of 4 machines), the 90th percentile la-
tency for accessing HTML content is 904 ms for the
single server and 964 ms for the Na Kika proxy. The
fraction of accesses to multimedia content consistently
seeing a bandwidth of at least 140 Kbps—the SIMMs’
video bitrate—is 100% for both configurations. How-
ever, when adding an artificial network delay of 80 ms
and bandwidth cap of 8 Mbps between the server on
one side and the proxy and clients on the other side
(to simulate a wide-area network), the single Na Kika
proxy already outperforms the single server, illustrating
the advantages of placing proxies close to clients. For
160 clients, the 90th percentile latency for HTML con-
tent is 8.88 s for the single server and 1.21 s for the
Na Kika proxy. Furthermore, only 26.2% of clients see
sufficient bandwidth for accessing video content for the
single server, while 99.9% do for the Na Kika proxy.
As illustrated in Figure 7, the advantages of our edge-
side computing network become more pronounced for
the wide-area experiments. For 240 clients (i.e., 20 pro-
grams running on each of 12 machines), the 90th per-
centile latency for accessing HTML content is 60.1 s for
the single server, 31.6 s for Na Kika with a cold cache,
and 9.7 s with a warm cache. For the single server, the
fraction of clients seeing sufficient video bandwidth is
0% and the video failure rate is 60.0%. For Na Kika with
a cold cache, the fraction is 11.5% and the failure rate
is 5.6%. With a warm cache, the fraction is 80.3% and
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the failure rate is 1.9%. For Na Kika, accesses to mul-
timedia content benefit to a greater extent from a warm
cache than accesses to HTML, since PlanetLab limits the
bandwidth available to each hosted project.

5.3 Hard State Replication
To further evaluate end-to-end performance in the wide
area, we compare the performance of a single Apache
PHP server and the same server supported by Na
Kika running a modified version of the SPECweb99
benchmark. For this experiment, we re-implemented
SPECweb99’s server-side scripts in PHP and Na Kika
Pages. The single-server version relies on PHP be-
cause it is the most popular add-on for creating dynamic
content to the most popular web server [36, 37]. The
Na Kika version relies on replicated hard state to man-
age SPECweb99’s user registrations and profiles. With
clients and five Na Kika nodes on the U.S. West Coast
and the server located on the East Coast, 80% dynamic
requests, 160 simultaneous connections, and a runtime
of 20 minutes, the PHP server has a mean response time
of 13.7 s and a throughput of 10.8 rps. With a cold cache,
the Na Kika version has a response time of 4.3 s and
a throughput of 34.3 rps. Additional experiments show
that the results are very sensitive to PlanetLab CPU load,
thus indicating that Na Kika’s main benefit for these ex-
periments is the additional CPU capacity under heavy
load (and, conversely, that Na Kika requires ample CPU
resources to be effective). Our SPECweb99 compliance
score is 0 due to the limited bandwidth available between
PlanetLab nodes. Nonetheless, this benchmark shows
that Na Kika can effectively scale a complex workload
that includes static content, dynamic content, and dis-
tributed updates.

5.4 Extensions
To evaluate Na Kika’s extensibility, we implemented
three extensions in addition to the Na Kika Pages ex-
tension discussed in Section 3.1: electronic annotations
for the SIMMs, image transcoding for small devices, and
content blocking based on blacklists. As described be-
low, our experiences with these extensions confirm that
Na Kika is, in fact, easily extensible. In particular, they
illustrate the utility of predicate-based event handler se-
lection and dynamically scheduled pipeline stages. Fur-
thermore, they illustrate that developers can build useful
extensions quickly, even if they are not familiar with Na
Kika or JavaScript programming.

Our first extension adds electronic annotations, i.e.,
post-it notes, to the SIMMs, thus providing another layer
of personalization to this web-based educational environ-
ment. The extended SIMMs are hosted by a site outside
NYU’s medical school and utilize dynamically sched-
uled pipeline stages to incorporate the Na Kika version

of the SIMMs. The new functionality supports elec-
tronic annotations by injecting the corresponding dy-
namic HTML into the SIMMs’ HTML content. It also
rewrites request URLs to refer to the original content
and URLs embedded in HTML to refer to itself, thus in-
terposing itself onto the SIMMs. The resulting pipeline
has three non-administrative stages, one each for URL
rewriting, annotations, and the SIMMs. The annotations
themselves are stored on the site hosting the extended
version. This extension took one developer 5 hours to
write and debug and comprises 50 lines of code; it lever-
ages a previously developed implementation of elec-
tronic annotations, which comprises 180 lines of code.

In contrast to the extension for electronic annotations,
which represents one site building on another site’s ser-
vice, our second extension represents a service to be pub-
lished on the web for use by the larger community. This
extension scales images to fit on the screen of a Nokia
cell phone and generalizes the onResponse event han-
dler shown in Figure 2 to cache transformed content. The
extension can easily be modified to support other types
and brands of small devices by (1) parameterizing the
event handler’s screen size and (2) adding new policy
objects that match other devices’ User-Agent HTTP
headers. This extension took a novice JavaScript devel-
oper less than two hours to write and debug and com-
prises 80 lines of code.

Our third extension does not provide new functional-
ity, but rather extends Na Kika’s security policy with the
ability to block sites based on blacklists. Its intended
use is to deny access to illegal content through Na Kika.
The extension is implemented through two dynamically
scheduled pipeline stages. The first new stage relies on a
static script to dynamically generate the JavaScript code
for the second new stage, which, in turn, blocks access
to the URLs appearing on the blacklist. The static script
reads the blacklist from a preconfigured URL and then
generates a policy object for each URL appearing on that
blacklist. The onRequest event handler for all pol-
icy objects is the same handler, denying access as illus-
trated in Figure 5. This extension took 4.5 hours to write
and debug, with an additional 1.5 hours for setting up a
testbed. Since this extension represents the developer’s
first Na Kika as well as JavaScript code, the 4.5 hours
include one hour mostly spent familiarizing himself with
JavaScript. The extension comprises 70 lines of code.

6 Discussion and Future Work
As presented in this paper, Na Kika assumes that edge-
side nodes are trusted, which effectively limits the or-
ganizations participating in a deployment. To allow Na
Kika to scale to a larger number of edge networks and
nodes, we are currently working towards eliminating
this requirement by automatically ensuring the integrity
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of content served by our edge-side computing network.
Content integrity is important for producers and con-
sumers so that, for example, the results of medical stud-
ies cannot be falsified. It also is important for the op-
eration of the network itself, as scripts, including those
used for administrative control, are accessed through and
cached within Na Kika.

For original content, protecting against inadver-
tent or malicious modification reduces to detecting
such changes and then retrieving the authoritative ver-
sion from the origin server. However, using cryp-
tographic hashes, for example, through self-certifying
pathnames [24] as suggested in [13], is insufficient, as
they cannot ensure freshness. To provide both integrity
and freshness, we have already implemented an alterna-
tive solution that integrates with HTTP’s cache control
by adding two new headers to HTTP responses. The
X-Content-SHA256 header specifies a cryptographic
hash of the content for integrity and, to reduce load, can
be precomputed. The X-Signature header specifies
a signature over the content hash and the cache control
headers for freshness. Our solution requires the use of
absolute cache expiration times instead of the relative
times introduced in HTTP/1.1 [21] as nodes cannot be
trusted to correctly decrement relative times.

For processed or generated content, content integrity
cannot be established through hashes and signatures
alone, as content processing is performed by potentially
untrusted nodes. Instead, we are exploring a probabilistic
verification model. Under this model, a trusted registry
maintains Na Kika membership. To detect misbehav-
ing nodes, clients forward a fraction of content received
from Na Kika proxies to other proxies, which then re-
peat any processing themselves. If the two versions do
not match, the original proxy is reported to the registry,
which uses this information to evict misbehaving nodes
from the edge-side computing network.

7 Conclusions
Edge-side content management reduces load on origin
servers, bandwidth consumption across the internet, and
latency for clients. It also absorbs load spikes for under-
provisioned servers. To make these benefits available to
all content producers and consumers and thus to foster
collaboration and innovation on web-based applications,
Na Kika provides an open architecture for edge-side con-
tent creation, transformation, and caching.

Services and applications hosted by Na Kika are ex-
pressed through scripted event handlers. Event handlers
are selected through predicates on HTTP messages and
are composed into a pipeline that combines administra-
tive control and site-specific processing. The resulting
programming model is not only familiar to web devel-
opers versed in client-side scripting and the content pro-

cessing pipelines of Apache and Java servlets, but it also
is more secure and more easily extensible. To provide
security, Na Kika’s scripting pipeline mediates all re-
quests and responses passing through the system. Fur-
thermore, all hosted services and applications are iso-
lated from each other and the underlying operating sys-
tem and subject to congestion-based resource manage-
ment: hosted code can consume resources without re-
striction as long as it does not cause overutilization. To
provide incremental scalability, all Na Kika nodes are or-
ganized into a structured overlay network, which enables
DNS redirection of clients to nearby nodes and coop-
erative caching of both original and processed content.
The experimental evaluation demonstrates that Na Kika’s
prototype implementation is effective at reducing load on
origin servers and latency for clients, supporting signifi-
cantly larger user populations than a single dynamic web
server. It also demonstrates that Na Kika is, in fact, easily
programmable and extensible.
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