
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1st Conference on Network Administration
Santa Clara, California, USA, April 7-10, 1999

Just Type Make! Managing Internet Firewalls

 Using Make and Other Publicly Available Utilities

Sally Hambridge, Charles Smothers, Tod Oace, and Jeff Sedayao
Intel Corporation

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Just Type Make! - Managing Internet Firewalls Using Make and other
Publicly Available Utilities

Sally Hambridge
Intel Corporation
Charles Smothers
Intel Corporation

Tod Oace
Intel Corporation

Jeff Sedayao
Intel Corporation

Abstract

Managing Internet firewalls that can failover between
each other is quite a challenge. When those firewalls
are geographically dispersed and have a small number
of people to be maintain them, it becomes even more
challenging. Intel Corporation has a small staff that
manages several geographically dispersed Internet
firewalls with failover requirements. These firewalls
use a standard screened subnet architecture [1] with
packet filtering inner and outer firewall routers and a
number of bastion hosts between them. These bastion
hosts provide services with load balancing and disaster
recovery for relaying SMTP mail, answering DNS
queries, and proxying web requests. To manage this
complex system of firewalls, Intel’s Internet
Connectivity Engineering staff have come up with a
way to model all of the interrelated firewall as one
distributed system. Host and router configurations are
considered source to that system and compilation and
installation of that source is driven by the Make [2]
utility. Packet filtering Access Control Lists (ACLs)
are built by a Makefile. The Makefile assembles the
ACLs and executes an Expect [3] script that installs
them. We configure bastion hosts by configuring
Make to drive rdist , which run over the secure shell
(SSH) [4]. In this way, only updated files are pushed
out to the bastion hosts and passwords and other
configuration information do not go in the clear. Our
experiences with Make and these publicly available
utilities are quite good - allowing us to manage a large
distributed set of firewall devices. Using a Make
driven approach requires much discipline, however, to
avoid the distribution of bad configurations. Future
plans include ACL optimization and sanity tests before
and after bastion host configuration pushes.

1. Introduction

Managing a single Internet firewall complex can be
difficult - there can be multiple routers with long
packet filtering access control lists (ACLs) and bastion
hosts performing different functions that all must work
together seamlessly, efficiently, yet securely.
Managing multiple Internet firewalls which interact
with each other and provide failover capability
between each other while maintaining both security
and some comparable level of performance becomes
even more challenging. The Internet Connectivity
Engineering Group at Intel has created a way to
manage multiple interacting Internet firewall
complexes spread across the world using the familiar
utility – Make utility. This paper describes how Intel
integrated make with other publicly available tools to
administer multiple firewall complexes across the
world.

The first section of this paper talks about the firewall
environment at Intel. It describes the key features of
the Intel Internet firewall environment and the
challenges that that led us to create our Make-based
configuration tool. The second section covers how we
overcame those challenges by implementing a Make
driven configuration tool. The architecture of the
Make tool and the publicly available utilities in our
implementation are described here. The third section
of the paper goes over our mostly positive experiences
with our make driven update process, followed by a
final section on future work that we are planning.

2. Intel’s Internet Firewall Environment

It is impossible to understand how and why we created
our Make driven update tools without understanding
Intel's Internet firewall environment. In this section,

we provide context for our Make tools by describing
the Internet connectivity at Intel. We also talk about
the key motivating factors that led us to create these
tools.

The standard Intel Internet gateway uses the screened
subnet architecture [1], as shown in Figure 1. Multiple
bastion hosts lie between a external outer router and an
internal inner ("choke") router. These bastion hosts
provide a variety of functions, such as web service to
the Internet, SMTP mail relaying, proxy services (web,
telnet, FTP, AOL, etc.), and performance monitoring.
Outside of the external router is a segment for ISP
access. Multiple ISPs have a presence (routers) on this
segment and exchange traffic with the bastion hosts
through the external router. Both the external router
and internal "choke" router do extensive packet
filtering. The packet filters prevent generic access to
the bastion hosts from the Internet. The packet filters
allow access to the bastion servers from hosts within
Intel, but do not allow generic access from the bastion
hosts into Intel. This is our implementation of
"defense in depth." A single compromise of a bastion
host does not mean that there is complete entry into
the heart of Intel

Figure 1: Intel’s Firewall Architecture

 Internet

.

 Intel Network

There are multiple Internet gateways at Intel, each
with two or more ISPs, spread across the world. Our

intention was to minimize the amount of traffic on
Intel's internal network and get good performance for
Internet applications. We also wanted to have
multiple gateways for failover. If one Internet
gateway failed, traffic should be able to flow in and
out through another gateway.

Intel's firewall environment, as described above,
presents a number of challenges to the staff
maintaining and engineering the gateways. The first
set of challenges involved the cisco routers. We had
to find some way to maintain the Cisco Router packet
filtering access control lists (ACLs) used on the inner
and outer routers to permit failover. If one site's
Internet connectivity went away, the packet filtering
ACLs at other sites need to be able to allow traffic for
that bastion hosts at the first sites to flow in and out.
Even if there was failover, the router ACLs need to be
consistent between sites. If a bastion host has a
particular kind of access at its site, it should still have
that access if traffic needs to fail over to another
gateway. In addition, we have large numbers of cisco
ACL entries. While these entries have to be consistent
between gateways for failover, we have to arrange the
entries to offer good performance. To make things
even more challenging, if we had a problem with the
ACLs we rolled out, we need some easy way to
backup the changes.

The second set of challenges involves the bastion
hosts. These hosts contain all kind of tables and
configuration files like anti-spam lists, sendmail
configuration files, and performance monitoring
information. We need this information to be consistent
between sites, in order to make maintenance easier and
to have consistent access policies and DNS databases.
It would not make any sense for one Internet gateway
to have very strict anti-spam rules and another to have
very loose policies. As with router ACLs, any changes
in configurations need to be easy to back out, in case
there are problems. Since the bastion hosts are on a
segment exposed to the Internet, we are extremely
concerned about problems with eavesdropping and
spoofing. Any kind of updates to these hosts needs to
verify the identity of originating hosts and be secure
from eavesdropping and spoofing.

The final set of challenges involved the staff
maintaining the Internet gateways. There are 7
Internet gateways spread around Intel but fewer people
than that responsible for engineering and maintaining
them. We needed an easy way to update many hosts
and routers. Any personnel intensive update method
would not be viable in this environment.

Inner Router

Outer Router

ISP 1 ISP 2

Bastion Hosts
in a DMZ

3. Solving our Maintenance Challenges
using Make

The first step toward solving our maintenance
challenges was coming up with a conceptual model for
our Internet gateways. We knew that they were not
stand-alone systems - instead they were interconnected
and interrelated. Each gateway is an interconnected
part of a single integrated system. Traffic from one
gateway had to be able to travel through another. Mail
servers must have consistent configurations to relay
mail and block spam effectively. DNS servers must be
consisent in order to provide DNS information
correctly. Once we began thinking of the gateways as
a single integrated system, we started looking at
system and router configurations as source code with
various compilation dependencies that is fed into that
single yet distributed machine. With that model in
mind, what better utility to manage source code
compilation and installations than the classic utility
Make!

Once we had a model for managing our
configurations, we had to implement configuration
management for the routers and for our bastion hosts.
A key part was figuring out how to break down the
configurations into units small enough to manipulate
and build Makefile dependencies with them. The rest
of this section describes how we split up
configurations and used Make as a way of building
configurations and installing them. The first part
shows how router ACLs are managed with Make. The
second part deals with managing server configurations.
The final part describes how we manage our
configuration files on the systems that build and install
configurations.

3.1 Managing Router ACLs using Make

Since a key requirement is that traffic from any
gateway within Intel must be able to go into and out of
any other gateway for failover, being able to manage
the interchangability of router ACLs is critical.
Imagine creating ACLs for a firewall complex. You
have to deal with the services and well known ports for
traffic coming in and for traffic going out. In addition,
a gateway may have some special applications running
in it to support external customers. Now imagine a
second gateway with mostly the same and then
merging the two sets of access lists. Doing this by
hand for two firewall complexes is difficult. Doing
this by hand for eight firewall complexes would be
totally unmanageable.

We simplified this task by breaking down ACLs into
files containing the permissions going out to each
segment and coming in from each segment. By
segment, we mean a subnet or network that forms a
DMZ network between the inner and outer routers.
The firewall architecture shown in Figure 1 shows a
single segment with bastion hosts on it. In our
architecture, the inner firewall router and outer
firewall router each have one interface onto each
segment.

We created a naming scheme based on the
directionality and the router name. Thus Intel-to-
router1-seg1 contains router ACLs pertaining to traffic
from Intel to segment 1 on router 1. router1-seg1-to-
Intel contains router ACLs for segment 1 on router 1 to
Intel. router1-seg1-to-Net contains ACLs for segment
1 on router 1 to the Internet while Net-to-router1-seg1
contains ACLs for the Internet to segment 1 on router
1. For simplicity's sake, all files are named for the
outer firewall router in each complex. As a way of
illustrating how this can work, let’s say that there are
three geographically dispersed firewalls that need to
failover between each other, as shown in Figure 2.
The arrows depict traffic going in and out of each
firewall to the Internet or to Intel’s Internal network.

Figure 2: Three firewall complexes with failover

In this example, we have named each firewall by its
outer router name. Each firewall could contain any
number of segments (which are not explicitly shown
here). If the Router 1 firewall should lose its
connectivity to the Internet, then its traffic to and from
the Internet should be able to travel through the Router
2 or Router 3 firewalls. If the Router 2 firewall lost its
Internet connectivity, then Router 2 traffic should be

Router 1
Firewall

Router 2
Firewall

Router 3
Firewall

Intel
Network

Internet

able to failover through the Router 1 and 3 firewalls.
The same should happen for Router 3.

For each segment, we group the ACLs together that
apply to traffic going in a particular direction. For
example, all of the ACL entries applying to traffic
from the segment into Intel are grouped together. All
of the ACL entries applying to traffic from Intel to the
segment are put in another group. Each group is put
into a separate file. For each firewall, we can
concatenate all of the files together into one large file
containing all the permissions for that firewall. We
also concatenate the files from any other firewall
complex needing failover capability through the first
gateway. For our example, assuming that each firewall
complex had only one segment, we would concatenate
together the following files for the outer firewall
routers: Net-to-router1-seg1, Net-to-router2-seg1, Net-
to-router3-seg1, router-seg1-to-Net, router2-seg1-to-
Net, and router3-seg1-to-Net. The inner router at
router1’s firewall complex would include all of these
files but also router1-seg1-to-Intel and Intel-to-router1-
seg1. The inner router at router2’s firewall complex
would have all of the outer firewall files but also
router2-seg1-to-Intel and Intel-to-router2-seg1. The
inner router at router3’s firewall would use a similar
configuration except using router3-seg1.

Routers check packet filtering ACLs one line at a time
and stop checking when they find a match. Having the
lines most matched at the top speeds the traffic
through ACLs and through the router. Because of this,
we want the large file of concatenated ACLs to be in a
different order depending on the gateway. For the
router1 firewall, we'd like the files for router1 to be
first in the list. For the router2 firewall, the files for
router2 should be at the top of the concatenated ACL
file, and similarly for the router3 firewall. We've done
this by defining sets of macros for each firewall
gateway which contain the files going in or going out.
INFROMNET_GW1 contains Net-to-router1-seg1, and
if there is any other segment on router2 (such as seg2),
Net-to-router2-seg2. OUTTONET_GW1 contains
router1-seg1-to-Net and if there is any other segment
on router2 (such as seg2), router2-seg2-to-Net.

We then define a macro in the Makefile containing the
macros of all the files for all the routers needing
failover through that firewall:

GW1_OUTER = ${OUTTONET_GW1} \
${INFROMNET_GW1} \
${OUTTONET_GW2} \
${INFROMNET_GW2} \

${OUTTONET_GW3} \
${INFROMNET_GW3}

GW2_OUTER = ${OUTFROMNET_GW2}\
${INFROMNET_GW2} \
${OUTTONET_GW1} \
${INFROMNET_GW1} \
${OUTTONET_GW3} \
${INFROMNET_GW3}

If there are special permissions in GW1 which don't
need failover, it is easy enough to add the file name
with those permissions to the gateway macro. Here we
add a special set of permissions for a segment 0 on
router1:

GW1_OUTER = Net-to-router1-seg0 \
${OUTTONET_GW1} \
${INFROMNET_GW1} \
${OUTTONET_GW2} \
${INFROMNET{GW2} \
${OUTTONET_GW3} \
${INFROMNET_GW3}

If there are files to be included in every gateway, it is
easy enough to define a "generic" macro which
contains those files:

GENERIC_IN = generic-in monitor-in
GENERIC_OUT = generic-out monitor-out

The actual concatenation is defined by the target
router-access. That target takes as its dependencies the
gateway macro and the generic ones. It cats them
together, throws them through some processing the C
preprocessor and some custom filters (we will discuss
this in more detail in section 4) and concludes by
appending "end" at the bottom of the concatenated
files.

Router1-access: ${GW1_OUTER} ${INTELNETS}
cat ${GW1_OUTER} | ${CPP} \

${ROUTER1DEFS} | \
intel_nets_convert ${INTELNETS} \
> router-access

echo ‘end’ >> router1-access

Finally, the target router1-access-install takes router-
access as a dependency, but before it re-loads the
ACLs, it also runs an Expect [3] script which pulls the
current ACLs off the router and stores them with their
associated counters. Cisco routers maintain a count of
how many packets have matched each line of the
ACL. The counters are reset each time new ACLs are
loaded. In order to acquire data about the use and
efficiency of our access-lists, we download the current
set of ACLs before we upload the new set. Both of

these operations are done via Expect scripts which log
into the router interactively, then either write out the
current set of ACLs to the server and load the ACLs
from the server to the router.

router1-acl-stats:
/usr/local/expect/get_acl_stats router1

router1-access-install: router1-access, router1-acl-stats
cp router1-access /tftpboot
/usr/local/expect/load_up router1
rm /tftpboot/router1-access

Recording our ACL usage has been useful for
simplifying ACL maintenance. With data on which
statements are used and which are not, it is easier to
identify usage which is no longer needed. It's amazing
that users will gladly follow a process to allow them
access but develop amnesia when they need to follow
a process to end that same access. Intel employees
have also requested access to external applications for
all of Intel and then have not publicized the
availability, so these are never used as well. We
remove access when the lines show no activity for
three months.

The flexibility of Make allows us to use many utilities
and programs as part of our process. In the example
just shown, we used shell commands, expect, and
PERL (within the intel-nets-convert program which we
will discuss later) in order to build and compile router
ACLs.

3.2 Bastion Host Management using Make

Intel's Internet gateways contain bastion host services
such as DNS, SMTP mail relaying, and Internet access
proxying. Maintenance of these services shares many
of the same requirements as Intel's firewall routers.
The services are mission critical and call for a high
level of care when changes are made. In addition they
also back each other up during outages and provide
load balancing, thus requiring consistent configuration
among hosts. Make drives our bastion host
configuration too, as we will describe in this section.

One of the core ideas we utilize at Intel is called
"Copy Exactly!" Once a product or facility is
designed for a specific purpose, it should be deployed
identically everywhere. It should not be redesigned
and rebuilt every time it is deployed. Adhering to this
ideal helps our chip fabrication plants come up to
speed rapidly and produce very high yields. In the
Information Technology (IT) space, particularly in the
network and server space, it helps us create rapidly
deployable services with lower maintenance. More

specifically, it helps us successfully maintain 43 (and
growing) geographically diverse bastion host servers
with a staff of three engineers, and even leaves them
time to work on lots of other things.

The key to our success is in doing things very
efficiently and very carefully. We use a central
secured server which holds several configuration file
distribution trees. One tree contains the base operating
system for all of our bastion hosts. Additional
distribution trees such as dns and sendmail exist for
each type of bastion host application. All distribution
trees are as similar to each other as possible. The
directory layouts are similar, and the commands to
check and install changes are the same, thanks to a
commonly included Makefile.inc file. Finally, access
to the distribution server is granted to only those who
need access. Our Makefile automatically generates
what configurations are necessary, logs in to systems
that need to change, and loads the configurations.

With our centralized build in place as a reference, we
needed a method to keep all our servers in sync with
the reference. Ease of use was very important.
However, even more important, was to manage the
servers securely. Building a system that could meet
both of these requirements was a key challenge. We
were already accustomed to managing the servers by
logging in, hand editing, and setting the permissions
and ownership on critical files. Keeping this familiar
model would make the management task easier for us
and any future administrators. We needed a tool that
could clone entire directory trees between several
machines. By using rdist , we could build and develop
the master directories on the central management
server. Then, we would clone the reference directory
tree onto the remote servers.

This solved the ease of use problem. Now, we needed
to determine how to use rdist without compromising
the security of the remote server. In order for remote
management to work, each remote server needed to be
configured to allow our central management server to
gain root access. It must do it in such a way that could
not easily be exploited by anyone other than the
central management server. We needed strong
authentication, to avoid such things as IP spoofing.
We needed strong encryption to avoid things like
password snooping. Fortunately, rdist supports the use
of alternatives to the rsh program. We found that
secure shell (SSH) [3] worked well this purpose. It
can use host-based public/private key authentication,
so that only our central management system, with the
right private key can gain access. It also uses

encrypted sessions to prevent someone from sniffing
out a cleartext password, or connection hijacking.

Additionally, rdist allows for minor differences
between servers. During the design of our system, we
considered using rsync, which also supports ssh, but it
lacked this last feature.

Architecturally, our bastion host distribution scheme is
shown in Figure 3:

Figure 3: Bastion Host Distribution Architecture

Make controls rdist, which is implemented to run over
SSH. The combination of Make, rdist, and SSH work
very well to allow the centralized management of
remote UNIX servers.

When used to manage the remote servers, Make causes
several operations to occur. It builds the distribution
files, which our network installation process uses. It
warns us about which files would be replaced or added
on each server being targeted. And finally, it pushes
the changes out.

Our network installation process allows us to build
new servers very easily. A boot floppy is all that is
needed to create or rebuild any of our managed
servers. To accomplish this, there must already be
several tarred and gzipped build files present on the
central management server. These build files contain
the latest server configurations and must be rebuilt
whenever a change is made in the corresponding
configuration directory tree. During the process of
engineering a new set of configurations, we try to
minimize the time required to build these files.
Putting each set of configurations into its own
directory and having a Makefile at the top of that
directory forces only those directory trees containing
changes to have their corresponding build files
remade.

To minimize the number of files pushed out to any
given host, rdist compares the sizes and timestamps of

the target files. Only those files needing to be updated
will cause a file to be replaced on the target server.

When we make a change, we carefully change a
central distribution tree and then run a distribution
check to verify what we are about to change. The
check is done with a "make check" command. This
check does two very important things. It allows one to
verify that right things were made in the distribution
tree. It also points out any other changes that have
been made either to the distribution tree or to the
bastion hosts. It is possible a colleague is working on
one of the bastion hosts or someone is making changes
that should not be made. Whatever the case, all
changes to be made should be understood before they
are implemented. We implement this check by
invoking rdist with an option that just prints what must
change.

When changes are well understood, they are installed
with a "make install" command. This command is
almost the same as the "make" check command,
except that the Makefile calls upon rdist to actually
distribute changes rather than just verify and report
changes.

Sometimes special things need to happen before
distribution, such as running M4 to generate a new
sendmail.cf file. And sometimes things need to be
distributed in a special way, such as when sending
different versions of password files to different sites.
These customizations are easily accommodated in the
distribution tree's Makefile and Distfile.

We gain enormous flexibility by using make and rdist,
and yet we're still able to maintain a simple and
consistent interface throughout our entire distribution
mechanism. This makes our distribution system
powerful while being easy to use.

3.3 Managing Router and Bastion Host
Configuration Files

The way we manage configuration files lets us back
out change if we need to. Back-outs to changes are
implemented in the same way as normal changes. A
previous version of a file is re-installed into a
distribution tree, then it is distributed just like any
other file would be.

We often use RCS to assist us in coming up with the
previous versions of files. RCS gives us past versions
of files as well as their history information. RCS
directories and files may be embedded into the

Make

rdist

ssh

distribution trees where they are easy to get at and use.
They are automatically ignored by the distribution
mechanism, in particular by using

except_pat(.*,v RCS)

in the rdist’s Distfile. This minimizes the amount of
files copied and keeps configuration distribution as
fast as possible.

4. Experiences with the Make Approach

For the most part, using Make to control and manage
our configurations has allowed us to overcome the
maintenance challenges of our environment. We
manage all of our bastion host configuration and router
configurations from a few central systems.
Management of configurations has become
tremendously faster and more consistent. We no
longer have to guess what files we need to install on
systems after something has changed. When files need
to be installed, we no longer have to copy individual
files to individual systems. Instead, a command like
"make install" automatically figures out what files
have been changed, installs those files, and runs
whatever utilities are necessary to configure the end
system. With our router management, we no longer
have to individually log into routers and type in
configuration commands or download new
configurations.

One of the greatest advantages to this system of ACL
maintenance is that the individual files can be put
under a revision control system such as SCCS or RCS.
(We use RCS). Each change made can be noted in
comments and also noted in the version control log.
Keeping this history allows us quickly to answer
questions such as when various changes were or what
was changed on a particular date. It also allows us to
compare older versions of the files so that changes can
be tracked easily.

We have implemented macros to save typing. Intel is
not fortunate enough to have a Class A. Instead, we
have many Class Bs and Class Cs. Additionally, we
are making increased use of private IP space [5]. We
have several gateways that provide secure
communications between Intel and other companies.
This means that our access-lists from Intel into the
DMZs cannot use "permit any" (0.0.0.0
255.255.255.255) because that would allow transit
traffic from our business partners through our Internet
connections. To prevent this, we have a list of about
twenty networks which we have to allow into our

DMZs. Instead of coding these into each ACL and
having to change each ACL when a new network
comes up, we maintain a list of these networks that are
incorporated into the ACLs via a macro. The list is in
a file called intel-nets. The macro expands the
variable INTEL_NETS by running a PERL program
that takes the appropriate line of the ACL and replaces
the INTEL_NETS variable with each network in the
intel-nets file.

Our Make driven maintenance has allowed us to scale
up the number of firewall complexes at Intel. Our
group originally only managed one firewall complex.
Now we manage eight and are adding even more.
Only with a tool like Make could we manage to scale
the number of firewalls with the constraints we have.

The design has proven to be quite robust. We have a
commitment to provide 99.95% connectivity to
www.intel.com. We can do this because our ACLs
allow traffic to fail-over from one gateway to another.
We can also lose an entire Internet gateway (both
providers or firewall routers) and still get Intel's traffic
out to the Internet and back from the Internet in a way
we're sure is secure. Yes, ACLs are long, but since
they're optimized, most traffic gets through the routers
without encountering long processing times.

Our Make based distribution system is a very powerful
tool. It can distribute problem solving router and
bastion host configurations all across the world. It can
also distribute problem-creating configurations all
across the world! In any case, this tool requires great
discipline.

One problem we occasionally face is when one of our
engineers is making changes on a bastion host, but not
to the distribution tree on the central server. There can
be some very good reasons for this, such as when new
software is being tested. It is still a problem because it
makes it hard to maintain consistency between the
distribution tree and the actual files on the servers. The
solution here is always to have staff members check,
confirm, and resolve any problems before actually
distribute changes. If a bastion host needs to be
different for an extended period of time, it should be
pulled out of the distribution tree(s) and possibly
added to new distribution trees. The powerful nature
of this distribution system makes it important to
maintain consistency from day to day so each new
change receives as much focus as possible.

Being able to quickly and easily push out changes can
be a problem. Incorrect changes can be pushed out

everywhere on all bastion hosts and routers, resulting
in havoc. Before any change of significance is widely
implemented, it is important...CRUCIAL...to make
sure that it works beforehand. Disciplined preparation
is required before you "just type make."

Changes, especially new versions of packages, should
be pilot tested on one bastion host before they are
rolled out to all bastion hosts. A new distribution tree
should be created when installing a new package. A
pilot server can be pulled out of the old package tree’s
distribution list and added to the new tree’s
distribution. As the pilot progresses, servers can be
migrated from the old to the new tree.

Currently, educational use and charity use of the
secure shell protocol is allowed free of charge.
However, commercial use requires that you license
each server. Have your lawyers visit
http://www.ssh.fi/sshprotocols2/licensing/ssh2_non-
commerical_licensing.html. Additionally, SSH can use
any of several encryption ciphers, including idea, des,
3des, rc4, and blowfish. It can also use RSA public-
private key pairs. There may be additional restrictions
on the use of these ciphers and authentication methods
depending on location.

 We have occasionally encountered problems with
Make, in that the Makefile itself will have the
"dreaded spaces rather than tabs" problem. Sometimes
we will find a space at the end of a line, but these are
usually easy to diagnose. We have also changed the
Makefile without touching any of the files and been
told that targets are up-to-date. A little "touch" here
and there solves that particular error.

5. Future Plans

We plan a number of extensions to our make driven
update system, for both router configuration and host
configuration. With router configuration, we currently
have a way to optimize our router access lists, but this
technique is manual. We would like a way to do this
automatically – feeding the ACL usage data into a
program and having optimized ACLs emerge, along
with a list of ACL entries that can be deleted. We
would like to be able to handle cisco’s named access
list feature. Currently, our scripts cannot deal with
named access lists, only numbered. Also, we would
like to generate the entire router configuration (not just
the ACLs) from a template. That would allow us
much greater standardization of router configurations
and make it faster to bring up new gateways.

Another item that we wish to improve is the way we
change our router configurations. Currently, our
scripts log into the same way as a network
administrator would – telnet to the router, get enable
privileges, make changes, and then log off. Clearly
this approach has problems as telnet sessions traverse
DMZs. Using enhanced security features like
Kerberos should improve the security of our router
change processes.

With host configuration, we mentioned how it was
easy to push out an error-ridden configuration to all of
our bastion hosts. We would like to implement some
sanity checks that would check configurations for
common errors before they were pushed out and then
run immediate checks after they are installed. This is
particularly important when maintaining DNS tables.
This way, we would notice if we pushed out a change
that somehow damaged key DNS records at Intel.

6. Conclusions

Our experiences show that Make can be an effective
way to maintain and administer firewalls. Intel
Corporation manages a number of geographically
dispersed firewall complexes that failover between
themselves, including both router packet filtering
access lists and bastion host configuration, using Make
driven configuration. While this approach requires
discipline to use (it is just as easy to push out a bad
configuration as well as a good configuration), “just
typing Make” solves many of the challenges of
administering distributed yet interacting firewalls.

References

[1] Chapman, D. Brent and Elizabeth Zwicky.
Building Internet Firewalls. O'Reilly and
Associates, Inc., Sebastopol, CA 1995. pp. 66.

[2] Oram, Andrew and Steve Talbot. Managing
Projects with Make. O'Reilly and Associates, Inc.,
Sebastopol, CA 1991.

[3] Libes, Don. Exploring Expect. O’Reilly and
Associates, Inc. ., Sebastopol, CA 1995.

[4] SSH Home page. http://www.ssh.fi/

[5] Rekhter, Y., B. Moskowitz, D. Karrenberg, G.J. de
Groot, E. Lear. “Address Allocation for Private
Internets.” RFC 1918, February 1996.

