
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1st Conference on Network Administration
Santa Clara, California, USA, April 7-10, 1999

Driving by the Rear-View Mirror:
Managing a Network with Cricket

Jeff R. Allen

WebTV Networks, Inc.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Driving by the Rear-View Mirror: Managing a Network with Cricket

Jeff R. Allen
WebTV Networks, Inc.

Abstract

Cricket is a tool that lets users visualize a set of measurements over time. It was designed to as-
sist network administrators by letting them see and respond to patterns in their network. In this
paper, I will describe the need we saw and attempted to resolve by writing Cricket, then describe
the solution we came up with. Finally, I will describe some future work we expect to do to make
Cricket a more proactive monitoring tool.

The Need
When running a complicated network, there are a

multitude of things one needs to keep an eye on.
Clearly, immediate concerns like connectivity, link sta-
tus, and routing stability are top in most administrator’s
minds. Long-term issues like architecture and technol-
ogy decisions float in the back of our minds. Often, that
leaves no room for the most interesting questions,
which help with both short term issues and long term
ones. Some of the questions we found ourselves asking
about various network components were:

• What is the current state of a component?
• What has it been recently?
• What will it likely be in 5 minutes? In an hour? Is

that what we expect it to be?
• What long-term trends can we discern?

Taking the time to ask these questions allows us
to step up a level in our monitoring, and move from a
reactive realm (i.e. Is the link to Europe up?) to a more
contemplative and predictive realm (i.e. Are we seeing
an unexpected burst of traffic to Europe?) It’s obviously
not possible to definitively say that this makes our job
easier and our network run more smoothly, but it cer-
tainly seems that way. Simply having the data available
to be able to say “things look OK”, gives us a peace of
mind that simply reacting to the network would never
give us.

Figure 1 shows a screenshot from Cricket, show-
ing the normal way that data is displayed about a target.
In this case, we are looking at the traffic on one of our
OC3’s, which was operating normally until an outage
started a little after noon. From this same view, we can
tell that in the last week, the peak bandwidth in use on
this link was 60 Mb/sec, on Wednesday evening. By
glancing at one page, we can answer many of the ques-
tions posed above. By looking at longer time scales

(accessed via the links in the upper right) we could
answer still other questions about the long-term behav-
ior of the traffic on this link.

One of the reasons it’s hard to monitor a network
is that there are a lot of different components, each with
different operating characteristics and monitoring
needs. For instance, in our network, some of the com-
ponents that we use Cricket to monitor are:

• WAN and LAN interfaces on routers
• Router operating state (memory, temperature)
• Switch (or hub) port bandwidth
• Rack-mounted modem usage
• DNS activity
• Host Components (disk, load average, swap)

Note that we monitor some things (DNS, hosts)
that are not directly related to the health of the physical
network. In our shop, the “host folks” and the “network
folks” work together very closely. There is no artificial
separation between the two. I will focus on monitoring
the networking components, however, keep in mind that
Cricket is capable of monitoring many types of compo-
nents.

Just as the components we wish to monitor are
varied, so are the ways in which we talk to them. Some-
times, we can simply talk SNMP, then either record the
data directly or do a bit of post-processing to derive a
rate of some kind. Other times, we fetch data via
SNMP, then post-process it in some more complicated
way to get a final data point. For instance, to monitor
modem bank usage, we fetch the current state of all the
modems, and count the number that are off-hook.
Sometimes we simply run a shell command on another
data-gathering system. For instance, we can use Unix
tools like ’wc’ or simple Perl scripts to derive a data
point from the data already collected by syslogd.
Finally, sometimes we want to measure and observe an

aggregate of other data sources. In a site with multiple
Internet links, it would be interesting, for instance, to
plot the total Internet bandwidth across all links.

MRTG to the Rescue

Around the time we1 were bringing up the
WebTV network, we fetched and installed a tool called

MRTG2 to let us start answering the kinds of questions
mentioned above about our WAN links. In fact, MRTG
was in use at WebTV Networks before we had brought
in any commercial network management tools at all. It
was only by using, and coming to depend on the
MRTG graphs, that we were able to take a step back
and figure out why they were so useful to us. After get-
ting ourselves thoroughly addicted to MRTG, even
while attempting to roll out another network manage-
ment system, we were forced to ask the question,
“What is it that MRTG does that we can’t get else-
where.” The answer to that question makes up the bulk
of the first section: MRTG let us manage our network
better than reactive systems.

So, there we were, addicted to MRTG, using it in
new situations and in ways it was never designed to be
used. MRTG started showing signs that it would not
scale to handle the new jobs we wanted to throw at it.
Something needed to be done, and quickly. A true
addict will not wait patiently for a new drug!

Before we threw out MRTG and started over, we
thought it might be a good idea to figure out what it
does right, and make certain that whatever we got to
replace MRTG could at least do those things. Each
view of the data has just enough detail to tell the story,
but not enough to hide the good bits. For instance, the
weekly views show today and this day last week. There
is an enforced data density so that graphs have just
enough data to tell an accurate story, but not enough to
overwhelm the viewer. In addition, the auto-scaling fea-
ture consistently produces readable graphs (though
there is a bit of room for improvement on this front). It
uses a fixed size database which grows linearly with the
number of monitored devices, not time. It needs no
extra “cleanup” work. Because MRTG is web-based,
we have a platform independent tool: all it takes is a
web browser to check the status of the network. You

can even use a WebTV®-based Internet Unit to see

1Actually, this was before I arrived at WebTV Networks. Joe
Balboa originally brought MRTG to our company.

2More information about MRTG is available from
http://www.mrtg.org .

graphs of your network on your home television!

Perhaps more important than all that, though,
MRTG passes the “can it solve real problems” test:

• It shows BGP failover very well.
• It is an inv aluable tool in traffic shifting/balancing.
• It lets us answer the question "How did it look

before it broke?"

To see how we use graphs to identify and under-
stand real problems, examine figures 2 and 3. These
two graphs are selected snapshots of the graphs avail-
able to us during backbone routing instability on one of
our peer’s networks. During this event, it’s clear that
about 10 Mb/sec of traffic shifted over to the second
peer. We were able to use Cricket to find the nature of
the problem, see that the outbound traffic had failed
over to non-optimal, but functional link, and finally ver-
ify that the traffic returned to normal after the event.

Finally, Cricket passes the “manager test” with
flying colors. Managers immediately understand the
need for a bandwidth upgrade once they see a graph
produced with MRTG. Even more astoundingly, it even
passes the “executive test”, which is very important
since executives tend to need to sign orders for OC3’s
and above. The simple web-based user interface makes
it easy to print and share the graphs with management,
making it easier for everyone to do their job.

Regardless of all these great features, we identi-
fied problems we wanted to address in the next genera-
tion system. First, MRTG has a narrow view of the
world: all targets have exactly two data sources (used
by MRTG for bandwidth in and bandwidth out). We
wanted to be able to measure other things about com-
ponents. MRTG also has severe performance problems,
resulting from the way it reads and writes data. MRTG
was incrementally developed and the performance
problem only became apparent after it was too late to
fix it. Usually, it’s not an issue, because MRTG is
mostly used in small installations. However, with all
the different ways we were trying to use MRTG, perfor-
mance became a problem for us.

There are ways to overcome these performance
problems by arranging to run multiple instances of
MRTG in parallel. However, the configuration needed
to run it in parallel is even more complicated than the
usual configuration. For our varied uses, the configura-
tion was already unwieldy and inefficient. The last
thing we needed was to make it even more compli-
cated!

Why Not Commercial Tools?
Some might recommend commercial products as

a replacement for MRTG, since commercial products
are supposed to be designed to scale well and be easy
to configure. Our experience is that commercial tools
introduce as many problems as they purport to solve,
and often leave the original problems (scalable perfor-
mance and configuration) unsolved. Here’s an undoubt-
edly one-sided list of the problems inherent in most
commercial tools that could have helped us.

First and foremost is cost. It’s expensive to make
good software. No one will argue that point. In fact, it
has been more expensive than we expected to develop
Cricket. But when buying an expensive network man-
agement tool, things get ugly. It takes too much time,
paperwork, patience, and persuading management, even
if you do have the budget for a commercial tool. Evalu-
ating and rolling out a free software package can hap-
pen in an afternoon, if you put your mind to it. There’s
simply no downside risk − install it and if it solves your
problem, keep it. If it doesn’t meet your expectations,
delete it and move on. You get what you pay for, but
sometimes it’s what you are not getting (support hassles
and licensing nightmares) that really counts.

With commercial tools, database formats are
often secret, API’s (usually only available at extra cost)
are either a pain to work with, or are major perfor-
mance pigs. Customer support varies, but the simple
fact is that even stellar customer support won’t do for
you what getting your own two hands dirty in the code
will do: give you a deep understanding of your NMS
and the confidence to trust the system and your ability
to operate it. Then, there’s the version tango. The NMS
doesn’t find out about new router models until 6
months after you’ve already deployed them because the
router company and the NMS company are feuding.
The trouble-tracking system you are using is only certi-
fied to talk to the next version of the NMS that you can-
not use yet because that version introduces a critical
bug that no other customers are seeing, and thus, will
not get repaired until you threaten to revoke your sup-
port license − which, by the way, does not expire until
next December.

Finally, let’s be honest: Free Software rules. Who
would you rather trust with the smooth operation of
your network, a bunch of folks who are in the same
boat as you, or a giant vendor with 100-page imple-
mentation plans and slick salesmen? The choice is
obvious, to me at least: network managers design better

tools to do their job.3 Sometimes commercial tools are
the right tool for the job, but in this case, it made more
sense to go at it on our own. It will make even more
sense for your organization, since WebTV Networks
has done much of the hard work. All you need to do is
download, install and configure Cricket.

The Solution
The solution comes as two pieces, a new

database and a new user-visible front-end. By changing
out the back-end, we addressed the flexibility and per-
formance goals. By changing out the front-end, we
improved the user interface, both for configuring the
system and viewing the graphs. The two pieces are
developed semi-independently, one by me (in Califor-
nia) and one by the original author of MRTG, Tobias
Oetiker (in Switzerland). Keeping the two pieces sepa-
rate makes it easier to develop them, and it also means
the database component can be reused in other con-
texts. RRD, the database backend, is distributed sepa-

rately from Cricket4.

We are deeply indebted to Tobias for his hard
work on the database back-end. Without it, Cricket
would be nothing. By engineering RRD correctly from
the start, and by improving it’s reliability over the last
year, Tobias solved over half our problems with MRTG
himself. I simply had the easy job of passing the right
data into his code. All the seeming magic of Cricket
comes from Tobias’s RRD code.

RRD: The Round Robin Database
The next generation back-end is called RRD, the

Round Robin Database. It takes over exactly the same
jobs the back end provided with MRTG did: storing and
rolling up the data and generating graphs from the
stored data. RRD is written in C, and comes in both a
Perl module and a command line version, which can be
used interactively or across a pipe from scripts. It can
be used either directly by simple scripts, or via fron-
tends like Cricket. Other frontends are available from
the RRD website.

RRD achieves high performance by using binary
files to minimize I/O during the common update opera-
tion. The “round robin” in RRD refers to the fact that

3Writing code is another issue entirely. As a toolsmith, my job
is to write the tools WebTV employees need to do their work. Much
as they might like to, the network administrators at WebTV Networks
don’t normally have the time to hack the Cricket code.

4The RRD website is at:
http://ee-staff.ethz.ch/ ̃ oetiker/webtools/rrdtool.

RRD uses circular buffers to minimize I/O. RRD is at
least one, and possibly two orders of magnitude faster
than MRTG’s backend, depending on how you measure
it. It’s truly incredible to watch it chew through data if
you have ever seen MRTG trying to handle the same
job.

RRD is more flexible than MRTG in at least two
dimensions. First, it can take data from an arbitrary
number of data sources. MRTG was limited to two
datasources. Originally they were reserved for input
bandwidth and output bandwidth, though they got co-
opted for other measurements by many MRTG hackers.
RRD can also keep an arbitrary number of data arrays,
each fed at a different rate. For instance, you can keep
600 samples taken every 5 minutes alongside 600 sam-
ples taken every 30 minutes. Thus, you can have 5
minute data stretching back 50 hours into the past, and
30 minute data stretching back 12 days. When you
draw a graph of this data, you can see recent data in
high resolution, and older data in lower resolution. This
is one of the original features of MRTG that made us so
happy. In RRD this feature is completely configurable.

RRD stores data with higher precision than ever
before (float versus integer) which allows us to measure
bigger things (OC3’s) and smaller things (Unix load
av erages) without relying on goofy scaling hacks, as we
were required to do with MRTG. The data file where
this data lives on disk is still a fixed size over time, and
scales with the product of the number of datasources
and number and sizes of the data arrays. The data stor-
age in use for an entire installation still scales linearly
with the number of targets under observation. At
WebTV Networks, we have Cricket configured to store
6 variables for every router and switch interface. Each
interface requires 174 kilobytes on disk, which is
enough room to store all the data for 600 days. Of
course, your mileage may vary; Cricket is configurable,
so you can choose to keep more or less data, depending
on your needs.

RRD still provides the same simple, sparse
graphs we grew to love while using MRTG. There is
now much more flexibility at the time the graph is gen-
erated. For instance, we can choose to show some data
sources, but not others. We can choose to scale a data
source using an arbitrary mathematical expression. For
instance, we can fetch the temperature from a router in
Celsius, and present it to the user in Fahrenheit. Since
almost all data seems to arrive in exactly the wrong
units, it’s quite helpful to have this flexibility. Do you
think about Ethernet capacity in “megabytes/sec”? The
scaling feature lets us turn that measurement into
“megabits/sec”. It is also possible to integrate data
from multiple sources into a single graph. For instance,

you could make a summary graph showing the sum of
the traffic across all of your Internet links.

The Config Tree
Recall that part of the problem was flexibility and

performance of the database, both of which RRD
solved. The other part of the problem was scalability of
the configuration. Our solution is something called the
config tree. A config tree is a set of configuration files
organized into a tree. This hierarchical configuration
structure allows us to use inheritance to reduce repeated
information in the configuration. To simplify imple-
mentation of the config tree, the inheritance strictly fol-
lows the directory structure; complicated concepts like
multiple inheritance are not supported. The attributes
that are present in a leaf node are the union of all the
attributes in all the nodes on a path leading from the
root of the config tree to the leaf node. Lower nodes
can override higher nodes, so it’s possible to make
exceptions in certain subtrees, and do other clever
sleight of hand.

It’s easier to understand the config tree by look-
ing at an example (see figure 4). Attributes that all of
the system will share are located at the root of the con-
fig tree. For instance, the length of the polling interval
is set there. At the next level, we set attributes that will
be restricted to the current subtree. At this level, typi-
cally you will find the target type. Finally at the lowest
level we set things that will vary on a per-target basis.
For instance, we set the interface name that we are try-
ing to measure here. By using the power of inheritance,
you can avoid repeating the information at the top of

interface-name =
uunet-1, uunet-2, ...

host-name =
ns-1, ns-2, ...

target-type =
wan-link

target-type = host

polling-interval = 5 min

Figure 4. A simplified example of a config tree.

the config tree many times near the bottom of the con-
fig tree. The three level config tree in the example is the
simplest in common use. The one that ships with
Cricket in the sample-config directory works like this.
Config trees can and do have many more levels. At
WebTV Networks, for instance, we add levels to break
apart routers in different data centers to make the direc-
tory listings more manageable. There are no built-in
limits on the shape of the config tree, only practical
ones.

Figure 5 shows the power of the string expansion
feature in Cricket. When it comes across strings in the
config tree with special markers in them, it expands the
strings in much the same way a scripting language
expands variables. The sample config tree that ships
with Cricket uses this feature in several places to
dynamically build strings from settings already avail-
able. In the example, the short and long descriptions for
the target are set based on some data inherited from
high in the tree, and other data related to the target
itself. In order to make this feature even more useful,
we introduced auto-variables, which are set to certain
strings automatically by Cricket. They are available for
use by expansions, making it possible to automatically
generate things that change for every target, like the
data file location. The same expansion system is cur-
rently used to make it possible to customize the HTML
output of the user interface component, though it is still
not yet as flexible as we would like it to be.

Cricket’s collector is single-threaded, and thus
spends a fair amount of time waiting for data to arrive
over the network. The wall-clock run time for each

long-desc = %short-desc%

auto-target-name = (automatically set by
Cricket on a per-target basis)

short-desc = Traffic for %auto-target-name%

Results after expansion:
auto-target-name = uunet-ds3-1
short-desc = Traffic for uunet-ds-3
long-desc = Traffic for uunet-ds-3

Figure 5. An example of variable expansion.

instance of the collector is limited to the length of the
desired polling interval (or else you might miss polling
cycles, which would be unfortunate). Thus, the number
of targets that can be polled by a single collector on a
single host is limited. To get maximum polling capac-
ity, it is necessary to run several collectors in parallel,
each working on a different subset of the total set of
targets to be polled. This was hardly a surprise to us,
since we needed to use the same technique to boost the
performance of our MRTG installation. In fact, we
designed the config tree to make partitioning the set of
targets easy, so parallelizing Cricket is simply a matter
of starting the right collectors at the right time, each
operating on the right subtrees of the global config tree.
There is a wrapper script for the collector which does
this, as well as other housekeeping chores like manag-
ing logfiles, and checking them for errors.

The config tree has several other advantages we
stumbled upon after using it for a while. Because the
subtrees are mostly independent from one another, mul-
tiple administrators can work on the config tree without
impacting each other. The hierarchical structure makes
it simple to make standards that apply across all the dif-
ferent applications. It also makes it possible, when nec-
essary, to make exceptions for certain devices. Of
course, in a perfect world, this wouldn’t be necessary.
But this isn’t a tool for a perfect world, it’s a tool that
was written to solve problems in the real world. Some-
times it just happens that we need to query one device
with different OID’s, or that the community name is
different on a certain device. At the same time, though,
a properly designed config tree can save you a lot of
work when you decide to make some kind of wide-
spread change to the system. Instead of changing the
data everywhere, you can change it in one place.

Contemplating our fully populated config tree
gave us another idea. One of the hardest parts of main-
taining a suite of network management products is try-
ing to keep their configurations up to date and in sync
with one another. What if we declared, by fiat, that our
Cricket config tree was the one true source of configu-
ration information, and that all others should be derived
from Cricket’s config tree? We decided to design the
config tree to be a simple collection of dictionaries. As
the config tree is read the parser pays no attention to
what keys and values it finds. It simply stores them
aw ay. Later, the application which called the parser
(Cricket in this case) does lookups in the dictionary
looking for data it understands which will control its
behavior. Since it is doing lookups into the data, it
never even sees data that it’s not interested in. In theory,
lots of different tools could all rely on the config tree,
leveraging the investment made into creating and

updating a config tree. In practice, a fair amount of
code that belongs in the parser ended up in the Cricket
application itself, which means that it will take some
reengineering to make the dream of the One True Con-
fig Tree come true.

The User Interface
The fastest, most flexible data collection on the

planet doesn’t help at all if there’s no way to see the
data. MRTG led us down the right path here; the graphs
it makes are simple and useful, and they are presented
in a web page viewable on virtually any platform. For
Cricket, we decided to make the HTML and the graphs
on the fly, instead of caching completed graphs like
MRTG does. This saved some of the processing over-
head inherent in MRTG’s regular polling cycle. As a
bonus, using the CGI script instead of pre-generated
HTML soundly defeats the over-aggressive browser-
side caching that plagues many MRTG installations. On
the down side, the startup time for the CGI script can
be a problem, as can the graph generation time, both of
which the user perceives as lag in the user interface.
The startup time problems could be mitigated by the
mod_perl Apache module, and Cricket already uses a
graph caching scheme to attempt to avoid wasting time
re-rendering graphs. It’s generally true, though, that the
Cricket user interface is slower than the MRTG inter-
face.

The CGI graph browser was specifically
designed to maximize flexibility. It is read-only, which
keeps security concerns to a minimum. If access con-
trol to sensitive information is required, it is currently
only possible on a per-installation basis. This is one
drawback to the CGI graph browser, but it has not been
a problem for us. There are also ways to run a graph
browser on a subset of all the collected data, so access
controls could probably be implemented by a deter-
mined Cricket user. The graph browser operates
entirely on URL’s which can be incorporated into web
pages outside the Cricket system, or stored as book-
marks. This has made it possible to build “views” of the
Cricket data which are annotated in various ways to
assist operations personnel. We can also use these
external pages to collect a set of interesting graphs
which might be difficult to navigate among inside the
graph browser.

To aid in analyzing the data, it can be useful to
assemble graphs out of various data streams which are
separately collected and stored by Cricket. So far, this
capability is limited to putting multiple graphs on one
page, and gathering data from several sources and plot-
ting it in summary on a single graph. These advanced

features intended to make it easier to look at the data
are a tough sell; they tend to be difficult to implement
within the current design, and are only used when try-
ing to solve a particular kind of problem. Of course,
having the right tool for the job is invaluable, so it’s
tempting to try to make Cricket do everything under the
sun.

While Cricket is the right tool for these analysis
jobs, it’s not yet infinitely flexible. It presents useful
data that answers 90% of the questions, but the jury’s
still out on the costs and benefits of adding the com-
plexity necessary to answer the last 9% of the ques-
tions. What about the last 1%? We’ll never get there,
and we don’t plan to try. Sometimes, the data suggests
questions that are better answered with other tools. The
trick is knowing when to turn elsewhere to get your
answer.

Instance Mapping
MRTG relies on SNMP instance numbers to

identify which of the interfaces on a given router it will
pick up data from. One of the things we knew we hated
about MRTG was the necessity of re-adjusting instance
numbers after any router configuration change. It was a
small, but persistent, pain in the neck. It’s a dreadfully
mundane job, and especially annoying on the large
routers we use, which have lots of interfaces. Still, it
didn’t happen that often, and it hardly showed up on the
radar screen of “things we want to improve in MRTG”.

To be fair, the instance number problem is not
ev en really MRTG’s fault. It’s due to an annoying com-
promise in the SNMP specification that lets network
devices get away with murder in the interest of making
them easier to implement. This was done under the
assumption that polling systems will be smarter than
network devices, and can make up for the lack of intel-
ligence in the managed nodes. SNMP devices are
allowed to renumber their interfaces behind the poller’s
back potentially between every single polling cycle.
What’s a poller to do? The system can either force
humans to fix things up when necessary, or it can
attempt to figure out the right instance number on it’s
own. MRTG uses the former strategy, while Cricket has
a feature called “instance mapping” to implement the
latter strategy.

Cricket’s instance mapping feature allows admin-
istrators to configure a target by name, and then let
Cricket do the necessary SNMP lookups to map that
name into an instance number. From then on, it’s
Cricket’s job to keep the instance number correct, no
matter how hard the device tries to confuse it. Cricket
does this magic in a bulletproof but efficient way. To

begin with, it uses a series of SNMP GET-NEXT oper-
ations (i.e. a table walk) to map the instance name to a
number. Once it has a valid instance number, it caches
it. The next time it uses the cached instance number, it
fetches the name again, along with the polled data. If a
“no such instance” error is returned, or the name no
longer matches, Cricket discards the polled data, maps
the name to a new instance number, and fetches the
data again. The new instance number is cached, and
will be used until the next re-mapping is required.
Fetching the name every time like this amounts to a
small overhead in the polling transaction, but it ensures
that re-mapping happens as soon as necessary, without
any human interaction. Presumably commercial sys-
tems solve this problem the same way.

It turns out that this is not just a nice feature, it’s
a required one in some cases. It was designed to be
extremely flexible, since I hope to use Cricket to moni-
tor items in the Host MIB which tend to get different
instances all the time (disks and processes, among oth-
ers). To this end, Cricket can even match against names
which are regular expressions, making it easy to find a
given process, no matter how it was invoked. I have
also been told that the virtual interfaces created and
destroyed by Cisco’s ATM LANE implementation
come and go with unpredictable names, making them
very hard to monitor with conventional tools. A Cricket
user managed to monitor these virtual interfaces for the
first time ever using the instance mapping code and reg-
ular expression matching. His exact comment on the
triumph was “Instance mapping is the best thing since
sliced bread!”

Future Directions
Our hope for Cricket is that it finds a place in

other operations centers, and that it helps improve cus-
tomer service all around. Poor service reflects poorly
on all of us, and it’s in the industry’s best interests to
develop useful tools to raise Quality of Service.

The major features we needed from Cricket are
in place now, and it has superseded MRTG at WebTV
Networks. The bulk of the work is done. However,
there is the usual laundry list of “todo” items for
Cricket. We will do ongoing work on it, especially to
integrate patches from interested helpers.

As we have come to depend on graphs to tell us
about the state of the WebTV Service, we have stum-
bled across a principle that should have been obvious to
start with. Simply put, lots of graphs are not a proactive
tool. It’s not reasonable to expect humans to continually
review each of the over 4000 graphs we can produce
and watch for anomalies. Of course, Cricket was never

intended to simply find links that are down, or hosts
that are crashed. There are other tools that we already
use for that kind of monitoring. Subtle problems in the
system manifest themselves as subtle changes in the
patterns on the graph. It is these problems that we seek
to discover when we humans browse the graphs. We are
looking for graphs that don’t “look right”.

The obvious solution to the problem of too many
graphs is to ask Cricket itself to evaluate the graphs and
flag those that don’t “look right” for further analysis by
a human. This is about the time things get really com-
plicated; we could apply all the fancy pattern recogni-
tion tools that the computer science community has to
offer, including neural networks, signal processing, and
fuzzy logic. We took a more pragmatic view and asked
the question, “How do we humans know when it looks
right?” The answer in all cases was that we compare
the current behavior to past behavior. Now the problem
looks a bit more solvable. We want to create a system
of thresholds which are set differently at different times
of day. These thresholds will be derived from past data,
so that deviation from past patterns results in violated
thresholds, which in turn results in an alert that a
human sees. With an appropriate GUI, administrators
could adjust the suggested thresholds to avoid false
positives. They could also mark known anomalous data
with the GUI, so that future generated thresholds would
not be affected by the “bad” data.

We hav e asked a group of students from Harvey
Mudd College to work on this problem as part of the
Computer Science Clinic program. The Clinic program
offers a team of undergraduates a chance to work on a
real-world problem, while offering companies like
WebTV Networks access to bright students who can
pursue a project independently. I work less than an hour
a week with the team as a liaison to help them under-
stand the problem and our expectations. In return, they
are responsible for managing themselves and delivering
a finished product at the end of the school year.

The threshold system the clinic team is working
on will store its data in the config tree. It will take
advantage of inheritance to eliminate duplicated thresh-
olds. It will have a GUI that can be used to look at and
modify the suggested time-based threshold curves
which are generated using historical data. Threshold
violations that are discovered by the collector as it
fetches the data will either spawn a shell script, or for-
ward the alert to an alert management system via
SNMP traps. The result of the project will be incorpo-
rated into the standard Cricket distribution later this
year. It will be available under the same license as
Cricket itself, the GNU Public License (GPL).

Of course, the real future for Cricket lies with all
of the other folks who pick it up and use it. Because it
is distributed in source form, and is protected by the
GPL, Cricket users are guaranteed the right to hack on
it however they see fit. If you need Cricket to do some-
thing it cannot already do, you can write the code and
share it as contributed software or as a patch. I’m look-
ing forward to hearing from Cricket users about how
it’s working for them, and seeing what features they
need to add to make it work even better.

Av ailability
The Cricket homepage is at:

http://www.munitions.com/ ̃ jra/cricket .

There’s more information there, including the
Cricket distribution, where to get the other things you
need to make Cricket work, and what mailing lists you
might want to join for help. People who want to get in
touch with me personally can send e-mail to
jra@corp.webtv.net.

Acknowledgments
Cricket would not have been written if WebTV

Networks had never gotten so addicted to MRTG. So
hats off to Tobias Oetiker for a great tool, and for com-
ing through with RRD, a perfect encore. Lots of the
ideas for how to improve Cricket came from Jeff
Jensen, one of the network administrators at WebTV
Networks. The WebTV Networks management lets me
spend time on this project, and chose to make it freely
available on the net, to boot. Laura de Leon reviewed
this paper and helped me spot some unanswered ques-
tions. Thanks to you all for your help.

Figure 1. An example of Cricket in action. These graphs show an OC3
outage.

Figure 2. Traffic on a Fast Ethernet handoff to a peer of ours.
Their backbone was suffering routing instability at the time.

Figure 3. Traffic on a DS3 to another peer during the
routing instability shown in Figure 2.

