
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1st Conference on Network Administration
Santa Clara, California, USA, April 7-10, 1999

Don't Just Talk About the Weather—Manage It!

A System for Measuring, Monitoring, and Managing

Internet Performance and Connectivity

Cindy Bickerstaff, Ken True, Charles Smothers,
Tod Oace, and Jeff Sedayao

Intel Corporation

Clinton Wong
@Home Corporation

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Don't Just Talk About The Weather - Manage it! A System for Measuring,
Monitoring, and Managing Internet Performance and Connectivity

Cindy Bickerstaff, Ken True, Charles Smothers, Tod Oace, Jeff Sedayao
Intel Corporation

Clinton Wong
@Home Corporation

Abstract

In an environment where Internet access is mission-
critical, Intel has created the Internet Measurement
and Control System (IMCS) with three objectives: 1)
Devise quantitative measures of Internet performance;
2) Monitor those metrics to detect performance prob-
lems before customers and employees start calling;
and 3) Enable first line support in the Network Opera-
tions Center (NOC) to handle as many problems as
possible without having to escalate to network engi-
neering staff. Intel implements IMCS by measuring
key statistics of ping measurements, HTTP GETs, and
router accounting tables. Boundary conditions are set
up for the key statistics, and alerts are sent if those
conditions are exceeded. The NOC personnel that
receive the alerts use predefined scripts for each kind
of alert. To make IMCS accessible to all and very
usable, IMCS presents all of its information on the
Web. Even network debugging tools like ping and
traceroute are accessible through web interfaces.
IMCS has proven successful in detecting problems and
changes in the Internet infrastructure, although prob-
lems have been encountered because of IMCS’s active
measurement techniques. Future improvements to
IMCS include fixing the configuration format of
boundary condition definitions, adding more services
to be monitored, increasing the use of passive meas-
urements, and improving how alerts are reported.

1. Introduction

Internet Performance is like the weather - people talk
about it but feel helpless to do anything about it. But
you can do something about it! Like many large mul-
tinational corporations, Intel has many thousands of
employees and contractors who use the Internet
through Internet gateways dispersed through the US
and the world. Despite a massive investment in Inter-
net Connectivity, Intel had no quantitative measure-
ment of whether its Internet connections were per-
forming well or poorly. In addition, Intel has a Net-
work Operations Center manned 24x7 but only a

limited number of engineers working on Internet Con-
nectivity issues. In this environment of heavy use, no
quantitative performance data, and small amount of
staff, Intel created the Internet Measurement and Con-
trol System (IMCS) with the following objectives:

• Devise quantitative measures of Internet perform-
ance

• Automatically monitor those metrics to detect
performance problems before customers and em-
ployees start calling

• Enable first line support in the Network Opera-
tions Center to handle as many problems as possi-
ble without having to escalate to the Internet net-
work engineering staff

This paper describes how Intel built IMCS to meet
these goals and how well IMCS can help in managing
Internet performance. The first section details the
challenges that lead us to create IMCS. It talks about
Intel's Internet Connectivity environment and the key
goals of IMCS. The second section goes over the
IMCS approach - the techniques used to quantitatively
measure Internet performance and our strategy to pres-
ent that information and make it usable. The third
section details how we implemented IMCS. It talks
about specifically about our performance measure-
ments, measurement architecture, and user interface
design and implementation. The next section talks
about Intel's experiences with IMCS, and the last sec-
tion talks about our plans to enhance IMCS.

2. The Challenge of Internet Performance
Management

Prior to the initial deployment of the IMCS in mid-
1997, Intel’s Internet use focussed on the use of Intel’s
corporate presence server (CPS) by external customers
and on the use by employees for business use and rea-
sonable personal use. The availability of the Internet
had become a critical part of standard business proce-

dures much like a fax or a telephone. Since IMCS has
been deployed, the criticality of the Internet has en-
tered the Intel business processes for more than a bil-
lion dollars per month at our order placement eCom-
merce site. [1] These business procedures extend
across all of Intel’s customers, groups and divisions
around the world. Multiple geographically diverse
gateways have been deployed across Intel. Consistent
access policies to these gateways’ routers, servers and
bastion hosts have been implemented. A tiered and
scripted support approach was developed to address
the requirements for 24x7x365 coverage, restricted
secure access and limited Internet Connectivity staff.
Skilled NOC staff were already available 24x7x365 for
Intel network business needs and were the designated
resources for first level support for Intel’s Internet
connectivity.

Now that the Internet has become a critical business
tool, the following IMCS goals were established to
meet the challenge of managing its performance:

• Define quantitative measures of Internet perform-
ance that can be used to manage connected ISP
performance and track/act on levels of service de-
livered to external and internal customers.

• Detect performance problems before customers
start calling to complain of performance problems

• Enable first line support to consistently and se-
curely resolve as many problems as possible.

3. The IMCS Approach

Intel's approach to managing Internet performance is
fairly straightforward. First, we want to quantitatively
measure Internet performance. To do that, we define
quantitative performance metrics corresponding to real
performance issues and then consistently measure
them. Once we have defined metrics and measure
them, we monitor Intel's Internet gateways for when
the measured values of the metrics violate some
boundary condition for good performance. When a
boundary violation is detected, the Intel NOC goes
through carefully scripted actions in order to find the
problem and contact our ISPs if necessary.

It's worth discussing this quantitative approach in a
little more detail. The core of this approach is to ob-
tain performance data, process it with an algorithm
that includes comparison to usual performance and act
when unusual performance is detected. Action takes
place once the data demonstrates unusual behavior.

Note that all parts of this process are critical. Actions
are based on quantitative data. The data should be
meaningful, reflecting in some way real Internet con-
ditions. Comparison to usual performance or “limits”
is important. We need a defined trigger for taking ac-
tions when a performance variable exceeds a limit.
Otherwise, we may take actions when conditions do
not warrant it (false positive) or not do anything when
conditions demand it (false negative). Finally, actions
are important. There is no point in measuring some-
thing if you are not going to act on the data.

The second part of Intel's approach involves the way
IMCS presents information. All of IMCS is accessible
from the Web by everyone at Intel. We do not hide
our performance information since Internet perform-
ance affects almost everyone at Intel. All of the de-
bugging tools like traceroute and ping and the trouble-
shooting scripts are made available to Intel's NOC
(and everyone else) via the Web. Again, we do not
hide performance behind some management console
available only to a few people. This gives us incentive
to do a good job with Internet performance. It also can
be a convenient time saver. When there are questions
about Internet performance, we have the ability to an-
swer those questions with a URL showing the actual
performance.

As part of the web display of performance, we graph
our performance variables. This makes its easier for
people to understand, rather than presenting raw data.
There are a number of advantages to making our Inter-
net debugging tools web based. Since they are web-
based, our NOC and other interested parties do not
need log in access to routers in order to debug prob-
lems. Also, the complexity of running certain debug-
ging tools is reduced by allow users to execute the
tools by filling in web forms and hitting a button.

4. Implementing IMCS

Now that we have described our approach to Internet
performance monitoring, we will go over how we im-
plemented it with IMCS. The first part of this section
covers how we defined summary statistics for per-
formance, what algorithms we used to determine
whether boundary conditions were violated, and our
statistical treatment of network performance data. The
second part describes how we implement the user in-
terface to IMCS – the alerting and web interfaces. The
last part goes over some other implementation high-
lights such as implementation languages used and con-
figuration interface design.

4.1. Creating Quantitative Measures of
Internet Performance and Setting Bound-
ary Conditions

As we mentioned in the discussion of our approach,
IMCS measures various network performance metrics
and trigger alarms when the data exceeds some thresh-
old. But what metrics does it look for and why? How
are boundary conditions triggered? What values of the
data set off the triggers? In this section, we answer
these questions about the IMCS implementation. First
we talk about the types of measurements that we take.
After that, we talk about how we summarize the data
we collect and how determine if performance has
slipped out of our boundaries for acceptable perform-
ance. We will briefly discuss the use of robust statis-
tics in the network performance space and then discuss
how all of the data collection, analysis, and out of
bounds checking modules work together.

4.1.1. Types of Network Metrics

IMCS has three distinct modules it uses to measure
network performance: Timeit, IP Stats, and Imeter. In
this section, we discuss these collection agents that we
use. For each module, we will talk about how we
collect network performance data with it, why we use
this module, and what metrics we derive with it.

Before moving on to what we measure, we should
mention how the IMCS measurement systems are po-
sitioned. A system within each firewall complex does
the network performance measurements and displays
the results on the web. As a result, IMCS monitoring
at each gateway is independent from another, and the
system keeps functioning if one or more Internet gate-
ways are unavailable.

4.1.1.1. The Timeit Module

Timeit [5] is the name of a Perl script which fetches
web pages from a specified list of URLs and then pro-
vides summary information about the transfers. Timeit
is also the name of the IMCS module that uses the
timeit script to determine performance of web con-
nectivity between Intel and the rest of the world.
Since a vast amount of Internet use is web use, meas-
uring HTTP Get operations gives us some idea of how
the Internet functions for users of our web sites and for
our internal users use of the Internet.

Many pieces of information are collected from each
set of URLs fetched. For each URL, we measure the

length of time it takes to perform a DNS lookup of the
site we will access and the time it takes to setup a TCP
connection to that site. And once we've connected, we
measure the rate at which we receive the web page in
bytes per second. For the times that we cannot get the
web page, we record the failure rate. When we re-
trieve a URL, we only get the initial page and not any
graphics referred to by the page. This is so we can
keep the URL fetching process uniform between dif-
ferent web sites.

We look at each of the results for a reason. DNS
lookup time can be a significant factor in web per-
formance. We measure it in order to track whether it
becomes a problem. Connect time is often association
with network delays. Measuring rate as opposed to
download time is a way to make comparisons between
large pages and smaller pages fairer. Finally, error
percentage tells us how much the HTTP gets were
successful. The download rate must always be looked
at together with the error rate. A high download rate
might seem good but it isn’t good if accompanied by a
high error rate.

From the URL set results, timeit reports DNS lookup
times at the 50th and 75th percentile values. This
shows the central tendency of DNS lookup perform-
ance as well as slower lookup times. Timeit reports
connect times in the same way, at the 50th and 75th
percentiles. Transfer rates are reported using the 25th,
50th, and 75th percentile values. The number of URLs
that timeit attempts to fetch and the
percentage of failed requests are also reported as met-
rics. We have an estimated user experience metric
which ranges from "poor" with a value of 1 to "good"
with a value 5. This statistic is based on the connect
time.

Statistics must be based on meaningful input in order
to produce meaningful results. In the case of timeit,
each set of URLs must be large enough so that vari-
ances in one fetch do not paint an incorrect picture of
the performance whatever part of the world we are
measuring. Each set needs a large number of URLs,
picked from a wide variety of sources. We measure 48
sets of urls with between 1 and 78 urls in each set. The
set with a single URL is a special URL to the local
host. This measurement gives us some idea of the
loading of the IMCS measurement system.

In addition to measuring the web performance from
our customers and partners to us, we care about per-
formance of web access from our employees to the

Internet. At Intel, web proxy servers are part of our
Internet firewall strategy. While having timeit monitor
web performance to many parts of the world is useful
for troubleshooting employee Internet access prob-
lems, it doesn't show what performance is like through
the proxy servers. Thus we have timeit do measure-
ments through the proxy servers.

Four of the 48 sets of urls that we have timeit monitor
are proxy urls. In each of our Internet gateways that
have proxy servers, we monitor performance through
the local proxy to 42 sites within North America. We
also measure performance to the same sites without
going through a proxy. This allows us to pinpoint
whether proxies are behaving slowly or the Internet in
general is not being very responsive. If we see a drop
in rate for proxy downloads while we see no drop in
direct downloads, we know that there is something
wrong with the proxies.

One of the main criticisms of using HTTP Gets, like
timeit does, for network monitoring is that server
loading becomes a factor in the numbers you can ob-
tain. We get around this by measuring the same sets
of URLs from multiple locations in roughly the same
time period. Doing this washes out the local effects of
a server. If a server is slow, all of the Timeit fetches
should reflect that slowness. If some are slow and
others are not, the slowness should be attributable to
network conditions.

4.1.1.2. IP Stats

How much traffic is passing through our firewall in a
single day? Who is using it and for what? How much
traffic went through in the last 15 minutes? Are we
running out of capacity? The IP stats module helps
answer these questions.

The IP stats module collects data from the IP ac-
counting table of each firewall complex’s outer
firewall routers. It gathers byte and packet counts of
IP source and destination address pairs. We collect
this data by doing the following:

• A cron job runs every 5 minutes and runs an Ex-
pect script that does a "show ip accounting" and a
"clear ip accounting." This generates a list of
source and destination IP addresses with the corre-
sponding byte and packet count between the two.

• Every 15 minutes, this data is aggregated and re-
ported via the web interface.

• Results are also copied into a daily log file.

Because the accounting data contains source and des-
tination information, byte, and packet counts but not
port information, we must infer what type of traffic
was passed. We maintain a list of specific servers and
a list of special networks within the company.

By categorizing the traffic based on these lists, we can
begin to understand the who and the what parts of our
earlier question. Noticing whether the Intel address
appeared as the source or the destination tells us
whether the traffic was inbound or outbound.

The IP stats module does the following categoriza-
tions:

• Determines whether traffic is inbound or out-
bound. By examining whether the source address
or the destination address was that of a host inside
the firewall, we can see the direction of traffic.
This indicates whether the byte count should ap-
ply to the inbound or outbound statistics.

• Categorizes the type of traffic. As previously
stated, we only have source and destination infor-
mation, not destination port number. But because
we tend to keep certain types of traffic on specific
hosts, we can assume that traffic caused by any
given host was of a specific type. We don't know
exactly which packets were passed with a destina-
tion port of 80, but because the IP address was
that of a web proxy server, it was probably due to
web traffic. Similarly, we can count and catego-
rize traffic as mail, DNS, USENET News, or
something else.

• Categorizes the site. In addition to the type of
traffic, we want to know which sites within Intel
are generating traffic and if so, how much.
Changes in routing can cause one site’s traffic to
flow in one Internet gateway and out another. By
monitoring for this condition, IMCS can warn us
of broken routing conditions. If we see lots of
Santa Clara traffic entering through our Chandler
Arizona gateway, there is probably something
wrong.

Once the daily logs from each IMCS system are col-
lected and aggregated, further calculations can be
made. This information is useful when determining
which facility needs additional Internet bandwidth, or
perhaps which facility needs its own Internet connec-
tion.

In order to make all these assumptions, we must
maintain a list of which networks within the company
are in use at which facility, and which servers are used
for what purposes. Sometimes, instead of categorizing
based on a specific host address, we categorize based
on the subnet address. For example, the people run-
ning our www.intel.com servers install and replace
their servers at a rapid pace. Those servers have their
own subnet, so any traffic due to servers on that entire
network are thrown into the www.intel.com bucket.
This keeps us from having to update our server list at
the rate that they make changes.

This brings us to the topic of a very important traffic
category, the amount of traffic that can be attributed to
www.intel.com. There is a steady stream of traffic
through our firewall due to people on the Internet vis-
iting our www.intel.com servers. It is a corporate ob-
jective that the quality of this web site be maintained
at a very high level. If the quantity of traffic due to the
web servers falls below a threshold, it might mean that
there is something wrong with out Internet connection.
Outages for the www.intel.com web site are high visi-
bility problems, and quick action is required. In addi-
tion, we use these statistics to determine when we need
to upgrade the circuits which connect www.intel.com
to the Internet.

4.1.1.3. Imeter

Imeter (first known as Lachesis [7]) is intended as a
general measure of the quality of Internet connectivity.
It works by sending out ICMP echo-requests to key
Internet landmark sites and measuring delay and
packet loss (ping). We include in our list of key Inter-
net landmarks sites that Intel employees access a lot as
well as key parts of the Internet infrastructure such as
the root name servers. Clearly Internet application
performance will suffer without good access to the
root name servers.

The metrics that we derive from Imeter are percentage
of loss packets and median packet delay. Like HTTP
download rate and error rate in the Timeit Module,
these metrics are complementary and must be studied
together. Low packet delay must not come at the price
of high loss. One solution to loss in a network is to
make packet queues longer. This results in more de-
lay.

4.1.2. Data Summarization and Boundary
Analysis Algorithms

Now that we know how IMCS measures different as-
pects of network performance, what do we do with the
data that we generate? There can be a tremendous
amount of raw data associated with each IMCS metric.
A single metric might have many data points taken in
a single collection interval. To handle all of this data,
IMCS aggregates raw data into summary statistics.
We often use summary statistics of metrics, making
use of the seventy-fifth percentile, median (50th per-
centile), or fractional representation of collected data.
These statistics, known as Response Summary Statis-
tics (RSS), are then run through an Out of Bounds
(OOB) checker to determine whether a boundary con-
dition has been violated.

The OOB checker reads a configuration file to apply
one or more bounds checking algorithms on an RSS.
Currently, there are three algorithms: Static Value,
Delta Fraction, and Delta Shift. Each algorithm com-
pares the current RSS value with the previous RSS
value, using a shift value, A/B value, and last_result
flag to determine if the current RSS value is “out of
bounds” with respect to historical data. We will ex-
plain all of how these variables interact with each al-
gorithm.

The shift value, in the context of the Static Value algo-
rithm, indicates the maximum or minimum value that
an RSS can have without triggering an out of bounds
condition. With the Delta Fraction algorithm, the shift
value specifies how much of a fractional difference
can occur between two consecutive data points without
triggering. Another way to think of this algorithm is
that the shift value is the percentage that two data
points can differ by without triggering an alert. With
the delta shift algorithm, the shift value is maximum
amount that two consecutive RSS data points can dif-
fer by without trigger an out of bounds condition. A
shift value indicates how much an RSS is allowed to
change relative to the previous data point. The shift
boundaries are absolute limits as with the Static Value
algorithm. The shift value is a fixed number with the
Delta Shift algorithm. It is a fraction with the Delta
Fraction algorithm.

The A/B value indicates if the shift the specified shift
value applies towards downward or upward trends in
the data. Finally, a last_result flag is initially cleared,
and set when an out of bounds condition occurs. It is
used by the OOB checker to ensure that an alert
doesn’t happen unless the trend happens over more
than two samples, avoiding frivolous alerting on one-
time exception data.

We create the different RSS boundary checking algo-
rithms to deal with a variety of situations. If we felt
that a particular RSS metric was well controlled and
understood, then we would set up hard boundaries with
the Static Value algorithm. A state table for the Static
Value algorithm is shown in Table 1.

Table 1: State table for the Static Value algorithm

If A/b
is

And RSS is And
last_res
is

Action is

A > shift value 0 last_res = 1
A < shift value 1 last_res =0
A > shift value 1 Send alert
A < shift value 0 No action
B < shift value 0 Set last_res=1
B > shift value 1 Set last_res=0
B < shift value 1 Send alert
B > shift value 0 No action

If an RSS metric was not as well understood, we
would use the Delta Shift algorithm. Table 2 contains
the state table for the Delta Shift Algorithm.

Table 2: State table for the Delta Shift algorithm

A/B If
RSS(t
) is

Last_dat + Last_res
is

Action is

A < Shift value 0 Last_dat=
RSS(t)

A < Shift value 1 last_dat =
RSS(t)
last_res =
0

A > Shift value 0 Last_res=
1

A > Shift value 1 Send alert
B > -Shift value 0 Last_dat=

RSS(t)
B > -Shift value 1 Last_dat=

RSS(t)
Last res=0

B < -Shift value 0 Last_res=
1

B < -Shift value 1 Send alert

If we did not have a good understanding of the behav-
ior of the metric, then we would tolerate much wider
swings by using the Delta Fraction algorithm. Tables
3, contains the state table for this algorithms.

Table 3: State table for the Delta Fraction algorithm

A
/
B

Multiply
RSS by

If col-
umn 2
prod-
uct is

Last_
dat
mul-
tiply
by:

And
last_r
es is

Action is

A (1 –shift
value)

< (1
+shift
value
)

0 Last_dat=
RSS(t)

A (1 –shift
value)

> (1
+shift
value
)

1 Last_dat=
RSS(t)
Last_res=
0

A (1 –shift
value)

> (1
+shift
value
)

0 Last_res=
1

A (1 –shift
value)

> (1
+shift
value
)

1 Send alert

B (1 +shift
value)

> (1 –
shift
value
)

0 Last_dat=
RSS(t)

B (1 +shift
value)

> (1 –
shift
value
)

1 Last_dat=
RSS(t)
Last_res=
0

B (1 +shift
value)

< (1 –
shift
value
)

0 Last_res=
1

B (1 +shift
value)

< (1 –
shift
value
)

1 Send alert

4.1.3. Robust Statistical Treatment of
Data

You may have noticed that we have been using per-
centile statistics and have not used terms like average
and standard deviation. It has been well established in
the network measurement literature [2,3,4] that Gaus-
sian (normal) or Poisson distributions do not represent
network performance data well enough for planning or
predicting purposes. Network data are characterized as
“self-similar” [2]. Willinger’s paper clearly demon-

strates that the Central Limit Theorem does not apply
to network traffic data. As such, the traditional process
control summary statistics of mean (for central ten-
dency) and standard deviation (for variability) are not
valid when applied to network data. Thus, for the
IMCS the central tendency is summarized by the me-

dian or 50th% of the aggregated data. The spread be-
tween the 75th and 25th% of the aggregated data quanti-
fies the variability. The spread between the 75th and
25th% is called the inter-quartile range (IQR). The 25th,
50th and 75th percentiles are plotted on one graph to
minimize the number of graphs that need to be pre-
sented and to enhance understanding the customer
experience. Traditional statistical process control
methodology uses mean and standard deviation or X-
bar and R charts for graphically presenting summary
results of central tendency and variability. As most
network engineering staff are less familiar with quanti-
fying variability, IMCS plots the 25th and 75th percen-
tiles instead of the IQR.

4.1.4. Data Flow between Modules

Earlier, we talked about how Imeter, Timeit, and IP
Stats generated data with separate data collection
modules. We also mentioned how data was fed into
the OOB checker to determine out of bounds condi-
tions. How does all the data flow between IMCS
modules. We show the data flow and key metrics in
Figure 1. The raw data generated from the collection
modules are transferred to analyzer modules, which
compute data values RSS. The RSS data values are
stored to disk, sent to the graphing module for display,
and piped into the OOB checker for alerting. If an out

of bounds condition is detected, then an alert is sent to
the Intel Network Operations Center (NOC).

4.2. Monitoring IMCS Metrics and Re-
sponding to IMCS Alerts

Figure 1 shows that when an out of bounds condition is
detected, an alert is sent to Intel’s NOC. What hap-
pens when that alert is sent? How does the NOC know
what to do? This section describes how we imple-
mented the user interface to IMCS and how alerts are
processed.

Once IMCS generates an alert, an alphanumeric page
is sent to the Intel Network Operations Center de-
scribing the RSS that is out of bounds. If you look at
figure 1, you will notice that each RSS metric contains
the site name and the type of metric (loss, delay,
HTTP rate, etc.). NOC personnel execute a script
based on the type of metric. For example, if a delay
alert is generated, there is a specific script that must be
done that is different from say, an HTTP rate alert.
The site information lets the NOC know where the
problem lies and who to dispatch to fix the problem.

The main interface to IMCS is a web page that we call
“The Big Picture.” The Big Picture is a snapshot of
all of Intel’s Internet connectivity in one screen. This
web page is a large table where each row is a different
type of metric (e.g. packet delay) and each column
represent a firewall complex. In each cell of the table
is a thumbnail graph of the appropriate metric for each
firewall are shown. The thumbnail shows a rolling 24
hour graph for that metric. This allows someone
looking at the big picture page to see a comparative
view of the metric from each firewall. At the start of
on each row of the Big Picture is a script that describes
how to handle alerts for the metric.

Across the top of each column is general information
about that particular firewall complex. There is a web
link to the history of alerts for each gateway, as well to
as IMCS System Status for each gateway. If a gate-
way IMCS system is having a problem then its System
Status turns red. Otherwise it is green.

Each miniature "thumbnail" graph on the Big Picture
is linked to a web page containing more information
about that gateway's metric. This makes it easy to
quickly drill down and get more information about a
problem or look in detail at a metric. On these more
detailed pages, we display graphs of rolling 24 hours,
the current week, the last week, and the past 20 weeks
for that particular metric. We can also get the actual

Figure 1: IMCS Data Flow

Collect Cisco
stats from outer

firewall rtr

Request and
measure HTTP

GET

Request and
measure PING

IP stats
analyzer

Timeit
analyzer

Imeter
analyzer

RSS
site_geog_in/out
site_service_in/out
gtwy_site_in/out

RSS
site_DNS_geog
site_rate_geog
site_setup_geog
site_err_geog

RSS
site_delay
Site_loss

for each
RSS

for each
RSS

RSS OOB
check

module

alert
triggered

send alert to NOC;
include alert

specifics

script
database defines

action

web graph
module

Collect modules
Analyze modules

for each
RSS

Storage to
disk

data points for recent values of the metric. This is use-
ful when you need real data values for troubleshooting
a problem or for tuning the alert threshold values.

IMCS scripts usually have the NOC personnel check if
an out of bounds condition is local or Internet wide
and change their response accordingly. On each met-
ric row, there is a pointer to the proper script that is to
be executed when an alert for that metric is received.

The modular construction of IMCS and its geographi-
cally distributed monitoring systems lends itself well
to using the web as the primary reporting and access
mechanism. In order to remain somewhat browser and
HTTP server independent, all of the IMCS display and
query functions are built on standard HTML pages,
with frames and JavaScript used sparingly to provide
easy control, and common CGI Perl programs to re-
motely generate HTML pages based on GET-mode
queries. Debug programs such as ping, traceroute, and
whois are implemented as CGI programs. The use of
GET-mode CGI queries allows you to copy an URL to
a mail message, send it, and have someone else see the
results of the query too. It also enables us to embed
actual pings or traceroutes into a script HTML page.
We can have a link such as “ping the gateway inter-
face” point to a URL that actually pings the gateway
interface and return the results.

While each IMCS system creates HTML pages and
graphs/thumbnails for each metric on its own docu-
ment tree, a special setup was required to produce the
“Big Picture” that would accommodate the potential
outages of a remote IMCS system, and display the
overall health of the firewalls. The page containing
the Big Picture is not on several servers – only one.
We discovered that browsers don't always flush
graphics from the browser cache (even with a Pragma:
no-cache, and all the other standard tricks), unless the
web-server also emits an Expires: header for the
graphic. Our previous web servers did not have an
Expires option so we use the Apache server, which
does have the Expires option. A cron job was con-
structed to run every three minutes to grab the latest
thumbnails for a Big Picture display. This job re-
freshes the graphics for display and reports possible
problems with the measurement process.

4.3. Other implementation highlights

IMCS is implemented with PERL, C, and Expect. The
analyzers, OOB checker, pager, and graph generator
are done in PERL. The PERL graphing code makes
use of GNUplot and pbmtools to generate GIF files.

Packet delay and loss data are collected by fping, a C
program. Router statistics are collected by an Expect
script.

Individual modules are configured with text files on
the file system of the IMCS monitor. Only one con-
figuration file exists for a particular module – it is ed-
ited and stored in one central location and pushed to
IMCS machines through our Make driven update proc-
ess [8]. Processes on each machine go through a rule
set to see which configurations and directives apply to
the current process.

As we mentioned above, detail pages are created and
updated for every metric that IMCS measures. This
includes metrics displayed on the "Big Picture" as well
as many more metrics which are not on the "Big Pic-
ture". Most of the additional metrics target specific
countries or regions of the world. These metrics are
used to determine the network performance of our
electronic commerce activity and allows us to monitor
and improve that performance.

We mentioned above that recent data is available in
text format via a "View recent data" web link at the
top of each detail page. Incidentally, the simple text
format is how IMCS stores its data, and is what the
graph_rss tool reads to generate its graphs. Each data
point is represented by a line of text with two
whitespace separated fields. The first field is a UNIX
time value, and the second is the value of the metric at
that point in time. New data in this format is easily
appended, and graph_rss uses a binary search to
quickly find the start of data it needs.

In addition to graphical and textual view of data, we
have a web tool that lets us do side-by-side compari-
sons of full sized graphs. We also have a "My Big
Picture" tool to construct custom display of thumbnail
graphs. These tools are extremely useful when we
need to compare IMCS metrics not on the "Big Pic-
ture".

5. Experiences with IMCS

What are Intel's experiences with IMCS? Our experi-
ences have been generally very good. We have found
that IMCS is effective in finding problems and ex-
tremely extendable. We did encounter a number of
other issues, though. In this section, we will detail our
experiences with IMCS, starting with ability to find
problems, describing its extensibility, and talking
about other issues that we ran into.

5.1 Discovering Problems

IMCS is pretty good at finding problems. Imeter delay
and loss usually were the first indicators of line down
or congestion conditions. This is because Imeter's role
in monitoring general conditions and its relatively fre-
quent 10 minute polling interval. Figure 2 shows peri-
ods of high delay. In this particular case, we noticed
that there we began to experience high periods of de-
lay after one maintenance window.

Figure 2: Delay problems after network “mainte-
nance”

Figure 3: Proxy HTTP Error Rate During Network
Problem

Figure 3 shows a high error rate for proxy HTTP get
requests. This particular incident occurred during a
problem with a DMZ network segment. The graph

shows the start and end of the problems as errors in-
crease during the episode and decrease after the seg-
ment was fixed.

As previously noted, timeit is run against URL sets
that represent geographic diversity within a country
and industries relevant to Intel business foci within the
same country. Prior to deploying significant business
applications in a country, IMCS results are evaluated
against criteria known to result in relatively good per-
formance. If the country’s performance is expected to
result in poorer performance for Intel’s business appli-
cation customers then effort is applied to find and fix
possible sources of problems. Such an effort was un-
dertaken with the main regional ISPs for the country
shown in Figs 4 and 5.

Figure 4: Performance to City 1 Before and After
Corrective Effort

Figure 5: Performance to City2 before and after Cor-
rective Efforts

By early December 1998, one region showed a sub-
stantial improvement in the time of day variability of
performance as measured by the narrowing of the daily
highs and lows in each of the 25th/50th/75th percentiles
for the transfer rate and the decrease in connect times.
The other region for the country experienced gradual

improvement over a four week period primarily in the
connect times. Since all three of the 25th/50th/75th per-
centiles were impacted at the same time it is very un-
likely that all 18-20 target sites improved simultane-
ously. This suggests network infrastructure improve-
ment. The Intel timeit measurement tool measured
other countries at the same time. No other countries
showed improvements simultaneously with this coun-
try’s improvements. This suggests the changes were
not due to Intel measurement or network systems. A
request has been made to identify the infrastructure
changes implemented by the country’s ISPs but as of
this writing they are unknown.

5.2 Extensibility

The modular construction of IMCS makes it easy to
add a new metric to the system. A recent example of
this was the addition of a User Experience metric (us-
rexper) which is based on a categorization of the
timeit connect metric to yield a number from 1 to 5
indicating the probable user's experience (1=poor,
5=execellent). To add the metric to timeit processing
to the IMCS systems we did the following:

• Modified the timeit_rss program to compute the
new usrexper metric <gate-
way>_usrexper_<region>_estim

• Modified the graph_rss program to handle graph-
ing of the usrexper metric.

• Modified the timeit_pretty program to generate
the HTML index page for timeit to include the
new usrexper pages.

Since graph_rss generates both the full-size and
thumbnail size graphs of each metric, and the HTML
pages, the results were available at once. To fill in the
historical data for usrexper, the <gate-
way>_connect_<region>_[50|75|iqr] files were proc-
essed (one time) to yield the usrexper streaming files
on each IMCS system.

By adding a new CGI script on the IMCS system, you
can make available new debugging tools. The best
example of this was the addition of the Looking Glass
functionality (based on the Perl scripts from Digex).
This script allows a query to the router to be per-
formed without requiring the use of the router's access
password(s) by the end-client. The passwords are pro-
vided by two scripts (aetna and lemnos) which are not

executable directly via CGI, but are invoked by the
CGI programs as part of the Looking Glass functions.

A modification to the Looking Glass program allowed
us to write a router-based Imeter (where delay and
stats are gathered from PING on the ISP router). The
results were processed by the Imeter RSS code to cre-
ate new streaming files and graphics. Router based
Imeter allows us to compare performance between
ISPs at the same gateway.

One of the more interesting extensions of IMCS is
letting IMCS systems monitor their own performance
statistics. Our IMCS boxes currently track their own
load averages and CPU idle time and make that data
available on the web.

When the 'My Bigpicture' function was created, a new
framed HTML page set was created, with JavaScript
enabled selection functions to invoke the new
my_bigpicture.pl CGI script. The support CGI script
(available_metrics) was deployed to the IMCS sys-
tems, and a get_available_metrics_list.pl program is
run (when the metrics are added/deleted) to create a
control file (available_metrics.ini) for use by the
my_bigpicture.pl program.

5.3 Issues Encountered

We ran into a number of problems with IMCS. The
first problem is really part of any kind of alert system
based on limits. It is difficult to pick limits that are
effective. The only way that you can achieve good
boundary conditions is to guess at some limits, and see
if you get false positive alarms or see false negatives
situations. If you get false positives, you need to make
your limits less stringent. We wanted to avoid too
many false alarms because this results in the NOC
personnel no longer taking IMCS seriously. If we see
false negatives, then we need to make the boundary
limits more stringent. False negatives mean that the
tool is not doing its job.

As conditions change, the metric limits need to change
too. The most common condition we encountered
with this is with Imeter delay limits. As Internet usage
increases at a site, the site's line to the Internet be-
comes increasingly congested. We see this as time of
day swings in delay. Because there is usually lead
time in getting bandwidth upgrades, we have had to
change the metric limits to reduce the number of alerts
generated. Congestion caused alerts are not useful
after we have learned that the line is congested and
needs upgrading. After the line upgrade and conges-

tion goes away, we go in and make the delay limits
more stringent.

The way we implemented the trigger limits continues
to cause us problems. The trigger limits for a metric
and the last datapoint for the metric are stored in the
same file. This makes it impossible to centrally man-
age and distribute trigger configuration files because
the contents of the file containing the limits is con-
stantly changing.

A final problem we encountered is with active meas-
urements. To measure performance, we generate live
network traffic. Some sites turn off ICMP access in
fear of ICMP based attacks like SMURF [9]. This
reduces the number of landmarks that an ICMP echo
based tool can monitor. ISPs also have the ability to
affect the priority of ICMP packets in their networks.
Given that the typical action would be to reduce the
priority of ICMP packets, Imeter would be less reflec-
tive of actual user traffic in this such networks.

To eliminate the effect of web server performance, we
measure performance to identical web sites at roughly
the same time from all of our Internet gateways. As a
result, each measured web site gets multiple hits from
Intel measurement system. We have received a few
complaints from web sites that we are measuring.
IMCS measurement traffic can be an issue if the web
sites have fees based on the volume of traffic they
generate. In such cases, we usually remove the web
sites from our URL lists.

6. Future Improvements

We are planning a number of additions and improve-
ments to IMCS. These include monitoring additional
services, finding new ways to measure performance,
and modifying its alerting functionality.

Other Internet services are promising targets for IMCS
monitoring. In particularly, we are looking at focusing
IMCS on SMTP relaying and DNS services. For
SMTP, we want to monitor queue depth, propagation
delay through a server, message traffic, and message
size. Coupled with monitoring system performance,
looking at these will give us a thorough view of how
well our SMTP relays are functioning. For DNS, we
want to monitor response time for response to general
queries and for queries of the zones that our DNS
servers serve.

Since active measurements have a number of draw-
backs, we want to start focusing more closely on pas-
sive measurements. SMTP relay logs, web server
logs, and proxy server logs contain a wealth of infor-
mation that can be mined for performance information
without generating live network traffic. We also want
to start looking at other forms of passive data such as
netflow export data from cisco routers.

Finally, we want to improve the way that we do alerts.
Paging has its problems as we have mentioned, and we
want to find other ways of notifying NOC staff and
others, such as screen color changes and e-mail.

References

[1] “Intel Sets Commerce Record.” InternetWorld.
November 23, 1998.

[2] Leland, Will E., Murad S. Taqqu, Walter Willin-
ger, and Daniel V. Wilson, "On the Self-Similar
Nature of Ethernet Traffic," Proceedings ACM
SIGCOMM 93, 13-17 September 1993

[3] V. Paxson, "Empirically-Derived Analytic Models
of Wide-Area TCP Connections," IEEE/ACM
Transactions on Networking, 2(4), pp. 316-336,
August 1994.

[4] Paxson, V., G. Almes, J. Mahdavi, M. Mathis.
“Framework for IP Performance Metrics.” RFC
2330, May 1998

[5] Lidl, K, ftp://ftp.va.pubnix.com/pub/uunet/timeit-
2.1.tar.gz, October, 1996.

[6] Libes, Don. Exploring Expect. O’Reilly and As-
sociates, Inc., Sebastopol, CA 1995.

[7] Sedayao, J. and K. Akita. “LACHESIS: A Tool
for benchmarking Internet Service Providers,”
Proceedings of the Ninth System Administration
Conference (LISA IX), Monterey, California 1995.

[8] Hambridge, S., C. Smothers, T. Oace, J. Sedayao.
“Just Type Make! - Managing Internet Firewalls
Using Make and other Publicly Available Utili-
ties.” Proceedings of 1st USENIX conference on
Network Administration. Santa Clara, California,
April 1999. 7] Sedayao, J. and K. Akita. “LA-
CHESIS: A Tool for benchmarking Internet
Service Providers,” Proceedings of the Ninth
System Administration Conference (LISA IX),
Monterey, California 1995.

[9] CERT Advisory CA-98.01. “’smurf ‘ IP denial of
service attack”. Originally posted January 5,
1998. URL: http://www.cert.org/advisories/CA-
98.01.smurf.html.

